Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula
This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak subgrade soils at high moisture contents. The experimental database was performed in Louisiana transportation research center for four types of...
Saved in:
| Published in | Transportation Geotechnics Vol. 24; p. 100358 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2214-3912 2214-3912 |
| DOI | 10.1016/j.trgeo.2020.100358 |
Cover
| Abstract | This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak subgrade soils at high moisture contents. The experimental database was performed in Louisiana transportation research center for four types of soft soil, 125 samples data were prepared and used in development ANN and genetic algorithm models. For two models, the input variables include eight parameters, namely cement percentage, lime percentage, PI, silt percentage, fly ash, optimum moisture content OMC, moisture content M.C, and clay percentage, the output variable includes resilient modulus for different types of stabilized subgrade. Furthermore, mathematical models were proposed to predict the resilient modulus for stabilized weak subgrade with different types of stabilizer agent such as cement, lime, and fly ash with four different subgrade soil types of different plasticity indices. Besides, the proposed models for estimating resilient modulus for stabilized subgrade were derived by an artificial neural network model and genetic algorithm. The scheme method displayed is a particular process of which resilient modulus for stabilized subgrade can be determined directly. The results show impressive due to obtain a high value for regression for sets of models; we obtained another accurate result for Mr by using Gene expression programming. Following the model design is stablished; the powers and deficiencies of the proposed models are tested by matching the resilient modulus proposed from two models with the resilient modulus extracted from experimental test concerning the R2 values. Further, in the neural network model, an exact assessment was achieved using r2 = 0.97. Genetic algorithm with a coefficient of determination (R2) of 0.95 to determine the resilient modulus of stabilized subgrade. Achievement estimation of the ANN and genetic algorithm pointed out that the theses methods were capable to predict resilient modulus of stabilized with powerful and higher efficiency and outcomes of these models was more conventional to the experimental results. Finally, sensitivity analysis of the achieved models has been performed to examine the impact of input variables on output (Mr) and determines that the cement percentage, lime percentage, fly ash percentage, PI, clay percentage, MC, OMC, and silt percentage are the powerful variables on the resilient modulus of stabilized subgrade. |
|---|---|
| AbstractList | This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak subgrade soils at high moisture contents. The experimental database was performed in Louisiana transportation research center for four types of soft soil, 125 samples data were prepared and used in development ANN and genetic algorithm models. For two models, the input variables include eight parameters, namely cement percentage, lime percentage, PI, silt percentage, fly ash, optimum moisture content OMC, moisture content M.C, and clay percentage, the output variable includes resilient modulus for different types of stabilized subgrade. Furthermore, mathematical models were proposed to predict the resilient modulus for stabilized weak subgrade with different types of stabilizer agent such as cement, lime, and fly ash with four different subgrade soil types of different plasticity indices. Besides, the proposed models for estimating resilient modulus for stabilized subgrade were derived by an artificial neural network model and genetic algorithm. The scheme method displayed is a particular process of which resilient modulus for stabilized subgrade can be determined directly. The results show impressive due to obtain a high value for regression for sets of models; we obtained another accurate result for Mr by using Gene expression programming. Following the model design is stablished; the powers and deficiencies of the proposed models are tested by matching the resilient modulus proposed from two models with the resilient modulus extracted from experimental test concerning the R2 values. Further, in the neural network model, an exact assessment was achieved using r2 = 0.97. Genetic algorithm with a coefficient of determination (R2) of 0.95 to determine the resilient modulus of stabilized subgrade. Achievement estimation of the ANN and genetic algorithm pointed out that the theses methods were capable to predict resilient modulus of stabilized with powerful and higher efficiency and outcomes of these models was more conventional to the experimental results. Finally, sensitivity analysis of the achieved models has been performed to examine the impact of input variables on output (Mr) and determines that the cement percentage, lime percentage, fly ash percentage, PI, clay percentage, MC, OMC, and silt percentage are the powerful variables on the resilient modulus of stabilized subgrade. |
| ArticleNumber | 100358 |
| Author | Ardah, Allam Abu-Farsakh, Murad Hanandeh, Shadi |
| Author_xml | – sequence: 1 givenname: Shadi surname: Hanandeh fullname: Hanandeh, Shadi email: hanandeh@bau.edu.jo organization: Civil Engineering Department, Al-Balqa Applied University, Jordan – sequence: 2 givenname: Allam surname: Ardah fullname: Ardah, Allam email: aardah2@lsu.edu organization: Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States – sequence: 3 givenname: Murad surname: Abu-Farsakh fullname: Abu-Farsakh, Murad email: cefars@lsu.edu organization: Louisiana Transportation Research Center, Louisiana State University, Baton Rouge, LA 70808, United States |
| BookMark | eNqFkEtOwzAQhi0EEqX0BGx8gRbbebRdsEAVL6kSG7q2HGeSTkniauxQwTE4MW7LArGA1Tykb37Nd8FOO9cBY1dSTKSQ-fVmEqgGN1FC7TciyWYnbKCUTMfJXKrTH_05G3m_EUKobJ7n03TAPlceu5obClihRdPwDno6lLBz9MpNV_Ia4oTWc9PUjjCsWx4cBx-wNQF4WAMn8NggdIG3ruyb3vPKEffBFHH9ASX3fVGTKeFwcEtu6zzEkB2HdouENkZGou0bc8nOKtN4GH3XIVvd370sHsfL54enxe1ybBORhHEORQKFmFsJWVal00KBUbNS5cZmSgpQhRKJFbkRqSwyNbUxvEgzWaV2VpUKkiGbH-9act4TVNpiMAFdF8hgo6XQe796ow9-9d6vPvqNbPKL3VKUQe__UDdHCuJbbwikvY3OLJRIYIMuHf7JfwHwz5x9 |
| CitedBy_id | crossref_primary_10_1007_s11356_025_36177_x crossref_primary_10_1007_s42107_024_01167_w crossref_primary_10_1007_s42107_024_01205_7 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_1016_j_measurement_2024_116488 crossref_primary_10_3389_fbuil_2022_858020 crossref_primary_10_1007_s11356_023_30968_w crossref_primary_10_1007_s10706_022_02350_z crossref_primary_10_1080_10298436_2021_1886296 crossref_primary_10_3390_ma15093077 crossref_primary_10_3390_ma15134386 crossref_primary_10_1016_j_trgeo_2021_100608 crossref_primary_10_3389_fbuil_2022_895210 crossref_primary_10_1007_s40808_024_02224_8 crossref_primary_10_1016_j_trgeo_2021_100650 crossref_primary_10_1016_j_trgeo_2020_100495 crossref_primary_10_2139_ssrn_4112747 crossref_primary_10_1016_j_soildyn_2022_107708 crossref_primary_10_1061_PPSCFX_SCENG_1421 crossref_primary_10_3390_ma15010039 crossref_primary_10_3390_ma15196959 crossref_primary_10_1016_j_trgeo_2022_100856 crossref_primary_10_1007_s11709_023_0940_7 crossref_primary_10_1016_j_cscm_2024_e03130 crossref_primary_10_1016_j_conbuildmat_2025_140376 crossref_primary_10_1007_s40534_021_00260_z crossref_primary_10_1007_s40515_024_00439_x crossref_primary_10_1016_j_conbuildmat_2020_122140 crossref_primary_10_1016_j_jmrt_2023_02_180 crossref_primary_10_1016_j_coldregions_2022_103698 crossref_primary_10_3390_ma17215200 crossref_primary_10_1016_j_joes_2021_10_012 crossref_primary_10_1177_03611981211057054 crossref_primary_10_3390_geotechnics1010008 crossref_primary_10_1016_j_trgeo_2024_101396 crossref_primary_10_1080_17486025_2024_2319612 crossref_primary_10_3390_buildings14092675 crossref_primary_10_1016_j_trgeo_2024_101315 crossref_primary_10_1007_s11440_022_01472_1 crossref_primary_10_1016_j_jmrt_2023_07_041 crossref_primary_10_1016_j_trgeo_2021_100520 crossref_primary_10_1166_sam_2022_4341 crossref_primary_10_1061_JGGEFK_GTENG_10721 crossref_primary_10_1016_j_jmrt_2023_06_007 crossref_primary_10_1016_j_jenvman_2022_114926 crossref_primary_10_1007_s41062_022_00875_z crossref_primary_10_3390_polym14112145 crossref_primary_10_1155_2023_1827117 crossref_primary_10_1007_s11440_021_01370_y crossref_primary_10_1007_s12145_024_01603_0 crossref_primary_10_1007_s12517_023_11796_1 crossref_primary_10_3390_ma15196969 crossref_primary_10_1007_s10706_022_02180_z crossref_primary_10_1016_j_trgeo_2020_100508 crossref_primary_10_3390_infrastructures8020029 crossref_primary_10_3390_ma15175823 crossref_primary_10_1016_j_jrmge_2021_08_011 crossref_primary_10_1016_j_conbuildmat_2024_137678 crossref_primary_10_3390_sym14112324 crossref_primary_10_32388_BIB0FH crossref_primary_10_1016_j_cscm_2022_e01774 crossref_primary_10_1016_j_cscm_2023_e02102 crossref_primary_10_1007_s40808_023_01735_0 crossref_primary_10_1016_j_jobe_2022_104746 crossref_primary_10_3390_ma15114025 crossref_primary_10_1016_j_trgeo_2022_100834 crossref_primary_10_1007_s10706_024_02846_w crossref_primary_10_1016_j_trgeo_2024_101327 crossref_primary_10_1007_s00521_022_07014_w crossref_primary_10_3390_polym14102016 crossref_primary_10_1007_s11356_021_18238_z crossref_primary_10_1007_s13369_023_07962_y crossref_primary_10_3390_ma15134575 crossref_primary_10_1007_s12205_023_0539_5 crossref_primary_10_1515_rams_2024_0042 crossref_primary_10_1016_j_matpr_2023_05_097 crossref_primary_10_1007_s12517_023_11469_z crossref_primary_10_1016_j_conbuildmat_2021_122817 crossref_primary_10_1007_s12665_024_11539_9 crossref_primary_10_1016_j_jenvman_2021_112420 crossref_primary_10_3390_ma15217713 crossref_primary_10_1590_1517_7076_rmat_2022_0045 crossref_primary_10_1016_j_cscm_2022_e00991 crossref_primary_10_1061__ASCE_GM_1943_5622_0002363 crossref_primary_10_1016_j_trgeo_2020_100481 crossref_primary_10_1080_10298436_2024_2426058 crossref_primary_10_3390_vibration6040053 crossref_primary_10_1016_j_cscm_2022_e01446 crossref_primary_10_1016_j_trgeo_2020_100482 |
| Cites_doi | 10.1177/0361198196154600103 10.1016/j.clay.2014.03.017 10.1007/BF00175355 10.3141/2186-11 10.1016/j.conbuildmat.2018.10.212 10.1007/s003740050222 10.1147/rd.21.0002 10.1061/9780784480137.054 10.1016/j.trgeo.2017.05.002 10.1016/j.conbuildmat.2012.11.109 10.1016/B978-0-444-99786-9.50010-5 10.1007/s12205-014-0316-6 10.1080/10298436.2012.671944 10.1680/jgein.17.00031 10.1061/9780784413654.061 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.trgeo.2020.100358 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2214-3912 |
| ExternalDocumentID | 10_1016_j_trgeo_2020_100358 S2214391219305860 |
| GroupedDBID | --M .~1 1~. 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACRLP ACSBN ADBBV ADEZE AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ATOGT AVARZ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA IMUCA JJJVA KOM OAUVE P-8 P-9 PC. PRBVW ROL SPC SPCBC SSB SSE SSO SST SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS |
| ID | FETCH-LOGICAL-c303t-6eb3eb09c1e55f47b2ea28d26ac5210e2b203c06a041b527cadeb451f4c8fd2e3 |
| IEDL.DBID | .~1 |
| ISSN | 2214-3912 |
| IngestDate | Thu Apr 24 23:02:28 EDT 2025 Wed Oct 01 02:15:15 EDT 2025 Fri Feb 23 02:47:13 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Soil stabilization Neural Network Soil properties Genetic Algorithms Resilient modulus |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-6eb3eb09c1e55f47b2ea28d26ac5210e2b203c06a041b527cadeb451f4c8fd2e3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_trgeo_2020_100358 crossref_primary_10_1016_j_trgeo_2020_100358 elsevier_sciencedirect_doi_10_1016_j_trgeo_2020_100358 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2020 2020-09-00 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation Geotechnics |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ardah A, Abu-Farsakh M, Chen Q. Evaluating the performance of cementitious treated/stabilized very weak and wet subgrade soils for sustainable pavement. In: Geo-Chicago 2016; 2016. p. 567–76. Horpibulsuk (b0040) 2001 Handy (b0010) 1958; 1958 Koza (b0120) 1994 Kim, Yang, Jeong (b0100) 2014 Lund OL, Ramsey WJ. Experimental lime stabilization in Nebraska. Geo Congr ASCE. Lund, O. L; 1959. p. 1073–80. AK. Stabilization with lime. Developments in Geotechnical Engineering, vol. 19. Amsterdam: Elsevier; 1979. p. 163–74. Cramer (b0130) 1985 Prusinski, Bhattacharja (b0025) 1998 Imran, Barman, Commuri, Zaman, Nazari (b0095) 2018 Mallela, Quintus, Smith (b0030) 2004; 200–208 Puppala, Mohammad, Allen (b0035) 1996 El-Ashwah, Awed, El-Badawy, Gabr (b0110) 2019 Comparative (b0050) 2003 Mashrei, Seracino, Rahman (b0105) 2013 Friedberg (b0125) 1958 Gautreau G, Doc Z, Zhang, Wu Z. Accelerated Loading Evaluation of Subbase Layers in Pavement Performance 5. Report Date 6. Performing Organization Code 13. Type of Report and Period Covered; 2009. Solanki, Zaman, Dean (b0085) 2010 Chen, Hanandeh, Abu-Farsakh, Mohammad (b0075) 2018 Nazzal, Tatari (b0090) 2013 Tang Xiaochao, Abu-Farsakh Murad, Hanandeh Shadi, Chen Qiming. Use of geosynthetics for reinforcing/stabilizing unpaved roads under full-scale truck axle loads. Shale Energy Eng; 2014. p. ©ASCE 2014 591. Jones R. measurement of elastic and strength properties of cemented materials in road bases. n.d. Hanandeh (b0070) 2016 Ardah, Chen, Abu-Farsakh (b0115) 2017; 11 Reinhold F. Elastic behavior of soil-cement mixes. Highw Res Board Bull 108, HRB, Washington, DC; 1955;108: 128–37 HRB. Khemissa, Mahamedi (b0065) 2014 Deng, Tabatabai (b0060) 1997 10.1016/j.trgeo.2020.100358_b0020 Handy (10.1016/j.trgeo.2020.100358_b0010) 1958; 1958 Mallela (10.1016/j.trgeo.2020.100358_b0030) 2004; 200–208 Deng (10.1016/j.trgeo.2020.100358_b0060) 1997 10.1016/j.trgeo.2020.100358_b0080 Friedberg (10.1016/j.trgeo.2020.100358_b0125) 1958 El-Ashwah (10.1016/j.trgeo.2020.100358_b0110) 2019 Horpibulsuk (10.1016/j.trgeo.2020.100358_b0040) 2001 Cramer (10.1016/j.trgeo.2020.100358_b0130) 1985 Koza (10.1016/j.trgeo.2020.100358_b0120) 1994 Ardah (10.1016/j.trgeo.2020.100358_b0115) 2017; 11 Prusinski (10.1016/j.trgeo.2020.100358_b0025) 1998 Chen (10.1016/j.trgeo.2020.100358_b0075) 2018 Nazzal (10.1016/j.trgeo.2020.100358_b0090) 2013 10.1016/j.trgeo.2020.100358_b0015 Puppala (10.1016/j.trgeo.2020.100358_b0035) 1996 10.1016/j.trgeo.2020.100358_b0135 10.1016/j.trgeo.2020.100358_b0055 Mashrei (10.1016/j.trgeo.2020.100358_b0105) 2013 Solanki (10.1016/j.trgeo.2020.100358_b0085) 2010 Hanandeh (10.1016/j.trgeo.2020.100358_b0070) 2016 Khemissa (10.1016/j.trgeo.2020.100358_b0065) 2014 10.1016/j.trgeo.2020.100358_b0005 Comparative (10.1016/j.trgeo.2020.100358_b0050) 2003 Kim (10.1016/j.trgeo.2020.100358_b0100) 2014 10.1016/j.trgeo.2020.100358_b0045 Imran (10.1016/j.trgeo.2020.100358_b0095) 2018 |
| References_xml | – year: 2001 ident: b0040 article-title: Analysis and assessment of engineering behavior of cement stabilized clays – start-page: 101 year: 2010 end-page: 110 ident: b0085 article-title: Resilient modulus of clay subgrades stabilized with lime, class C fly ash, and cement kiln dust for pavement design publication-title: Transp Res Rec – reference: Ardah A, Abu-Farsakh M, Chen Q. Evaluating the performance of cementitious treated/stabilized very weak and wet subgrade soils for sustainable pavement. In: Geo-Chicago 2016; 2016. p. 567–76. – reference: Tang Xiaochao, Abu-Farsakh Murad, Hanandeh Shadi, Chen Qiming. Use of geosynthetics for reinforcing/stabilizing unpaved roads under full-scale truck axle loads. Shale Energy Eng; 2014. p. ©ASCE 2014 591. – year: 2018 ident: b0095 article-title: Artificial neural network-based intelligent compaction analyzer for real-time estimation of subgrade quality publication-title: Int J Geomech – year: 1985 ident: b0130 article-title: A representation for the adaptive generation of simple sequential programs publication-title: Int Conf Genet Algorithms Appl – year: 2013 ident: b0105 article-title: Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints publication-title: Constr Build Mater – reference: AK. Stabilization with lime. Developments in Geotechnical Engineering, vol. 19. Amsterdam: Elsevier; 1979. p. 163–74. – year: 1996 ident: b0035 article-title: Engineering behavior of lime-treated Louisiana subgrade soil publication-title: Transp Res Rec – year: 1997 ident: b0060 article-title: Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase publication-title: Biol Fertil Soils – reference: Jones R. measurement of elastic and strength properties of cemented materials in road bases. n.d. – reference: Gautreau G, Doc Z, Zhang, Wu Z. Accelerated Loading Evaluation of Subbase Layers in Pavement Performance 5. Report Date 6. Performing Organization Code 13. Type of Report and Period Covered; 2009. – year: 1998 ident: b0025 article-title: Effectiveness of portland cement and lime in stabilizing clay soils publication-title: Transp Res Rec – year: 2003 ident: b0050 article-title: Performance of Portland cement and lime stabilization of moderate to high plasticity clay soils publication-title: Portl Cem Assoc – volume: 200–208 start-page: 200 year: 2004 end-page: 208 ident: b0030 article-title: Consideration of lime-stabilized layers in mechanistic-empirical pavement design publication-title: Natl Lime Assoc – volume: 1958 start-page: 55 year: 1958 end-page: 64 ident: b0010 article-title: Cementation of soil minerals with Portland cement or alkalis publication-title: Highw Res Board Bull – year: 2013 ident: b0090 article-title: Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus publication-title: Int J Pavement Eng – year: 1994 ident: b0120 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat Comput – year: 2014 ident: b0065 article-title: Cement and lime mixture stabilization of an expansive overconsolidated clay publication-title: Appl Clay Sci – year: 2014 ident: b0100 article-title: Prediction of subgrade resilient modulus using artificial neural network publication-title: KSCE J Civ Eng – year: 2018 ident: b0075 article-title: Performance evaluation of full-scale geosynthetic reinforced flexible pavement publication-title: Geosynth Int – year: 2016 ident: b0070 article-title: Performance evaluation of instrumented geosynthetics reinforced paved test sections built over weak subgrade using accelerated load testing – volume: 11 start-page: 107 year: 2017 end-page: 119 ident: b0115 article-title: Evaluating the performance of very weak subgrade soils treated/stabilized with cementitious materials for sustainable pavements publication-title: Transp Geotech – start-page: 2 year: 1958 end-page: 13 ident: b0125 article-title: A learning machine: Part I publication-title: IBM J Res Dev – reference: Reinhold F. Elastic behavior of soil-cement mixes. Highw Res Board Bull 108, HRB, Washington, DC; 1955;108: 128–37 HRB. – year: 2019 ident: b0110 article-title: A new approach for developing resilient modulus master surface to characterize granular pavement materials and subgrade soils publication-title: Constr Build Mater – reference: Lund OL, Ramsey WJ. Experimental lime stabilization in Nebraska. Geo Congr ASCE. Lund, O. L; 1959. p. 1073–80. – year: 1996 ident: 10.1016/j.trgeo.2020.100358_b0035 article-title: Engineering behavior of lime-treated Louisiana subgrade soil publication-title: Transp Res Rec doi: 10.1177/0361198196154600103 – ident: 10.1016/j.trgeo.2020.100358_b0005 – year: 2014 ident: 10.1016/j.trgeo.2020.100358_b0065 article-title: Cement and lime mixture stabilization of an expansive overconsolidated clay publication-title: Appl Clay Sci doi: 10.1016/j.clay.2014.03.017 – year: 1994 ident: 10.1016/j.trgeo.2020.100358_b0120 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat Comput doi: 10.1007/BF00175355 – year: 1985 ident: 10.1016/j.trgeo.2020.100358_b0130 article-title: A representation for the adaptive generation of simple sequential programs publication-title: Int Conf Genet Algorithms Appl – year: 2018 ident: 10.1016/j.trgeo.2020.100358_b0095 article-title: Artificial neural network-based intelligent compaction analyzer for real-time estimation of subgrade quality publication-title: Int J Geomech – start-page: 101 year: 2010 ident: 10.1016/j.trgeo.2020.100358_b0085 article-title: Resilient modulus of clay subgrades stabilized with lime, class C fly ash, and cement kiln dust for pavement design publication-title: Transp Res Rec doi: 10.3141/2186-11 – year: 2019 ident: 10.1016/j.trgeo.2020.100358_b0110 article-title: A new approach for developing resilient modulus master surface to characterize granular pavement materials and subgrade soils publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.10.212 – volume: 1958 start-page: 55 issue: 198 year: 1958 ident: 10.1016/j.trgeo.2020.100358_b0010 article-title: Cementation of soil minerals with Portland cement or alkalis publication-title: Highw Res Board Bull – year: 1997 ident: 10.1016/j.trgeo.2020.100358_b0060 article-title: Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase publication-title: Biol Fertil Soils doi: 10.1007/s003740050222 – ident: 10.1016/j.trgeo.2020.100358_b0020 – ident: 10.1016/j.trgeo.2020.100358_b0045 – year: 2003 ident: 10.1016/j.trgeo.2020.100358_b0050 article-title: Performance of Portland cement and lime stabilization of moderate to high plasticity clay soils publication-title: Portl Cem Assoc – year: 1998 ident: 10.1016/j.trgeo.2020.100358_b0025 article-title: Effectiveness of portland cement and lime in stabilizing clay soils publication-title: Transp Res Rec – start-page: 2 year: 1958 ident: 10.1016/j.trgeo.2020.100358_b0125 article-title: A learning machine: Part I publication-title: IBM J Res Dev doi: 10.1147/rd.21.0002 – volume: 200–208 start-page: 200 year: 2004 ident: 10.1016/j.trgeo.2020.100358_b0030 article-title: Consideration of lime-stabilized layers in mechanistic-empirical pavement design publication-title: Natl Lime Assoc – ident: 10.1016/j.trgeo.2020.100358_b0015 – ident: 10.1016/j.trgeo.2020.100358_b0135 doi: 10.1061/9780784480137.054 – year: 2001 ident: 10.1016/j.trgeo.2020.100358_b0040 – volume: 11 start-page: 107 year: 2017 ident: 10.1016/j.trgeo.2020.100358_b0115 article-title: Evaluating the performance of very weak subgrade soils treated/stabilized with cementitious materials for sustainable pavements publication-title: Transp Geotech doi: 10.1016/j.trgeo.2017.05.002 – year: 2013 ident: 10.1016/j.trgeo.2020.100358_b0105 article-title: Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2012.11.109 – ident: 10.1016/j.trgeo.2020.100358_b0055 doi: 10.1016/B978-0-444-99786-9.50010-5 – year: 2014 ident: 10.1016/j.trgeo.2020.100358_b0100 article-title: Prediction of subgrade resilient modulus using artificial neural network publication-title: KSCE J Civ Eng doi: 10.1007/s12205-014-0316-6 – year: 2013 ident: 10.1016/j.trgeo.2020.100358_b0090 article-title: Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus publication-title: Int J Pavement Eng doi: 10.1080/10298436.2012.671944 – year: 2016 ident: 10.1016/j.trgeo.2020.100358_b0070 – year: 2018 ident: 10.1016/j.trgeo.2020.100358_b0075 article-title: Performance evaluation of full-scale geosynthetic reinforced flexible pavement publication-title: Geosynth Int doi: 10.1680/jgein.17.00031 – ident: 10.1016/j.trgeo.2020.100358_b0080 doi: 10.1061/9780784413654.061 |
| SSID | ssj0002596674 |
| Score | 2.4799438 |
| Snippet | This paper presents the results of using rigorous modeling artificial neural network and genetic algorithm to examine the proper stabilization of very weak... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100358 |
| SubjectTerms | Genetic Algorithms Neural Network Resilient modulus Soil properties Soil stabilization |
| Title | Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula |
| URI | https://dx.doi.org/10.1016/j.trgeo.2020.100358 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2214-3912 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002596674 issn: 2214-3912 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2214-3912 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002596674 issn: 2214-3912 databaseCode: ACRLP dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 2214-3912 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002596674 issn: 2214-3912 databaseCode: .~1 dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2214-3912 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002596674 issn: 2214-3912 databaseCode: AIKHN dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2214-3912 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002596674 issn: 2214-3912 databaseCode: AKRWK dateStart: 20140301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg0frJmma7R5FXFZFLyp4K0mTrpXug90WwYM_wl_sTNrKCuLBU2nJtCFJM9-033xDyKlwMTMmZBCbmDiQlpkgzmKk_dkssj3eMz1MFL67V4MnefMcPS-RyzYXBmmVzd5f7-l-t26udJrR7EzzvPMgBMe0UXjlYM3GCuN2KbtYxeD8g39_ZwF4r5QXY8b2ARq04kOe5lXOhj4JUHjCQIil339zUAtOp79B1hu0SC_qDm2SJTfeImsLGoLb5NP_9KfY51oMgqJEpT94gjfVY0thlWCy4pzqYjiZ5eXLiJYTigIbAFgdBRBIIezOC0yOpKOJrYpqTgHOUsCOyJ59d5bOKzOcaev8DadYXGHu4CFv1I2muRcaQYtRVegd8tS_erwcBE2hhSAFD1YGCiJqZ1gv5S6KMtk1wmkRW6F0Ct6dOWEEC1OmNJPcRKKLzH0jI57JNM6scOEuWR5Pxm6PUEAwXAmdsgyxSSa0MUxzyVOdARRk4T4R7egmaaNCjsUwiqSlm70mfkoSnJKknpJ9cvZtNK1FOP5urtppS36spQTcxF-GB_81PCSreFZzz47Icjmr3DGAldKc-NV4QlYurm8H918ZJ-yr |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG42elAPxmd824NHcdsClT0ao1l19aKb7I20tKwY9pFdiIkHf4S_2JkCRhPjwRMJMEA6pfMNfPMNISfCRkxrn0FuoiMvMEx7URoh7c-koenwju5gofD9g-z2g9tBOGiRy6YWBmmV9dpfreluta73tOvRbE-zrP0oBMeyUXjlYM5GEvL2xSAU55iBnb3zrw8tgO-ldGrMaOChRaM-5HhexWzoqgCFYwz42Pv9twj1Lepcr5HVGi7Si-qJ1knLjjfIyjcRwU3y4f76U3zoSg2Cokal2ziGN1VjQ2GaYLXinKp8OJllxfOIFhOKChuAWC0FFEgh785yrI6ko4kp83JOAc9SAI9In32zhs5LPZwpY90Fp9hdYW7hJq_UjqaZUxpBi1GZqy3Sv756uux6dacFL4EQVngSUmqrWSfhNgzT4FwLq0RkhFQJhHdmhRbMT5hULOAaxhip-zoIeRokUWqE9bfJwngytjuEAoThUqiEpQhOUqG0ZooHPFEpYEHm7xLRjG6c1DLk2A0jjxu-2UvsXBKjS-LKJbvk9MtoWqlw_H26bNwW_5hMMcSJvwz3_mt4TJa6T_e9uHfzcLdPlvFIRUQ7IAvFrLSHgFwKfeRm5iebWu5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+artificial+neural+network+and+genetics+algorithm+to+estimate+the+resilient+modulus+for+stabilized+subgrade+and+propose+new+empirical+formula&rft.jtitle=Transportation+Geotechnics&rft.au=Hanandeh%2C+Shadi&rft.au=Ardah%2C+Allam&rft.au=Abu-Farsakh%2C+Murad&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=2214-3912&rft.eissn=2214-3912&rft.volume=24&rft_id=info:doi/10.1016%2Fj.trgeo.2020.100358&rft.externalDocID=S2214391219305860 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3912&client=summon |