Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula

This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak subgrade soils at high moisture contents. The experimental database was performed in Louisiana transportation research center for four types of...

Full description

Saved in:
Bibliographic Details
Published inTransportation Geotechnics Vol. 24; p. 100358
Main Authors Hanandeh, Shadi, Ardah, Allam, Abu-Farsakh, Murad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text
ISSN2214-3912
2214-3912
DOI10.1016/j.trgeo.2020.100358

Cover

Abstract This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak subgrade soils at high moisture contents. The experimental database was performed in Louisiana transportation research center for four types of soft soil, 125 samples data were prepared and used in development ANN and genetic algorithm models. For two models, the input variables include eight parameters, namely cement percentage, lime percentage, PI, silt percentage, fly ash, optimum moisture content OMC, moisture content M.C, and clay percentage, the output variable includes resilient modulus for different types of stabilized subgrade. Furthermore, mathematical models were proposed to predict the resilient modulus for stabilized weak subgrade with different types of stabilizer agent such as cement, lime, and fly ash with four different subgrade soil types of different plasticity indices. Besides, the proposed models for estimating resilient modulus for stabilized subgrade were derived by an artificial neural network model and genetic algorithm. The scheme method displayed is a particular process of which resilient modulus for stabilized subgrade can be determined directly. The results show impressive due to obtain a high value for regression for sets of models; we obtained another accurate result for Mr by using Gene expression programming. Following the model design is stablished; the powers and deficiencies of the proposed models are tested by matching the resilient modulus proposed from two models with the resilient modulus extracted from experimental test concerning the R2 values. Further, in the neural network model, an exact assessment was achieved using r2 = 0.97. Genetic algorithm with a coefficient of determination (R2) of 0.95 to determine the resilient modulus of stabilized subgrade. Achievement estimation of the ANN and genetic algorithm pointed out that the theses methods were capable to predict resilient modulus of stabilized with powerful and higher efficiency and outcomes of these models was more conventional to the experimental results. Finally, sensitivity analysis of the achieved models has been performed to examine the impact of input variables on output (Mr) and determines that the cement percentage, lime percentage, fly ash percentage, PI, clay percentage, MC, OMC, and silt percentage are the powerful variables on the resilient modulus of stabilized subgrade.
AbstractList This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak subgrade soils at high moisture contents. The experimental database was performed in Louisiana transportation research center for four types of soft soil, 125 samples data were prepared and used in development ANN and genetic algorithm models. For two models, the input variables include eight parameters, namely cement percentage, lime percentage, PI, silt percentage, fly ash, optimum moisture content OMC, moisture content M.C, and clay percentage, the output variable includes resilient modulus for different types of stabilized subgrade. Furthermore, mathematical models were proposed to predict the resilient modulus for stabilized weak subgrade with different types of stabilizer agent such as cement, lime, and fly ash with four different subgrade soil types of different plasticity indices. Besides, the proposed models for estimating resilient modulus for stabilized subgrade were derived by an artificial neural network model and genetic algorithm. The scheme method displayed is a particular process of which resilient modulus for stabilized subgrade can be determined directly. The results show impressive due to obtain a high value for regression for sets of models; we obtained another accurate result for Mr by using Gene expression programming. Following the model design is stablished; the powers and deficiencies of the proposed models are tested by matching the resilient modulus proposed from two models with the resilient modulus extracted from experimental test concerning the R2 values. Further, in the neural network model, an exact assessment was achieved using r2 = 0.97. Genetic algorithm with a coefficient of determination (R2) of 0.95 to determine the resilient modulus of stabilized subgrade. Achievement estimation of the ANN and genetic algorithm pointed out that the theses methods were capable to predict resilient modulus of stabilized with powerful and higher efficiency and outcomes of these models was more conventional to the experimental results. Finally, sensitivity analysis of the achieved models has been performed to examine the impact of input variables on output (Mr) and determines that the cement percentage, lime percentage, fly ash percentage, PI, clay percentage, MC, OMC, and silt percentage are the powerful variables on the resilient modulus of stabilized subgrade.
ArticleNumber 100358
Author Ardah, Allam
Abu-Farsakh, Murad
Hanandeh, Shadi
Author_xml – sequence: 1
  givenname: Shadi
  surname: Hanandeh
  fullname: Hanandeh, Shadi
  email: hanandeh@bau.edu.jo
  organization: Civil Engineering Department, Al-Balqa Applied University, Jordan
– sequence: 2
  givenname: Allam
  surname: Ardah
  fullname: Ardah, Allam
  email: aardah2@lsu.edu
  organization: Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
– sequence: 3
  givenname: Murad
  surname: Abu-Farsakh
  fullname: Abu-Farsakh, Murad
  email: cefars@lsu.edu
  organization: Louisiana Transportation Research Center, Louisiana State University, Baton Rouge, LA 70808, United States
BookMark eNqFkEtOwzAQhi0EEqX0BGx8gRbbebRdsEAVL6kSG7q2HGeSTkniauxQwTE4MW7LArGA1Tykb37Nd8FOO9cBY1dSTKSQ-fVmEqgGN1FC7TciyWYnbKCUTMfJXKrTH_05G3m_EUKobJ7n03TAPlceu5obClihRdPwDno6lLBz9MpNV_Ia4oTWc9PUjjCsWx4cBx-wNQF4WAMn8NggdIG3ruyb3vPKEffBFHH9ASX3fVGTKeFwcEtu6zzEkB2HdouENkZGou0bc8nOKtN4GH3XIVvd370sHsfL54enxe1ybBORhHEORQKFmFsJWVal00KBUbNS5cZmSgpQhRKJFbkRqSwyNbUxvEgzWaV2VpUKkiGbH-9act4TVNpiMAFdF8hgo6XQe796ow9-9d6vPvqNbPKL3VKUQe__UDdHCuJbbwikvY3OLJRIYIMuHf7JfwHwz5x9
CitedBy_id crossref_primary_10_1007_s11356_025_36177_x
crossref_primary_10_1007_s42107_024_01167_w
crossref_primary_10_1007_s42107_024_01205_7
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_1016_j_measurement_2024_116488
crossref_primary_10_3389_fbuil_2022_858020
crossref_primary_10_1007_s11356_023_30968_w
crossref_primary_10_1007_s10706_022_02350_z
crossref_primary_10_1080_10298436_2021_1886296
crossref_primary_10_3390_ma15093077
crossref_primary_10_3390_ma15134386
crossref_primary_10_1016_j_trgeo_2021_100608
crossref_primary_10_3389_fbuil_2022_895210
crossref_primary_10_1007_s40808_024_02224_8
crossref_primary_10_1016_j_trgeo_2021_100650
crossref_primary_10_1016_j_trgeo_2020_100495
crossref_primary_10_2139_ssrn_4112747
crossref_primary_10_1016_j_soildyn_2022_107708
crossref_primary_10_1061_PPSCFX_SCENG_1421
crossref_primary_10_3390_ma15010039
crossref_primary_10_3390_ma15196959
crossref_primary_10_1016_j_trgeo_2022_100856
crossref_primary_10_1007_s11709_023_0940_7
crossref_primary_10_1016_j_cscm_2024_e03130
crossref_primary_10_1016_j_conbuildmat_2025_140376
crossref_primary_10_1007_s40534_021_00260_z
crossref_primary_10_1007_s40515_024_00439_x
crossref_primary_10_1016_j_conbuildmat_2020_122140
crossref_primary_10_1016_j_jmrt_2023_02_180
crossref_primary_10_1016_j_coldregions_2022_103698
crossref_primary_10_3390_ma17215200
crossref_primary_10_1016_j_joes_2021_10_012
crossref_primary_10_1177_03611981211057054
crossref_primary_10_3390_geotechnics1010008
crossref_primary_10_1016_j_trgeo_2024_101396
crossref_primary_10_1080_17486025_2024_2319612
crossref_primary_10_3390_buildings14092675
crossref_primary_10_1016_j_trgeo_2024_101315
crossref_primary_10_1007_s11440_022_01472_1
crossref_primary_10_1016_j_jmrt_2023_07_041
crossref_primary_10_1016_j_trgeo_2021_100520
crossref_primary_10_1166_sam_2022_4341
crossref_primary_10_1061_JGGEFK_GTENG_10721
crossref_primary_10_1016_j_jmrt_2023_06_007
crossref_primary_10_1016_j_jenvman_2022_114926
crossref_primary_10_1007_s41062_022_00875_z
crossref_primary_10_3390_polym14112145
crossref_primary_10_1155_2023_1827117
crossref_primary_10_1007_s11440_021_01370_y
crossref_primary_10_1007_s12145_024_01603_0
crossref_primary_10_1007_s12517_023_11796_1
crossref_primary_10_3390_ma15196969
crossref_primary_10_1007_s10706_022_02180_z
crossref_primary_10_1016_j_trgeo_2020_100508
crossref_primary_10_3390_infrastructures8020029
crossref_primary_10_3390_ma15175823
crossref_primary_10_1016_j_jrmge_2021_08_011
crossref_primary_10_1016_j_conbuildmat_2024_137678
crossref_primary_10_3390_sym14112324
crossref_primary_10_32388_BIB0FH
crossref_primary_10_1016_j_cscm_2022_e01774
crossref_primary_10_1016_j_cscm_2023_e02102
crossref_primary_10_1007_s40808_023_01735_0
crossref_primary_10_1016_j_jobe_2022_104746
crossref_primary_10_3390_ma15114025
crossref_primary_10_1016_j_trgeo_2022_100834
crossref_primary_10_1007_s10706_024_02846_w
crossref_primary_10_1016_j_trgeo_2024_101327
crossref_primary_10_1007_s00521_022_07014_w
crossref_primary_10_3390_polym14102016
crossref_primary_10_1007_s11356_021_18238_z
crossref_primary_10_1007_s13369_023_07962_y
crossref_primary_10_3390_ma15134575
crossref_primary_10_1007_s12205_023_0539_5
crossref_primary_10_1515_rams_2024_0042
crossref_primary_10_1016_j_matpr_2023_05_097
crossref_primary_10_1007_s12517_023_11469_z
crossref_primary_10_1016_j_conbuildmat_2021_122817
crossref_primary_10_1007_s12665_024_11539_9
crossref_primary_10_1016_j_jenvman_2021_112420
crossref_primary_10_3390_ma15217713
crossref_primary_10_1590_1517_7076_rmat_2022_0045
crossref_primary_10_1016_j_cscm_2022_e00991
crossref_primary_10_1061__ASCE_GM_1943_5622_0002363
crossref_primary_10_1016_j_trgeo_2020_100481
crossref_primary_10_1080_10298436_2024_2426058
crossref_primary_10_3390_vibration6040053
crossref_primary_10_1016_j_cscm_2022_e01446
crossref_primary_10_1016_j_trgeo_2020_100482
Cites_doi 10.1177/0361198196154600103
10.1016/j.clay.2014.03.017
10.1007/BF00175355
10.3141/2186-11
10.1016/j.conbuildmat.2018.10.212
10.1007/s003740050222
10.1147/rd.21.0002
10.1061/9780784480137.054
10.1016/j.trgeo.2017.05.002
10.1016/j.conbuildmat.2012.11.109
10.1016/B978-0-444-99786-9.50010-5
10.1007/s12205-014-0316-6
10.1080/10298436.2012.671944
10.1680/jgein.17.00031
10.1061/9780784413654.061
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trgeo.2020.100358
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-3912
ExternalDocumentID 10_1016_j_trgeo_2020_100358
S2214391219305860
GroupedDBID --M
.~1
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ATOGT
AVARZ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
IMUCA
JJJVA
KOM
OAUVE
P-8
P-9
PC.
PRBVW
ROL
SPC
SPCBC
SSB
SSE
SSO
SST
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c303t-6eb3eb09c1e55f47b2ea28d26ac5210e2b203c06a041b527cadeb451f4c8fd2e3
IEDL.DBID .~1
ISSN 2214-3912
IngestDate Thu Apr 24 23:02:28 EDT 2025
Wed Oct 01 02:15:15 EDT 2025
Fri Feb 23 02:47:13 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Soil stabilization
Neural Network
Soil properties
Genetic Algorithms
Resilient modulus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-6eb3eb09c1e55f47b2ea28d26ac5210e2b203c06a041b527cadeb451f4c8fd2e3
ParticipantIDs crossref_citationtrail_10_1016_j_trgeo_2020_100358
crossref_primary_10_1016_j_trgeo_2020_100358
elsevier_sciencedirect_doi_10_1016_j_trgeo_2020_100358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Transportation Geotechnics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ardah A, Abu-Farsakh M, Chen Q. Evaluating the performance of cementitious treated/stabilized very weak and wet subgrade soils for sustainable pavement. In: Geo-Chicago 2016; 2016. p. 567–76.
Horpibulsuk (b0040) 2001
Handy (b0010) 1958; 1958
Koza (b0120) 1994
Kim, Yang, Jeong (b0100) 2014
Lund OL, Ramsey WJ. Experimental lime stabilization in Nebraska. Geo Congr ASCE. Lund, O. L; 1959. p. 1073–80.
AK. Stabilization with lime. Developments in Geotechnical Engineering, vol. 19. Amsterdam: Elsevier; 1979. p. 163–74.
Cramer (b0130) 1985
Prusinski, Bhattacharja (b0025) 1998
Imran, Barman, Commuri, Zaman, Nazari (b0095) 2018
Mallela, Quintus, Smith (b0030) 2004; 200–208
Puppala, Mohammad, Allen (b0035) 1996
El-Ashwah, Awed, El-Badawy, Gabr (b0110) 2019
Comparative (b0050) 2003
Mashrei, Seracino, Rahman (b0105) 2013
Friedberg (b0125) 1958
Gautreau G, Doc Z, Zhang, Wu Z. Accelerated Loading Evaluation of Subbase Layers in Pavement Performance 5. Report Date 6. Performing Organization Code 13. Type of Report and Period Covered; 2009.
Solanki, Zaman, Dean (b0085) 2010
Chen, Hanandeh, Abu-Farsakh, Mohammad (b0075) 2018
Nazzal, Tatari (b0090) 2013
Tang Xiaochao, Abu-Farsakh Murad, Hanandeh Shadi, Chen Qiming. Use of geosynthetics for reinforcing/stabilizing unpaved roads under full-scale truck axle loads. Shale Energy Eng; 2014. p. ©ASCE 2014 591.
Jones R. measurement of elastic and strength properties of cemented materials in road bases. n.d.
Hanandeh (b0070) 2016
Ardah, Chen, Abu-Farsakh (b0115) 2017; 11
Reinhold F. Elastic behavior of soil-cement mixes. Highw Res Board Bull 108, HRB, Washington, DC; 1955;108: 128–37 HRB.
Khemissa, Mahamedi (b0065) 2014
Deng, Tabatabai (b0060) 1997
10.1016/j.trgeo.2020.100358_b0020
Handy (10.1016/j.trgeo.2020.100358_b0010) 1958; 1958
Mallela (10.1016/j.trgeo.2020.100358_b0030) 2004; 200–208
Deng (10.1016/j.trgeo.2020.100358_b0060) 1997
10.1016/j.trgeo.2020.100358_b0080
Friedberg (10.1016/j.trgeo.2020.100358_b0125) 1958
El-Ashwah (10.1016/j.trgeo.2020.100358_b0110) 2019
Horpibulsuk (10.1016/j.trgeo.2020.100358_b0040) 2001
Cramer (10.1016/j.trgeo.2020.100358_b0130) 1985
Koza (10.1016/j.trgeo.2020.100358_b0120) 1994
Ardah (10.1016/j.trgeo.2020.100358_b0115) 2017; 11
Prusinski (10.1016/j.trgeo.2020.100358_b0025) 1998
Chen (10.1016/j.trgeo.2020.100358_b0075) 2018
Nazzal (10.1016/j.trgeo.2020.100358_b0090) 2013
10.1016/j.trgeo.2020.100358_b0015
Puppala (10.1016/j.trgeo.2020.100358_b0035) 1996
10.1016/j.trgeo.2020.100358_b0135
10.1016/j.trgeo.2020.100358_b0055
Mashrei (10.1016/j.trgeo.2020.100358_b0105) 2013
Solanki (10.1016/j.trgeo.2020.100358_b0085) 2010
Hanandeh (10.1016/j.trgeo.2020.100358_b0070) 2016
Khemissa (10.1016/j.trgeo.2020.100358_b0065) 2014
10.1016/j.trgeo.2020.100358_b0005
Comparative (10.1016/j.trgeo.2020.100358_b0050) 2003
Kim (10.1016/j.trgeo.2020.100358_b0100) 2014
10.1016/j.trgeo.2020.100358_b0045
Imran (10.1016/j.trgeo.2020.100358_b0095) 2018
References_xml – year: 2001
  ident: b0040
  article-title: Analysis and assessment of engineering behavior of cement stabilized clays
– start-page: 101
  year: 2010
  end-page: 110
  ident: b0085
  article-title: Resilient modulus of clay subgrades stabilized with lime, class C fly ash, and cement kiln dust for pavement design
  publication-title: Transp Res Rec
– reference: Ardah A, Abu-Farsakh M, Chen Q. Evaluating the performance of cementitious treated/stabilized very weak and wet subgrade soils for sustainable pavement. In: Geo-Chicago 2016; 2016. p. 567–76.
– reference: Tang Xiaochao, Abu-Farsakh Murad, Hanandeh Shadi, Chen Qiming. Use of geosynthetics for reinforcing/stabilizing unpaved roads under full-scale truck axle loads. Shale Energy Eng; 2014. p. ©ASCE 2014 591.
– year: 2018
  ident: b0095
  article-title: Artificial neural network-based intelligent compaction analyzer for real-time estimation of subgrade quality
  publication-title: Int J Geomech
– year: 1985
  ident: b0130
  article-title: A representation for the adaptive generation of simple sequential programs
  publication-title: Int Conf Genet Algorithms Appl
– year: 2013
  ident: b0105
  article-title: Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints
  publication-title: Constr Build Mater
– reference: AK. Stabilization with lime. Developments in Geotechnical Engineering, vol. 19. Amsterdam: Elsevier; 1979. p. 163–74.
– year: 1996
  ident: b0035
  article-title: Engineering behavior of lime-treated Louisiana subgrade soil
  publication-title: Transp Res Rec
– year: 1997
  ident: b0060
  article-title: Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase
  publication-title: Biol Fertil Soils
– reference: Jones R. measurement of elastic and strength properties of cemented materials in road bases. n.d.
– reference: Gautreau G, Doc Z, Zhang, Wu Z. Accelerated Loading Evaluation of Subbase Layers in Pavement Performance 5. Report Date 6. Performing Organization Code 13. Type of Report and Period Covered; 2009.
– year: 1998
  ident: b0025
  article-title: Effectiveness of portland cement and lime in stabilizing clay soils
  publication-title: Transp Res Rec
– year: 2003
  ident: b0050
  article-title: Performance of Portland cement and lime stabilization of moderate to high plasticity clay soils
  publication-title: Portl Cem Assoc
– volume: 200–208
  start-page: 200
  year: 2004
  end-page: 208
  ident: b0030
  article-title: Consideration of lime-stabilized layers in mechanistic-empirical pavement design
  publication-title: Natl Lime Assoc
– volume: 1958
  start-page: 55
  year: 1958
  end-page: 64
  ident: b0010
  article-title: Cementation of soil minerals with Portland cement or alkalis
  publication-title: Highw Res Board Bull
– year: 2013
  ident: b0090
  article-title: Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus
  publication-title: Int J Pavement Eng
– year: 1994
  ident: b0120
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat Comput
– year: 2014
  ident: b0065
  article-title: Cement and lime mixture stabilization of an expansive overconsolidated clay
  publication-title: Appl Clay Sci
– year: 2014
  ident: b0100
  article-title: Prediction of subgrade resilient modulus using artificial neural network
  publication-title: KSCE J Civ Eng
– year: 2018
  ident: b0075
  article-title: Performance evaluation of full-scale geosynthetic reinforced flexible pavement
  publication-title: Geosynth Int
– year: 2016
  ident: b0070
  article-title: Performance evaluation of instrumented geosynthetics reinforced paved test sections built over weak subgrade using accelerated load testing
– volume: 11
  start-page: 107
  year: 2017
  end-page: 119
  ident: b0115
  article-title: Evaluating the performance of very weak subgrade soils treated/stabilized with cementitious materials for sustainable pavements
  publication-title: Transp Geotech
– start-page: 2
  year: 1958
  end-page: 13
  ident: b0125
  article-title: A learning machine: Part I
  publication-title: IBM J Res Dev
– reference: Reinhold F. Elastic behavior of soil-cement mixes. Highw Res Board Bull 108, HRB, Washington, DC; 1955;108: 128–37 HRB.
– year: 2019
  ident: b0110
  article-title: A new approach for developing resilient modulus master surface to characterize granular pavement materials and subgrade soils
  publication-title: Constr Build Mater
– reference: Lund OL, Ramsey WJ. Experimental lime stabilization in Nebraska. Geo Congr ASCE. Lund, O. L; 1959. p. 1073–80.
– year: 1996
  ident: 10.1016/j.trgeo.2020.100358_b0035
  article-title: Engineering behavior of lime-treated Louisiana subgrade soil
  publication-title: Transp Res Rec
  doi: 10.1177/0361198196154600103
– ident: 10.1016/j.trgeo.2020.100358_b0005
– year: 2014
  ident: 10.1016/j.trgeo.2020.100358_b0065
  article-title: Cement and lime mixture stabilization of an expansive overconsolidated clay
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2014.03.017
– year: 1994
  ident: 10.1016/j.trgeo.2020.100358_b0120
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat Comput
  doi: 10.1007/BF00175355
– year: 1985
  ident: 10.1016/j.trgeo.2020.100358_b0130
  article-title: A representation for the adaptive generation of simple sequential programs
  publication-title: Int Conf Genet Algorithms Appl
– year: 2018
  ident: 10.1016/j.trgeo.2020.100358_b0095
  article-title: Artificial neural network-based intelligent compaction analyzer for real-time estimation of subgrade quality
  publication-title: Int J Geomech
– start-page: 101
  year: 2010
  ident: 10.1016/j.trgeo.2020.100358_b0085
  article-title: Resilient modulus of clay subgrades stabilized with lime, class C fly ash, and cement kiln dust for pavement design
  publication-title: Transp Res Rec
  doi: 10.3141/2186-11
– year: 2019
  ident: 10.1016/j.trgeo.2020.100358_b0110
  article-title: A new approach for developing resilient modulus master surface to characterize granular pavement materials and subgrade soils
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.10.212
– volume: 1958
  start-page: 55
  issue: 198
  year: 1958
  ident: 10.1016/j.trgeo.2020.100358_b0010
  article-title: Cementation of soil minerals with Portland cement or alkalis
  publication-title: Highw Res Board Bull
– year: 1997
  ident: 10.1016/j.trgeo.2020.100358_b0060
  article-title: Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050222
– ident: 10.1016/j.trgeo.2020.100358_b0020
– ident: 10.1016/j.trgeo.2020.100358_b0045
– year: 2003
  ident: 10.1016/j.trgeo.2020.100358_b0050
  article-title: Performance of Portland cement and lime stabilization of moderate to high plasticity clay soils
  publication-title: Portl Cem Assoc
– year: 1998
  ident: 10.1016/j.trgeo.2020.100358_b0025
  article-title: Effectiveness of portland cement and lime in stabilizing clay soils
  publication-title: Transp Res Rec
– start-page: 2
  year: 1958
  ident: 10.1016/j.trgeo.2020.100358_b0125
  article-title: A learning machine: Part I
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.21.0002
– volume: 200–208
  start-page: 200
  year: 2004
  ident: 10.1016/j.trgeo.2020.100358_b0030
  article-title: Consideration of lime-stabilized layers in mechanistic-empirical pavement design
  publication-title: Natl Lime Assoc
– ident: 10.1016/j.trgeo.2020.100358_b0015
– ident: 10.1016/j.trgeo.2020.100358_b0135
  doi: 10.1061/9780784480137.054
– year: 2001
  ident: 10.1016/j.trgeo.2020.100358_b0040
– volume: 11
  start-page: 107
  year: 2017
  ident: 10.1016/j.trgeo.2020.100358_b0115
  article-title: Evaluating the performance of very weak subgrade soils treated/stabilized with cementitious materials for sustainable pavements
  publication-title: Transp Geotech
  doi: 10.1016/j.trgeo.2017.05.002
– year: 2013
  ident: 10.1016/j.trgeo.2020.100358_b0105
  article-title: Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2012.11.109
– ident: 10.1016/j.trgeo.2020.100358_b0055
  doi: 10.1016/B978-0-444-99786-9.50010-5
– year: 2014
  ident: 10.1016/j.trgeo.2020.100358_b0100
  article-title: Prediction of subgrade resilient modulus using artificial neural network
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-014-0316-6
– year: 2013
  ident: 10.1016/j.trgeo.2020.100358_b0090
  article-title: Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2012.671944
– year: 2016
  ident: 10.1016/j.trgeo.2020.100358_b0070
– year: 2018
  ident: 10.1016/j.trgeo.2020.100358_b0075
  article-title: Performance evaluation of full-scale geosynthetic reinforced flexible pavement
  publication-title: Geosynth Int
  doi: 10.1680/jgein.17.00031
– ident: 10.1016/j.trgeo.2020.100358_b0080
  doi: 10.1061/9780784413654.061
SSID ssj0002596674
Score 2.4799438
Snippet This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100358
SubjectTerms Genetic Algorithms
Neural Network
Resilient modulus
Soil properties
Soil stabilization
Title Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula
URI https://dx.doi.org/10.1016/j.trgeo.2020.100358
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2214-3912
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002596674
  issn: 2214-3912
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2214-3912
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002596674
  issn: 2214-3912
  databaseCode: ACRLP
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 2214-3912
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002596674
  issn: 2214-3912
  databaseCode: .~1
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2214-3912
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002596674
  issn: 2214-3912
  databaseCode: AIKHN
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2214-3912
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002596674
  issn: 2214-3912
  databaseCode: AKRWK
  dateStart: 20140301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg0frJmma7R5FXFZFLyp4K0mTrpXug90WwYM_wl_sTNrKCuLBU2nJtCFJM9-033xDyKlwMTMmZBCbmDiQlpkgzmKk_dkssj3eMz1MFL67V4MnefMcPS-RyzYXBmmVzd5f7-l-t26udJrR7EzzvPMgBMe0UXjlYM3GCuN2KbtYxeD8g39_ZwF4r5QXY8b2ARq04kOe5lXOhj4JUHjCQIil339zUAtOp79B1hu0SC_qDm2SJTfeImsLGoLb5NP_9KfY51oMgqJEpT94gjfVY0thlWCy4pzqYjiZ5eXLiJYTigIbAFgdBRBIIezOC0yOpKOJrYpqTgHOUsCOyJ59d5bOKzOcaev8DadYXGHu4CFv1I2muRcaQYtRVegd8tS_erwcBE2hhSAFD1YGCiJqZ1gv5S6KMtk1wmkRW6F0Ct6dOWEEC1OmNJPcRKKLzH0jI57JNM6scOEuWR5Pxm6PUEAwXAmdsgyxSSa0MUxzyVOdARRk4T4R7egmaaNCjsUwiqSlm70mfkoSnJKknpJ9cvZtNK1FOP5urtppS36spQTcxF-GB_81PCSreFZzz47Icjmr3DGAldKc-NV4QlYurm8H918ZJ-yr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG42elAPxmd824NHcdsClT0ao1l19aKb7I20tKwY9pFdiIkHf4S_2JkCRhPjwRMJMEA6pfMNfPMNISfCRkxrn0FuoiMvMEx7URoh7c-koenwju5gofD9g-z2g9tBOGiRy6YWBmmV9dpfreluta73tOvRbE-zrP0oBMeyUXjlYM5GEvL2xSAU55iBnb3zrw8tgO-ldGrMaOChRaM-5HhexWzoqgCFYwz42Pv9twj1Lepcr5HVGi7Si-qJ1knLjjfIyjcRwU3y4f76U3zoSg2Cokal2ziGN1VjQ2GaYLXinKp8OJllxfOIFhOKChuAWC0FFEgh785yrI6ko4kp83JOAc9SAI9In32zhs5LPZwpY90Fp9hdYW7hJq_UjqaZUxpBi1GZqy3Sv756uux6dacFL4EQVngSUmqrWSfhNgzT4FwLq0RkhFQJhHdmhRbMT5hULOAaxhip-zoIeRokUWqE9bfJwngytjuEAoThUqiEpQhOUqG0ZooHPFEpYEHm7xLRjG6c1DLk2A0jjxu-2UvsXBKjS-LKJbvk9MtoWqlw_H26bNwW_5hMMcSJvwz3_mt4TJa6T_e9uHfzcLdPlvFIRUQ7IAvFrLSHgFwKfeRm5iebWu5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+artificial+neural+network+and+genetics+algorithm+to+estimate+the+resilient+modulus+for+stabilized+subgrade+and+propose+new+empirical+formula&rft.jtitle=Transportation+Geotechnics&rft.au=Hanandeh%2C+Shadi&rft.au=Ardah%2C+Allam&rft.au=Abu-Farsakh%2C+Murad&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=2214-3912&rft.eissn=2214-3912&rft.volume=24&rft_id=info:doi/10.1016%2Fj.trgeo.2020.100358&rft.externalDocID=S2214391219305860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3912&client=summon