Grammar-based multi-objective algorithms for mining association rules

In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many cases, such measures involve conflicting objectives. In such a situation, it is more appropriate to attain the optimal trade-off between measure...

Full description

Saved in:
Bibliographic Details
Published inData & knowledge engineering Vol. 86; pp. 19 - 37
Main Authors Luna, J.M., Romero, J.R., Ventura, S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2013
Subjects
Online AccessGet full text
ISSN0169-023X
1872-6933
DOI10.1016/j.datak.2013.01.002

Cover

Abstract In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many cases, such measures involve conflicting objectives. In such a situation, it is more appropriate to attain the optimal trade-off between measures. This paper deals with the association rule mining problem under a multi-objective perspective by proposing grammar guided genetic programming (G3P) models, that enable the extraction of both numerical and nominal association rules in only one single step. The strength of G3P is its ability to restrict the search space and build rules conforming to a given context-free grammar. Thus, the proposals presented in this paper combine the advantages of G3P models with those of multi-objective approaches. Both approaches follow the philosophy of two well-known multi-objective algorithms: the Non-dominated Sort Genetic Algorithm (NSGA-2) and the Strength Pareto Evolutionary Algorithm (SPEA-2). In the experimental stage, we compare both multi-objective algorithms to a single-objective G3P proposal for mining association rules and perform an analysis of the mined rules. The results obtained show that multi-objective proposals obtain very frequent (with support values above 95% in most cases) and reliable (with confidence values close to 100%) rules when attaining the optimal trade-off between support and confidence. Furthermore, for the trade-off between support and lift, the multi-objective proposals also produce very interesting and representative rules.
AbstractList In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many cases, such measures involve conflicting objectives. In such a situation, it is more appropriate to attain the optimal trade-off between measures. This paper deals with the association rule mining problem under a multi-objective perspective by proposing grammar guided genetic programming (G3P) models, that enable the extraction of both numerical and nominal association rules in only one single step. The strength of G3P is its ability to restrict the search space and build rules conforming to a given context-free grammar. Thus, the proposals presented in this paper combine the advantages of G3P models with those of multi-objective approaches. Both approaches follow the philosophy of two well-known multi-objective algorithms: the Non-dominated Sort Genetic Algorithm (NSGA-2) and the Strength Pareto Evolutionary Algorithm (SPEA-2). In the experimental stage, we compare both multi-objective algorithms to a single-objective G3P proposal for mining association rules and perform an analysis of the mined rules. The results obtained show that multi-objective proposals obtain very frequent (with support values above 95% in most cases) and reliable (with confidence values close to 100%) rules when attaining the optimal trade-off between support and confidence. Furthermore, for the trade-off between support and lift, the multi-objective proposals also produce very interesting and representative rules.
Author Ventura, S.
Luna, J.M.
Romero, J.R.
Author_xml – sequence: 1
  givenname: J.M.
  surname: Luna
  fullname: Luna, J.M.
  email: jmluna@uco.es
– sequence: 2
  givenname: J.R.
  surname: Romero
  fullname: Romero, J.R.
  email: jrromero@uco.es
– sequence: 3
  givenname: S.
  surname: Ventura
  fullname: Ventura, S.
  email: sventura@uco.es
BookMark eNqFkL1OwzAUhS1UJErhCVjyAgnXceLUAwOqSkGqxAISm3Xrn-KQxMh2K_H2pC0TA0x3Od_VOd8lmQx-MITcUCgoUH7bFhoTfhQlUFYALQDKMzKl86bMuWBsQqZjSuRQsrcLchljC2OignpKlquAfY8h32A0Out3XXK537RGJbc3GXZbH1x672Nmfch6N7hhm2GMXjlMzg9Z2HUmXpFzi1001z93Rl4fli-Lx3z9vHpa3K9zxYClnFurNKdUwLxRCNRwNLrSvCkRLa9rzqFUgjWbBueWaVbXWtXKVkJUGipD2Yyw018VfIzBWPkZ3Nj-S1KQBxOylUcT8mBCApXjzpESvyjl0rF9Cui6f9i7E2vGWXtngozKmUEZ7cLoSGrv_uS_AdctfjE
CitedBy_id crossref_primary_10_1007_s00500_019_04226_6
crossref_primary_10_1016_j_ins_2016_03_039
crossref_primary_10_1016_j_knosys_2023_110801
crossref_primary_10_1007_s10115_015_0911_y
crossref_primary_10_26634_jit_6_2_13569
crossref_primary_10_1007_s12046_019_1136_7
crossref_primary_10_1002_widm_1307
crossref_primary_10_1016_j_knosys_2015_07_016
crossref_primary_10_1016_j_engappai_2016_08_012
crossref_primary_10_1109_TCYB_2015_2496175
crossref_primary_10_1016_j_asoc_2017_02_031
crossref_primary_10_1016_j_datak_2015_04_006
crossref_primary_10_3233_ICA_170555
crossref_primary_10_3390_math11020401
crossref_primary_10_1016_j_ins_2020_02_073
crossref_primary_10_1007_s12083_018_0698_1
crossref_primary_10_1080_03772063_2019_1615008
crossref_primary_10_1016_j_eswa_2013_12_043
crossref_primary_10_1016_j_ipm_2020_102207
crossref_primary_10_1016_j_engappai_2013_09_002
crossref_primary_10_1109_ACCESS_2019_2948800
Cites_doi 10.1016/j.datak.2006.10.009
10.1162/evco.1994.2.3.221
10.1023/A:1008202821328
10.1023/B:DAMI.0000005258.31418.83
10.1016/j.asoc.2007.05.003
10.1007/s10732-008-9080-4
10.1016/j.datak.2007.04.001
10.1016/j.datak.2006.04.009
10.1016/j.ins.2003.03.021
10.1061/(ASCE)0887-3801(1997)11:3(184)
10.1016/j.datak.2008.10.001
10.1080/08839510590967316
10.1007/s10115-011-0419-z
10.1109/4235.996017
10.1007/s10710-010-9109-y
10.1145/1132960.1132963
10.1016/S0306-4379(03)00072-3
10.1016/j.datak.2011.02.003
10.1162/106365600568167
10.1007/s00500-007-0172-0
10.1109/4235.797969
10.3233/IDA-2002-6303
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.datak.2013.01.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6933
EndPage 37
ExternalDocumentID 10_1016_j_datak_2013_01_002
S0169023X13000037
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-6ffcd6119087ca01e6aed4d672aaf6556602c937b7a8f3d355dc5cf4994d04e13
IEDL.DBID .~1
ISSN 0169-023X
IngestDate Thu Apr 24 22:56:31 EDT 2025
Thu Oct 02 04:21:24 EDT 2025
Fri Feb 23 02:35:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Association rule mining
Data mining
Genetic programming
Mining methods and algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-6ffcd6119087ca01e6aed4d672aaf6556602c937b7a8f3d355dc5cf4994d04e13
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_datak_2013_01_002
crossref_citationtrail_10_1016_j_datak_2013_01_002
elsevier_sciencedirect_doi_10_1016_j_datak_2013_01_002
PublicationCentury 2000
PublicationDate July 2013
2013-07-00
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationTitle Data & knowledge engineering
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Winarko, Roddick (bb0025) 2007; 63
Deb (bb0120) 2001
Ghosh, Nath (bb0200) 2004; 163
Agrawal, Imielinski, Swami (bb0040) 1993
Han, Pei, Yin, Mao (bb0055) 2004; 8
Tan, Kumar, Srivastava (bb0085) 2004; 29
García, Molina, Lozano, Herrera (bb0235) 2009; 15
Knowles, Corne (bb0185) 1999; 8
Dorr, Denton (bb0010) 2009; 68
Hoai, Whigham, Shan, O'neill, McKay (bb0070) 2010; 11
Salleb-Aouissi, Vrain, Nortet (bb0195) 2007
Demšar (bb0230) 2006; 7
Luna, Romero, Ventura (bb0080) 2010
Yi, Zhang (bb0005) 2007; 63
Borgelt (bb0050) 2003
Luna, Romero, Ventura (bb0135) 2012; 32
Zitzler, Laumanns, Thiele (bb0130) 2002
Feng, Liu, Burns (bb0175) 1999; 10
Ishibuchi, Kuwajima, Nojima (bb0205) 2006
Zhang, Zhang (bb0020) 2002
Geng, Hamilton (bb0090) 2006; 38
Kaosar, Paulet, Yi (bb0035) 2012; 76–78
Ventura, Romero, Zafra, Delgado, Hervás (bb0225) 2008; 12
Agrawal, Srikant (bb0045) 1994
Price, Storn (bb0215) 1997; 11
Koza (bb0075) 1992
Coello, Lamont, Van Veldhuizen (bb0165) 2007
Freitas (bb0115) 2002
Deb, Pratap, Agrawal, Meyarivan (bb0125) 2000; 6
Schaffer (bb0150) 1985
Tlili, Slimani (bb0030) 2011
Xu, Li, Shaw (bb0015) 2011; 70
Fonseca, Fleming (bb0155) 1993
Alatas, Akin, Karci (bb0210) 2008; 8
Yan, Zhang, Zhang (bb0065) 2005; 19
Tang, Man, Ko (bb0170) 2002
Anand, Vaid, Singh (bb0220) 2009
Berzal, Blanco, Sánchez, Vila (bb0140) 2002; 6
Krmicek, Sebag (bb0180) 2006
Palshikar, Kale, Apte (bb0060) 2007; 61
Srinivas, Deb (bb0160) 1994; 2
Zitzler, Thiele (bb0190) 1999; 3
Mishra, Addy, Roy, Dehuri (bb0145) 2011
Deb (10.1016/j.datak.2013.01.002_bb0125) 2000; 6
Tan (10.1016/j.datak.2013.01.002_bb0085) 2004; 29
Geng (10.1016/j.datak.2013.01.002_bb0090) 2006; 38
Tlili (10.1016/j.datak.2013.01.002_bb0030) 2011
Winarko (10.1016/j.datak.2013.01.002_bb0025) 2007; 63
Coello (10.1016/j.datak.2013.01.002_bb0165) 2007
Hoai (10.1016/j.datak.2013.01.002_bb0070) 2010; 11
Tang (10.1016/j.datak.2013.01.002_bb0170) 2002
Mishra (10.1016/j.datak.2013.01.002_bb0145) 2011
Salleb-Aouissi (10.1016/j.datak.2013.01.002_bb0195) 2007
Ghosh (10.1016/j.datak.2013.01.002_bb0200) 2004; 163
García (10.1016/j.datak.2013.01.002_bb0235) 2009; 15
Han (10.1016/j.datak.2013.01.002_bb0055) 2004; 8
Luna (10.1016/j.datak.2013.01.002_bb0080) 2010
Srinivas (10.1016/j.datak.2013.01.002_bb0160) 1994; 2
Freitas (10.1016/j.datak.2013.01.002_bb0115) 2002
Palshikar (10.1016/j.datak.2013.01.002_bb0060) 2007; 61
Knowles (10.1016/j.datak.2013.01.002_bb0185) 1999; 8
Alatas (10.1016/j.datak.2013.01.002_bb0210) 2008; 8
Berzal (10.1016/j.datak.2013.01.002_bb0140) 2002; 6
Fonseca (10.1016/j.datak.2013.01.002_bb0155) 1993
Zitzler (10.1016/j.datak.2013.01.002_bb0130) 2002
Luna (10.1016/j.datak.2013.01.002_bb0135) 2012; 32
Demšar (10.1016/j.datak.2013.01.002_bb0230) 2006; 7
Kaosar (10.1016/j.datak.2013.01.002_bb0035) 2012; 76–78
Yan (10.1016/j.datak.2013.01.002_bb0065) 2005; 19
Price (10.1016/j.datak.2013.01.002_bb0215) 1997; 11
Anand (10.1016/j.datak.2013.01.002_bb0220) 2009
Yi (10.1016/j.datak.2013.01.002_bb0005) 2007; 63
Ishibuchi (10.1016/j.datak.2013.01.002_bb0205) 2006
Dorr (10.1016/j.datak.2013.01.002_bb0010) 2009; 68
Koza (10.1016/j.datak.2013.01.002_bb0075) 1992
Krmicek (10.1016/j.datak.2013.01.002_bb0180) 2006
Xu (10.1016/j.datak.2013.01.002_bb0015) 2011; 70
Zhang (10.1016/j.datak.2013.01.002_bb0020) 2002
Agrawal (10.1016/j.datak.2013.01.002_bb0040) 1993
Borgelt (10.1016/j.datak.2013.01.002_bb0050) 2003
Zitzler (10.1016/j.datak.2013.01.002_bb0190) 1999; 3
Agrawal (10.1016/j.datak.2013.01.002_bb0045) 1994
Deb (10.1016/j.datak.2013.01.002_bb0120) 2001
Schaffer (10.1016/j.datak.2013.01.002_bb0150) 1985
Feng (10.1016/j.datak.2013.01.002_bb0175) 1999; 10
Ventura (10.1016/j.datak.2013.01.002_bb0225) 2008; 12
References_xml – start-page: 53
  year: 2011
  end-page: 61
  ident: bb0030
  article-title: Executing association rule mining algorithms under a grid computing environment
  publication-title: Proceedings of the Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging, PADTAD'11, Toronto, Ontario, Canada
– volume: 70
  start-page: 555
  year: 2011
  end-page: 575
  ident: bb0015
  article-title: Reliable representations for association rules
  publication-title: Data and Knowledge Engineering
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bb0190
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2006
  ident: bb0205
  article-title: Multiobjective association rule mining
  publication-title: Proceedings of the Multiobjective Problem Solving from Nature, Reykjavik, Iceland
– start-page: 95
  year: 2002
  end-page: 100
  ident: bb0130
  article-title: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proceedings of the 2001 Conference on Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: bb0160
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– volume: 68
  start-page: 318
  year: 2009
  end-page: 337
  ident: bb0010
  article-title: Establishing relationships among patterns in stock market data
  publication-title: Data and Knowledge Engineering
– volume: 163
  start-page: 123
  year: 2004
  end-page: 133
  ident: bb0200
  article-title: Multi-objective rule mining using genetic algorithms
  publication-title: The Information of the Science
– year: 2007
  ident: bb0165
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– start-page: 2586
  year: 2010
  end-page: 2593
  ident: bb0080
  article-title: G3PARM: a grammar guided genetic programming algorithm for mining association rules
  publication-title: Proceedings of the IEEE World Congress on Computational Intelligence, Barcelona, Spain
– year: 2002
  ident: bb0115
  article-title: Data Mining and Knowledge Discovery with Evolutionary Algorithms
– start-page: 207
  year: 1993
  end-page: 216
  ident: bb0040
  article-title: Mining association rules between sets of items in large databases
  publication-title: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C
– volume: 63
  start-page: 76
  year: 2007
  end-page: 90
  ident: bb0025
  article-title: Armada“ an algorithm for discovering richer relative temporal association rules from interval-based data
  publication-title: Data and Knowledge Engineering
– volume: 32
  start-page: 53
  year: 2012
  end-page: 76
  ident: bb0135
  article-title: Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules
  publication-title: Knowledge and Information Systems
– start-page: 416
  year: 1993
  end-page: 423
  ident: bb0155
  article-title: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization
  publication-title: Proceedings of the 5th International Conference on Genetic Algorithms:, San Francisco, CA, USA
– volume: 15
  start-page: 617
  year: 2009
  end-page: 644
  ident: bb0235
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study
  publication-title: Journal of Heuristics
– year: 1992
  ident: bb0075
  article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
– start-page: 409
  year: 2011
  end-page: 414
  ident: bb0145
  article-title: Parallel multi-objective genetic algorithms for associative classification rule mining
  publication-title: Proceedings of the 2011 International Conference on Communication, Computing & Security, ICCCS'11, ACM, Rourkela, Odisha, India
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bb0230
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– year: 2002
  ident: bb0020
  article-title: Association Rule Mining: Models and Algorithms
– volume: 6
  start-page: 182
  year: 2000
  end-page: 197
  ident: bb0125
  article-title: A fast elitist multi-objective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 10
  start-page: 184
  year: 1999
  end-page: 189
  ident: bb0175
  article-title: Using genetic algorithms to solve construction time-cost trade-off problems
  publication-title: Journal of Computing in Civil Engineering
– volume: 63
  start-page: 550
  year: 2007
  end-page: 567
  ident: bb0005
  article-title: Privacy-preserving distributed association rule mining via semi-trusted mixer
  publication-title: Data and Knowledge Engineering
– start-page: 487
  year: 1994
  end-page: 499
  ident: bb0045
  article-title: Fast algorithms for mining association rules in large databases
  publication-title: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile
– volume: 29
  start-page: 293
  year: 2004
  end-page: 313
  ident: bb0085
  article-title: Selecting the right objective measure for association analysis
  publication-title: Information Systems
– start-page: 385
  year: 2009
  end-page: 390
  ident: bb0220
  article-title: Association rule mining using multi-objective evolutionary algorithms: strengths and challenges
  publication-title: Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing, Coimbatore, India
– start-page: 629
  year: 2002
  end-page: 635
  ident: bb0170
  article-title: Wireless LAN design using hierarchical genetic algorithm
  publication-title: Proceedings of the 7th International Conference on Genetic Algorithms, San Mateo, California
– volume: 8
  start-page: 149
  year: 1999
  end-page: 172
  ident: bb0185
  article-title: Approximating the non-dominated front using the pareto archived evolution strategy
  publication-title: Evolutionary Computation
– start-page: 382
  year: 2006
  end-page: 391
  ident: bb0180
  article-title: Functional brain imaging with multi-objective multi-modal evolutionary optimization
  publication-title: Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, Reykjavik, Iceland
– start-page: 1035
  year: 2007
  end-page: 1040
  ident: bb0195
  article-title: Quantminer: a genetic algorithm for mining quantitative association rules
  publication-title: Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyberadad, India
– volume: 61
  start-page: 93
  year: 2007
  end-page: 113
  ident: bb0060
  article-title: Association rules mining using heavy itemsets
  publication-title: Data and Knowledge Engineering
– volume: 6
  start-page: 221
  year: 2002
  end-page: 235
  ident: bb0140
  article-title: Measuring the accuracy and interest of association rules: a new framework
  publication-title: Intelligent Data Analysis
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bb0215
  article-title: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 38
  year: 2006
  ident: bb0090
  article-title: Interestingness measures for data mining: a survey
  publication-title: ACM Computing Surveys
– start-page: 93
  year: 1985
  end-page: 100
  ident: bb0150
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proceedings of the First International Conference on Genetic Algorithms, Hillsdale, New Jersey
– volume: 12
  start-page: 381
  year: 2008
  end-page: 392
  ident: bb0225
  article-title: JCLEC: a java framework for evolutionary computation
  publication-title: Soft Computing
– start-page: 1
  year: 2003
  end-page: 9
  ident: bb0050
  article-title: Efficient implementations of apriori and eclat
  publication-title: Proceedings of the 1st Workshop on Frequent Itemset Mining Implementations, Melbourne, FL, USA
– year: 2001
  ident: bb0120
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms
– volume: 76–78
  start-page: 1
  year: 2012
  end-page: 15
  ident: bb0035
  article-title: Fully homomorphic encryption based two-party association rule mining
  publication-title: Data and Knowledge Engineering
– volume: 19
  start-page: 677
  year: 2005
  end-page: 689
  ident: bb0065
  article-title: ARMGA: identifying interesting association rules with genetic algorithms
  publication-title: Applied Artificial Intelligence
– volume: 8
  start-page: 646
  year: 2008
  end-page: 656
  ident: bb0210
  article-title: MODENAR: multi-objective differencial evolution algorithm for mining numeric association rules
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 53
  year: 2004
  end-page: 87
  ident: bb0055
  article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach
  publication-title: Data Mining and Knowledge Discovery
– volume: 11
  start-page: 365
  year: 2010
  end-page: 396
  ident: bb0070
  article-title: Grammar-based genetic programming: a survey
  publication-title: Genetic Programming and Evolvable Machines
– volume: 63
  start-page: 76
  issue: 1
  year: 2007
  ident: 10.1016/j.datak.2013.01.002_bb0025
  article-title: Armada“ an algorithm for discovering richer relative temporal association rules from interval-based data
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2006.10.009
– start-page: 2586
  year: 2010
  ident: 10.1016/j.datak.2013.01.002_bb0080
  article-title: G3PARM: a grammar guided genetic programming algorithm for mining association rules
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.datak.2013.01.002_bb0160
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.datak.2013.01.002_bb0215
  article-title: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 8
  start-page: 53
  year: 2004
  ident: 10.1016/j.datak.2013.01.002_bb0055
  article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/B:DAMI.0000005258.31418.83
– year: 2002
  ident: 10.1016/j.datak.2013.01.002_bb0020
– volume: 8
  start-page: 646
  year: 2008
  ident: 10.1016/j.datak.2013.01.002_bb0210
  article-title: MODENAR: multi-objective differencial evolution algorithm for mining numeric association rules
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.05.003
– volume: 15
  start-page: 617
  issue: 6
  year: 2009
  ident: 10.1016/j.datak.2013.01.002_bb0235
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-008-9080-4
– year: 2002
  ident: 10.1016/j.datak.2013.01.002_bb0115
– volume: 63
  start-page: 550
  issue: 2
  year: 2007
  ident: 10.1016/j.datak.2013.01.002_bb0005
  article-title: Privacy-preserving distributed association rule mining via semi-trusted mixer
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2007.04.001
– volume: 61
  start-page: 93
  issue: 1
  year: 2007
  ident: 10.1016/j.datak.2013.01.002_bb0060
  article-title: Association rules mining using heavy itemsets
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2006.04.009
– volume: 163
  start-page: 123
  issue: 1–3
  year: 2004
  ident: 10.1016/j.datak.2013.01.002_bb0200
  article-title: Multi-objective rule mining using genetic algorithms
  publication-title: The Information of the Science
  doi: 10.1016/j.ins.2003.03.021
– start-page: 1035
  year: 2007
  ident: 10.1016/j.datak.2013.01.002_bb0195
  article-title: Quantminer: a genetic algorithm for mining quantitative association rules
– start-page: 1
  year: 2003
  ident: 10.1016/j.datak.2013.01.002_bb0050
  article-title: Efficient implementations of apriori and eclat
– start-page: 416
  year: 1993
  ident: 10.1016/j.datak.2013.01.002_bb0155
  article-title: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization
– volume: 10
  start-page: 184
  issue: 3
  year: 1999
  ident: 10.1016/j.datak.2013.01.002_bb0175
  article-title: Using genetic algorithms to solve construction time-cost trade-off problems
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)0887-3801(1997)11:3(184)
– year: 2006
  ident: 10.1016/j.datak.2013.01.002_bb0205
  article-title: Multiobjective association rule mining
– volume: 68
  start-page: 318
  issue: 3
  year: 2009
  ident: 10.1016/j.datak.2013.01.002_bb0010
  article-title: Establishing relationships among patterns in stock market data
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2008.10.001
– year: 2007
  ident: 10.1016/j.datak.2013.01.002_bb0165
– start-page: 53
  year: 2011
  ident: 10.1016/j.datak.2013.01.002_bb0030
  article-title: Executing association rule mining algorithms under a grid computing environment
– volume: 19
  start-page: 677
  issue: 7
  year: 2005
  ident: 10.1016/j.datak.2013.01.002_bb0065
  article-title: ARMGA: identifying interesting association rules with genetic algorithms
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839510590967316
– volume: 32
  start-page: 53
  issue: 1
  year: 2012
  ident: 10.1016/j.datak.2013.01.002_bb0135
  article-title: Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-011-0419-z
– volume: 6
  start-page: 182
  year: 2000
  ident: 10.1016/j.datak.2013.01.002_bb0125
  article-title: A fast elitist multi-objective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– start-page: 487
  year: 1994
  ident: 10.1016/j.datak.2013.01.002_bb0045
  article-title: Fast algorithms for mining association rules in large databases
– volume: 11
  start-page: 365
  issue: 3-4
  year: 2010
  ident: 10.1016/j.datak.2013.01.002_bb0070
  article-title: Grammar-based genetic programming: a survey
  publication-title: Genetic Programming and Evolvable Machines
  doi: 10.1007/s10710-010-9109-y
– year: 1992
  ident: 10.1016/j.datak.2013.01.002_bb0075
– start-page: 95
  year: 2002
  ident: 10.1016/j.datak.2013.01.002_bb0130
  article-title: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization
– start-page: 629
  year: 2002
  ident: 10.1016/j.datak.2013.01.002_bb0170
  article-title: Wireless LAN design using hierarchical genetic algorithm
– volume: 38
  issue: 3
  year: 2006
  ident: 10.1016/j.datak.2013.01.002_bb0090
  article-title: Interestingness measures for data mining: a survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/1132960.1132963
– volume: 76–78
  start-page: 1
  year: 2012
  ident: 10.1016/j.datak.2013.01.002_bb0035
  article-title: Fully homomorphic encryption based two-party association rule mining
  publication-title: Data and Knowledge Engineering
– start-page: 207
  year: 1993
  ident: 10.1016/j.datak.2013.01.002_bb0040
  article-title: Mining association rules between sets of items in large databases
– volume: 29
  start-page: 293
  issue: 4
  year: 2004
  ident: 10.1016/j.datak.2013.01.002_bb0085
  article-title: Selecting the right objective measure for association analysis
  publication-title: Information Systems
  doi: 10.1016/S0306-4379(03)00072-3
– start-page: 93
  year: 1985
  ident: 10.1016/j.datak.2013.01.002_bb0150
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
– volume: 70
  start-page: 555
  issue: 6
  year: 2011
  ident: 10.1016/j.datak.2013.01.002_bb0015
  article-title: Reliable representations for association rules
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2011.02.003
– volume: 8
  start-page: 149
  year: 1999
  ident: 10.1016/j.datak.2013.01.002_bb0185
  article-title: Approximating the non-dominated front using the pareto archived evolution strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– volume: 12
  start-page: 381
  issue: 4
  year: 2008
  ident: 10.1016/j.datak.2013.01.002_bb0225
  article-title: JCLEC: a java framework for evolutionary computation
  publication-title: Soft Computing
  doi: 10.1007/s00500-007-0172-0
– start-page: 385
  year: 2009
  ident: 10.1016/j.datak.2013.01.002_bb0220
  article-title: Association rule mining using multi-objective evolutionary algorithms: strengths and challenges
– year: 2001
  ident: 10.1016/j.datak.2013.01.002_bb0120
– start-page: 382
  year: 2006
  ident: 10.1016/j.datak.2013.01.002_bb0180
  article-title: Functional brain imaging with multi-objective multi-modal evolutionary optimization
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.datak.2013.01.002_bb0230
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– start-page: 409
  year: 2011
  ident: 10.1016/j.datak.2013.01.002_bb0145
  article-title: Parallel multi-objective genetic algorithms for associative classification rule mining
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.datak.2013.01.002_bb0190
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 6
  start-page: 221
  issue: 3
  year: 2002
  ident: 10.1016/j.datak.2013.01.002_bb0140
  article-title: Measuring the accuracy and interest of association rules: a new framework
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2002-6303
SSID ssj0002405
Score 2.1594884
Snippet In association rule mining, the process of extracting relations from a dataset often requires the application of more than one quality measure and, in many...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Association rule mining
Data mining
Genetic programming
Mining methods and algorithms
Title Grammar-based multi-objective algorithms for mining association rules
URI https://dx.doi.org/10.1016/j.datak.2013.01.002
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002405
  issn: 0169-023X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002405
  issn: 0169-023X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002405
  issn: 0169-023X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002405
  issn: 0169-023X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002405
  issn: 0169-023X
  databaseCode: AKRWK
  dateStart: 19850601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNHTJ2lTnKsqpYCoheo1Jvl2A60dFOaXvl2xo7DIqQeuEYeKXpxZp6TN28Quo48LwXaGpPUDyMC_F-QRAs481AZaWO_p5jpd34assEofBi3xzXUrXphjKzS5f4yp9ts7a60HJqt1WTSejY-IlBxxuaHjLFRMR3sYWSmGNx-fMs8oGKVMkaWELO6ch6yGi-jwnw3-q7Aene6byt_qtOPitM_QHuOKuJOeTeHqKYXR2i_GsOA3Vt5jHp3uTAdaMRUJIWtRJAs02mZyrCYvS7zSfE2X2MgqHhuJ0Jg8f1YcL6Z6fUJGvV7L90BcdMRiISyUxCWZVIxDwp6HElBPc2EVqFikS9ExtpA06gvgXykkYizQAGvULItMzjhhIqG2gtOUX2xXOgzhBMvkIGUwExSFkqdxZLSDLDViRezlMYN5FeocOmsw80EixmvNGJTbqHkBkpOPQ5QNtDNV9CqdM7YvpxVcPNfG4BDbt8WeP7fwAu069vZFkZ7e4nqRb7RV8AwirRpt1AT7XTuHwfDT9zfz8w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwGLVKGWDhRpTTAyOmdg4nGVHVUqDtQit1sxzHgZZeStOV387nHBSE1IE1sqXoxfnec_L8PoRuPcZCkK0-CS3HI6D_JQm0hD0PVZ428XsRN-eduz3eHjjPQ3dYQY3yLIyxVRa1P6_pWbUurtQLNOuL0aj-anJEgHGG5oeMiVHZQtuOa3lmB3b_ufZ5AGXlPkYeEDO8jB7KTF7GhvlhDF52Ft5ZfFz5Q08_KKd1gPYKrYgf8ts5RBU9O0L7ZR8GXLyWx6j5mEhzBI0YSopw5hEk83Cc1zIsJ2_zZJS-T5cYFCqeZi0hsFw_F5ysJnp5ggatZr_RJkV7BKKAd1LC41hFnAGj-56SlGkudeRE3LOkjLkLOo1aCtRH6Ek_tiMQFpFyVQxbHCeijmb2KarO5jN9hnDAbGUrBdIk5I7Ssa8ojQFcHTCfh9SvIatERagiO9y0sJiI0iQ2FhmUwkApKBMAZQ3dfU9a5NEZm4fzEm7xawUIKO6bJp7_d-IN2mn3ux3Reeq9XKBdK2t0YYy4l6iaJit9BXIjDa-z5fQF2mTRYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grammar-based+multi-objective+algorithms+for+mining+association+rules&rft.jtitle=Data+%26+knowledge+engineering&rft.au=Luna%2C+J.M.&rft.au=Romero%2C+J.R.&rft.au=Ventura%2C+S.&rft.date=2013-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-023X&rft.eissn=1872-6933&rft.volume=86&rft.spage=19&rft.epage=37&rft_id=info:doi/10.1016%2Fj.datak.2013.01.002&rft.externalDocID=S0169023X13000037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-023X&client=summon