A site entropy rate and degree centrality based algorithm for image co-segmentation
•Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented regions.•Guided by co-saliency map, we combine the two methods to get image co-segmentations.•The proposed algorithm co-segments multiple ins...
        Saved in:
      
    
          | Published in | Journal of visual communication and image representation Vol. 33; pp. 20 - 30 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.11.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1047-3203 1095-9076  | 
| DOI | 10.1016/j.jvcir.2015.08.016 | 
Cover
| Abstract | •Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented regions.•Guided by co-saliency map, we combine the two methods to get image co-segmentations.•The proposed algorithm co-segments multiple instances of a common object in images.•The proposed algorithm co-segments images with multiple classes.
In this paper, we propose a graph based algorithm that efficiently segments common objects from multiple images. We first generate a number of object proposals from each image. Then, an undirected graph is constructed based on proposal similarities and co-saliency maps. Two different methods are followed to extract the proposals containing common objects. They are: (1) degree centrality of nodes obtained after graph thresholding and (2) site entropy rate of nodes calculated on the stationary distribution of Markov chain constructed on the graph. Finally, we obtain the co-segmented image region by selecting the more salient of the object proposals obtained by the two methods, for each image. Multiple instances of the common object are also segmented efficiently. The proposed method has been compared with many existing co-segmentation methods on three standard co-segmentation datasets. Experimental results show its effectiveness in co-segmentation, with larger IoU values as compared to other co-segmentation methods. | 
    
|---|---|
| AbstractList | •Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented regions.•Guided by co-saliency map, we combine the two methods to get image co-segmentations.•The proposed algorithm co-segments multiple instances of a common object in images.•The proposed algorithm co-segments images with multiple classes.
In this paper, we propose a graph based algorithm that efficiently segments common objects from multiple images. We first generate a number of object proposals from each image. Then, an undirected graph is constructed based on proposal similarities and co-saliency maps. Two different methods are followed to extract the proposals containing common objects. They are: (1) degree centrality of nodes obtained after graph thresholding and (2) site entropy rate of nodes calculated on the stationary distribution of Markov chain constructed on the graph. Finally, we obtain the co-segmented image region by selecting the more salient of the object proposals obtained by the two methods, for each image. Multiple instances of the common object are also segmented efficiently. The proposed method has been compared with many existing co-segmentation methods on three standard co-segmentation datasets. Experimental results show its effectiveness in co-segmentation, with larger IoU values as compared to other co-segmentation methods. | 
    
| Author | Mitra, Pabitra Chakraborty, Souradeep  | 
    
| Author_xml | – sequence: 1 givenname: Souradeep surname: Chakraborty fullname: Chakraborty, Souradeep email: sourachakra@gmail.com organization: Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India – sequence: 2 givenname: Pabitra surname: Mitra fullname: Mitra, Pabitra email: pabitra@gmail.com organization: Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India  | 
    
| BookMark | eNqFkE1PwzAMhiM0JLbBL-CSP9DiNP3KgcM08SVN4gCcozRxS6qumZJq0v49KePEAU62X_ux7HdFFqMbkZBbBikDVt71aX_U1qcZsCKFOo3aBVkyEEUioCoXc55XCc-AX5FVCD0AcMHzJXnb0GAnpDhO3h1O1KtYqNFQg51HpHpuqMFOJ9qogIaqoXPeTp972jpP7V51ccglAbt9HFWTdeM1uWzVEPDmJ67Jx-PD-_Y52b0-vWw3u0Rz4FPCW9Oq2hiVNzwvW6jrRusyr6oGhchMhipT2BRYNMJAJZoKioJlipVZ5E2l-ZqI817tXQgeW6nt-YJ4sh0kAzm7I3v57Y6c3ZFQy6hFlv9iDz4-40__UPdnCuNbR4teBm1x1GisRz1J4-yf_BfjYYO3 | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2960162 crossref_primary_10_1016_j_jvcir_2017_08_003  | 
    
| Cites_doi | 10.1109/TSMC.1979.4310076 10.1109/ICCV.2011.6126239 10.1109/CVPR.2013.407 10.1109/CVPR.2010.5539927 10.1109/TMM.2008.2008922 10.1109/ISCAS.2014.6865138 10.1109/TCSVT.2004.826775 10.1109/CVPR.2012.6247745 10.1109/CVPR.2012.6248093 10.1109/VCIP.2013.6706376 10.1007/978-3-642-15552-9_34 10.1109/CVPR.2006.42 10.1109/CVPR.2013.153 10.1109/CVPR.2004.314 10.1109/MMSP.2006.285343 10.1109/ICCV.2001.937505 10.1109/TIP.2013.2260166 10.1109/CVPRW.2009.5206652 10.1109/CVPR.2006.91 10.1109/CVPR.2011.5995420 10.1109/CVPR.2011.5995415 10.1109/CVPR.2010.5539891 10.1109/ICCV.2009.5459261 10.1109/CVPR.2011.5995530 10.1109/TMM.2012.2197741 10.1109/CVPR.2010.5539868 10.1109/TMM.2011.2127463 10.1109/CVPR.2014.310 10.1049/iet-cvi.2009.0067 10.1109/TIP.2014.2387384 10.1109/ICMT.2011.6002178 10.1109/CVPR.2010.5540080  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier Inc. | 
    
| Copyright_xml | – notice: 2015 Elsevier Inc. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.jvcir.2015.08.016 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Journalism & Communications Engineering  | 
    
| EISSN | 1095-9076 | 
    
| EndPage | 30 | 
    
| ExternalDocumentID | 10_1016_j_jvcir_2015_08_016 S1047320315001595  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMHC ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LX9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WH7 WUQ XPP YQT ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c303t-3fdfa8dda4b346f088bcc6477be992d2ea2aeb5e5b9d079b705512a162c30d7c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1047-3203 | 
    
| IngestDate | Wed Oct 01 06:01:32 EDT 2025 Thu Apr 24 23:03:10 EDT 2025 Fri Feb 23 02:24:18 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Markov chain Site entropy rate Co-segmentation Co-saliency Degree centrality k-partite graph Object proposal Stationary distribution  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c303t-3fdfa8dda4b346f088bcc6477be992d2ea2aeb5e5b9d079b705512a162c30d7c3 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_jvcir_2015_08_016 crossref_primary_10_1016_j_jvcir_2015_08_016 elsevier_sciencedirect_doi_10_1016_j_jvcir_2015_08_016  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2015 2015-11-00  | 
    
| PublicationDateYYYYMMDD | 2015-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2015 text: November 2015  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Journal of visual communication and image representation | 
    
| PublicationYear | 2015 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | A. Joulin, F. Bach, J. Ponce, Discriminative clustering for image co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 1943–1950. Tao, Li, Sun (b0110) 2015; 24 S. Vicente, V. Kolmogorov, C. Rother, Co-segmentation revisited: models and optimization, in: Proc. Eur. Conf. Computer Vision, 2010, pp. 465–479. L. Mukherjee, V. Singh, J. Peng, Scale invariant co-segmentation for image groups, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 1881–1888. E. Borenstein, E. Sharon, S. Ullman, Combining top-down and bottom-up segmentation, in: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2004. Li, Ngan, Liu (b0010) 2009; 11 D. Hochbaum, V. Singh, An efficient algorithm for co-segmentation, in: Proc. Int. Conf. Computer Vision, Kyoto, Japan, 2009, pp. 269–276. P. Rantalankila, J. Kannala, E. Rahtu, Generating object segmentation proposals using global and local search, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014. Pal, Mukherjee, Mitra, Mukherjee (b0155) 2010; 4 Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 1155–1162. H. Fu, X. Cao, Z. Tu, Cluster-based co-saliency detection, in: IEEE Trans. Image Process. vol. 22(10), pp. 3766–3778. W. Wang, Y. Wang, Q. Huang, W. Gao, Measuring visual saliency by site entropy rate, in: Proc. IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2010, pp. 2368–2375. G. Kim, E.P. Xing, L. Fei-Fei, T. Kanade, Distributed co-segmentation via submodular optimization on anisotropic diffusion, in: Proc. Int. Conf. Computer Vision, November 2011, pp. 169–176. K. Chang, T. Liu, S. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 2129–2136. Cao, Tao, Zhang, Fu, Feng (b0035) 2014; 23 F. Meng, H. Li, K. Ngan, B. Zeng, N. Rao, Co-segmentation from Similar Backgrounds, in: IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 353–356. Y. Long, Y. Huang, Image based source camera identification using demosaicking, in: Proc. IEEE Eighth Workshop on Multimedia Signal Processing, Victoria, Canada, 2006, pp. 419–424. Meng, Li, Liu, Ngan (b0105) 2013; 43 C. Rother, V. Kolmogorov, T. Minka, A. Blake, Co-segmentation of image pairs by histogram matching – incorporating a global constraint into MRFs, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 993–1000. D. Batra, A. Kowdle, D. Parikh, Icoseg: interactive co-segmentation with intelligent scribble guidance, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 3169–3176. Otsu (b0030) 1979; 9 Y.Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images, in: Proc. Int. Conf. Computer Vision, vol. 1, pp. 105–112. S. Vicente, C. Rother, V. Kolmogorov, Object co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 2217–2224. L. Mukherjee, V. Singh, C. Dyer, Half-integrality based algorithms for co-segmentation of images, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 2028–2035. J. Rubio, J. Serrat, A. Lopez, N. Paragios, Unsupervised co-segmentation through region matching, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 749–756. G. Sharma, F. Jurie, C. Schmid, Discriminative spatial saliency for image classification, in: IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp. 3506–3513. Q. Li, Y. Zhou, J. Yang, Saliency based image segmentation, in: International Conference on Multimedia Technology, 2011, pp. 5068–5071. K.Y. Chang, T.L. Liu, S.H. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2011, pp. 2129–2136. J. Zhang, J. Zheng, J. Cai, A diffusion approach to seeded image segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 2125–2132. Meng, Li, Liu, Ngan (b0095) 2012; 14 C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang, Saliency detection via graph-based manifold ranking, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 3166–3173. Zhang, Lin, Li, Zhou, Xie, Li (b0135) 2013; 28 Huang, Yang, Fang, Lin, Zhang (b0130) 2011; 13 Jing, Li, Zhang, Zhang (b0005) 2004; 14 M. Nilsback, A. Zisserman, A visual vocabulary for flower classification, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 1447–1454. F. Meng, B. Luo, C. Huang, Object co-segmentation based on directed graph clustering, in: Conf. Visual Communications and Image Processing (VCIP), November 2013, pp. 1–5. Huang (10.1016/j.jvcir.2015.08.016_b0130) 2011; 13 10.1016/j.jvcir.2015.08.016_b0090 Meng (10.1016/j.jvcir.2015.08.016_b0095) 2012; 14 10.1016/j.jvcir.2015.08.016_b0050 10.1016/j.jvcir.2015.08.016_b0170 10.1016/j.jvcir.2015.08.016_b0070 10.1016/j.jvcir.2015.08.016_b0175 Otsu (10.1016/j.jvcir.2015.08.016_b0030) 1979; 9 10.1016/j.jvcir.2015.08.016_b0075 10.1016/j.jvcir.2015.08.016_b0150 10.1016/j.jvcir.2015.08.016_b0055 10.1016/j.jvcir.2015.08.016_b0115 10.1016/j.jvcir.2015.08.016_b0015 Jing (10.1016/j.jvcir.2015.08.016_b0005) 2004; 14 Pal (10.1016/j.jvcir.2015.08.016_b0155) 2010; 4 10.1016/j.jvcir.2015.08.016_b0160 10.1016/j.jvcir.2015.08.016_b0060 10.1016/j.jvcir.2015.08.016_b0180 10.1016/j.jvcir.2015.08.016_b0080 10.1016/j.jvcir.2015.08.016_b0065 10.1016/j.jvcir.2015.08.016_b0120 Li (10.1016/j.jvcir.2015.08.016_b0010) 2009; 11 10.1016/j.jvcir.2015.08.016_b0020 10.1016/j.jvcir.2015.08.016_b0085 10.1016/j.jvcir.2015.08.016_b0140 10.1016/j.jvcir.2015.08.016_b0040 10.1016/j.jvcir.2015.08.016_b0025 Meng (10.1016/j.jvcir.2015.08.016_b0105) 2013; 43 10.1016/j.jvcir.2015.08.016_b0145 10.1016/j.jvcir.2015.08.016_b0045 10.1016/j.jvcir.2015.08.016_b0100 Cao (10.1016/j.jvcir.2015.08.016_b0035) 2014; 23 10.1016/j.jvcir.2015.08.016_b0165 Tao (10.1016/j.jvcir.2015.08.016_b0110) 2015; 24 10.1016/j.jvcir.2015.08.016_b0125 Zhang (10.1016/j.jvcir.2015.08.016_b0135) 2013; 28  | 
    
| References_xml | – reference: C. Rother, V. Kolmogorov, T. Minka, A. Blake, Co-segmentation of image pairs by histogram matching – incorporating a global constraint into MRFs, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 993–1000. – volume: 13 start-page: 653 year: 2011 end-page: 661 ident: b0130 article-title: Integrating visual saliency and consistency for re-ranking image search results publication-title: IEEE Trans. Multimedia – volume: 28 start-page: 1171 year: 2013 end-page: 1186 ident: b0135 article-title: Improved image deblurring based on salient-region segmentation publication-title: Signal Proc.: Image Commun. – reference: Y. Long, Y. Huang, Image based source camera identification using demosaicking, in: Proc. IEEE Eighth Workshop on Multimedia Signal Processing, Victoria, Canada, 2006, pp. 419–424. – volume: 43 year: 2013 ident: b0105 article-title: Image co-segmentation by incorporating color reward strategy and active contour model publication-title: IEEE Trans. Cybern. – reference: L. Mukherjee, V. Singh, C. Dyer, Half-integrality based algorithms for co-segmentation of images, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 2028–2035. – volume: 14 start-page: 1429 year: 2012 end-page: 1441 ident: b0095 article-title: Object co-segmentation based on shortest path algorithm and saliency model publication-title: IEEE Trans. Multimedia – reference: F. Meng, H. Li, K. Ngan, B. Zeng, N. Rao, Co-segmentation from Similar Backgrounds, in: IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 353–356. – reference: F. Meng, B. Luo, C. Huang, Object co-segmentation based on directed graph clustering, in: Conf. Visual Communications and Image Processing (VCIP), November 2013, pp. 1–5. – reference: S. Vicente, C. Rother, V. Kolmogorov, Object co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 2217–2224. – reference: Y.Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images, in: Proc. Int. Conf. Computer Vision, vol. 1, pp. 105–112. – reference: G. Kim, E.P. Xing, L. Fei-Fei, T. Kanade, Distributed co-segmentation via submodular optimization on anisotropic diffusion, in: Proc. Int. Conf. Computer Vision, November 2011, pp. 169–176. – reference: K. Chang, T. Liu, S. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 2129–2136. – reference: D. Batra, A. Kowdle, D. Parikh, Icoseg: interactive co-segmentation with intelligent scribble guidance, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 3169–3176. – reference: A. Joulin, F. Bach, J. Ponce, Discriminative clustering for image co-segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 1943–1950. – reference: C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang, Saliency detection via graph-based manifold ranking, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 3166–3173. – volume: 4 start-page: 218 year: 2010 end-page: 229 ident: b0155 article-title: Modeling visual saliency using degree centrality publication-title: IET Comput. Vis. – reference: Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 1155–1162. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b0030 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 24 start-page: 943 year: 2015 end-page: 955 ident: b0110 article-title: SaCoseg: object co-segmentation by shape conformability publication-title: IEEE Trans. Image Process. – reference: P. Rantalankila, J. Kannala, E. Rahtu, Generating object segmentation proposals using global and local search, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014. – reference: W. Wang, Y. Wang, Q. Huang, W. Gao, Measuring visual saliency by site entropy rate, in: Proc. IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2010, pp. 2368–2375. – reference: D. Hochbaum, V. Singh, An efficient algorithm for co-segmentation, in: Proc. Int. Conf. Computer Vision, Kyoto, Japan, 2009, pp. 269–276. – reference: J. Zhang, J. Zheng, J. Cai, A diffusion approach to seeded image segmentation, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 2125–2132. – reference: J. Rubio, J. Serrat, A. Lopez, N. Paragios, Unsupervised co-segmentation through region matching, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 749–756. – reference: G. Sharma, F. Jurie, C. Schmid, Discriminative spatial saliency for image classification, in: IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp. 3506–3513. – reference: Q. Li, Y. Zhou, J. Yang, Saliency based image segmentation, in: International Conference on Multimedia Technology, 2011, pp. 5068–5071. – volume: 11 start-page: 77 year: 2009 end-page: 88 ident: b0010 article-title: FaceSeg: automatic face segmentation for real-time video publication-title: IEEE Trans. Multimedia – reference: H. Fu, X. Cao, Z. Tu, Cluster-based co-saliency detection, in: IEEE Trans. Image Process. vol. 22(10), pp. 3766–3778. – volume: 23 start-page: 4175 year: 2014 end-page: 4186 ident: b0035 article-title: Self-adaptively weighted co-saliency detection via rank constraint publication-title: IEEE Trans. Image Process. (T-IP) – reference: L. Mukherjee, V. Singh, J. Peng, Scale invariant co-segmentation for image groups, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 1881–1888. – reference: M. Nilsback, A. Zisserman, A visual vocabulary for flower classification, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 1447–1454. – reference: S. Vicente, V. Kolmogorov, C. Rother, Co-segmentation revisited: models and optimization, in: Proc. Eur. Conf. Computer Vision, 2010, pp. 465–479. – reference: E. Borenstein, E. Sharon, S. Ullman, Combining top-down and bottom-up segmentation, in: IEEE Conf. Computer Vision and Pattern Recognition (CVPR), June 2004. – volume: 14 start-page: 672 year: 2004 end-page: 681 ident: b0005 article-title: Relevance feedback in region-based image retrieval publication-title: IEEE Trans. Circuits Syst. Video Technol. – reference: K.Y. Chang, T.L. Liu, S.H. Lai, From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model, in: IEEE Int. Conference on Comput. Vision Pattern Recognit., June 2011, pp. 2129–2136. – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.jvcir.2015.08.016_b0030 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – ident: 10.1016/j.jvcir.2015.08.016_b0090 doi: 10.1109/ICCV.2011.6126239 – ident: 10.1016/j.jvcir.2015.08.016_b0140 doi: 10.1109/CVPR.2013.407 – ident: 10.1016/j.jvcir.2015.08.016_b0160 doi: 10.1109/CVPR.2010.5539927 – volume: 11 start-page: 77 issue: 1 year: 2009 ident: 10.1016/j.jvcir.2015.08.016_b0010 article-title: FaceSeg: automatic face segmentation for real-time video publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2008.2008922 – ident: 10.1016/j.jvcir.2015.08.016_b0165 doi: 10.1109/ISCAS.2014.6865138 – volume: 14 start-page: 672 issue: 5 year: 2004 ident: 10.1016/j.jvcir.2015.08.016_b0005 article-title: Relevance feedback in region-based image retrieval publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2004.826775 – ident: 10.1016/j.jvcir.2015.08.016_b0100 doi: 10.1109/CVPR.2012.6247745 – ident: 10.1016/j.jvcir.2015.08.016_b0125 doi: 10.1109/CVPR.2012.6248093 – volume: 43 issue: 2 year: 2013 ident: 10.1016/j.jvcir.2015.08.016_b0105 article-title: Image co-segmentation by incorporating color reward strategy and active contour model publication-title: IEEE Trans. Cybern. – ident: 10.1016/j.jvcir.2015.08.016_b0180 doi: 10.1109/VCIP.2013.6706376 – ident: 10.1016/j.jvcir.2015.08.016_b0065 doi: 10.1007/978-3-642-15552-9_34 – ident: 10.1016/j.jvcir.2015.08.016_b0170 doi: 10.1109/CVPR.2006.42 – ident: 10.1016/j.jvcir.2015.08.016_b0145 doi: 10.1109/CVPR.2013.153 – ident: 10.1016/j.jvcir.2015.08.016_b0175 doi: 10.1109/CVPR.2004.314 – ident: 10.1016/j.jvcir.2015.08.016_b0055 doi: 10.1109/MMSP.2006.285343 – volume: 23 start-page: 4175 issue: 9 year: 2014 ident: 10.1016/j.jvcir.2015.08.016_b0035 article-title: Self-adaptively weighted co-saliency detection via rank constraint publication-title: IEEE Trans. Image Process. (T-IP) – ident: 10.1016/j.jvcir.2015.08.016_b0015 doi: 10.1109/ICCV.2001.937505 – ident: 10.1016/j.jvcir.2015.08.016_b0150 doi: 10.1109/TIP.2013.2260166 – ident: 10.1016/j.jvcir.2015.08.016_b0045 doi: 10.1109/CVPRW.2009.5206652 – ident: 10.1016/j.jvcir.2015.08.016_b0040 doi: 10.1109/CVPR.2006.91 – ident: 10.1016/j.jvcir.2015.08.016_b0080 doi: 10.1109/CVPR.2011.5995420 – ident: 10.1016/j.jvcir.2015.08.016_b0060 doi: 10.1109/CVPR.2011.5995415 – ident: 10.1016/j.jvcir.2015.08.016_b0020 doi: 10.1109/CVPR.2010.5539891 – ident: 10.1016/j.jvcir.2015.08.016_b0050 doi: 10.1109/ICCV.2009.5459261 – ident: 10.1016/j.jvcir.2015.08.016_b0085 doi: 10.1109/CVPR.2011.5995530 – volume: 14 start-page: 1429 issue: 5 year: 2012 ident: 10.1016/j.jvcir.2015.08.016_b0095 article-title: Object co-segmentation based on shortest path algorithm and saliency model publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2012.2197741 – ident: 10.1016/j.jvcir.2015.08.016_b0070 doi: 10.1109/CVPR.2010.5539868 – volume: 13 start-page: 653 issue: 4 year: 2011 ident: 10.1016/j.jvcir.2015.08.016_b0130 article-title: Integrating visual saliency and consistency for re-ranking image search results publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2011.2127463 – ident: 10.1016/j.jvcir.2015.08.016_b0025 doi: 10.1109/CVPR.2014.310 – volume: 4 start-page: 218 issue: 3 year: 2010 ident: 10.1016/j.jvcir.2015.08.016_b0155 article-title: Modeling visual saliency using degree centrality publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2009.0067 – volume: 24 start-page: 943 issue: 3 year: 2015 ident: 10.1016/j.jvcir.2015.08.016_b0110 article-title: SaCoseg: object co-segmentation by shape conformability publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2387384 – volume: 28 start-page: 1171 issue: 9 year: 2013 ident: 10.1016/j.jvcir.2015.08.016_b0135 article-title: Improved image deblurring based on salient-region segmentation publication-title: Signal Proc.: Image Commun. – ident: 10.1016/j.jvcir.2015.08.016_b0115 doi: 10.1109/ICMT.2011.6002178 – ident: 10.1016/j.jvcir.2015.08.016_b0075 doi: 10.1109/CVPR.2010.5540080 – ident: 10.1016/j.jvcir.2015.08.016_b0120 doi: 10.1109/CVPR.2011.5995415  | 
    
| SSID | ssj0003934 | 
    
| Score | 2.0972989 | 
    
| Snippet | •Site entropy rate of graph nodes can be utilized to segment common object in images.•Degree centrality of graph nodes can also be used to obtain co-segmented... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 20 | 
    
| SubjectTerms | Co-saliency Co-segmentation Degree centrality k-partite graph Markov chain Object proposal Site entropy rate Stationary distribution  | 
    
| Title | A site entropy rate and degree centrality based algorithm for image co-segmentation | 
    
| URI | https://dx.doi.org/10.1016/j.jvcir.2015.08.016 | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003934 issn: 1047-3203 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003934 issn: 1047-3203 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1095-9076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003934 issn: 1047-3203 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1095-9076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003934 issn: 1047-3203 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003934 issn: 1047-3203 databaseCode: AKRWK dateStart: 19930301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgWhW1WvYgnow1m03SPZZiqa8iaqG3kN2daEqblLYKXvzt7iQbHyAePIWEGQizy3wzuzPfEHIcBpqDyWUd7krh8BDOndjAnKN0oBLFtC8UnkPeDoL-kF-N_FGNdKteGCyrtL6_9OmFt7ZfWtaarVmath6QZMBjOKUAgV9goznnIU4xOHv_KvPwRHmzjIwEKF0xDxU1XuNXlSIpqOsXPJ449Pw3dPqGOL1NsmFDRdop_2aL1CCrk_VvBIJ10rBC6WJKT-iPZo_FNnnoULwbpniAm8_eKLJC0DjTVIPJsoHawkwTh1MEM03jyVM-T5fPU2pCWZpOja-hKncW8DS1LUrZDhn2Lh67fccOUXCUQael4yU6idtax1x6PEiMU5FKYfepBCGYZhCzGKQPvhT6PBQS2XVcFrsBM_o6VN4uWcnyDPYIDU0WzhPgCq9DWRuEJ8B4R_CTUCYigH3CKuNFyjKM46CLSVSVko2jwuIRWjzC8ZdusE9OP5VmJcHG3-JBtSrRj30SGQj4S_Hgv4oNsoZvZf_hIVlZzl_gyAQiS9ksdlqTrHa69zd3-Ly87g8-AH5f4SQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ilgPHJAnCijadouR4RA43kBpN2qJnGhE-umbSBx4bcTtykwCXHg2tpS5Ub-7Nj-DHAQR0agzWU94SvpiRhPvNTCnKdNpDPNTSg13UPe3kWdR3HVDbszcFbPwlBbpfP9lU8vvbV70nLWbA3zvHVPJAMBpy0FBPwynIU5EfKYMrDjj-8-j0BWpWWiJCDxmnqobPLqvemcWEH9sCTypK3nv8HTD8i5WIYlFyuy0-pzVmAGi1VY_MEguApNJ5SP--yQTU17jNfg_pRRcZjRDe5g-M6IFoKlhWEGbZqNzHVm2kCcEZoZlr48DUb55LnPbCzL8r51NkwPvDE-9d2MUrEOjxfnD2cdz21R8LSFp4kXZCZL28akQgUiyqxXUVrT-KlCKbnhmPIUVYihkuYklorodXye-hG3-ibWwQY0ikGBm8Bim4aLDIWmeihvowwkWveIYRarTEa4Bbw2XqIdxThtunhJ6l6yXlJaPCGLJ7T_0o-24OhLaVgxbPwtHtV_JZk6KInFgL8Ut_-ruA_znYfbm-Tm8u66CQv0phpG3IHGZPSKuzYqmai98tR9AsH14SQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+site+entropy+rate+and+degree+centrality+based+algorithm+for+image+co-segmentation&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Chakraborty%2C+Souradeep&rft.au=Mitra%2C+Pabitra&rft.date=2015-11-01&rft.issn=1047-3203&rft.volume=33&rft.spage=20&rft.epage=30&rft_id=info:doi/10.1016%2Fj.jvcir.2015.08.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvcir_2015_08_016 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon |