Two meshless methods for Dirichlet boundary optimal control problem governed by elliptic PDEs

In this paper, finite point method (FPM) and meshless weighted least squares (MWLS) method are proposed for solving Dirichlet boundary optimal control problems governed by elliptic equations. The FPM scheme uses shape function constructed by moving least square (MLS) approximation to discretize the...

Full description

Saved in:
Bibliographic Details
Published inComputers & mathematics with applications (1987) Vol. 82; pp. 113 - 129
Main Authors Liu, Yang, Cheng, Ai-Jie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2021
Subjects
Online AccessGet full text
ISSN0898-1221
1873-7668
DOI10.1016/j.camwa.2020.10.026

Cover

Abstract In this paper, finite point method (FPM) and meshless weighted least squares (MWLS) method are proposed for solving Dirichlet boundary optimal control problems governed by elliptic equations. The FPM scheme uses shape function constructed by moving least square (MLS) approximation to discretize the equations, while the MWLS scheme employs both MLS approximation and penalty terms to solve the same problem. Error estimates for the FPM scheme are presented and numerical results are provided to examine the impact of parameters and validate the efficiency of the proposed schemes. The extended model (Navier–Stokes equations) shows the ability of our algorithm to handle complex problems. Our explorative work shows the flexibility and great potential of the meshless methods in optimal control problems.
AbstractList In this paper, finite point method (FPM) and meshless weighted least squares (MWLS) method are proposed for solving Dirichlet boundary optimal control problems governed by elliptic equations. The FPM scheme uses shape function constructed by moving least square (MLS) approximation to discretize the equations, while the MWLS scheme employs both MLS approximation and penalty terms to solve the same problem. Error estimates for the FPM scheme are presented and numerical results are provided to examine the impact of parameters and validate the efficiency of the proposed schemes. The extended model (Navier–Stokes equations) shows the ability of our algorithm to handle complex problems. Our explorative work shows the flexibility and great potential of the meshless methods in optimal control problems.
Author Cheng, Ai-Jie
Liu, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-9549-938X
  surname: Liu
  fullname: Liu, Yang
– sequence: 2
  givenname: Ai-Jie
  orcidid: 0000-0001-8547-3189
  surname: Cheng
  fullname: Cheng, Ai-Jie
  email: aijie@sdu.edu.cn
BookMark eNqFkM9OwzAMhyM0JLbBE3DJC3QkTdc2Bw5o4580CQ7jiKLUcVimtpmSsmlvT8s4cYCTrZ_8WfY3IaPWt0jINWczznh-s52Bbg56lrJ0SGYszc_ImJeFSIo8L0dkzEpZJjxN-QWZxLhljGUiZWPyvj542mDc1Bhj33QbbyK1PtClCw76uKOV_2yNDkfqd51rdE3Bt13wNd0FX9XY0A-_x9CiodWRYl27fgzo6_I-XpJzq-uIVz91St4e7teLp2T18vi8uFslIJjoEgECuM1RZgDMFGB5hSJLK8uNlQBlBoiZLKCQvGJVKbSQpZXzLLOynIORYkrEaS8EH2NAq3ahvzQcFWdqMKS26tuQGgwNYW-op-QvClynOzd8p139D3t7YrF_a-8wqAgOW0DjAkKnjHd_8l8ssId5
CitedBy_id crossref_primary_10_1016_j_camwa_2023_01_011
crossref_primary_10_1016_j_camwa_2023_12_020
crossref_primary_10_1016_j_camwa_2023_08_015
crossref_primary_10_1016_j_jcmds_2022_100038
crossref_primary_10_1016_j_comnet_2023_109635
Cites_doi 10.1016/j.jprocont.2017.11.009
10.1155/2016/3824835
10.1016/S0045-7949(01)00067-0
10.1016/j.jmaa.2019.04.031
10.1016/S0045-7825(96)01132-2
10.4208/aamm.OA-2018-0186
10.1016/j.cam.2019.112431
10.1090/S0025-5718-1981-0616367-1
10.1016/j.apnum.2007.04.003
10.1016/j.aml.2019.06.025
10.1016/j.camwa.2018.05.031
10.1137/100795632
10.1016/j.enganabound.2019.08.008
10.1016/j.aml.2019.05.021
10.1007/s00211-018-01021-7
10.1016/j.compfluid.2018.03.039
10.1016/j.mbs.2019.06.001
10.1016/j.jcp.2018.03.044
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.camwa.2020.10.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 129
ExternalDocumentID 10_1016_j_camwa_2020_10_026
S0898122120304387
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 91630207; 11971272
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
T5K
TN5
XPP
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c303t-3c3c1f6e94cc0d7cf1be342bf1df9cc84cee497c791b0b83a398f9544f985cd93
IEDL.DBID .~1
ISSN 0898-1221
IngestDate Thu Apr 24 22:55:36 EDT 2025
Thu Oct 16 04:33:29 EDT 2025
Fri Feb 23 02:47:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite point method
Meshless weighted least squares method
Dirichlet boundary condition
Optimal control
Elliptic equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-3c3c1f6e94cc0d7cf1be342bf1df9cc84cee497c791b0b83a398f9544f985cd93
ORCID 0000-0001-8547-3189
0000-0002-9549-938X
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_camwa_2020_10_026
crossref_citationtrail_10_1016_j_camwa_2020_10_026
elsevier_sciencedirect_doi_10_1016_j_camwa_2020_10_026
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kamranian, Dehghan, Tatari (b12) 2017; 30
Casanova, Gout, Zavaleta (b15) 2019; 108
Liu, Wang (b4) 2019; 314
Kumar, Ruiz-Baier, Sandilya (b10) 2018; 76
Oñate, Perazzo, Miquel (b22) 2001; 79
Zhang (b11) 2019; 97
Liu, Li, Belytschko (b19) 1997; 143
Golub, Van Loan (b21) 2012
Nita, Vandewalle, Meyers (b3) 2018; 366
Lapin, Zhang, Lapin (b5) 2019; 361
Lancaster, Salkauskas (b16) 1981; 37
Guan, Wang, Zhu (b17) 2019; 98
Lapin, Zhang, Lapin, Yan (b6) 2019; 11
Cheng, Cheng (b18) 2008; 58
Shakya, Sinha (b8) 2020; 367
Gong, Yan (b23) 2011; 49
Xie, Xie, Yang, Gui, Wang (b1) 2018; 61
Yao, Li, Zhang, Zhang (b13) 2016; 2016
Yang, Wang, Xie (b9) 2018
Yu, Huang, Liu (b7) 2019; 477
Künemund, Narcowich, Ward, Wendland (b14) 2019; 142
Tamellini, Parolini, Verani (b2) 2018; 172
Brenner, Scott (b20) 2007
Cheng (10.1016/j.camwa.2020.10.026_b18) 2008; 58
Yu (10.1016/j.camwa.2020.10.026_b7) 2019; 477
Guan (10.1016/j.camwa.2020.10.026_b17) 2019; 98
Liu (10.1016/j.camwa.2020.10.026_b4) 2019; 314
Brenner (10.1016/j.camwa.2020.10.026_b20) 2007
Yang (10.1016/j.camwa.2020.10.026_b9) 2018
Kumar (10.1016/j.camwa.2020.10.026_b10) 2018; 76
Casanova (10.1016/j.camwa.2020.10.026_b15) 2019; 108
Künemund (10.1016/j.camwa.2020.10.026_b14) 2019; 142
Nita (10.1016/j.camwa.2020.10.026_b3) 2018; 366
Liu (10.1016/j.camwa.2020.10.026_b19) 1997; 143
Xie (10.1016/j.camwa.2020.10.026_b1) 2018; 61
Tamellini (10.1016/j.camwa.2020.10.026_b2) 2018; 172
Yao (10.1016/j.camwa.2020.10.026_b13) 2016; 2016
Lancaster (10.1016/j.camwa.2020.10.026_b16) 1981; 37
Oñate (10.1016/j.camwa.2020.10.026_b22) 2001; 79
Zhang (10.1016/j.camwa.2020.10.026_b11) 2019; 97
Kamranian (10.1016/j.camwa.2020.10.026_b12) 2017; 30
Lapin (10.1016/j.camwa.2020.10.026_b5) 2019; 361
Shakya (10.1016/j.camwa.2020.10.026_b8) 2020; 367
Golub (10.1016/j.camwa.2020.10.026_b21) 2012
Gong (10.1016/j.camwa.2020.10.026_b23) 2011; 49
Lapin (10.1016/j.camwa.2020.10.026_b6) 2019; 11
References_xml – volume: 79
  start-page: 2151
  year: 2001
  end-page: 2163
  ident: b22
  article-title: A finite point method for elasticity problems
  publication-title: Comput. Struct.
– volume: 37
  start-page: 141
  year: 1981
  end-page: 158
  ident: b16
  article-title: Surfaces generated by moving least squares methods
  publication-title: Math. Comput.
– volume: 11
  start-page: 1358
  year: 2019
  end-page: 1375
  ident: b6
  article-title: Analysis of finite difference approximations of an optimal control problem in economics
  publication-title: Adv. Appl. Math. Mech.
– volume: 367
  year: 2020
  ident: b8
  article-title: Finite element method for parabolic optimal control problems with a bilinear state equation
  publication-title: J. Comput. Appl. Math.
– volume: 361
  start-page: 715
  year: 2019
  end-page: 729
  ident: b5
  article-title: Numerical solution of a parabolic optimal control problem arising in economics and management
  publication-title: Appl. Math. Comput.
– volume: 142
  start-page: 383
  year: 2019
  end-page: 419
  ident: b14
  article-title: A high-order meshless Galerkin method for semilinear parabolic equations on spheres
  publication-title: Numer. Math.
– volume: 30
  year: 2017
  ident: b12
  article-title: Study of the two-dimensional sine-Gordon equation arising in josephson junctions using meshless finite point method
  publication-title: Int. J. Numer. Modelling, Electron. Netw. Devices Fields
– volume: 366
  start-page: 14
  year: 2018
  end-page: 32
  ident: b3
  article-title: Multigrid optimization for DNS-based optimal control in turbulent channel flows
  publication-title: J. Comput. Phys.
– volume: 143
  start-page: 113
  year: 1997
  end-page: 154
  ident: b19
  article-title: Moving least-square reproducing kernel methods (I) methodology and convergence
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 108
  start-page: 201
  year: 2019
  end-page: 209
  ident: b15
  article-title: Radial basis function methods for optimal control of the convection–diffusion equation: A numerical study
  publication-title: Eng. Anal. Bound. Elem.
– volume: 61
  start-page: 47
  year: 2018
  end-page: 57
  ident: b1
  article-title: Distributed parameter modeling and optimal control of the oxidation rate in the iron removal process
  publication-title: J. Process Control
– volume: 2016
  year: 2016
  ident: b13
  article-title: Prediction of chloride diffusion in concrete structure using meshless methods
  publication-title: Adv. Mater. Sci. Eng.
– volume: 97
  start-page: 93
  year: 2019
  end-page: 98
  ident: b11
  article-title: An accurate and stable RBF method for solving partial differential equations
  publication-title: Appl. Math. Lett.
– volume: 76
  start-page: 923
  year: 2018
  end-page: 937
  ident: b10
  article-title: Mixed and discontinuous finite volume element schemes for the optimal control of immiscible flow in porous media
  publication-title: Comput. Math. Appl.
– year: 2007
  ident: b20
  article-title: The Mathematical Theory of Finite Element Methods, Vol. 15
– volume: 477
  start-page: 250
  year: 2019
  end-page: 271
  ident: b7
  article-title: Finite element approximations of impulsive optimal control problems for heat equations
  publication-title: J. Math. Anal. Appl.
– volume: 49
  start-page: 984
  year: 2011
  end-page: 1014
  ident: b23
  article-title: Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs
  publication-title: SIAM J. Control Optim.
– volume: 314
  start-page: 28
  year: 2019
  end-page: 42
  ident: b4
  article-title: Numerical optimal control of a size-structured PDE model for metastatic cancer treatment
  publication-title: Math. Biosci.
– year: 2018
  ident: b9
  article-title: An interface-unfitted finite element method for elliptic interface optimal control problem
– volume: 98
  start-page: 438
  year: 2019
  end-page: 445
  ident: b17
  article-title: Meshless methods for solving Dirichlet boundary optimal control problems governed by elliptic PDEs
  publication-title: Appl. Math. Lett.
– year: 2012
  ident: b21
  article-title: Matrix Computations, Vol. 3
– volume: 172
  start-page: 538
  year: 2018
  end-page: 548
  ident: b2
  article-title: An optimal control problem for two-phase compressible–incompressible flows
  publication-title: Comput. & Fluids
– volume: 58
  start-page: 884
  year: 2008
  end-page: 898
  ident: b18
  article-title: Error estimates for the finite point method
  publication-title: Appl. Numer. Math.
– volume: 361
  start-page: 715
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b5
  article-title: Numerical solution of a parabolic optimal control problem arising in economics and management
  publication-title: Appl. Math. Comput.
– volume: 61
  start-page: 47
  year: 2018
  ident: 10.1016/j.camwa.2020.10.026_b1
  article-title: Distributed parameter modeling and optimal control of the oxidation rate in the iron removal process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.11.009
– volume: 2016
  year: 2016
  ident: 10.1016/j.camwa.2020.10.026_b13
  article-title: Prediction of chloride diffusion in concrete structure using meshless methods
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2016/3824835
– volume: 79
  start-page: 2151
  issue: 22–25
  year: 2001
  ident: 10.1016/j.camwa.2020.10.026_b22
  article-title: A finite point method for elasticity problems
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(01)00067-0
– volume: 477
  start-page: 250
  issue: 1
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b7
  article-title: Finite element approximations of impulsive optimal control problems for heat equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.04.031
– volume: 143
  start-page: 113
  issue: 1
  year: 1997
  ident: 10.1016/j.camwa.2020.10.026_b19
  article-title: Moving least-square reproducing kernel methods (I) methodology and convergence
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(96)01132-2
– year: 2007
  ident: 10.1016/j.camwa.2020.10.026_b20
– year: 2012
  ident: 10.1016/j.camwa.2020.10.026_b21
– volume: 11
  start-page: 1358
  issue: 6
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b6
  article-title: Analysis of finite difference approximations of an optimal control problem in economics
  publication-title: Adv. Appl. Math. Mech.
  doi: 10.4208/aamm.OA-2018-0186
– volume: 367
  year: 2020
  ident: 10.1016/j.camwa.2020.10.026_b8
  article-title: Finite element method for parabolic optimal control problems with a bilinear state equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112431
– volume: 37
  start-page: 141
  issue: 155
  year: 1981
  ident: 10.1016/j.camwa.2020.10.026_b16
  article-title: Surfaces generated by moving least squares methods
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1981-0616367-1
– volume: 58
  start-page: 884
  issue: 6
  year: 2008
  ident: 10.1016/j.camwa.2020.10.026_b18
  article-title: Error estimates for the finite point method
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2007.04.003
– volume: 30
  issue: 6
  year: 2017
  ident: 10.1016/j.camwa.2020.10.026_b12
  article-title: Study of the two-dimensional sine-Gordon equation arising in josephson junctions using meshless finite point method
  publication-title: Int. J. Numer. Modelling, Electron. Netw. Devices Fields
– volume: 98
  start-page: 438
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b17
  article-title: Meshless methods for solving Dirichlet boundary optimal control problems governed by elliptic PDEs
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.06.025
– volume: 76
  start-page: 923
  issue: 4
  year: 2018
  ident: 10.1016/j.camwa.2020.10.026_b10
  article-title: Mixed and discontinuous finite volume element schemes for the optimal control of immiscible flow in porous media
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.05.031
– volume: 49
  start-page: 984
  issue: 3
  year: 2011
  ident: 10.1016/j.camwa.2020.10.026_b23
  article-title: Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/100795632
– volume: 108
  start-page: 201
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b15
  article-title: Radial basis function methods for optimal control of the convection–diffusion equation: A numerical study
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.08.008
– volume: 97
  start-page: 93
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b11
  article-title: An accurate and stable RBF method for solving partial differential equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.05.021
– volume: 142
  start-page: 383
  issue: 2
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b14
  article-title: A high-order meshless Galerkin method for semilinear parabolic equations on spheres
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-01021-7
– volume: 172
  start-page: 538
  year: 2018
  ident: 10.1016/j.camwa.2020.10.026_b2
  article-title: An optimal control problem for two-phase compressible–incompressible flows
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2018.03.039
– volume: 314
  start-page: 28
  year: 2019
  ident: 10.1016/j.camwa.2020.10.026_b4
  article-title: Numerical optimal control of a size-structured PDE model for metastatic cancer treatment
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2019.06.001
– year: 2018
  ident: 10.1016/j.camwa.2020.10.026_b9
– volume: 366
  start-page: 14
  year: 2018
  ident: 10.1016/j.camwa.2020.10.026_b3
  article-title: Multigrid optimization for DNS-based optimal control in turbulent channel flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.03.044
SSID ssj0004320
Score 2.3497462
Snippet In this paper, finite point method (FPM) and meshless weighted least squares (MWLS) method are proposed for solving Dirichlet boundary optimal control problems...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Dirichlet boundary condition
Elliptic equations
Finite point method
Meshless weighted least squares method
Optimal control
Title Two meshless methods for Dirichlet boundary optimal control problem governed by elliptic PDEs
URI https://dx.doi.org/10.1016/j.camwa.2020.10.026
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 20211101
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: IXB
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7668
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004320
  issn: 0898-1221
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjiibfOCI2yR2EvtYClXLJsQi9YKiegkUdUFtUNUL3844cVgkxIFTpNFMFI3tN7Yyfg-ho9QoK-KuiQ4MI0xyRrj2KIkDA8eefErZ28hX11HngZ33wl4Ftcq7MLat0mF_gek5WjtLw2Wz8ToYNO48LqA6AfTav3uU2xvljMVWxaD-_tXmwWhBzQjOxHqXzEN5j5fqj-aWfCiwlnrOsPBbdfpWcdpraMVtFXGz-Jp1VDHjDbRayjBgtyo30eP9fIJHZvY8BNTChST0DMNmFAOeDRSYMyxz9aTpAk8AIkbwVteijp2gDH7KNXeNxnKBLUcnuCl8c3o220IP7bP7Voc41QSioBxlhCqq_DQyginl6VilvjSUBTL1dSqU4gzKIhOxioUvPclpnwqeipCxVPBQaUG3UXU8GZsdhI3wuNSMawOHKg7FXcexjjTrR3btK11DQZmtRDlKcatsMUzK3rGXJE9xYlNsjZDiGjr-DHotGDX-do_KYUh-TIwEMP-vwN3_Bu6h5cA2rng-8cN9VM2mb-YAdh6ZPMyn1iFaarZuL2_ss3vRuQZrt3fyASuS28E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKHODCjiirDxxxm8RObB8Ri8rSColW6gVF9RIo6iZahLjw7YwTh0VCHLiOxlE0Gb8ZK-P3EDrKrHYi7oaYyDLClGBEmIASHlk49uQp5W4jN1tJo8OuunG3gk7LuzBurNJjf4HpOVp7S91Hsz7p9-t3gZBQnQB63d89KvgcWmBxxN0JrPb-NefBaMHNCN7EuZfUQ_mQl-4NXx37UOQstZxi4bfy9K3kXKyiZd8r4pPiddZQxY7W0Uqpw4D9ttxA9-3XMR7a6eMAYAsXmtBTDN0oBkDrazDPsMrlk57f8BgwYghP9TPq2CvK4IdcdNcarN6wI-kEN41vz86nm6hzcd4-bRAvm0A01KMZoZrqMEusZFoHhussVJaySGWhyaTWgkFdZJJrLkMVKEF7VIpMxoxlUsTaSLqF5kfjkd1G2MpAKMOEsXCqElDdDecmMayXuM2vTRVFZbRS7TnFnbTFIC2Hx57SPMSpC7EzQoir6Phz0aSg1PjbPSk_Q_ojM1IA_b8W7vx34SFabLSbN-nNZet6Fy1FboolCEkY76H52fOL3Yc2ZKYO8jT7AGGt2r0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+meshless+methods+for+Dirichlet+boundary+optimal+control+problem+governed+by+elliptic+PDEs&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Liu%2C+Yang&rft.au=Cheng%2C+Ai-Jie&rft.date=2021-01-15&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=82&rft.spage=113&rft.epage=129&rft_id=info:doi/10.1016%2Fj.camwa.2020.10.026&rft.externalDocID=S0898122120304387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon