gwfish: A simulation software to evaluate parameter-estimation capabilities of gravitational-wave detector networks

An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and parameter-estimation capabilities, which is the basis of science-case studies. Several future GW detectors have been proposed or are under develop...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and computing Vol. 42; p. 100671
Main Authors Dupletsa, U., Harms, J., Banerjee, B., Branchesi, M., Goncharov, B., Maselli, A., Oliveira, A.C.S., Ronchini, S., Tissino, J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Online AccessGet full text
ISSN2213-1337
DOI10.1016/j.ascom.2022.100671

Cover

Abstract An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and parameter-estimation capabilities, which is the basis of science-case studies. Several future GW detectors have been proposed or are under development, which might also operate and observe in parallel. These detectors include terrestrial, lunar, and space-borne detectors. In this paper, we present gwfish,11github.com/janosch314/GWFish. a new software to simulate GW detector networks and to calculate measurement uncertainties based on the Fisher-matrix approximation. gwfish models the impact of detector motion on PE and makes it possible to analyze multiband scenarios, i.e., observation of a GW signal by different detectors in different frequency bands. We showcase a few examples for the Einstein Telescope (ET) including the sky-localization of binary neutron stars, and ET’s capability to measure the polarization of GWs.
AbstractList An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and parameter-estimation capabilities, which is the basis of science-case studies. Several future GW detectors have been proposed or are under development, which might also operate and observe in parallel. These detectors include terrestrial, lunar, and space-borne detectors. In this paper, we present gwfish,11github.com/janosch314/GWFish. a new software to simulate GW detector networks and to calculate measurement uncertainties based on the Fisher-matrix approximation. gwfish models the impact of detector motion on PE and makes it possible to analyze multiband scenarios, i.e., observation of a GW signal by different detectors in different frequency bands. We showcase a few examples for the Einstein Telescope (ET) including the sky-localization of binary neutron stars, and ET’s capability to measure the polarization of GWs.
ArticleNumber 100671
Author Oliveira, A.C.S.
Ronchini, S.
Banerjee, B.
Harms, J.
Branchesi, M.
Goncharov, B.
Maselli, A.
Tissino, J.
Dupletsa, U.
Author_xml – sequence: 1
  givenname: U.
  surname: Dupletsa
  fullname: Dupletsa, U.
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
– sequence: 2
  givenname: J.
  orcidid: 0000-0002-7332-9806
  surname: Harms
  fullname: Harms, J.
  email: jan.harms@gssi.it
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
– sequence: 3
  givenname: B.
  surname: Banerjee
  fullname: Banerjee, B.
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
– sequence: 4
  givenname: M.
  surname: Branchesi
  fullname: Branchesi, M.
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
– sequence: 5
  givenname: B.
  surname: Goncharov
  fullname: Goncharov, B.
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
– sequence: 6
  givenname: A.
  surname: Maselli
  fullname: Maselli, A.
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
– sequence: 7
  givenname: A.C.S.
  surname: Oliveira
  fullname: Oliveira, A.C.S.
  organization: Department of Physics, Columbia University in the City of New York, New York, NY 10027, USA
– sequence: 8
  givenname: S.
  surname: Ronchini
  fullname: Ronchini, S.
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
– sequence: 9
  givenname: J.
  surname: Tissino
  fullname: Tissino, J.
  organization: Gran Sasso Science Institute (GSSI), PI-67100 L’Aquila, Italy
BookMark eNqFkM1OwzAMgHMYEmPsCbjkBTrys_4hcZgmYEiTuMA5clN3ZLTNlGSteHu6dScO4Isl259lfzdk0toWCbnjbMEZT-73C_DaNgvBhBgqLEn5hEyF4DLiUqbXZO79ng2RL3kssinxu74y_vOBrqg3zbGGYGxLva1CDw5psBQ7qI8QkB7AQYMBXYQ-mGac1HCAwtQmGPTUVnTnoDPh3IM66qFDWg6MDtbRFkNv3Ze_JVcV1B7nlzwjH89P7-tNtH17eV2vtpGWTIYoTXFZ8gIlsBxzyURaJJnmRSlEKqAUOq1ilhU5S-QyQ5Ax5nGVYSEFL2MtMzkjctyrnfXeYaUObrjbfSvO1EmX2quzLnXSpUZdA5X_ovTloeDA1P-wjyOLw1udQae8NthqLI0bHKjSmj_5H_jYjkY
CitedBy_id crossref_primary_10_1103_PhysRevD_108_123026
crossref_primary_10_1051_0004_6361_202348384
crossref_primary_10_1103_PhysRevD_110_083519
crossref_primary_10_1051_0004_6361_202245205
crossref_primary_10_1103_PhysRevD_108_043543
crossref_primary_10_1103_PhysRevLett_132_241401
crossref_primary_10_1051_0004_6361_202345850
crossref_primary_10_1051_0004_6361_202347555
crossref_primary_10_1088_1475_7516_2024_05_027
crossref_primary_10_1103_PhysRevD_108_043506
crossref_primary_10_1103_PhysRevD_110_023036
crossref_primary_10_1007_s11214_023_01015_4
crossref_primary_10_1016_j_ascom_2023_100759
crossref_primary_10_1103_PhysRevD_110_064025
crossref_primary_10_1103_PhysRevD_110_083040
crossref_primary_10_1103_PhysRevD_108_123531
crossref_primary_10_1103_PhysRevD_111_024036
crossref_primary_10_1051_0004_6361_202450381
crossref_primary_10_1098_rsta_2023_0066
crossref_primary_10_1103_PhysRevD_110_023502
crossref_primary_10_1103_PhysRevD_111_044048
crossref_primary_10_1088_1475_7516_2023_07_068
crossref_primary_10_1088_1475_7516_2024_10_087
crossref_primary_10_1088_1475_7516_2024_10_085
crossref_primary_10_1103_PhysRevLett_133_261001
crossref_primary_10_1103_PhysRevD_107_L101302
crossref_primary_10_1103_PhysRevD_110_122006
crossref_primary_10_1088_1475_7516_2025_01_108
crossref_primary_10_1103_PhysRevD_108_122006
Cites_doi 10.1103/PhysRevLett.117.051102
10.1016/j.softx.2021.100765
10.12942/lrr-2009-2
10.1103/PhysRevD.88.122003
10.1088/0264-9381/27/19/194002
10.3847/2041-8213/ac1a75
10.1103/PhysRevD.105.122007
10.1103/PhysRevD.81.082001
10.1088/0264-9381/28/9/094013
10.1088/1475-7516/2016/04/024
10.1103/PhysRevD.96.084004
10.1051/0004-6361/202243705
10.1007/s12045-016-0316-6
10.1016/j.softx.2020.100634
10.1103/PhysRevD.97.123014
10.1103/PhysRevD.102.022007
10.1088/1475-7516/2021/05/003
10.1088/0264-9381/24/5/005
10.1103/PhysRevLett.116.231102
10.3847/1538-4365/ab06fc
10.1103/PhysRevD.93.044007
10.1103/PhysRevD.66.122002
10.1038/s41550-018-0658-y
10.1103/PhysRevD.59.124016
10.1103/PhysRevD.88.084013
10.1103/PhysRevD.86.122001
10.1103/PhysRevD.81.123016
10.1103/PhysRevD.80.084043
10.3847/2041-8213/ac6bea
10.1103/PhysRevD.40.3884
10.1088/1475-7516/2020/03/050
10.1088/0264-9381/14/6/020
10.1103/PhysRevLett.107.191104
10.1103/PhysRevD.93.044006
10.1088/0264-9381/32/2/024001
10.1088/1361-6382/ac1618
10.1086/308110
10.1093/ptep/ptab019
10.1088/1361-6382/aa51f4
10.1103/PhysRevD.71.022001
10.1103/PhysRevD.57.7089
10.1103/PhysRevD.101.024056
10.1103/PhysRevD.105.043010
10.1103/PhysRevD.77.042001
10.3847/1538-4357/ab0b3e
10.1103/PhysRevD.103.122004
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ascom.2022.100671
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
ExternalDocumentID 10_1016_j_ascom_2022_100671
S2213133722000853
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
OGIMB
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSH
SSQ
SSV
SSZ
T5K
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-77e4d1be3a09e93027b68c1bd2272ad2c7f508b906348ea35e95f8eb321d5c383
IEDL.DBID .~1
ISSN 2213-1337
IngestDate Wed Oct 01 02:05:43 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Sun Apr 06 06:53:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-77e4d1be3a09e93027b68c1bd2272ad2c7f508b906348ea35e95f8eb321d5c383
ORCID 0000-0002-7332-9806
ParticipantIDs crossref_primary_10_1016_j_ascom_2022_100671
crossref_citationtrail_10_1016_j_ascom_2022_100671
elsevier_sciencedirect_doi_10_1016_j_ascom_2022_100671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Astronomy and computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sathyaprakash, Schutz (b47) 2009; 12
Abbott, Abbott, Acernese, Ackley, Adams, Adhikari, Adhikari (b5) 2021
Abbott, Abbott, Abbott, Abraham, Acernese, Ackley, Adams, Adhikari, Adya, Affeldt (b3) 2019; 9
Khan, Ohme, Chatziioannou, Hannam (b33) 2020; 101
Vallisneri (b52) 2005; 71
Regimbau, Dent, Del Pozzo, Giampanis, Li, Robinson, Van Den Broeck, Meacher, Rodriguez, Sathyaprakash (b44) 2012; 86
Parida, Mitra, Jhingan (b40) 2016; 2016
Hoy, Raymond (b28) 2021; 15
Souradeep (b50) 2016; 21
Buonanno, Iyer, Ochsner, Pan, Sathyaprakash (b13) 2009; 80
Broeck, Sengupta (b12) 2007; 24
Punturo, Abernathy, Acernese, Allen, Andersson, Arun, Barone, Barr, Barsuglia, Beker (b43) 2010; 27
Vallisneri (b54) 2011; 107
Wette (b57) 2020; 12
Gürsel, Tinto (b23) 1989; 40
(b35) 2018
Hild, Abernathy, Acernese, Amaro-Seoane, Andersson, Arun, Barone, Barr, Barsuglia, Beker (b26) 2011; 28
Hinderer, Lackey, Lang, Read (b27) 2010; 81
Prince, Tinto, Larson, Armstrong (b42) 2002; 66
Rodriguez, Farr, Farr, Mandel (b45) 2013; 88
Khan, Husa, Hannam, Ohme, Pürrer, Forteza, Bohé (b32) 2016; 93
Chan, Messenger, Heng, Hendry (b14) 2018; 97
Luca, Franciolini, Pani, Riotto (b36) 2021; 2021
Nitz, Canton (b39) 2021; 917
Abbott, Abbott, Abbott, Abernathy, Ackley, Adams, Addesso, Adhikari, Adya, Affeldt (b2) 2017; 34
Borhanian (b11) 2021; 38
Droz, Knapp, Poisson, Owen (b17) 1999; 59
(b19) 2020
Sesana (b49) 2016; 116
Press, Teukolsky, Vetterling, Flannery (b41) 2007
Abbott, Abbott, Abraham, Acernese, Ackley, Adams, Adams, Adhikari, Adya, Affeldt (b4) 2021; 11
Chen, Vitale, Narayan (b15) 2019; 9
Aasi, Abbott, Abbott, Abbott, Abernathy, Ackley, Adams, Adams, Addesso, Adhikari (b1) 2015; 32
Acernese, Agathos, Agatsuma, Aisa, Allemandou, Allocca, Amarni, Astone, Balestri, Ballardin (b6) 2014; 32
Essick, Vitale, Evans (b18) 2017; 96
Akutsu, Ando, Arai, Arai, Araki, Araya, Aritomi, Asada, Aso, Atsuta (b7) 2019; 3
Armstrong, Estabrook, Tinto (b9) 1999; 527
Husa, Khan, Hannam, Pürrer, Ohme, Forteza, Bohé (b29) 2016; 93
Amaro-Seoane, Audley, Babak, Baker, Barausse, Bender, Berti, Binetruy, Born, Bortoluzzi (b8) 2017
Harms, Slagmolen, Adhikari, Miller, Evans, Chen, Müller, Ando (b25) 2013; 88
Vallisneri (b53) 2008; 77
Goncharov, Nitz, Harms (b21) 2022; 105
Grimm, Harms (b22) 2020; 102
Maggiore, Broeck, Bartolo, Belgacem, Bertacca, Bizouard, Branchesi, Clesse, Foffa, García-Bellido (b37) 2020; 2020
Hall, Kuns, Smith, Bai, Wipf, Biscans, Adhikari, Arai, Ballmer, Barsotti (b24) 2021; 103
Li, Heng, Chan, Messenger, Fan (b34) 2022; 105
Ng, Chen, Goncharov, Dupletsa, Borhanian, Branchesi, Harms, Maggiore, Sathyaprakash, Vitale (b38) 2021; 931
Schilling (b48) 1997; 14
Kawamura, Ando, Seto, Sato, Musha, Kawano, Yokoyama, Tanaka, Ioka, Akutsu (b31) 2021; 2021
Vitale (b55) 2016; 117
Ashton, Hübner, Lasky, Talbot, Ackley, Biscoveanu, Chu, Divakarla, Easter, Goncharov (b10) 2019; 241
Usman, Mills, Fairhurst (b51) 2019; 877
Isoyama, Sturani, Nakano (b30) 2021
Cutler (b16) 1998; 57
Ronchini, Branchesi, Oganesyan, Banerjee, Dupletsa, Ghirlanda, Harms, Mapelli, Santoliquido (b46) 2022; 665
Wen, Chen (b56) 2010; 81
Evans, Adhikari, Afle, Ballmer, Biscoveanu, Borhanian, Brown, Chen, Eisenstein, Gruson (b20) 2021
Grimm (10.1016/j.ascom.2022.100671_b22) 2020; 102
Maggiore (10.1016/j.ascom.2022.100671_b37) 2020; 2020
Akutsu (10.1016/j.ascom.2022.100671_b7) 2019; 3
Aasi (10.1016/j.ascom.2022.100671_b1) 2015; 32
Sesana (10.1016/j.ascom.2022.100671_b49) 2016; 116
Abbott (10.1016/j.ascom.2022.100671_b4) 2021; 11
Prince (10.1016/j.ascom.2022.100671_b42) 2002; 66
Luca (10.1016/j.ascom.2022.100671_b36) 2021; 2021
Parida (10.1016/j.ascom.2022.100671_b40) 2016; 2016
Hinderer (10.1016/j.ascom.2022.100671_b27) 2010; 81
Evans (10.1016/j.ascom.2022.100671_b20) 2021
Acernese (10.1016/j.ascom.2022.100671_b6) 2014; 32
Essick (10.1016/j.ascom.2022.100671_b18) 2017; 96
Sathyaprakash (10.1016/j.ascom.2022.100671_b47) 2009; 12
(10.1016/j.ascom.2022.100671_b19) 2020
Vallisneri (10.1016/j.ascom.2022.100671_b54) 2011; 107
Punturo (10.1016/j.ascom.2022.100671_b43) 2010; 27
Usman (10.1016/j.ascom.2022.100671_b51) 2019; 877
Goncharov (10.1016/j.ascom.2022.100671_b21) 2022; 105
Hall (10.1016/j.ascom.2022.100671_b24) 2021; 103
Cutler (10.1016/j.ascom.2022.100671_b16) 1998; 57
Buonanno (10.1016/j.ascom.2022.100671_b13) 2009; 80
Khan (10.1016/j.ascom.2022.100671_b33) 2020; 101
Li (10.1016/j.ascom.2022.100671_b34) 2022; 105
Armstrong (10.1016/j.ascom.2022.100671_b9) 1999; 527
Broeck (10.1016/j.ascom.2022.100671_b12) 2007; 24
Souradeep (10.1016/j.ascom.2022.100671_b50) 2016; 21
Droz (10.1016/j.ascom.2022.100671_b17) 1999; 59
Ronchini (10.1016/j.ascom.2022.100671_b46) 2022; 665
Press (10.1016/j.ascom.2022.100671_b41) 2007
Borhanian (10.1016/j.ascom.2022.100671_b11) 2021; 38
Harms (10.1016/j.ascom.2022.100671_b25) 2013; 88
Abbott (10.1016/j.ascom.2022.100671_b3) 2019; 9
Regimbau (10.1016/j.ascom.2022.100671_b44) 2012; 86
Hoy (10.1016/j.ascom.2022.100671_b28) 2021; 15
Chen (10.1016/j.ascom.2022.100671_b15) 2019; 9
Schilling (10.1016/j.ascom.2022.100671_b48) 1997; 14
Kawamura (10.1016/j.ascom.2022.100671_b31) 2021; 2021
Nitz (10.1016/j.ascom.2022.100671_b39) 2021; 917
Hild (10.1016/j.ascom.2022.100671_b26) 2011; 28
Khan (10.1016/j.ascom.2022.100671_b32) 2016; 93
Abbott (10.1016/j.ascom.2022.100671_b2) 2017; 34
(10.1016/j.ascom.2022.100671_b35) 2018
Vallisneri (10.1016/j.ascom.2022.100671_b52) 2005; 71
Husa (10.1016/j.ascom.2022.100671_b29) 2016; 93
Vitale (10.1016/j.ascom.2022.100671_b55) 2016; 117
Abbott (10.1016/j.ascom.2022.100671_b5) 2021
Vallisneri (10.1016/j.ascom.2022.100671_b53) 2008; 77
Isoyama (10.1016/j.ascom.2022.100671_b30) 2021
Chan (10.1016/j.ascom.2022.100671_b14) 2018; 97
Amaro-Seoane (10.1016/j.ascom.2022.100671_b8) 2017
Ng (10.1016/j.ascom.2022.100671_b38) 2021; 931
Rodriguez (10.1016/j.ascom.2022.100671_b45) 2013; 88
Gürsel (10.1016/j.ascom.2022.100671_b23) 1989; 40
Wen (10.1016/j.ascom.2022.100671_b56) 2010; 81
Ashton (10.1016/j.ascom.2022.100671_b10) 2019; 241
Wette (10.1016/j.ascom.2022.100671_b57) 2020; 12
References_xml – volume: 59
  year: 1999
  ident: b17
  article-title: Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase approximation to the Fourier transform
  publication-title: Phys. Rev. D
– volume: 66
  year: 2002
  ident: b42
  article-title: LISA optimal sensitivity
  publication-title: Phys. Rev. D
– volume: 116
  year: 2016
  ident: b49
  article-title: Prospects for multiband gravitational-wave astronomy after GW150914
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 35
  year: 2019
  end-page: 40
  ident: b7
  article-title: KAGRA: 2.5 generation interferometric gravitational wave detector
  publication-title: Nat. Astron.
– volume: 877
  start-page: 82
  year: 2019
  ident: b51
  article-title: Constraining the inclinations of binary mergers from gravitational-wave observations
  publication-title: Astrophys. J.
– year: 2018
  ident: b35
  article-title: LIGO algorithm library - LALSuite
– volume: 80
  year: 2009
  ident: b13
  article-title: Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors
  publication-title: Phys. Rev. D
– volume: 117
  year: 2016
  ident: b55
  article-title: Multiband gravitational-wave astronomy: Parameter estimation and tests of general relativity with space- and ground-based detectors
  publication-title: Phys. Rev. Lett.
– volume: 32
  year: 2015
  ident: b1
  article-title: Advanced LIGO
  publication-title: Classical Quantum Gravity
– volume: 931
  start-page: L12
  year: 2021
  ident: b38
  article-title: On the single-event-based identification of primordial black hole mergers at cosmological distances
  publication-title: Astrophys. J. Lett.
– volume: 28
  year: 2011
  ident: b26
  article-title: Sensitivity studies for third-generation gravitational wave observatories
  publication-title: Classical Quantum Gravity
– volume: 88
  year: 2013
  ident: b45
  article-title: Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation
  publication-title: Phys. Rev. D
– volume: 21
  start-page: 225
  year: 2016
  end-page: 231
  ident: b50
  article-title: LIGO-India
  publication-title: Resonance
– volume: 97
  year: 2018
  ident: b14
  article-title: Binary neutron star mergers and third generation detectors: Localization and early warning
  publication-title: Phys. Rev. D
– volume: 14
  start-page: 1513
  year: 1997
  end-page: 1519
  ident: b48
  article-title: Angular and frequency response of LISA
  publication-title: Classical Quantum Gravity
– volume: 107
  year: 2011
  ident: b54
  article-title: Beyond the Fisher-matrix formalism: Exact sampling distributions of the maximum-likelihood estimator in gravitational-wave parameter estimation
  publication-title: Phys. Rev. Lett.
– volume: 105
  year: 2022
  ident: b21
  article-title: Utilizing the null stream of Einstein Telescope
  publication-title: Phys. Rev. D
– volume: 241
  start-page: 27
  year: 2019
  ident: b10
  article-title: Bilby: A user-friendly Bayesian inference library for gravitational-wave astronomy
  publication-title: Astrophys. J. Suppl. Ser.
– volume: 665
  start-page: A97
  year: 2022
  ident: b46
  article-title: Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites
  publication-title: A&A
– volume: 96
  year: 2017
  ident: b18
  article-title: Frequency-dependent responses in third generation gravitational-wave detectors
  publication-title: Phys. Rev. D
– volume: 2021
  year: 2021
  ident: b31
  article-title: Current status of space gravitational wave antenna DECIGO and B-DECIGO
  publication-title: Prog. Theor. Exp. Phys.
– volume: 9
  year: 2019
  ident: b3
  article-title: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs
  publication-title: Phys. Rev. X
– volume: 81
  year: 2010
  ident: b27
  article-title: Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral
  publication-title: Phys. Rev. D
– year: 2021
  ident: b20
  article-title: A horizon study for Cosmic Explorer: Science, observatories, and community
– volume: 40
  start-page: 3884
  year: 1989
  end-page: 3938
  ident: b23
  article-title: Near optimal solution to the inverse problem for gravitational-wave bursts
  publication-title: Phys. Rev. D
– volume: 32
  year: 2014
  ident: b6
  article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector
  publication-title: Classical Quantum Gravity
– volume: 12
  year: 2020
  ident: b57
  article-title: SWIGLAL: Python and Octave interfaces to the LALSuite gravitational-wave data analysis libraries
  publication-title: SoftwareX
– volume: 57
  start-page: 7089
  year: 1998
  end-page: 7102
  ident: b16
  article-title: Angular resolution of the LISA gravitational wave detector
  publication-title: Phys. Rev. D
– volume: 2020
  start-page: 050
  year: 2020
  ident: b37
  article-title: Science case for the Einstein telescope
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 9
  year: 2019
  ident: b15
  article-title: Viewing angle of binary neutron star mergers
  publication-title: Phys. Rev. X
– volume: 105
  year: 2022
  ident: b34
  article-title: Exploring the sky localization and early warning capabilities of third generation gravitational wave detectors in three-detector network configurations
  publication-title: Phys. Rev. D
– volume: 2016
  start-page: 024
  year: 2016
  ident: b40
  article-title: Component separation of a isotropic gravitational wave background
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 12
  start-page: 2
  year: 2009
  ident: b47
  article-title: Physics, astrophysics and cosmology with gravitational waves
  publication-title: Living Rev. Relativ.
– volume: 38
  year: 2021
  ident: b11
  article-title: GWBENCH: a novel Fisher information package for gravitational-wave benchmarking
  publication-title: Classical Quantum Gravity
– volume: 86
  year: 2012
  ident: b44
  article-title: Mock data challenge for the Einstein Gravitational-Wave Telescope
  publication-title: Phys. Rev. D
– volume: 2021
  start-page: 003
  year: 2021
  ident: b36
  article-title: Bayesian evidence for both astrophysical and primordial black holes: mapping the GWTC-2 catalog to third-generation detectors
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 27
  year: 2010
  ident: b43
  article-title: The Einstein Telescope: a third-generation gravitational wave observatory
  publication-title: Classical Quantum Gravity
– volume: 102
  year: 2020
  ident: b22
  article-title: Multiband gravitational-wave parameter estimation: A study of future detectors
  publication-title: Phys. Rev. D
– volume: 103
  year: 2021
  ident: b24
  article-title: Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity
  publication-title: Phys. Rev. D
– volume: 93
  year: 2016
  ident: b32
  article-title: Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era
  publication-title: Phys. Rev. D
– volume: 527
  start-page: 814
  year: 1999
  end-page: 826
  ident: b9
  article-title: Time-delay interferometry for space-based gravitational wave searches
  publication-title: Astrophys. J.
– volume: 101
  year: 2020
  ident: b33
  article-title: Including higher order multipoles in gravitational-wave models for precessing binary black holes
  publication-title: Phys. Rev. D
– volume: 917
  start-page: L27
  year: 2021
  ident: b39
  article-title: Pre-merger localization of compact-binary mergers with third-generation observatories
  publication-title: Astrophys. J. Lett.
– volume: 24
  start-page: 1089
  year: 2007
  end-page: 1113
  ident: b12
  article-title: Binary black hole spectroscopy
  publication-title: Classical Quantum Gravity
– start-page: 1
  year: 2021
  end-page: 49
  ident: b30
  article-title: Post-Newtonian templates for gravitational waves from compact binary inspirals
  publication-title: Handb. Gravitational Wave Astron.
– volume: 15
  year: 2021
  ident: b28
  article-title: PESummary: the code agnostic Parameter Estimation Summary page builder
  publication-title: SoftwareX
– year: 2007
  ident: b41
  article-title: Numerical recipes 3rd edition: The art of scientific computing
– year: 2017
  ident: b8
  article-title: Laser Interferometer Space Antenna
– volume: 93
  year: 2016
  ident: b29
  article-title: Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal
  publication-title: Phys. Rev. D
– volume: 88
  year: 2013
  ident: b25
  article-title: Low-frequency terrestrial gravitational-wave detectors
  publication-title: Phys. Rev. D
– year: 2020
  ident: b19
  article-title: Einstein Telescope design report update 2020
– year: 2021
  ident: b5
  article-title: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run
– volume: 77
  year: 2008
  ident: b53
  article-title: Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects
  publication-title: Phys. Rev. D
– volume: 11
  year: 2021
  ident: b4
  article-title: GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run
  publication-title: Phys. Rev. X
– volume: 34
  year: 2017
  ident: b2
  article-title: Exploring the sensitivity of next generation gravitational wave detectors
  publication-title: Classical Quantum Gravity
– volume: 71
  year: 2005
  ident: b52
  article-title: Synthetic LISA: Simulating time delay interferometry in a model LISA
  publication-title: Phys. Rev. D
– volume: 81
  year: 2010
  ident: b56
  article-title: Geometrical expression for the angular resolution of a network of gravitational-wave detectors
  publication-title: Phys. Rev. D
– volume: 117
  year: 2016
  ident: 10.1016/j.ascom.2022.100671_b55
  article-title: Multiband gravitational-wave astronomy: Parameter estimation and tests of general relativity with space- and ground-based detectors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.051102
– volume: 15
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b28
  article-title: PESummary: the code agnostic Parameter Estimation Summary page builder
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2021.100765
– volume: 12
  start-page: 2
  issn: 1433-8351
  issue: 1
  year: 2009
  ident: 10.1016/j.ascom.2022.100671_b47
  article-title: Physics, astrophysics and cosmology with gravitational waves
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2009-2
– volume: 88
  year: 2013
  ident: 10.1016/j.ascom.2022.100671_b25
  article-title: Low-frequency terrestrial gravitational-wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.122003
– year: 2021
  ident: 10.1016/j.ascom.2022.100671_b5
– volume: 27
  issue: 19
  year: 2010
  ident: 10.1016/j.ascom.2022.100671_b43
  article-title: The Einstein Telescope: a third-generation gravitational wave observatory
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/27/19/194002
– volume: 917
  start-page: L27
  issue: 2
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b39
  article-title: Pre-merger localization of compact-binary mergers with third-generation observatories
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac1a75
– volume: 105
  year: 2022
  ident: 10.1016/j.ascom.2022.100671_b21
  article-title: Utilizing the null stream of Einstein Telescope
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.122007
– volume: 81
  year: 2010
  ident: 10.1016/j.ascom.2022.100671_b56
  article-title: Geometrical expression for the angular resolution of a network of gravitational-wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.082001
– volume: 28
  issue: 9
  year: 2011
  ident: 10.1016/j.ascom.2022.100671_b26
  article-title: Sensitivity studies for third-generation gravitational wave observatories
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/28/9/094013
– volume: 2016
  start-page: 024
  issue: 04
  year: 2016
  ident: 10.1016/j.ascom.2022.100671_b40
  article-title: Component separation of a isotropic gravitational wave background
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/04/024
– volume: 96
  year: 2017
  ident: 10.1016/j.ascom.2022.100671_b18
  article-title: Frequency-dependent responses in third generation gravitational-wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.084004
– volume: 665
  start-page: A97
  year: 2022
  ident: 10.1016/j.ascom.2022.100671_b46
  article-title: Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites
  publication-title: A&A
  doi: 10.1051/0004-6361/202243705
– volume: 21
  start-page: 225
  year: 2016
  ident: 10.1016/j.ascom.2022.100671_b50
  article-title: LIGO-India
  publication-title: Resonance
  doi: 10.1007/s12045-016-0316-6
– volume: 12
  issn: 2352-7110
  year: 2020
  ident: 10.1016/j.ascom.2022.100671_b57
  article-title: SWIGLAL: Python and Octave interfaces to the LALSuite gravitational-wave data analysis libraries
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100634
– volume: 97
  year: 2018
  ident: 10.1016/j.ascom.2022.100671_b14
  article-title: Binary neutron star mergers and third generation detectors: Localization and early warning
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.123014
– volume: 102
  year: 2020
  ident: 10.1016/j.ascom.2022.100671_b22
  article-title: Multiband gravitational-wave parameter estimation: A study of future detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.022007
– volume: 2021
  start-page: 003
  issue: 05
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b36
  article-title: Bayesian evidence for both astrophysical and primordial black holes: mapping the GWTC-2 catalog to third-generation detectors
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/05/003
– volume: 9
  year: 2019
  ident: 10.1016/j.ascom.2022.100671_b15
  article-title: Viewing angle of binary neutron star mergers
  publication-title: Phys. Rev. X
– volume: 24
  start-page: 1089
  issue: 5
  year: 2007
  ident: 10.1016/j.ascom.2022.100671_b12
  article-title: Binary black hole spectroscopy
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/24/5/005
– start-page: 1
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b30
  article-title: Post-Newtonian templates for gravitational waves from compact binary inspirals
  publication-title: Handb. Gravitational Wave Astron.
– volume: 116
  year: 2016
  ident: 10.1016/j.ascom.2022.100671_b49
  article-title: Prospects for multiband gravitational-wave astronomy after GW150914
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.231102
– volume: 241
  start-page: 27
  issue: 2
  year: 2019
  ident: 10.1016/j.ascom.2022.100671_b10
  article-title: Bilby: A user-friendly Bayesian inference library for gravitational-wave astronomy
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.3847/1538-4365/ab06fc
– year: 2017
  ident: 10.1016/j.ascom.2022.100671_b8
– volume: 93
  issn: 2470-0029
  issue: 4
  year: 2016
  ident: 10.1016/j.ascom.2022.100671_b32
  article-title: Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.044007
– volume: 66
  year: 2002
  ident: 10.1016/j.ascom.2022.100671_b42
  article-title: LISA optimal sensitivity
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.122002
– volume: 9
  year: 2019
  ident: 10.1016/j.ascom.2022.100671_b3
  article-title: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs
  publication-title: Phys. Rev. X
– volume: 11
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b4
  article-title: GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run
  publication-title: Phys. Rev. X
– volume: 3
  start-page: 35
  issn: 2397-3366
  issue: 1
  year: 2019
  ident: 10.1016/j.ascom.2022.100671_b7
  article-title: KAGRA: 2.5 generation interferometric gravitational wave detector
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-018-0658-y
– volume: 59
  year: 1999
  ident: 10.1016/j.ascom.2022.100671_b17
  article-title: Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase approximation to the Fourier transform
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.59.124016
– volume: 88
  year: 2013
  ident: 10.1016/j.ascom.2022.100671_b45
  article-title: Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.084013
– volume: 86
  year: 2012
  ident: 10.1016/j.ascom.2022.100671_b44
  article-title: Mock data challenge for the Einstein Gravitational-Wave Telescope
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.122001
– year: 2020
  ident: 10.1016/j.ascom.2022.100671_b19
– volume: 81
  year: 2010
  ident: 10.1016/j.ascom.2022.100671_b27
  article-title: Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.123016
– year: 2018
  ident: 10.1016/j.ascom.2022.100671_b35
– volume: 80
  issn: 1550-2368
  issue: 8
  year: 2009
  ident: 10.1016/j.ascom.2022.100671_b13
  article-title: Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.084043
– volume: 931
  start-page: L12
  issue: 1
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b38
  article-title: On the single-event-based identification of primordial black hole mergers at cosmological distances
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac6bea
– volume: 40
  start-page: 3884
  year: 1989
  ident: 10.1016/j.ascom.2022.100671_b23
  article-title: Near optimal solution to the inverse problem for gravitational-wave bursts
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.40.3884
– volume: 2020
  start-page: 050
  issue: 03
  year: 2020
  ident: 10.1016/j.ascom.2022.100671_b37
  article-title: Science case for the Einstein telescope
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/03/050
– year: 2007
  ident: 10.1016/j.ascom.2022.100671_b41
– year: 2021
  ident: 10.1016/j.ascom.2022.100671_b20
– volume: 14
  start-page: 1513
  issue: 6
  year: 1997
  ident: 10.1016/j.ascom.2022.100671_b48
  article-title: Angular and frequency response of LISA
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/14/6/020
– volume: 32
  issue: 7
  year: 2015
  ident: 10.1016/j.ascom.2022.100671_b1
  article-title: Advanced LIGO
  publication-title: Classical Quantum Gravity
– volume: 107
  year: 2011
  ident: 10.1016/j.ascom.2022.100671_b54
  article-title: Beyond the Fisher-matrix formalism: Exact sampling distributions of the maximum-likelihood estimator in gravitational-wave parameter estimation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.191104
– volume: 93
  issn: 2470-0029
  issue: 4
  year: 2016
  ident: 10.1016/j.ascom.2022.100671_b29
  article-title: Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.044006
– volume: 32
  issue: 2
  year: 2014
  ident: 10.1016/j.ascom.2022.100671_b6
  article-title: Advanced Virgo: a second-generation interferometric gravitational wave detector
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/32/2/024001
– volume: 38
  issue: 17
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b11
  article-title: GWBENCH: a novel Fisher information package for gravitational-wave benchmarking
  publication-title: Classical Quantum Gravity
  doi: 10.1088/1361-6382/ac1618
– volume: 527
  start-page: 814
  issue: 2
  year: 1999
  ident: 10.1016/j.ascom.2022.100671_b9
  article-title: Time-delay interferometry for space-based gravitational wave searches
  publication-title: Astrophys. J.
  doi: 10.1086/308110
– volume: 2021
  issn: 2050-3911
  issue: 5
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b31
  article-title: Current status of space gravitational wave antenna DECIGO and B-DECIGO
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptab019
– volume: 34
  issue: 4
  year: 2017
  ident: 10.1016/j.ascom.2022.100671_b2
  article-title: Exploring the sensitivity of next generation gravitational wave detectors
  publication-title: Classical Quantum Gravity
  doi: 10.1088/1361-6382/aa51f4
– volume: 71
  year: 2005
  ident: 10.1016/j.ascom.2022.100671_b52
  article-title: Synthetic LISA: Simulating time delay interferometry in a model LISA
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.71.022001
– volume: 57
  start-page: 7089
  year: 1998
  ident: 10.1016/j.ascom.2022.100671_b16
  article-title: Angular resolution of the LISA gravitational wave detector
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.7089
– volume: 101
  year: 2020
  ident: 10.1016/j.ascom.2022.100671_b33
  article-title: Including higher order multipoles in gravitational-wave models for precessing binary black holes
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.024056
– volume: 105
  issue: 4
  year: 2022
  ident: 10.1016/j.ascom.2022.100671_b34
  article-title: Exploring the sky localization and early warning capabilities of third generation gravitational wave detectors in three-detector network configurations
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.043010
– volume: 77
  year: 2008
  ident: 10.1016/j.ascom.2022.100671_b53
  article-title: Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.042001
– volume: 877
  start-page: 82
  issue: 2
  year: 2019
  ident: 10.1016/j.ascom.2022.100671_b51
  article-title: Constraining the inclinations of binary mergers from gravitational-wave observations
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab0b3e
– volume: 103
  year: 2021
  ident: 10.1016/j.ascom.2022.100671_b24
  article-title: Gravitational-wave physics with Cosmic Explorer: Limits to low-frequency sensitivity
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.122004
SSID ssj0000941528
Score 2.4715834
Snippet An important step in the planning of future gravitational-wave (GW) detectors and of the networks they will form is the estimation of their detection and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100671
Title gwfish: A simulation software to evaluate parameter-estimation capabilities of gravitational-wave detector networks
URI https://dx.doi.org/10.1016/j.ascom.2022.100671
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2213-1337
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000941528
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 2213-1337
  databaseCode: ACRLP
  dateStart: 20130201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000941528
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 2213-1337
  databaseCode: AIKHN
  dateStart: 20130201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000941528
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 2213-1337
  databaseCode: .~1
  dateStart: 20130201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000941528
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2213-1337
  databaseCode: AKRWK
  dateStart: 20130201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941528
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRn7Q-yh7Ek7Fm89jEWymWqtiLFnoLm2Silb5oosWLv92ZzaYoSA9eQgg7sOws881Mvplh7FyRxUM_wJJh5lmul0pLKRHiIxChkikkMVUjPw78_tC9H3mjGutWtTBEqzS2v7Tp2lqbL21zmu3FeNx-EsJ2MMKSQmjHgTp-uq6kKQZXX_Y6z4LhC0KUHkyH6y0SqJoPaZqXyok1IhDKiDDgS_tvgPoBOr1dtmO8Rd4pN7THajDbZ41OTvnr-fSTX3D9XqYn8gOWv6yycf56wzs8H0_NZC6eo6ldqSXwYs5Nd2_g1PN7SlwYi_pslAWMPEHo1GxZjJ_5POM0nMg08VYTa6U-gKdQ6EQ_n5UE8vyQDXu3z92-ZcYqWAniVYH-NLipHYOjrkMI6b9l7AeJHadCSKFSkcgMvbY4ROfFDUA5HoReFmDQLezUSzCiPWL12XwGDcYz8B3EN9-RMcWVEEIKrg0SzUTmK5BNJqqzjBKzXRp9MYkqctlbpBUQkQKiUgFNdrkWWpQtNzYv9yslRb9uToSgsEnw-L-CJ2ybhs6XiZhTVi-W73CGrkkRt_Tda7Gtzt1Df_ANH-blcg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qHvQiPml97kE8GWs2j228FbHUR3uxhd7CJplopS9MtHjxtzuz2RQF6cFLCCEDS2aZb77JtzOMnSmKeJgHWDJIPcv1EmkpJQK8NESgZAJxRKeRO12_3XfvB96gwm7KszAkqzSxv4jpOlqbJ3XzNeuz4bD-JITtIMOSQujEwVlha64nJDGwyy97UWhB_oIYpSfToYFFFmX3Ia3zUhnJRgRiGSkGfGn_jVA_UKe1xTZNusibxYq2WQUmO6zazKiAPR1_8nOu74v6RLbLsud5OsxernmTZ8OxGc3FM4y1c_UGPJ9y094bODX9HpMYxqJGG8UJRh4jdmq5LBJoPk05TScyXbzVyJqrD-AJ5LrSzyeFgjzbY_3Wbe-mbZm5ClaMgJVjQg1uYkfgqKsAAvpxGfmN2I4SIaRQiYhlimlbFGD24jZAOR4EXtpA1i3sxIuR0u6z1cl0AlXGU_AdBDjfkRERSwggAdcGiXEi9RXIGhPltwxjs1yafTEKS3XZa6gdEJIDwsIBNXaxMJoVPTeWv-6XTgp_bZ0QUWGZ4cF_DU_ZervXeQwf77oPh2yDJtAXVZkjtpq_vcMx5il5dKL34TeBlecH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gwfish%3A+A+simulation+software+to+evaluate+parameter-estimation+capabilities+of+gravitational-wave+detector+networks&rft.jtitle=Astronomy+and+computing&rft.au=Dupletsa%2C+U.&rft.au=Harms%2C+J.&rft.au=Banerjee%2C+B.&rft.au=Branchesi%2C+M.&rft.date=2023-01-01&rft.issn=2213-1337&rft.volume=42&rft.spage=100671&rft_id=info:doi/10.1016%2Fj.ascom.2022.100671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ascom_2022_100671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1337&client=summon