Grammar-based multi-objective algorithms for mining association rules
In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many cases, such measures involve conflicting objectives. In such a situation, it is more appropriate to attain the optimal trade-off between measure...
Saved in:
| Published in | Data & knowledge engineering Vol. 86; pp. 19 - 37 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.07.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-023X 1872-6933 |
| DOI | 10.1016/j.datak.2013.01.002 |
Cover
| Abstract | In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many cases, such measures involve conflicting objectives. In such a situation, it is more appropriate to attain the optimal trade-off between measures. This paper deals with the association rule mining problem under a multi-objective perspective by proposing grammar guided genetic programming (G3P) models, that enable the extraction of both numerical and nominal association rules in only one single step. The strength of G3P is its ability to restrict the search space and build rules conforming to a given context-free grammar. Thus, the proposals presented in this paper combine the advantages of G3P models with those of multi-objective approaches. Both approaches follow the philosophy of two well-known multi-objective algorithms: the Non-dominated Sort Genetic Algorithm (NSGA-2) and the Strength Pareto Evolutionary Algorithm (SPEA-2).
In the experimental stage, we compare both multi-objective algorithms to a single-objective G3P proposal for mining association rules and perform an analysis of the mined rules. The results obtained show that multi-objective proposals obtain very frequent (with support values above 95% in most cases) and reliable (with confidence values close to 100%) rules when attaining the optimal trade-off between support and confidence. Furthermore, for the trade-off between support and lift, the multi-objective proposals also produce very interesting and representative rules. |
|---|---|
| AbstractList | In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many cases, such measures involve conflicting objectives. In such a situation, it is more appropriate to attain the optimal trade-off between measures. This paper deals with the association rule mining problem under a multi-objective perspective by proposing grammar guided genetic programming (G3P) models, that enable the extraction of both numerical and nominal association rules in only one single step. The strength of G3P is its ability to restrict the search space and build rules conforming to a given context-free grammar. Thus, the proposals presented in this paper combine the advantages of G3P models with those of multi-objective approaches. Both approaches follow the philosophy of two well-known multi-objective algorithms: the Non-dominated Sort Genetic Algorithm (NSGA-2) and the Strength Pareto Evolutionary Algorithm (SPEA-2).
In the experimental stage, we compare both multi-objective algorithms to a single-objective G3P proposal for mining association rules and perform an analysis of the mined rules. The results obtained show that multi-objective proposals obtain very frequent (with support values above 95% in most cases) and reliable (with confidence values close to 100%) rules when attaining the optimal trade-off between support and confidence. Furthermore, for the trade-off between support and lift, the multi-objective proposals also produce very interesting and representative rules. |
| Author | Ventura, S. Luna, J.M. Romero, J.R. |
| Author_xml | – sequence: 1 givenname: J.M. surname: Luna fullname: Luna, J.M. email: jmluna@uco.es – sequence: 2 givenname: J.R. surname: Romero fullname: Romero, J.R. email: jrromero@uco.es – sequence: 3 givenname: S. surname: Ventura fullname: Ventura, S. email: sventura@uco.es |
| BookMark | eNqFkL1OwzAUhS1UJErhCVjyAgnXceLUAwOqSkGqxAISm3Xrn-KQxMh2K_H2pC0TA0x3Od_VOd8lmQx-MITcUCgoUH7bFhoTfhQlUFYALQDKMzKl86bMuWBsQqZjSuRQsrcLchljC2OignpKlquAfY8h32A0Out3XXK537RGJbc3GXZbH1x672Nmfch6N7hhm2GMXjlMzg9Z2HUmXpFzi1001z93Rl4fli-Lx3z9vHpa3K9zxYClnFurNKdUwLxRCNRwNLrSvCkRLa9rzqFUgjWbBueWaVbXWtXKVkJUGipD2Yyw018VfIzBWPkZ3Nj-S1KQBxOylUcT8mBCApXjzpESvyjl0rF9Cui6f9i7E2vGWXtngozKmUEZ7cLoSGrv_uS_AdctfjE |
| CitedBy_id | crossref_primary_10_1007_s00500_019_04226_6 crossref_primary_10_1016_j_ins_2016_03_039 crossref_primary_10_1016_j_knosys_2023_110801 crossref_primary_10_1007_s10115_015_0911_y crossref_primary_10_26634_jit_6_2_13569 crossref_primary_10_1007_s12046_019_1136_7 crossref_primary_10_1002_widm_1307 crossref_primary_10_1016_j_knosys_2015_07_016 crossref_primary_10_1016_j_engappai_2016_08_012 crossref_primary_10_1109_TCYB_2015_2496175 crossref_primary_10_1016_j_asoc_2017_02_031 crossref_primary_10_1016_j_datak_2015_04_006 crossref_primary_10_3233_ICA_170555 crossref_primary_10_3390_math11020401 crossref_primary_10_1016_j_ins_2020_02_073 crossref_primary_10_1007_s12083_018_0698_1 crossref_primary_10_1080_03772063_2019_1615008 crossref_primary_10_1016_j_eswa_2013_12_043 crossref_primary_10_1016_j_ipm_2020_102207 crossref_primary_10_1016_j_engappai_2013_09_002 crossref_primary_10_1109_ACCESS_2019_2948800 |
| Cites_doi | 10.1016/j.datak.2006.10.009 10.1162/evco.1994.2.3.221 10.1023/A:1008202821328 10.1023/B:DAMI.0000005258.31418.83 10.1016/j.asoc.2007.05.003 10.1007/s10732-008-9080-4 10.1016/j.datak.2007.04.001 10.1016/j.datak.2006.04.009 10.1016/j.ins.2003.03.021 10.1061/(ASCE)0887-3801(1997)11:3(184) 10.1016/j.datak.2008.10.001 10.1080/08839510590967316 10.1007/s10115-011-0419-z 10.1109/4235.996017 10.1007/s10710-010-9109-y 10.1145/1132960.1132963 10.1016/S0306-4379(03)00072-3 10.1016/j.datak.2011.02.003 10.1162/106365600568167 10.1007/s00500-007-0172-0 10.1109/4235.797969 10.3233/IDA-2002-6303 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.datak.2013.01.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-6933 |
| EndPage | 37 |
| ExternalDocumentID | 10_1016_j_datak_2013_01_002 S0169023X13000037 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSV SSZ T5K WUQ XPP ZMT ZY4 ~G- 77I AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-6ffcd6119087ca01e6aed4d672aaf6556602c937b7a8f3d355dc5cf4994d04e13 |
| IEDL.DBID | .~1 |
| ISSN | 0169-023X |
| IngestDate | Thu Apr 24 22:56:31 EDT 2025 Thu Oct 02 04:21:24 EDT 2025 Fri Feb 23 02:35:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Association rule mining Data mining Genetic programming Mining methods and algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-6ffcd6119087ca01e6aed4d672aaf6556602c937b7a8f3d355dc5cf4994d04e13 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1016_j_datak_2013_01_002 crossref_citationtrail_10_1016_j_datak_2013_01_002 elsevier_sciencedirect_doi_10_1016_j_datak_2013_01_002 |
| PublicationCentury | 2000 |
| PublicationDate | July 2013 2013-07-00 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: July 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Data & knowledge engineering |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Winarko, Roddick (bb0025) 2007; 63 Deb (bb0120) 2001 Ghosh, Nath (bb0200) 2004; 163 Agrawal, Imielinski, Swami (bb0040) 1993 Han, Pei, Yin, Mao (bb0055) 2004; 8 Tan, Kumar, Srivastava (bb0085) 2004; 29 García, Molina, Lozano, Herrera (bb0235) 2009; 15 Knowles, Corne (bb0185) 1999; 8 Dorr, Denton (bb0010) 2009; 68 Hoai, Whigham, Shan, O'neill, McKay (bb0070) 2010; 11 Salleb-Aouissi, Vrain, Nortet (bb0195) 2007 Demšar (bb0230) 2006; 7 Luna, Romero, Ventura (bb0080) 2010 Yi, Zhang (bb0005) 2007; 63 Borgelt (bb0050) 2003 Luna, Romero, Ventura (bb0135) 2012; 32 Zitzler, Laumanns, Thiele (bb0130) 2002 Feng, Liu, Burns (bb0175) 1999; 10 Ishibuchi, Kuwajima, Nojima (bb0205) 2006 Zhang, Zhang (bb0020) 2002 Geng, Hamilton (bb0090) 2006; 38 Kaosar, Paulet, Yi (bb0035) 2012; 76–78 Ventura, Romero, Zafra, Delgado, Hervás (bb0225) 2008; 12 Agrawal, Srikant (bb0045) 1994 Price, Storn (bb0215) 1997; 11 Koza (bb0075) 1992 Coello, Lamont, Van Veldhuizen (bb0165) 2007 Freitas (bb0115) 2002 Deb, Pratap, Agrawal, Meyarivan (bb0125) 2000; 6 Schaffer (bb0150) 1985 Tlili, Slimani (bb0030) 2011 Xu, Li, Shaw (bb0015) 2011; 70 Fonseca, Fleming (bb0155) 1993 Alatas, Akin, Karci (bb0210) 2008; 8 Yan, Zhang, Zhang (bb0065) 2005; 19 Tang, Man, Ko (bb0170) 2002 Anand, Vaid, Singh (bb0220) 2009 Berzal, Blanco, Sánchez, Vila (bb0140) 2002; 6 Krmicek, Sebag (bb0180) 2006 Palshikar, Kale, Apte (bb0060) 2007; 61 Srinivas, Deb (bb0160) 1994; 2 Zitzler, Thiele (bb0190) 1999; 3 Mishra, Addy, Roy, Dehuri (bb0145) 2011 Deb (10.1016/j.datak.2013.01.002_bb0125) 2000; 6 Tan (10.1016/j.datak.2013.01.002_bb0085) 2004; 29 Geng (10.1016/j.datak.2013.01.002_bb0090) 2006; 38 Tlili (10.1016/j.datak.2013.01.002_bb0030) 2011 Winarko (10.1016/j.datak.2013.01.002_bb0025) 2007; 63 Coello (10.1016/j.datak.2013.01.002_bb0165) 2007 Hoai (10.1016/j.datak.2013.01.002_bb0070) 2010; 11 Tang (10.1016/j.datak.2013.01.002_bb0170) 2002 Mishra (10.1016/j.datak.2013.01.002_bb0145) 2011 Salleb-Aouissi (10.1016/j.datak.2013.01.002_bb0195) 2007 Ghosh (10.1016/j.datak.2013.01.002_bb0200) 2004; 163 García (10.1016/j.datak.2013.01.002_bb0235) 2009; 15 Han (10.1016/j.datak.2013.01.002_bb0055) 2004; 8 Luna (10.1016/j.datak.2013.01.002_bb0080) 2010 Srinivas (10.1016/j.datak.2013.01.002_bb0160) 1994; 2 Freitas (10.1016/j.datak.2013.01.002_bb0115) 2002 Palshikar (10.1016/j.datak.2013.01.002_bb0060) 2007; 61 Knowles (10.1016/j.datak.2013.01.002_bb0185) 1999; 8 Alatas (10.1016/j.datak.2013.01.002_bb0210) 2008; 8 Berzal (10.1016/j.datak.2013.01.002_bb0140) 2002; 6 Fonseca (10.1016/j.datak.2013.01.002_bb0155) 1993 Zitzler (10.1016/j.datak.2013.01.002_bb0130) 2002 Luna (10.1016/j.datak.2013.01.002_bb0135) 2012; 32 Demšar (10.1016/j.datak.2013.01.002_bb0230) 2006; 7 Kaosar (10.1016/j.datak.2013.01.002_bb0035) 2012; 76–78 Yan (10.1016/j.datak.2013.01.002_bb0065) 2005; 19 Price (10.1016/j.datak.2013.01.002_bb0215) 1997; 11 Anand (10.1016/j.datak.2013.01.002_bb0220) 2009 Yi (10.1016/j.datak.2013.01.002_bb0005) 2007; 63 Ishibuchi (10.1016/j.datak.2013.01.002_bb0205) 2006 Dorr (10.1016/j.datak.2013.01.002_bb0010) 2009; 68 Koza (10.1016/j.datak.2013.01.002_bb0075) 1992 Krmicek (10.1016/j.datak.2013.01.002_bb0180) 2006 Xu (10.1016/j.datak.2013.01.002_bb0015) 2011; 70 Zhang (10.1016/j.datak.2013.01.002_bb0020) 2002 Agrawal (10.1016/j.datak.2013.01.002_bb0040) 1993 Borgelt (10.1016/j.datak.2013.01.002_bb0050) 2003 Zitzler (10.1016/j.datak.2013.01.002_bb0190) 1999; 3 Agrawal (10.1016/j.datak.2013.01.002_bb0045) 1994 Deb (10.1016/j.datak.2013.01.002_bb0120) 2001 Schaffer (10.1016/j.datak.2013.01.002_bb0150) 1985 Feng (10.1016/j.datak.2013.01.002_bb0175) 1999; 10 Ventura (10.1016/j.datak.2013.01.002_bb0225) 2008; 12 |
| References_xml | – start-page: 53 year: 2011 end-page: 61 ident: bb0030 article-title: Executing association rule mining algorithms under a grid computing environment publication-title: Proceedings of the Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging, PADTAD'11, Toronto, Ontario, Canada – volume: 70 start-page: 555 year: 2011 end-page: 575 ident: bb0015 article-title: Reliable representations for association rules publication-title: Data and Knowledge Engineering – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bb0190 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computation – year: 2006 ident: bb0205 article-title: Multiobjective association rule mining publication-title: Proceedings of the Multiobjective Problem Solving from Nature, Reykjavik, Iceland – start-page: 95 year: 2002 end-page: 100 ident: bb0130 article-title: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization publication-title: Proceedings of the 2001 Conference on Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: bb0160 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation – volume: 68 start-page: 318 year: 2009 end-page: 337 ident: bb0010 article-title: Establishing relationships among patterns in stock market data publication-title: Data and Knowledge Engineering – volume: 163 start-page: 123 year: 2004 end-page: 133 ident: bb0200 article-title: Multi-objective rule mining using genetic algorithms publication-title: The Information of the Science – year: 2007 ident: bb0165 article-title: Evolutionary Algorithms for Solving Multi-Objective Problems – start-page: 2586 year: 2010 end-page: 2593 ident: bb0080 article-title: G3PARM: a grammar guided genetic programming algorithm for mining association rules publication-title: Proceedings of the IEEE World Congress on Computational Intelligence, Barcelona, Spain – year: 2002 ident: bb0115 article-title: Data Mining and Knowledge Discovery with Evolutionary Algorithms – start-page: 207 year: 1993 end-page: 216 ident: bb0040 article-title: Mining association rules between sets of items in large databases publication-title: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C – volume: 63 start-page: 76 year: 2007 end-page: 90 ident: bb0025 article-title: Armada“ an algorithm for discovering richer relative temporal association rules from interval-based data publication-title: Data and Knowledge Engineering – volume: 32 start-page: 53 year: 2012 end-page: 76 ident: bb0135 article-title: Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules publication-title: Knowledge and Information Systems – start-page: 416 year: 1993 end-page: 423 ident: bb0155 article-title: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization publication-title: Proceedings of the 5th International Conference on Genetic Algorithms:, San Francisco, CA, USA – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: bb0235 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study publication-title: Journal of Heuristics – year: 1992 ident: bb0075 article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection – start-page: 409 year: 2011 end-page: 414 ident: bb0145 article-title: Parallel multi-objective genetic algorithms for associative classification rule mining publication-title: Proceedings of the 2011 International Conference on Communication, Computing & Security, ICCCS'11, ACM, Rourkela, Odisha, India – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bb0230 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – year: 2002 ident: bb0020 article-title: Association Rule Mining: Models and Algorithms – volume: 6 start-page: 182 year: 2000 end-page: 197 ident: bb0125 article-title: A fast elitist multi-objective genetic algorithm: Nsga-ii publication-title: IEEE Transactions on Evolutionary Computation – volume: 10 start-page: 184 year: 1999 end-page: 189 ident: bb0175 article-title: Using genetic algorithms to solve construction time-cost trade-off problems publication-title: Journal of Computing in Civil Engineering – volume: 63 start-page: 550 year: 2007 end-page: 567 ident: bb0005 article-title: Privacy-preserving distributed association rule mining via semi-trusted mixer publication-title: Data and Knowledge Engineering – start-page: 487 year: 1994 end-page: 499 ident: bb0045 article-title: Fast algorithms for mining association rules in large databases publication-title: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile – volume: 29 start-page: 293 year: 2004 end-page: 313 ident: bb0085 article-title: Selecting the right objective measure for association analysis publication-title: Information Systems – start-page: 385 year: 2009 end-page: 390 ident: bb0220 article-title: Association rule mining using multi-objective evolutionary algorithms: strengths and challenges publication-title: Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing, Coimbatore, India – start-page: 629 year: 2002 end-page: 635 ident: bb0170 article-title: Wireless LAN design using hierarchical genetic algorithm publication-title: Proceedings of the 7th International Conference on Genetic Algorithms, San Mateo, California – volume: 8 start-page: 149 year: 1999 end-page: 172 ident: bb0185 article-title: Approximating the non-dominated front using the pareto archived evolution strategy publication-title: Evolutionary Computation – start-page: 382 year: 2006 end-page: 391 ident: bb0180 article-title: Functional brain imaging with multi-objective multi-modal evolutionary optimization publication-title: Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, Reykjavik, Iceland – start-page: 1035 year: 2007 end-page: 1040 ident: bb0195 article-title: Quantminer: a genetic algorithm for mining quantitative association rules publication-title: Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyberadad, India – volume: 61 start-page: 93 year: 2007 end-page: 113 ident: bb0060 article-title: Association rules mining using heavy itemsets publication-title: Data and Knowledge Engineering – volume: 6 start-page: 221 year: 2002 end-page: 235 ident: bb0140 article-title: Measuring the accuracy and interest of association rules: a new framework publication-title: Intelligent Data Analysis – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bb0215 article-title: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 38 year: 2006 ident: bb0090 article-title: Interestingness measures for data mining: a survey publication-title: ACM Computing Surveys – start-page: 93 year: 1985 end-page: 100 ident: bb0150 article-title: Multiple objective optimization with vector evaluated genetic algorithms publication-title: Proceedings of the First International Conference on Genetic Algorithms, Hillsdale, New Jersey – volume: 12 start-page: 381 year: 2008 end-page: 392 ident: bb0225 article-title: JCLEC: a java framework for evolutionary computation publication-title: Soft Computing – start-page: 1 year: 2003 end-page: 9 ident: bb0050 article-title: Efficient implementations of apriori and eclat publication-title: Proceedings of the 1st Workshop on Frequent Itemset Mining Implementations, Melbourne, FL, USA – year: 2001 ident: bb0120 article-title: Multi-Objective Optimization Using Evolutionary Algorithms – volume: 76–78 start-page: 1 year: 2012 end-page: 15 ident: bb0035 article-title: Fully homomorphic encryption based two-party association rule mining publication-title: Data and Knowledge Engineering – volume: 19 start-page: 677 year: 2005 end-page: 689 ident: bb0065 article-title: ARMGA: identifying interesting association rules with genetic algorithms publication-title: Applied Artificial Intelligence – volume: 8 start-page: 646 year: 2008 end-page: 656 ident: bb0210 article-title: MODENAR: multi-objective differencial evolution algorithm for mining numeric association rules publication-title: Applied Soft Computing – volume: 8 start-page: 53 year: 2004 end-page: 87 ident: bb0055 article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach publication-title: Data Mining and Knowledge Discovery – volume: 11 start-page: 365 year: 2010 end-page: 396 ident: bb0070 article-title: Grammar-based genetic programming: a survey publication-title: Genetic Programming and Evolvable Machines – volume: 63 start-page: 76 issue: 1 year: 2007 ident: 10.1016/j.datak.2013.01.002_bb0025 article-title: Armada“ an algorithm for discovering richer relative temporal association rules from interval-based data publication-title: Data and Knowledge Engineering doi: 10.1016/j.datak.2006.10.009 – start-page: 2586 year: 2010 ident: 10.1016/j.datak.2013.01.002_bb0080 article-title: G3PARM: a grammar guided genetic programming algorithm for mining association rules – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 10.1016/j.datak.2013.01.002_bb0160 article-title: Multiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolutionary Computation doi: 10.1162/evco.1994.2.3.221 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.datak.2013.01.002_bb0215 article-title: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 8 start-page: 53 year: 2004 ident: 10.1016/j.datak.2013.01.002_bb0055 article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach publication-title: Data Mining and Knowledge Discovery doi: 10.1023/B:DAMI.0000005258.31418.83 – year: 2002 ident: 10.1016/j.datak.2013.01.002_bb0020 – volume: 8 start-page: 646 year: 2008 ident: 10.1016/j.datak.2013.01.002_bb0210 article-title: MODENAR: multi-objective differencial evolution algorithm for mining numeric association rules publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.05.003 – volume: 15 start-page: 617 issue: 6 year: 2009 ident: 10.1016/j.datak.2013.01.002_bb0235 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study publication-title: Journal of Heuristics doi: 10.1007/s10732-008-9080-4 – year: 2002 ident: 10.1016/j.datak.2013.01.002_bb0115 – volume: 63 start-page: 550 issue: 2 year: 2007 ident: 10.1016/j.datak.2013.01.002_bb0005 article-title: Privacy-preserving distributed association rule mining via semi-trusted mixer publication-title: Data and Knowledge Engineering doi: 10.1016/j.datak.2007.04.001 – volume: 61 start-page: 93 issue: 1 year: 2007 ident: 10.1016/j.datak.2013.01.002_bb0060 article-title: Association rules mining using heavy itemsets publication-title: Data and Knowledge Engineering doi: 10.1016/j.datak.2006.04.009 – volume: 163 start-page: 123 issue: 1–3 year: 2004 ident: 10.1016/j.datak.2013.01.002_bb0200 article-title: Multi-objective rule mining using genetic algorithms publication-title: The Information of the Science doi: 10.1016/j.ins.2003.03.021 – start-page: 1035 year: 2007 ident: 10.1016/j.datak.2013.01.002_bb0195 article-title: Quantminer: a genetic algorithm for mining quantitative association rules – start-page: 1 year: 2003 ident: 10.1016/j.datak.2013.01.002_bb0050 article-title: Efficient implementations of apriori and eclat – start-page: 416 year: 1993 ident: 10.1016/j.datak.2013.01.002_bb0155 article-title: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization – volume: 10 start-page: 184 issue: 3 year: 1999 ident: 10.1016/j.datak.2013.01.002_bb0175 article-title: Using genetic algorithms to solve construction time-cost trade-off problems publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)0887-3801(1997)11:3(184) – year: 2006 ident: 10.1016/j.datak.2013.01.002_bb0205 article-title: Multiobjective association rule mining – volume: 68 start-page: 318 issue: 3 year: 2009 ident: 10.1016/j.datak.2013.01.002_bb0010 article-title: Establishing relationships among patterns in stock market data publication-title: Data and Knowledge Engineering doi: 10.1016/j.datak.2008.10.001 – year: 2007 ident: 10.1016/j.datak.2013.01.002_bb0165 – start-page: 53 year: 2011 ident: 10.1016/j.datak.2013.01.002_bb0030 article-title: Executing association rule mining algorithms under a grid computing environment – volume: 19 start-page: 677 issue: 7 year: 2005 ident: 10.1016/j.datak.2013.01.002_bb0065 article-title: ARMGA: identifying interesting association rules with genetic algorithms publication-title: Applied Artificial Intelligence doi: 10.1080/08839510590967316 – volume: 32 start-page: 53 issue: 1 year: 2012 ident: 10.1016/j.datak.2013.01.002_bb0135 article-title: Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules publication-title: Knowledge and Information Systems doi: 10.1007/s10115-011-0419-z – volume: 6 start-page: 182 year: 2000 ident: 10.1016/j.datak.2013.01.002_bb0125 article-title: A fast elitist multi-objective genetic algorithm: Nsga-ii publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – start-page: 487 year: 1994 ident: 10.1016/j.datak.2013.01.002_bb0045 article-title: Fast algorithms for mining association rules in large databases – volume: 11 start-page: 365 issue: 3-4 year: 2010 ident: 10.1016/j.datak.2013.01.002_bb0070 article-title: Grammar-based genetic programming: a survey publication-title: Genetic Programming and Evolvable Machines doi: 10.1007/s10710-010-9109-y – year: 1992 ident: 10.1016/j.datak.2013.01.002_bb0075 – start-page: 95 year: 2002 ident: 10.1016/j.datak.2013.01.002_bb0130 article-title: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization – start-page: 629 year: 2002 ident: 10.1016/j.datak.2013.01.002_bb0170 article-title: Wireless LAN design using hierarchical genetic algorithm – volume: 38 issue: 3 year: 2006 ident: 10.1016/j.datak.2013.01.002_bb0090 article-title: Interestingness measures for data mining: a survey publication-title: ACM Computing Surveys doi: 10.1145/1132960.1132963 – volume: 76–78 start-page: 1 year: 2012 ident: 10.1016/j.datak.2013.01.002_bb0035 article-title: Fully homomorphic encryption based two-party association rule mining publication-title: Data and Knowledge Engineering – start-page: 207 year: 1993 ident: 10.1016/j.datak.2013.01.002_bb0040 article-title: Mining association rules between sets of items in large databases – volume: 29 start-page: 293 issue: 4 year: 2004 ident: 10.1016/j.datak.2013.01.002_bb0085 article-title: Selecting the right objective measure for association analysis publication-title: Information Systems doi: 10.1016/S0306-4379(03)00072-3 – start-page: 93 year: 1985 ident: 10.1016/j.datak.2013.01.002_bb0150 article-title: Multiple objective optimization with vector evaluated genetic algorithms – volume: 70 start-page: 555 issue: 6 year: 2011 ident: 10.1016/j.datak.2013.01.002_bb0015 article-title: Reliable representations for association rules publication-title: Data and Knowledge Engineering doi: 10.1016/j.datak.2011.02.003 – volume: 8 start-page: 149 year: 1999 ident: 10.1016/j.datak.2013.01.002_bb0185 article-title: Approximating the non-dominated front using the pareto archived evolution strategy publication-title: Evolutionary Computation doi: 10.1162/106365600568167 – volume: 12 start-page: 381 issue: 4 year: 2008 ident: 10.1016/j.datak.2013.01.002_bb0225 article-title: JCLEC: a java framework for evolutionary computation publication-title: Soft Computing doi: 10.1007/s00500-007-0172-0 – start-page: 385 year: 2009 ident: 10.1016/j.datak.2013.01.002_bb0220 article-title: Association rule mining using multi-objective evolutionary algorithms: strengths and challenges – year: 2001 ident: 10.1016/j.datak.2013.01.002_bb0120 – start-page: 382 year: 2006 ident: 10.1016/j.datak.2013.01.002_bb0180 article-title: Functional brain imaging with multi-objective multi-modal evolutionary optimization – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.datak.2013.01.002_bb0230 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – start-page: 409 year: 2011 ident: 10.1016/j.datak.2013.01.002_bb0145 article-title: Parallel multi-objective genetic algorithms for associative classification rule mining – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.datak.2013.01.002_bb0190 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: 6 start-page: 221 issue: 3 year: 2002 ident: 10.1016/j.datak.2013.01.002_bb0140 article-title: Measuring the accuracy and interest of association rules: a new framework publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2002-6303 |
| SSID | ssj0002405 |
| Score | 2.1594884 |
| Snippet | In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 19 |
| SubjectTerms | Association rule mining Data mining Genetic programming Mining methods and algorithms |
| Title | Grammar-based multi-objective algorithms for mining association rules |
| URI | https://dx.doi.org/10.1016/j.datak.2013.01.002 |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002405 issn: 0169-023X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002405 issn: 0169-023X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002405 issn: 0169-023X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002405 issn: 0169-023X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002405 issn: 0169-023X databaseCode: AKRWK dateStart: 19850601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNHTJ2lTnKsqpYCoheo1Jvl2A60dFOaXvl2xo7DIqQeuEYeKXpxZp6TN28Quo48LwXaGpPUDyMC_F-QRAs481AZaWO_p5jpd34assEofBi3xzXUrXphjKzS5f4yp9ts7a60HJqt1WTSejY-IlBxxuaHjLFRMR3sYWSmGNx-fMs8oGKVMkaWELO6ch6yGi-jwnw3-q7Aene6byt_qtOPitM_QHuOKuJOeTeHqKYXR2i_GsOA3Vt5jHp3uTAdaMRUJIWtRJAs02mZyrCYvS7zSfE2X2MgqHhuJ0Jg8f1YcL6Z6fUJGvV7L90BcdMRiISyUxCWZVIxDwp6HElBPc2EVqFikS9ExtpA06gvgXykkYizQAGvULItMzjhhIqG2gtOUX2xXOgzhBMvkIGUwExSFkqdxZLSDLDViRezlMYN5FeocOmsw80EixmvNGJTbqHkBkpOPQ5QNtDNV9CqdM7YvpxVcPNfG4BDbt8WeP7fwAu069vZFkZ7e4nqRb7RV8AwirRpt1AT7XTuHwfDT9zfz8w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwGLVKGWDhRpTTAyOmdg4nGVHVUqDtQit1sxzHgZZeStOV387nHBSE1IE1sqXoxfnec_L8PoRuPcZCkK0-CS3HI6D_JQm0hD0PVZ428XsRN-eduz3eHjjPQ3dYQY3yLIyxVRa1P6_pWbUurtQLNOuL0aj-anJEgHGG5oeMiVHZQtuOa3lmB3b_ufZ5AGXlPkYeEDO8jB7KTF7GhvlhDF52Ft5ZfFz5Q08_KKd1gPYKrYgf8ts5RBU9O0L7ZR8GXLyWx6j5mEhzBI0YSopw5hEk83Cc1zIsJ2_zZJS-T5cYFCqeZi0hsFw_F5ysJnp5ggatZr_RJkV7BKKAd1LC41hFnAGj-56SlGkudeRE3LOkjLkLOo1aCtRH6Ek_tiMQFpFyVQxbHCeijmb2KarO5jN9hnDAbGUrBdIk5I7Ssa8ojQFcHTCfh9SvIatERagiO9y0sJiI0iQ2FhmUwkApKBMAZQ3dfU9a5NEZm4fzEm7xawUIKO6bJp7_d-IN2mn3ux3Reeq9XKBdK2t0YYy4l6iaJit9BXIjDa-z5fQF2mTRYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grammar-based+multi-objective+algorithms+for+mining+association+rules&rft.jtitle=Data+%26+knowledge+engineering&rft.au=Luna%2C+J.M.&rft.au=Romero%2C+J.R.&rft.au=Ventura%2C+S.&rft.date=2013-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-023X&rft.eissn=1872-6933&rft.volume=86&rft.spage=19&rft.epage=37&rft_id=info:doi/10.1016%2Fj.datak.2013.01.002&rft.externalDocID=S0169023X13000037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-023X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-023X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-023X&client=summon |