A site entropy rate and degree centrality based algorithm for image co-segmentation

•Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented regions.•Guided by co-saliency map, we combine the two methods to get image co-segmentations.•The proposed algorithm co-segments multiple ins...

Full description

Saved in:
Bibliographic Details
Published inJournal of visual communication and image representation Vol. 33; pp. 20 - 30
Main Authors Chakraborty, Souradeep, Mitra, Pabitra
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2015
Subjects
Online AccessGet full text
ISSN1047-3203
1095-9076
DOI10.1016/j.jvcir.2015.08.016

Cover

Abstract •Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented regions.•Guided by co-saliency map, we combine the two methods to get image co-segmentations.•The proposed algorithm co-segments multiple instances of a common object in images.•The proposed algorithm co-segments images with multiple classes. In this paper, we propose a graph based algorithm that efficiently segments common objects from multiple images. We first generate a number of object proposals from each image. Then, an undirected graph is constructed based on proposal similarities and co-saliency maps. Two different methods are followed to extract the proposals containing common objects. They are: (1) degree centrality of nodes obtained after graph thresholding and (2) site entropy rate of nodes calculated on the stationary distribution of Markov chain constructed on the graph. Finally, we obtain the co-segmented image region by selecting the more salient of the object proposals obtained by the two methods, for each image. Multiple instances of the common object are also segmented efficiently. The proposed method has been compared with many existing co-segmentation methods on three standard co-segmentation datasets. Experimental results show its effectiveness in co-segmentation, with larger IoU values as compared to other co-segmentation methods.
AbstractList •Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented regions.•Guided by co-saliency map, we combine the two methods to get image co-segmentations.•The proposed algorithm co-segments multiple instances of a common object in images.•The proposed algorithm co-segments images with multiple classes. In this paper, we propose a graph based algorithm that efficiently segments common objects from multiple images. We first generate a number of object proposals from each image. Then, an undirected graph is constructed based on proposal similarities and co-saliency maps. Two different methods are followed to extract the proposals containing common objects. They are: (1) degree centrality of nodes obtained after graph thresholding and (2) site entropy rate of nodes calculated on the stationary distribution of Markov chain constructed on the graph. Finally, we obtain the co-segmented image region by selecting the more salient of the object proposals obtained by the two methods, for each image. Multiple instances of the common object are also segmented efficiently. The proposed method has been compared with many existing co-segmentation methods on three standard co-segmentation datasets. Experimental results show its effectiveness in co-segmentation, with larger IoU values as compared to other co-segmentation methods.
Author Mitra, Pabitra
Chakraborty, Souradeep
Author_xml – sequence: 1
  givenname: Souradeep
  surname: Chakraborty
  fullname: Chakraborty, Souradeep
  email: sourachakra@gmail.com
  organization: Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India
– sequence: 2
  givenname: Pabitra
  surname: Mitra
  fullname: Mitra, Pabitra
  email: pabitra@gmail.com
  organization: Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India
BookMark eNqFkE1PwzAMhiM0JLbBL-CSP9DiNP3KgcM08SVN4gCcozRxS6qumZJq0v49KePEAU62X_ux7HdFFqMbkZBbBikDVt71aX_U1qcZsCKFOo3aBVkyEEUioCoXc55XCc-AX5FVCD0AcMHzJXnb0GAnpDhO3h1O1KtYqNFQg51HpHpuqMFOJ9qogIaqoXPeTp972jpP7V51ccglAbt9HFWTdeM1uWzVEPDmJ67Jx-PD-_Y52b0-vWw3u0Rz4FPCW9Oq2hiVNzwvW6jrRusyr6oGhchMhipT2BRYNMJAJZoKioJlipVZ5E2l-ZqI817tXQgeW6nt-YJ4sh0kAzm7I3v57Y6c3ZFQy6hFlv9iDz4-40__UPdnCuNbR4teBm1x1GisRz1J4-yf_BfjYYO3
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2960162
crossref_primary_10_1016_j_jvcir_2017_08_003
Cites_doi 10.1109/TSMC.1979.4310076
10.1109/ICCV.2011.6126239
10.1109/CVPR.2013.407
10.1109/CVPR.2010.5539927
10.1109/TMM.2008.2008922
10.1109/ISCAS.2014.6865138
10.1109/TCSVT.2004.826775
10.1109/CVPR.2012.6247745
10.1109/CVPR.2012.6248093
10.1109/VCIP.2013.6706376
10.1007/978-3-642-15552-9_34
10.1109/CVPR.2006.42
10.1109/CVPR.2013.153
10.1109/CVPR.2004.314
10.1109/MMSP.2006.285343
10.1109/ICCV.2001.937505
10.1109/TIP.2013.2260166
10.1109/CVPRW.2009.5206652
10.1109/CVPR.2006.91
10.1109/CVPR.2011.5995420
10.1109/CVPR.2011.5995415
10.1109/CVPR.2010.5539891
10.1109/ICCV.2009.5459261
10.1109/CVPR.2011.5995530
10.1109/TMM.2012.2197741
10.1109/CVPR.2010.5539868
10.1109/TMM.2011.2127463
10.1109/CVPR.2014.310
10.1049/iet-cvi.2009.0067
10.1109/TIP.2014.2387384
10.1109/ICMT.2011.6002178
10.1109/CVPR.2010.5540080
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jvcir.2015.08.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1095-9076
EndPage 30
ExternalDocumentID 10_1016_j_jvcir_2015_08_016
S1047320315001595
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-3fdfa8dda4b346f088bcc6477be992d2ea2aeb5e5b9d079b705512a162c30d7c3
IEDL.DBID .~1
ISSN 1047-3203
IngestDate Wed Oct 01 06:01:32 EDT 2025
Thu Apr 24 23:03:10 EDT 2025
Fri Feb 23 02:24:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Markov chain
Site entropy rate
Co-segmentation
Co-saliency
Degree centrality
k-partite graph
Object proposal
Stationary distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-3fdfa8dda4b346f088bcc6477be992d2ea2aeb5e5b9d079b705512a162c30d7c3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_jvcir_2015_08_016
crossref_primary_10_1016_j_jvcir_2015_08_016
elsevier_sciencedirect_doi_10_1016_j_jvcir_2015_08_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
2015-11-00
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationTitle Journal of visual communication and image representation
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References A. Joulin, F. Bach, J. Ponce, Discriminative clustering for image co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 1943–1950.
Tao, Li, Sun (b0110) 2015; 24
S. Vicente, V. Kolmogorov, C. Rother, Co-segmentation revisited: models and optimization, in: Proc. Eur. Conf. Computer Vision, 2010, pp. 465–479.
L. Mukherjee, V. Singh, J. Peng, Scale invariant co-segmentation for image groups, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 1881–1888.
E. Borenstein, E. Sharon, S. Ullman, Combining top-down and bottom-up segmentation, in: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2004.
Li, Ngan, Liu (b0010) 2009; 11
D. Hochbaum, V. Singh, An efficient algorithm for co-segmentation, in: Proc. Int. Conf. Computer Vision, Kyoto, Japan, 2009, pp. 269–276.
P. Rantalankila, J. Kannala, E. Rahtu, Generating object segmentation proposals using global and local search, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014.
Pal, Mukherjee, Mitra, Mukherjee (b0155) 2010; 4
Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 1155–1162.
H. Fu, X. Cao, Z. Tu, Cluster-based co-saliency detection, in: IEEE Trans. Image Process. vol. 22(10), pp. 3766–3778.
W. Wang, Y. Wang, Q. Huang, W. Gao, Measuring visual saliency by site entropy rate, in: Proc. IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2010, pp. 2368–2375.
G. Kim, E.P. Xing, L. Fei-Fei, T. Kanade, Distributed co-segmentation via submodular optimization on anisotropic diffusion, in: Proc. Int. Conf. Computer Vision, November 2011, pp. 169–176.
K. Chang, T. Liu, S. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 2129–2136.
Cao, Tao, Zhang, Fu, Feng (b0035) 2014; 23
F. Meng, H. Li, K. Ngan, B. Zeng, N. Rao, Co-segmentation from Similar Backgrounds, in: IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 353–356.
Y. Long, Y. Huang, Image based source camera identification using demosaicking, in: Proc. IEEE Eighth Workshop on Multimedia Signal Processing, Victoria, Canada, 2006, pp. 419–424.
Meng, Li, Liu, Ngan (b0105) 2013; 43
C. Rother, V. Kolmogorov, T. Minka, A. Blake, Co-segmentation of image pairs by histogram matching – incorporating a global constraint into MRFs, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 993–1000.
D. Batra, A. Kowdle, D. Parikh, Icoseg: interactive co-segmentation with intelligent scribble guidance, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 3169–3176.
Otsu (b0030) 1979; 9
Y.Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images, in: Proc. Int. Conf. Computer Vision, vol. 1, pp. 105–112.
S. Vicente, C. Rother, V. Kolmogorov, Object co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 2217–2224.
L. Mukherjee, V. Singh, C. Dyer, Half-integrality based algorithms for co-segmentation of images, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 2028–2035.
J. Rubio, J. Serrat, A. Lopez, N. Paragios, Unsupervised co-segmentation through region matching, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 749–756.
G. Sharma, F. Jurie, C. Schmid, Discriminative spatial saliency for image classification, in: IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp. 3506–3513.
Q. Li, Y. Zhou, J. Yang, Saliency based image segmentation, in: International Conference on Multimedia Technology, 2011, pp. 5068–5071.
K.Y. Chang, T.L. Liu, S.H. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2011, pp. 2129–2136.
J. Zhang, J. Zheng, J. Cai, A diffusion approach to seeded image segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 2125–2132.
Meng, Li, Liu, Ngan (b0095) 2012; 14
C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang, Saliency detection via graph-based manifold ranking, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 3166–3173.
Zhang, Lin, Li, Zhou, Xie, Li (b0135) 2013; 28
Huang, Yang, Fang, Lin, Zhang (b0130) 2011; 13
Jing, Li, Zhang, Zhang (b0005) 2004; 14
M. Nilsback, A. Zisserman, A visual vocabulary for flower classification, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 1447–1454.
F. Meng, B. Luo, C. Huang, Object co-segmentation based on directed graph clustering, in: Conf. Visual Communications and Image Processing (VCIP), November 2013, pp. 1–5.
Huang (10.1016/j.jvcir.2015.08.016_b0130) 2011; 13
10.1016/j.jvcir.2015.08.016_b0090
Meng (10.1016/j.jvcir.2015.08.016_b0095) 2012; 14
10.1016/j.jvcir.2015.08.016_b0050
10.1016/j.jvcir.2015.08.016_b0170
10.1016/j.jvcir.2015.08.016_b0070
10.1016/j.jvcir.2015.08.016_b0175
Otsu (10.1016/j.jvcir.2015.08.016_b0030) 1979; 9
10.1016/j.jvcir.2015.08.016_b0075
10.1016/j.jvcir.2015.08.016_b0150
10.1016/j.jvcir.2015.08.016_b0055
10.1016/j.jvcir.2015.08.016_b0115
10.1016/j.jvcir.2015.08.016_b0015
Jing (10.1016/j.jvcir.2015.08.016_b0005) 2004; 14
Pal (10.1016/j.jvcir.2015.08.016_b0155) 2010; 4
10.1016/j.jvcir.2015.08.016_b0160
10.1016/j.jvcir.2015.08.016_b0060
10.1016/j.jvcir.2015.08.016_b0180
10.1016/j.jvcir.2015.08.016_b0080
10.1016/j.jvcir.2015.08.016_b0065
10.1016/j.jvcir.2015.08.016_b0120
Li (10.1016/j.jvcir.2015.08.016_b0010) 2009; 11
10.1016/j.jvcir.2015.08.016_b0020
10.1016/j.jvcir.2015.08.016_b0085
10.1016/j.jvcir.2015.08.016_b0140
10.1016/j.jvcir.2015.08.016_b0040
10.1016/j.jvcir.2015.08.016_b0025
Meng (10.1016/j.jvcir.2015.08.016_b0105) 2013; 43
10.1016/j.jvcir.2015.08.016_b0145
10.1016/j.jvcir.2015.08.016_b0045
10.1016/j.jvcir.2015.08.016_b0100
Cao (10.1016/j.jvcir.2015.08.016_b0035) 2014; 23
10.1016/j.jvcir.2015.08.016_b0165
Tao (10.1016/j.jvcir.2015.08.016_b0110) 2015; 24
10.1016/j.jvcir.2015.08.016_b0125
Zhang (10.1016/j.jvcir.2015.08.016_b0135) 2013; 28
References_xml – reference: C. Rother, V. Kolmogorov, T. Minka, A. Blake, Co-segmentation of image pairs by histogram matching – incorporating a global constraint into MRFs, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 993–1000.
– volume: 13
  start-page: 653
  year: 2011
  end-page: 661
  ident: b0130
  article-title: Integrating visual saliency and consistency for re-ranking image search results
  publication-title: IEEE Trans. Multimedia
– volume: 28
  start-page: 1171
  year: 2013
  end-page: 1186
  ident: b0135
  article-title: Improved image deblurring based on salient-region segmentation
  publication-title: Signal Proc.: Image Commun.
– reference: Y. Long, Y. Huang, Image based source camera identification using demosaicking, in: Proc. IEEE Eighth Workshop on Multimedia Signal Processing, Victoria, Canada, 2006, pp. 419–424.
– volume: 43
  year: 2013
  ident: b0105
  article-title: Image co-segmentation by incorporating color reward strategy and active contour model
  publication-title: IEEE Trans. Cybern.
– reference: L. Mukherjee, V. Singh, C. Dyer, Half-integrality based algorithms for co-segmentation of images, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 2028–2035.
– volume: 14
  start-page: 1429
  year: 2012
  end-page: 1441
  ident: b0095
  article-title: Object co-segmentation based on shortest path algorithm and saliency model
  publication-title: IEEE Trans. Multimedia
– reference: F. Meng, H. Li, K. Ngan, B. Zeng, N. Rao, Co-segmentation from Similar Backgrounds, in: IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 353–356.
– reference: F. Meng, B. Luo, C. Huang, Object co-segmentation based on directed graph clustering, in: Conf. Visual Communications and Image Processing (VCIP), November 2013, pp. 1–5.
– reference: S. Vicente, C. Rother, V. Kolmogorov, Object co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 2217–2224.
– reference: Y.Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images, in: Proc. Int. Conf. Computer Vision, vol. 1, pp. 105–112.
– reference: G. Kim, E.P. Xing, L. Fei-Fei, T. Kanade, Distributed co-segmentation via submodular optimization on anisotropic diffusion, in: Proc. Int. Conf. Computer Vision, November 2011, pp. 169–176.
– reference: K. Chang, T. Liu, S. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 2129–2136.
– reference: D. Batra, A. Kowdle, D. Parikh, Icoseg: interactive co-segmentation with intelligent scribble guidance, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 3169–3176.
– reference: A. Joulin, F. Bach, J. Ponce, Discriminative clustering for image co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 1943–1950.
– reference: C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang, Saliency detection via graph-based manifold ranking, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 3166–3173.
– volume: 4
  start-page: 218
  year: 2010
  end-page: 229
  ident: b0155
  article-title: Modeling visual saliency using degree centrality
  publication-title: IET Comput. Vis.
– reference: Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 1155–1162.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0030
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 24
  start-page: 943
  year: 2015
  end-page: 955
  ident: b0110
  article-title: SaCoseg: object co-segmentation by shape conformability
  publication-title: IEEE Trans. Image Process.
– reference: P. Rantalankila, J. Kannala, E. Rahtu, Generating object segmentation proposals using global and local search, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014.
– reference: W. Wang, Y. Wang, Q. Huang, W. Gao, Measuring visual saliency by site entropy rate, in: Proc. IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2010, pp. 2368–2375.
– reference: D. Hochbaum, V. Singh, An efficient algorithm for co-segmentation, in: Proc. Int. Conf. Computer Vision, Kyoto, Japan, 2009, pp. 269–276.
– reference: J. Zhang, J. Zheng, J. Cai, A diffusion approach to seeded image segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 2125–2132.
– reference: J. Rubio, J. Serrat, A. Lopez, N. Paragios, Unsupervised co-segmentation through region matching, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 749–756.
– reference: G. Sharma, F. Jurie, C. Schmid, Discriminative spatial saliency for image classification, in: IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp. 3506–3513.
– reference: Q. Li, Y. Zhou, J. Yang, Saliency based image segmentation, in: International Conference on Multimedia Technology, 2011, pp. 5068–5071.
– volume: 11
  start-page: 77
  year: 2009
  end-page: 88
  ident: b0010
  article-title: FaceSeg: automatic face segmentation for real-time video
  publication-title: IEEE Trans. Multimedia
– reference: H. Fu, X. Cao, Z. Tu, Cluster-based co-saliency detection, in: IEEE Trans. Image Process. vol. 22(10), pp. 3766–3778.
– volume: 23
  start-page: 4175
  year: 2014
  end-page: 4186
  ident: b0035
  article-title: Self-adaptively weighted co-saliency detection via rank constraint
  publication-title: IEEE Trans. Image Process. (T-IP)
– reference: L. Mukherjee, V. Singh, J. Peng, Scale invariant co-segmentation for image groups, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 1881–1888.
– reference: M. Nilsback, A. Zisserman, A visual vocabulary for flower classification, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 1447–1454.
– reference: S. Vicente, V. Kolmogorov, C. Rother, Co-segmentation revisited: models and optimization, in: Proc. Eur. Conf. Computer Vision, 2010, pp. 465–479.
– reference: E. Borenstein, E. Sharon, S. Ullman, Combining top-down and bottom-up segmentation, in: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2004.
– volume: 14
  start-page: 672
  year: 2004
  end-page: 681
  ident: b0005
  article-title: Relevance feedback in region-based image retrieval
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: K.Y. Chang, T.L. Liu, S.H. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2011, pp. 2129–2136.
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.jvcir.2015.08.016_b0030
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– ident: 10.1016/j.jvcir.2015.08.016_b0090
  doi: 10.1109/ICCV.2011.6126239
– ident: 10.1016/j.jvcir.2015.08.016_b0140
  doi: 10.1109/CVPR.2013.407
– ident: 10.1016/j.jvcir.2015.08.016_b0160
  doi: 10.1109/CVPR.2010.5539927
– volume: 11
  start-page: 77
  issue: 1
  year: 2009
  ident: 10.1016/j.jvcir.2015.08.016_b0010
  article-title: FaceSeg: automatic face segmentation for real-time video
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2008.2008922
– ident: 10.1016/j.jvcir.2015.08.016_b0165
  doi: 10.1109/ISCAS.2014.6865138
– volume: 14
  start-page: 672
  issue: 5
  year: 2004
  ident: 10.1016/j.jvcir.2015.08.016_b0005
  article-title: Relevance feedback in region-based image retrieval
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2004.826775
– ident: 10.1016/j.jvcir.2015.08.016_b0100
  doi: 10.1109/CVPR.2012.6247745
– ident: 10.1016/j.jvcir.2015.08.016_b0125
  doi: 10.1109/CVPR.2012.6248093
– volume: 43
  issue: 2
  year: 2013
  ident: 10.1016/j.jvcir.2015.08.016_b0105
  article-title: Image co-segmentation by incorporating color reward strategy and active contour model
  publication-title: IEEE Trans. Cybern.
– ident: 10.1016/j.jvcir.2015.08.016_b0180
  doi: 10.1109/VCIP.2013.6706376
– ident: 10.1016/j.jvcir.2015.08.016_b0065
  doi: 10.1007/978-3-642-15552-9_34
– ident: 10.1016/j.jvcir.2015.08.016_b0170
  doi: 10.1109/CVPR.2006.42
– ident: 10.1016/j.jvcir.2015.08.016_b0145
  doi: 10.1109/CVPR.2013.153
– ident: 10.1016/j.jvcir.2015.08.016_b0175
  doi: 10.1109/CVPR.2004.314
– ident: 10.1016/j.jvcir.2015.08.016_b0055
  doi: 10.1109/MMSP.2006.285343
– volume: 23
  start-page: 4175
  issue: 9
  year: 2014
  ident: 10.1016/j.jvcir.2015.08.016_b0035
  article-title: Self-adaptively weighted co-saliency detection via rank constraint
  publication-title: IEEE Trans. Image Process. (T-IP)
– ident: 10.1016/j.jvcir.2015.08.016_b0015
  doi: 10.1109/ICCV.2001.937505
– ident: 10.1016/j.jvcir.2015.08.016_b0150
  doi: 10.1109/TIP.2013.2260166
– ident: 10.1016/j.jvcir.2015.08.016_b0045
  doi: 10.1109/CVPRW.2009.5206652
– ident: 10.1016/j.jvcir.2015.08.016_b0040
  doi: 10.1109/CVPR.2006.91
– ident: 10.1016/j.jvcir.2015.08.016_b0080
  doi: 10.1109/CVPR.2011.5995420
– ident: 10.1016/j.jvcir.2015.08.016_b0060
  doi: 10.1109/CVPR.2011.5995415
– ident: 10.1016/j.jvcir.2015.08.016_b0020
  doi: 10.1109/CVPR.2010.5539891
– ident: 10.1016/j.jvcir.2015.08.016_b0050
  doi: 10.1109/ICCV.2009.5459261
– ident: 10.1016/j.jvcir.2015.08.016_b0085
  doi: 10.1109/CVPR.2011.5995530
– volume: 14
  start-page: 1429
  issue: 5
  year: 2012
  ident: 10.1016/j.jvcir.2015.08.016_b0095
  article-title: Object co-segmentation based on shortest path algorithm and saliency model
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2012.2197741
– ident: 10.1016/j.jvcir.2015.08.016_b0070
  doi: 10.1109/CVPR.2010.5539868
– volume: 13
  start-page: 653
  issue: 4
  year: 2011
  ident: 10.1016/j.jvcir.2015.08.016_b0130
  article-title: Integrating visual saliency and consistency for re-ranking image search results
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2011.2127463
– ident: 10.1016/j.jvcir.2015.08.016_b0025
  doi: 10.1109/CVPR.2014.310
– volume: 4
  start-page: 218
  issue: 3
  year: 2010
  ident: 10.1016/j.jvcir.2015.08.016_b0155
  article-title: Modeling visual saliency using degree centrality
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2009.0067
– volume: 24
  start-page: 943
  issue: 3
  year: 2015
  ident: 10.1016/j.jvcir.2015.08.016_b0110
  article-title: SaCoseg: object co-segmentation by shape conformability
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2387384
– volume: 28
  start-page: 1171
  issue: 9
  year: 2013
  ident: 10.1016/j.jvcir.2015.08.016_b0135
  article-title: Improved image deblurring based on salient-region segmentation
  publication-title: Signal Proc.: Image Commun.
– ident: 10.1016/j.jvcir.2015.08.016_b0115
  doi: 10.1109/ICMT.2011.6002178
– ident: 10.1016/j.jvcir.2015.08.016_b0075
  doi: 10.1109/CVPR.2010.5540080
– ident: 10.1016/j.jvcir.2015.08.016_b0120
  doi: 10.1109/CVPR.2011.5995415
SSID ssj0003934
Score 2.0972989
Snippet •Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms Co-saliency
Co-segmentation
Degree centrality
k-partite graph
Markov chain
Object proposal
Site entropy rate
Stationary distribution
Title A site entropy rate and degree centrality based algorithm for image co-segmentation
URI https://dx.doi.org/10.1016/j.jvcir.2015.08.016
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgWhW1WvYgnow1m03SPZZiqa8iaqG3kN2daEqblLYKXvzt7iQbHyAePIWEGQizy3wzuzPfEHIcBpqDyWUd7krh8BDOndjAnKN0oBLFtC8UnkPeDoL-kF-N_FGNdKteGCyrtL6_9OmFt7ZfWtaarVmath6QZMBjOKUAgV9goznnIU4xOHv_KvPwRHmzjIwEKF0xDxU1XuNXlSIpqOsXPJ449Pw3dPqGOL1NsmFDRdop_2aL1CCrk_VvBIJ10rBC6WJKT-iPZo_FNnnoULwbpniAm8_eKLJC0DjTVIPJsoHawkwTh1MEM03jyVM-T5fPU2pCWZpOja-hKncW8DS1LUrZDhn2Lh67fccOUXCUQael4yU6idtax1x6PEiMU5FKYfepBCGYZhCzGKQPvhT6PBQS2XVcFrsBM_o6VN4uWcnyDPYIDU0WzhPgCq9DWRuEJ8B4R_CTUCYigH3CKuNFyjKM46CLSVSVko2jwuIRWjzC8ZdusE9OP5VmJcHG3-JBtSrRj30SGQj4S_Hgv4oNsoZvZf_hIVlZzl_gyAQiS9ksdlqTrHa69zd3-Ly87g8-AH5f4SQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ilgPHJAnCijadouR4RA43kBpN2qJnGhE-umbSBx4bcTtykwCXHg2tpS5Ub-7Nj-DHAQR0agzWU94SvpiRhPvNTCnKdNpDPNTSg13UPe3kWdR3HVDbszcFbPwlBbpfP9lU8vvbV70nLWbA3zvHVPJAMBpy0FBPwynIU5EfKYMrDjj-8-j0BWpWWiJCDxmnqobPLqvemcWEH9sCTypK3nv8HTD8i5WIYlFyuy0-pzVmAGi1VY_MEguApNJ5SP--yQTU17jNfg_pRRcZjRDe5g-M6IFoKlhWEGbZqNzHVm2kCcEZoZlr48DUb55LnPbCzL8r51NkwPvDE-9d2MUrEOjxfnD2cdz21R8LSFp4kXZCZL28akQgUiyqxXUVrT-KlCKbnhmPIUVYihkuYklorodXye-hG3-ibWwQY0ikGBm8Bim4aLDIWmeihvowwkWveIYRarTEa4Bbw2XqIdxThtunhJ6l6yXlJaPCGLJ7T_0o-24OhLaVgxbPwtHtV_JZk6KInFgL8Ut_-ruA_znYfbm-Tm8u66CQv0phpG3IHGZPSKuzYqmai98tR9AsH14SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+site+entropy+rate+and+degree+centrality+based+algorithm+for+image+co-segmentation&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Chakraborty%2C+Souradeep&rft.au=Mitra%2C+Pabitra&rft.date=2015-11-01&rft.issn=1047-3203&rft.volume=33&rft.spage=20&rft.epage=30&rft_id=info:doi/10.1016%2Fj.jvcir.2015.08.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvcir_2015_08_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon