Improved dragonfly optimization algorithm based on quantum behavior for multi-objective optimization of ethylene cracking furnace
•The improved multi-objective dragonfly optimization algorithm based on quantum behavior is proposed.•The production efficiency of ethylene crackers is analyzed.•IMODA can increase the ethylene production by 1.5498 % while decreasing the propylene production by only 0.0081 %.•The proposed model can...
Saved in:
Published in | Swarm and evolutionary computation Vol. 88; p. 101607 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-6502 |
DOI | 10.1016/j.swevo.2024.101607 |
Cover
Abstract | •The improved multi-objective dragonfly optimization algorithm based on quantum behavior is proposed.•The production efficiency of ethylene crackers is analyzed.•IMODA can increase the ethylene production by 1.5498 % while decreasing the propylene production by only 0.0081 %.•The proposed model can identify the optimal production scheme for the ethylene cracker.•Resource optimized allocation can improve the production efficiency of the ethylene cracker.
Ethylene is one of the important basic raw materials for the modern chemical production, accounting for over 75 % of petrochemical products. And the ethylene cracking furnace is subject to coking problems that can impede the thermal conductivity of the reaction tube. Therefore, an improved multi-objective dragonfly optimization algorithm based on quantum behavior is proposed. The particle evolutionary model introduces the quantum bound state δ-potential well model, which improves the global convergence ability and the convergence speed of the dragonfly optimization algorithm. In addition, the calculation formulas for parameters are improved by introducing natural logarithm and the iterative search method is changed to a triple search. Moreover, the global convergence and local search ability of the quantum behavior enhancement algorithm is assisted by adaptively selecting the search strategy according to the current number of iterations of the improved dragonfly algorithm. Compared with other multi-objective optimization algorithms on the ZDT and CEC test functions, the proposed algorithm has good global convergence and local search capabilities in terms of the inverted general distance. Finally, the proposed algorithm is applied in the multi-objective optimization of an ethylene cracking furnace, with the ethylene yield and the propylene yield as optimization objectives. The experimental results show that the ethylene yield can be increased by 1.5498 %, while the propylene yield decreases by only 0.0081 %, which proves that the proposed algorithm achieves better effect in optimizing the main product yield under fixed cycle adjustment operating conditions compared to original operating conditions. |
---|---|
AbstractList | •The improved multi-objective dragonfly optimization algorithm based on quantum behavior is proposed.•The production efficiency of ethylene crackers is analyzed.•IMODA can increase the ethylene production by 1.5498 % while decreasing the propylene production by only 0.0081 %.•The proposed model can identify the optimal production scheme for the ethylene cracker.•Resource optimized allocation can improve the production efficiency of the ethylene cracker.
Ethylene is one of the important basic raw materials for the modern chemical production, accounting for over 75 % of petrochemical products. And the ethylene cracking furnace is subject to coking problems that can impede the thermal conductivity of the reaction tube. Therefore, an improved multi-objective dragonfly optimization algorithm based on quantum behavior is proposed. The particle evolutionary model introduces the quantum bound state δ-potential well model, which improves the global convergence ability and the convergence speed of the dragonfly optimization algorithm. In addition, the calculation formulas for parameters are improved by introducing natural logarithm and the iterative search method is changed to a triple search. Moreover, the global convergence and local search ability of the quantum behavior enhancement algorithm is assisted by adaptively selecting the search strategy according to the current number of iterations of the improved dragonfly algorithm. Compared with other multi-objective optimization algorithms on the ZDT and CEC test functions, the proposed algorithm has good global convergence and local search capabilities in terms of the inverted general distance. Finally, the proposed algorithm is applied in the multi-objective optimization of an ethylene cracking furnace, with the ethylene yield and the propylene yield as optimization objectives. The experimental results show that the ethylene yield can be increased by 1.5498 %, while the propylene yield decreases by only 0.0081 %, which proves that the proposed algorithm achieves better effect in optimizing the main product yield under fixed cycle adjustment operating conditions compared to original operating conditions. |
ArticleNumber | 101607 |
Author | Geng, Zhiqiang Chen, Liangchao Han, Yongming Wang, Xintian |
Author_xml | – sequence: 1 givenname: Xintian surname: Wang fullname: Wang, Xintian organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 2 givenname: Zhiqiang surname: Geng fullname: Geng, Zhiqiang organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 3 givenname: Liangchao surname: Chen fullname: Chen, Liangchao organization: High-Tech Research Institute, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 4 givenname: Yongming orcidid: 0000-0003-3209-725X surname: Han fullname: Han, Yongming email: hanym@mail.buct.edu.cn organization: College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China |
BookMark | eNqFkMtOwzAQRb0oEqX0C9j4B1L8yKNdsEAVj0qV2MDacpxx65DYxXaCyo4_J23ZwAJGGo10NWekORdoZJ0FhK4omVFC8-t6Ft6hdzNGWHpMSDFCY8YoSfKMsHM0DaEmQ-WEZdlijD5X7c67HipceblxVjd77HbRtOZDRuMsls3GeRO3LS5lGNaG6K2TNnZDAFvZG-exHrrtmmgSV9agounh5xGnMcTtvgELWHmpXo3dYN15KxVcojMtmwDT7zlBL_d3z8vHZP30sFrerhPFCY9JmhV5ylJd6oLOi3mWFYWmRKUlVZwqySrJoeAFW8yJ5DoDPk8pzWkODHJVQsoniJ_uKu9C8KDFzptW-r2gRBxUiVoc5YmDPHGSN1CLX5Qy8fhU9NI0_7A3JxaGt3oDXgRlwCqojB8sicqZP_kvV0aTsA |
CitedBy_id | crossref_primary_10_1016_j_cjche_2024_12_003 crossref_primary_10_1007_s10462_025_11120_1 crossref_primary_10_1016_j_swevo_2024_101810 crossref_primary_10_1038_s41598_024_80405_2 |
Cites_doi | 10.1109/CEC.2017.7969641 10.1016/j.energy.2021.121835 10.1016/j.swevo.2023.101297 10.1016/j.enconman.2019.05.101 10.1016/j.energy.2019.116851 10.1007/s11431-019-9532-5 10.1016/j.ins.2014.10.005 10.1109/ACCESS.2019.2945842 10.1016/j.energy.2018.01.159 10.1007/s10489-016-0825-8 10.1016/j.eswa.2015.10.039 10.1007/s11771-020-4307-0 10.1016/j.asoc.2020.106739 10.1109/TEVC.2018.2791283 10.1016/j.est.2021.103610 10.1007/s00170-021-07759-z 10.1016/j.egypro.2019.01.476 10.1162/106365600568202 10.1021/acs.iecr.0c06085 10.1007/s13369-021-05608-5 10.1016/j.psep.2023.01.041 10.1016/j.ces.2016.07.009 10.1016/j.knosys.2018.08.003 10.1007/s00521-015-1920-1 10.1021/ie1001235 10.1016/j.ins.2020.05.082 10.1016/j.ces.2023.118448 10.1007/s11432-023-3864-6 10.1109/TEVC.2017.2776226 10.1109/4235.585893 10.1109/TEVC.2024.3449142 10.1016/j.chaos.2022.111982 10.1016/j.swevo.2011.02.002 10.1016/j.ces.2022.118372 10.3934/mbe.2022426 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.swevo.2024.101607 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_swevo_2024_101607 S2210650224001457 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c303t-4576424fbf718785577f10c4b1c31ca2da3e7372980a3f5e38411616e2e6cbe43 |
IEDL.DBID | .~1 |
ISSN | 2210-6502 |
IngestDate | Thu Apr 24 22:52:26 EDT 2025 Wed Oct 01 04:16:52 EDT 2025 Tue Jun 18 08:51:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Improved dragonfly optimization method Multi-objective optimization Quantum behavior Ethylene cracking furnace |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-4576424fbf718785577f10c4b1c31ca2da3e7372980a3f5e38411616e2e6cbe43 |
ORCID | 0000-0003-3209-725X |
ParticipantIDs | crossref_primary_10_1016_j_swevo_2024_101607 crossref_citationtrail_10_1016_j_swevo_2024_101607 elsevier_sciencedirect_doi_10_1016_j_swevo_2024_101607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Swarm and evolutionary computation |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zitzler, Deb, Thiele (bib0040) 2000; 8 Lin, Zhao, Du, He, Qian (bib0005) 2021; 60 Jin, Sun, Zhang, Zhang (bib0039) 2020 Wolpert, Macready (bib0049) 1997; 1 Geng, Wang, Han, Yu, Xie, Chen (bib0010) 2021 Li, Jiao, Shang, Stolkin (bib0029) 2015; 294 Geng, Wang, Zhu, Han (bib0008) 2016; 153 Mannone, Seidita, Chella (bib0032) 2023; 79 Wang, Chen (bib0034) 2020; 63 Mirjalili, Jangir, Saremi (bib0014) 2017; 46 Zhang, Xu, Zhang (bib0025) 2021; 98 Geng, Bi, Wang, Zhu, Han (bib0050) 2020 Cui, Han, Geng, Zhu, Fan (bib0011) 2019; 196 Mirjalili (bib0017) 2016; 27 Cui, Huang, Peng, Li, He, Qiu, Luo, Ou, Fan (bib0004) 2022; 19 Coello, Lechuga (bib0013) 2002 Li, Lu, Yao, Cheng, Qin (bib0027) 2019; 158 Wang, Jia, Lin, Hou (bib0036) 2020; 27 Geng, Zhang, Li, Han, Cui, Yu (bib0002) 2020; 194 Sun, Yen, Yi (bib0044) 2018; 23 Mirjalili, Saremi, Mirjalili, dos S. Coelho (bib0016) 2016; 47 Corne, Knowles, Oates (bib0048) 2000 Han, Du, Geng, Fan, Wang (bib0001) 2023; 267 (bib0006) 2022 Brest, Maučec, Bošković (bib0035) 2017 Mafarja (bib0023) 2018; 161 Yan, Dong, Zhou, Luo (bib0012) 2023; 269 Shi, Asgari (bib0018) 2022; 47 Wang, Li, Tao, Gu (bib0047) Oct. 2020; 539 Liang, Zhang, Chen, Qu, Yu, Yue, Suganthan (bib0021) 2024; 67 Schott (bib0043) 1995 Haghghi, Mohammadi, Delpisheh, Nadimi, Athari (bib0020) 2023; 171 Dorigo, Di Caro (bib0015) 1999 Laouissi, Nouioua, Yallese, Abderazek, Maouche, Bouhalais (bib0019) 2021; 117 Wilcoxon (bib0045) 1992 Ishibuchi, Imada, Setoguchi, Nojima (bib0037) 2018; 22 Chen, Dong, Ye, Chen, Liu (bib0031) 2019; 7 Derrac, García, Molina, Herrera (bib0046) Mar. 2011; 1 Huang, Xu, Pan, Sun, Li (bib0038) 2016 Meng, Shao, Zhu (bib0007) 2022; 239 Sierra, Coello Coello (bib0042) 2005 Yu, While, Reynolds, Wang, Liang, Zhao, Wang (bib0009) 2018; 148 Wang, Li, Li (bib0026) 2022; 10 Zitouni, Harous, Maamri (bib0033) 2021; 46 Wang, Zhao, Tang, Yao (bib0022) 2024 Zhou, Wang, Lu, Zhao (bib0024) 2022; 157 Zhang, Wang, Wei, Wang (bib0028) 2020 Yue (bib0041) 2019; 201911 Zhao, Liu, Xu (bib0003) 2010; 49 Fang, Zhang, Zhou, Wu, Sun (bib0030) 2017 Cui (10.1016/j.swevo.2024.101607_bib0004) 2022; 19 Yu (10.1016/j.swevo.2024.101607_bib0009) 2018; 148 Mirjalili (10.1016/j.swevo.2024.101607_bib0016) 2016; 47 Zitouni (10.1016/j.swevo.2024.101607_bib0033) 2021; 46 Li (10.1016/j.swevo.2024.101607_bib0029) 2015; 294 Cui (10.1016/j.swevo.2024.101607_bib0011) 2019; 196 Zitzler (10.1016/j.swevo.2024.101607_bib0040) 2000; 8 Derrac (10.1016/j.swevo.2024.101607_bib0046) 2011; 1 Lin (10.1016/j.swevo.2024.101607_bib0005) 2021; 60 Liang (10.1016/j.swevo.2024.101607_bib0021) 2024; 67 Geng (10.1016/j.swevo.2024.101607_bib0002) 2020; 194 Mirjalili (10.1016/j.swevo.2024.101607_bib0017) 2016; 27 Geng (10.1016/j.swevo.2024.101607_bib0050) 2020 Laouissi (10.1016/j.swevo.2024.101607_bib0019) 2021; 117 Meng (10.1016/j.swevo.2024.101607_bib0007) 2022; 239 Mirjalili (10.1016/j.swevo.2024.101607_bib0014) 2017; 46 Geng (10.1016/j.swevo.2024.101607_bib0010) 2021 Han (10.1016/j.swevo.2024.101607_bib0001) 2023; 267 Jin (10.1016/j.swevo.2024.101607_bib0039) 2020 Wang (10.1016/j.swevo.2024.101607_bib0034) 2020; 63 Haghghi (10.1016/j.swevo.2024.101607_bib0020) 2023; 171 Shi (10.1016/j.swevo.2024.101607_bib0018) 2022; 47 Wang (10.1016/j.swevo.2024.101607_bib0047) 2020; 539 Dorigo (10.1016/j.swevo.2024.101607_bib0015) 1999 Coello (10.1016/j.swevo.2024.101607_bib0013) 2002 Wolpert (10.1016/j.swevo.2024.101607_bib0049) 1997; 1 Geng (10.1016/j.swevo.2024.101607_bib0008) 2016; 153 Sierra (10.1016/j.swevo.2024.101607_bib0042) 2005 Sun (10.1016/j.swevo.2024.101607_bib0044) 2018; 23 Corne (10.1016/j.swevo.2024.101607_bib0048) 2000 Zhou (10.1016/j.swevo.2024.101607_bib0024) 2022; 157 Schott (10.1016/j.swevo.2024.101607_bib0043) 1995 Wang (10.1016/j.swevo.2024.101607_bib0022) 2024 Brest (10.1016/j.swevo.2024.101607_bib0035) 2017 Huang (10.1016/j.swevo.2024.101607_bib0038) 2016 Mannone (10.1016/j.swevo.2024.101607_bib0032) 2023; 79 Ishibuchi (10.1016/j.swevo.2024.101607_bib0037) 2018; 22 Zhang (10.1016/j.swevo.2024.101607_bib0028) 2020 Chen (10.1016/j.swevo.2024.101607_bib0031) 2019; 7 Yan (10.1016/j.swevo.2024.101607_bib0012) 2023; 269 Zhang (10.1016/j.swevo.2024.101607_bib0025) 2021; 98 Li (10.1016/j.swevo.2024.101607_bib0027) 2019; 158 Wilcoxon (10.1016/j.swevo.2024.101607_bib0045) 1992 Fang (10.1016/j.swevo.2024.101607_bib0030) 2017 Wang (10.1016/j.swevo.2024.101607_bib0036) 2020; 27 (10.1016/j.swevo.2024.101607_bib0006) 2022 Wang (10.1016/j.swevo.2024.101607_bib0026) 2022; 10 Mafarja (10.1016/j.swevo.2024.101607_bib0023) 2018; 161 Yue (10.1016/j.swevo.2024.101607_bib0041) 2019; 201911 Zhao (10.1016/j.swevo.2024.101607_bib0003) 2010; 49 |
References_xml | – volume: 294 start-page: 408 year: 2015 end-page: 422 ident: bib0029 article-title: Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation publication-title: Inf. Sci. – volume: 60 start-page: 3687 year: 2021 end-page: 3698 ident: bib0005 article-title: Data-driven modeling and cyclic scheduling for ethylene cracking furnace system with inventory constraints publication-title: Ind. Eng. Chem. Res. – volume: 10 year: 2022 ident: bib0026 article-title: Prediction of air pollution interval based on data preprocessing and multi-objective dragonfly optimization algorithm publication-title: Front. Ecol. Evol. – volume: 201911 year: 2019 ident: bib0041 article-title: Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization publication-title: Comput. Intell. Lab., Zhengzhou Univ – volume: 171 start-page: 507 year: 2023 end-page: 531 ident: bib0020 article-title: Multi-variable study/optimization of a novel geothermal-driven poly-generation system: application of a soft-computing intelligent procedure and MOGWO publication-title: Process Saf. Environ. – year: 2022 ident: bib0006 article-title: Bureau of statistics of the People's Republic of China publication-title: China Statistical Yearbook – start-page: 500 year: 2021 end-page: 504 ident: bib0010 article-title: Operation optimization of ethylene cracking furnace based on NNIA algorithm publication-title: 2021 33rd Chinese Control. Decision Conference (CCDC) – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: bib0023 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst – start-page: 505 year: 2005 end-page: 519 ident: bib0042 article-title: Improving PSO-based multi-objective optimization using crowding, mutation and∈-dominance publication-title: presented at – start-page: 839 year: 2000 end-page: 848 ident: bib0048 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization publication-title: presented at – start-page: 1311 year: 2017 end-page: 1318 ident: bib0035 article-title: Single objective real-parameter optimization: algorithm jSO publication-title: presented at – volume: 148 start-page: 469 year: 2018 end-page: 481 ident: bib0009 article-title: Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization publication-title: Energy – volume: 27 start-page: 432 year: 2020 end-page: 448 ident: bib0036 article-title: Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm publication-title: J. Cent. South Univ. – volume: 153 start-page: 21 year: 2016 end-page: 33 ident: bib0008 article-title: Multi-objective operation optimization of ethylene cracking furnace based on AMOPSO algorithm publication-title: Chem. Eng. Sci. – volume: 196 start-page: 311 year: 2019 end-page: 319 ident: bib0011 article-title: Production optimization and energy saving of complex chemical processes using novel competing evolutionary membrane algorithm: emphasis on ethylene cracking publication-title: Energ. Convers. Manag. – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: bib0040 article-title: Comparison of Multiobjective Evolutionary Algorithms: empirical Results publication-title: Evol. Comput. – volume: 239 year: 2022 ident: bib0007 article-title: Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation publication-title: Energy – volume: 19 start-page: 9168 year: 2022 end-page: 9199 ident: bib0004 article-title: Next-generation 5G fusion-based intelligent health-monitoring platform for ethylene cracking furnace tube publication-title: Math. Biosci. Eng. – start-page: 1470 year: 1999 end-page: 1477 ident: bib0015 article-title: Ant colony optimization: a new meta-heuristic publication-title: Presented at – start-page: 2592 year: 2016 end-page: 2595 ident: bib0038 article-title: Research on the Shrink Expansion Coefficient Control Strategy of Quantum Particle Swarm Optimization Algorithm publication-title: Comput. Appl. Res. – year: 2024 ident: bib0022 article-title: MOEA/D with spatial-temporal topological tensor prediction for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Evolut. Comput. – volume: 194 year: 2020 ident: bib0002 article-title: Energy optimization and prediction modeling of petrochemical industries: an improved convolutional neural network based on cross-feature publication-title: Energy – volume: 49 start-page: 5765 year: 2010 end-page: 5774 ident: bib0003 article-title: Cyclic scheduling for ethylene cracking furnace system with consideration of secondary ethane cracking publication-title: Ind. Eng. Chem. Res. – volume: 98 year: 2021 ident: bib0025 article-title: Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: mathematical model and dragonfly algorithm based approach publication-title: Appl. Soft Comput. – start-page: 352 year: 2020 end-page: 361 ident: bib0039 article-title: Unmanned Craft Route Planning Based on Quantum Particle Swarm Optimization Algorithm publication-title: Ship Mech – volume: 157 year: 2022 ident: bib0024 article-title: Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition publication-title: Chaos Soliton. Fract. – volume: 67 year: 2024 ident: bib0021 article-title: An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification publication-title: Sci. China Inf. Sci. – volume: 79 year: 2023 ident: bib0032 article-title: Modeling and designing a robotic swarm: a quantum computing approach publication-title: Swarm Evol. Comput. – volume: 47 year: 2022 ident: bib0018 article-title: Energy, exergy, and exergoeconomic analyses and optimization of a novel thermal and compressed air energy storage integrated with a dual-pressure organic Rankine cycle and ejector refrigeration cycle publication-title: J. Energy Storage – volume: 158 start-page: 6217 year: 2019 end-page: 6224 ident: bib0027 article-title: Wind-Solar-Hydro power optimal scheduling model based on multi-objective dragonfly algorithm publication-title: Energy Procedia – volume: 539 start-page: 1 year: Oct. 2020 end-page: 15 ident: bib0047 article-title: An improved MOEA/D algorithm with an adaptive evolutionary strategy publication-title: Inf. Sci. – start-page: 1088 year: 2020 end-page: 1094 ident: bib0050 article-title: Optimization of ethylene cracking furnace operation based on improved NSGA - II algorithm publication-title: J. Chem. Eng. – start-page: 196 year: 1992 end-page: 202 ident: bib0045 article-title: Individual comparisons by ranking methods publication-title: Breakthroughs in Statistics: Methodology and Distribution – volume: 1 start-page: 3 year: Mar. 2011 end-page: 18 ident: bib0046 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 117 start-page: 1179 year: 2021 end-page: 1192 ident: bib0019 article-title: Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron publication-title: Int. J. Adv. Manuf. Tech. – volume: 63 start-page: 1 year: 2020 end-page: 3 ident: bib0034 article-title: Hybrid quantum particle swarm optimization algorithm and its application publication-title: Sci. China Inf. Sci. – volume: 46 start-page: 8741 year: 2021 end-page: 8759 ident: bib0033 article-title: A novel quantum firefly algorithm for global optimization publication-title: Arab. J. Sci. Eng. – volume: 269 year: 2023 ident: bib0012 article-title: Computational modeling toward full chain of polypropylene production: from molecular to industrial scale publication-title: Chem. Eng. Sci. – volume: 267 year: 2023 ident: bib0001 article-title: Novel long short-term memory neural network considering virtual data generation for production prediction and energy structure optimization of ethylene production processes publication-title: Chem. Eng. Sci. – volume: 46 start-page: 79 year: 2017 end-page: 95 ident: bib0014 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. – volume: 22 start-page: 961 year: 2018 end-page: 975 ident: bib0037 article-title: Reference Point Specification in Inverted Generational Distance for Triangular Linear Pareto Front publication-title: IEEE Trans. Evolut. Comput. – year: 1995 ident: bib0043 article-title: Ph.D. dissertation – volume: 47 start-page: 106 year: 2016 end-page: 119 ident: bib0016 article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization publication-title: Expert Syst. Appl. – start-page: 2746 year: 2017 end-page: 2751 ident: bib0030 article-title: A novel quantum-behaved particle swarm optimization with random selection for large scale optimization publication-title: 2017 IEEE Cong. Evolut. Comput. (CEC) – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0049 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evolut. Comput – start-page: 1051 year: 2002 end-page: 1056 ident: bib0013 article-title: MOPSO: a proposal for multiple objective particle swarm optimization publication-title: Presented at Proceedings of the 2002 Congress on Evolutionary Computation C – volume: 23 start-page: 173 year: 2018 end-page: 187 ident: bib0044 article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems publication-title: IEEE Trans. Evolut. Comput. – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: bib0017 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. – start-page: 2107 year: 2020 end-page: 2112 ident: bib0028 article-title: Chicken swarm optimization algorithm based on quantum behavior and its convergence analysis publication-title: presented at the 39th – volume: 7 start-page: 145582 year: 2019 end-page: 145595 ident: bib0031 article-title: QSSA: quantum evolutionary salp swarm algorithm for mechanical design publication-title: IEEE Access – start-page: 2746 year: 2017 ident: 10.1016/j.swevo.2024.101607_bib0030 article-title: A novel quantum-behaved particle swarm optimization with random selection for large scale optimization publication-title: 2017 IEEE Cong. Evolut. Comput. (CEC) doi: 10.1109/CEC.2017.7969641 – start-page: 505 year: 2005 ident: 10.1016/j.swevo.2024.101607_bib0042 article-title: Improving PSO-based multi-objective optimization using crowding, mutation and∈-dominance – volume: 239 year: 2022 ident: 10.1016/j.swevo.2024.101607_bib0007 article-title: Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation publication-title: Energy doi: 10.1016/j.energy.2021.121835 – volume: 79 year: 2023 ident: 10.1016/j.swevo.2024.101607_bib0032 article-title: Modeling and designing a robotic swarm: a quantum computing approach publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101297 – volume: 196 start-page: 311 year: 2019 ident: 10.1016/j.swevo.2024.101607_bib0011 article-title: Production optimization and energy saving of complex chemical processes using novel competing evolutionary membrane algorithm: emphasis on ethylene cracking publication-title: Energ. Convers. Manag. doi: 10.1016/j.enconman.2019.05.101 – volume: 201911 year: 2019 ident: 10.1016/j.swevo.2024.101607_bib0041 article-title: Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization – volume: 194 year: 2020 ident: 10.1016/j.swevo.2024.101607_bib0002 article-title: Energy optimization and prediction modeling of petrochemical industries: an improved convolutional neural network based on cross-feature publication-title: Energy doi: 10.1016/j.energy.2019.116851 – volume: 63 start-page: 1 year: 2020 ident: 10.1016/j.swevo.2024.101607_bib0034 article-title: Hybrid quantum particle swarm optimization algorithm and its application publication-title: Sci. China Inf. Sci. doi: 10.1007/s11431-019-9532-5 – volume: 294 start-page: 408 year: 2015 ident: 10.1016/j.swevo.2024.101607_bib0029 article-title: Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.10.005 – start-page: 2107 year: 2020 ident: 10.1016/j.swevo.2024.101607_bib0028 article-title: Chicken swarm optimization algorithm based on quantum behavior and its convergence analysis – volume: 7 start-page: 145582 year: 2019 ident: 10.1016/j.swevo.2024.101607_bib0031 article-title: QSSA: quantum evolutionary salp swarm algorithm for mechanical design publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2945842 – volume: 148 start-page: 469 year: 2018 ident: 10.1016/j.swevo.2024.101607_bib0009 article-title: Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization publication-title: Energy doi: 10.1016/j.energy.2018.01.159 – volume: 46 start-page: 79 year: 2017 ident: 10.1016/j.swevo.2024.101607_bib0014 article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. doi: 10.1007/s10489-016-0825-8 – volume: 47 start-page: 106 year: 2016 ident: 10.1016/j.swevo.2024.101607_bib0016 article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.039 – start-page: 196 year: 1992 ident: 10.1016/j.swevo.2024.101607_bib0045 article-title: Individual comparisons by ranking methods – volume: 27 start-page: 432 issue: 2 year: 2020 ident: 10.1016/j.swevo.2024.101607_bib0036 article-title: Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm publication-title: J. Cent. South Univ. doi: 10.1007/s11771-020-4307-0 – year: 2022 ident: 10.1016/j.swevo.2024.101607_bib0006 article-title: Bureau of statistics of the People's Republic of China – volume: 98 year: 2021 ident: 10.1016/j.swevo.2024.101607_bib0025 article-title: Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: mathematical model and dragonfly algorithm based approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106739 – volume: 23 start-page: 173 issue: 2 year: 2018 ident: 10.1016/j.swevo.2024.101607_bib0044 article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2018.2791283 – start-page: 1470 year: 1999 ident: 10.1016/j.swevo.2024.101607_bib0015 article-title: Ant colony optimization: a new meta-heuristic – volume: 47 year: 2022 ident: 10.1016/j.swevo.2024.101607_bib0018 article-title: Energy, exergy, and exergoeconomic analyses and optimization of a novel thermal and compressed air energy storage integrated with a dual-pressure organic Rankine cycle and ejector refrigeration cycle publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103610 – volume: 117 start-page: 1179 issue: 3–4 year: 2021 ident: 10.1016/j.swevo.2024.101607_bib0019 article-title: Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-021-07759-z – start-page: 1311 year: 2017 ident: 10.1016/j.swevo.2024.101607_bib0035 article-title: Single objective real-parameter optimization: algorithm jSO – start-page: 839 year: 2000 ident: 10.1016/j.swevo.2024.101607_bib0048 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization – volume: 158 start-page: 6217 year: 2019 ident: 10.1016/j.swevo.2024.101607_bib0027 article-title: Wind-Solar-Hydro power optimal scheduling model based on multi-objective dragonfly algorithm publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.476 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.swevo.2024.101607_bib0040 article-title: Comparison of Multiobjective Evolutionary Algorithms: empirical Results publication-title: Evol. Comput. doi: 10.1162/106365600568202 – volume: 60 start-page: 3687 issue: 9 year: 2021 ident: 10.1016/j.swevo.2024.101607_bib0005 article-title: Data-driven modeling and cyclic scheduling for ethylene cracking furnace system with inventory constraints publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c06085 – volume: 10 year: 2022 ident: 10.1016/j.swevo.2024.101607_bib0026 article-title: Prediction of air pollution interval based on data preprocessing and multi-objective dragonfly optimization algorithm publication-title: Front. Ecol. Evol. – volume: 46 start-page: 8741 issue: 9 year: 2021 ident: 10.1016/j.swevo.2024.101607_bib0033 article-title: A novel quantum firefly algorithm for global optimization publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05608-5 – start-page: 1088 issue: 3 year: 2020 ident: 10.1016/j.swevo.2024.101607_bib0050 article-title: Optimization of ethylene cracking furnace operation based on improved NSGA - II algorithm publication-title: J. Chem. Eng. – volume: 171 start-page: 507 year: 2023 ident: 10.1016/j.swevo.2024.101607_bib0020 article-title: Multi-variable study/optimization of a novel geothermal-driven poly-generation system: application of a soft-computing intelligent procedure and MOGWO publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2023.01.041 – start-page: 2592 issue: 9 year: 2016 ident: 10.1016/j.swevo.2024.101607_bib0038 article-title: Research on the Shrink Expansion Coefficient Control Strategy of Quantum Particle Swarm Optimization Algorithm publication-title: Comput. Appl. Res. – start-page: 500 year: 2021 ident: 10.1016/j.swevo.2024.101607_bib0010 article-title: Operation optimization of ethylene cracking furnace based on NNIA algorithm – volume: 153 start-page: 21 year: 2016 ident: 10.1016/j.swevo.2024.101607_bib0008 article-title: Multi-objective operation optimization of ethylene cracking furnace based on AMOPSO algorithm publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.07.009 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.swevo.2024.101607_bib0023 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl.-Based Syst doi: 10.1016/j.knosys.2018.08.003 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.swevo.2024.101607_bib0017 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 49 start-page: 5765 issue: 12 year: 2010 ident: 10.1016/j.swevo.2024.101607_bib0003 article-title: Cyclic scheduling for ethylene cracking furnace system with consideration of secondary ethane cracking publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie1001235 – start-page: 352 issue: 3 year: 2020 ident: 10.1016/j.swevo.2024.101607_bib0039 article-title: Unmanned Craft Route Planning Based on Quantum Particle Swarm Optimization Algorithm publication-title: Ship Mech – volume: 539 start-page: 1 year: 2020 ident: 10.1016/j.swevo.2024.101607_bib0047 article-title: An improved MOEA/D algorithm with an adaptive evolutionary strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.082 – volume: 269 year: 2023 ident: 10.1016/j.swevo.2024.101607_bib0012 article-title: Computational modeling toward full chain of polypropylene production: from molecular to industrial scale publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.118448 – volume: 67 issue: 2 year: 2024 ident: 10.1016/j.swevo.2024.101607_bib0021 article-title: An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-023-3864-6 – volume: 22 start-page: 961 issue: 6 year: 2018 ident: 10.1016/j.swevo.2024.101607_bib0037 article-title: Reference Point Specification in Inverted Generational Distance for Triangular Linear Pareto Front publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2017.2776226 – year: 1995 ident: 10.1016/j.swevo.2024.101607_bib0043 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.swevo.2024.101607_bib0049 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evolut. Comput doi: 10.1109/4235.585893 – year: 2024 ident: 10.1016/j.swevo.2024.101607_bib0022 article-title: MOEA/D with spatial-temporal topological tensor prediction for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2024.3449142 – volume: 157 year: 2022 ident: 10.1016/j.swevo.2024.101607_bib0024 article-title: Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition publication-title: Chaos Soliton. Fract. doi: 10.1016/j.chaos.2022.111982 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.swevo.2024.101607_bib0046 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – start-page: 1051 year: 2002 ident: 10.1016/j.swevo.2024.101607_bib0013 article-title: MOPSO: a proposal for multiple objective particle swarm optimization – volume: 267 year: 2023 ident: 10.1016/j.swevo.2024.101607_bib0001 article-title: Novel long short-term memory neural network considering virtual data generation for production prediction and energy structure optimization of ethylene production processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.118372 – volume: 19 start-page: 9168 issue: 9 year: 2022 ident: 10.1016/j.swevo.2024.101607_bib0004 article-title: Next-generation 5G fusion-based intelligent health-monitoring platform for ethylene cracking furnace tube publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022426 |
SSID | ssj0000602559 |
Score | 2.362359 |
Snippet | •The improved multi-objective dragonfly optimization algorithm based on quantum behavior is proposed.•The production efficiency of ethylene crackers is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101607 |
SubjectTerms | Ethylene cracking furnace Improved dragonfly optimization method Multi-objective optimization Quantum behavior |
Title | Improved dragonfly optimization algorithm based on quantum behavior for multi-objective optimization of ethylene cracking furnace |
URI | https://dx.doi.org/10.1016/j.swevo.2024.101607 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 2210-6502 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 2210-6502 databaseCode: ACRLP dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 2210-6502 databaseCode: .~1 dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 2210-6502 databaseCode: AIKHN dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2210-6502 databaseCode: AKRWK dateStart: 20110301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602559 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvHjxbcQH2YNHC31sHxwJkaBGLkrCrdnuAyFAsYLGi4n_3Jl2SyQxHDx202k2O9v5vpnMg5BrzpwoYtq3NM5KZSIKrJZ2gMgxL0kEAGioMA752A96A3Y_9IcV0ilrYTCt0tj-wqbn1tqsNM1pNhfjcfPJBW8F-EWeBekwHyvKsfsX3OnGl7OOs9hBzppxxhy8b6FA2XwoT_N6-1DvWAToskbRbe1vgPoFOt0DsmfYIm0XGzokFTU_IvvlJAZqfsxj8l3EBpSkMuMjrPT4pCkYg5mpsqR8Okqz8fJlRhG2JIWl1xUc6goWTKE-BfpK8_xCK00mhR3c_EiqqQK9Ak4pKjIuMMpONW5RqBMy6N4-d3qWGa5gCUCtpQUHBq4H04kGdAoj3w9D7diCJY7wHMFdyT2FI2xakc097SsvYg6ww0C5KhCJYt4pqc7TuTojFNuiAVUD3yYQjLt2ol0pZCgluFI8ElGNuOWJxsJ0HscBGNO4TDGbxLkaYlRDXKihRm7WQoui8cb214NSVfHG_YkBGrYJnv9X8ILs4lORuntJqstspa6AoCyTen4D62SnfffQ6_8AEiPnEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHPTi24jPPXi0QtvtgyMhEpDHRUi4NdvtLkKAYgWNR_-5s-3WSGI4eN12ms3Odr5vJvMAuGPU9H0qHUOqWamU-65RkyYSOWqHIUcA9YSKQ_b6bmtIn0bOqACNvBZGpVVq25_Z9NRa65WKPs3KcjKpPFvorSC_SLMgTep4O1CiDtrkIpTq7U6r_xNqqbopcVZj5lDEUDJ5_6E00-vtQ7yrOkCLPmQN1_7GqF-40zyEfU0YST3b0xEUxOIYDvJhDET_myfwlYUHRESihI1VsccnidEezHWhJWGzcZxMVi9zopArIrj0usZzXeOCrtUnyGBJmmJoxOE0M4WbH4klEahahCpBeMK4CrQTqbbIxSkMm4-DRsvQ8xUMjsC1MvDM0PugMpQIUJ7vOJ4nzSqnocltkzMrYrZQU2xqfpXZ0hG2T00kiK6whMtDQe0zKC7ihTgHojqjIVtD98bllFnVUFoRj7woQm-K-dwvg5WfaMB183E1A2MW5Flm0yBVQ6DUEGRqKMP9j9Ay672x_XU3V1WwcYUCRIdtghf_FbyF3dag1w267X7nEvbUkyyT9wqKq2QtrpGvrMIbfR-_Ae2i6b4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+dragonfly+optimization+algorithm+based+on+quantum+behavior+for+multi-objective+optimization+of+ethylene+cracking+furnace&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Xintian&rft.au=Geng%2C+Zhiqiang&rft.au=Chen%2C+Liangchao&rft.au=Han%2C+Yongming&rft.date=2024-07-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=88&rft_id=info:doi/10.1016%2Fj.swevo.2024.101607&rft.externalDocID=S2210650224001457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |