Modeling paired binary data by a new bivariate Bernoulli model with flexible beta kernel correlation
Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982) R model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were...
Saved in:
Published in | Test (Madrid, Spain) Vol. 33; no. 4; pp. 1180 - 1224 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1133-0686 1863-8260 |
DOI | 10.1007/s11749-024-00947-5 |
Cover
Abstract | Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982)
R
model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were proposed to fit such twin data by considering the intra-person correlation. However, Rosner’s
R
model can only fit the twin data with an increasing correlation coefficient, Dallal’s model may incur the problem of over–fitting, while Donner’s model can only fit the twin data with a constant correlation. This paper aims to propose a new
bivariate Bernoulli model with flexible beta kernel correlation
(denoted by
Bernoulli
2
bk
) for fitting the paired binary data with a wide range of group–specific disease probabilities. The correlation coefficient of the
Bernoulli
2
bk
model could be increasing, or decreasing, or unimodal, or convex with respect to the disease probability of one eye. To obtain the
maximum likelihood estimates
(MLEs) of parameters, we develop a series of
minorization–maximization
(MM) algorithms by constructing four surrogate functions with closed–form expressions at each iteration of the MM algorithms. Simulation studies are conducted, and two real datasets are analyzed to illustrate the proposed model and methods. |
---|---|
AbstractList | Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982)
R
model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were proposed to fit such twin data by considering the intra-person correlation. However, Rosner’s
R
model can only fit the twin data with an increasing correlation coefficient, Dallal’s model may incur the problem of over–fitting, while Donner’s model can only fit the twin data with a constant correlation. This paper aims to propose a new
bivariate Bernoulli model with flexible beta kernel correlation
(denoted by
Bernoulli
2
bk
) for fitting the paired binary data with a wide range of group–specific disease probabilities. The correlation coefficient of the
Bernoulli
2
bk
model could be increasing, or decreasing, or unimodal, or convex with respect to the disease probability of one eye. To obtain the
maximum likelihood estimates
(MLEs) of parameters, we develop a series of
minorization–maximization
(MM) algorithms by constructing four surrogate functions with closed–form expressions at each iteration of the MM algorithms. Simulation studies are conducted, and two real datasets are analyzed to illustrate the proposed model and methods. Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982) R model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were proposed to fit such twin data by considering the intra-person correlation. However, Rosner’s R model can only fit the twin data with an increasing correlation coefficient, Dallal’s model may incur the problem of over–fitting, while Donner’s model can only fit the twin data with a constant correlation. This paper aims to propose a new bivariate Bernoulli model with flexible beta kernel correlation (denoted by Bernoulli2bk) for fitting the paired binary data with a wide range of group–specific disease probabilities. The correlation coefficient of the Bernoulli2bk model could be increasing, or decreasing, or unimodal, or convex with respect to the disease probability of one eye. To obtain the maximum likelihood estimates (MLEs) of parameters, we develop a series of minorization–maximization (MM) algorithms by constructing four surrogate functions with closed–form expressions at each iteration of the MM algorithms. Simulation studies are conducted, and two real datasets are analyzed to illustrate the proposed model and methods. |
Author | Li, Xun-Jian Tian, Guo-Liang Shi, Jianhua Li, Shuang |
Author_xml | – sequence: 1 givenname: Xun-Jian orcidid: 0000-0001-6433-741X surname: Li fullname: Li, Xun-Jian organization: Department of Statistics and Data Science, Southern University of Science and Technology, Department of Applied Mathematics, The Hong Kong Polytechnic University – sequence: 2 givenname: Shuang surname: Li fullname: Li, Shuang organization: Department of Mathematics, Dongguan University of Technology – sequence: 3 givenname: Guo-Liang surname: Tian fullname: Tian, Guo-Liang email: tiangl@sustech.edu.cn organization: Department of Statistics and Data Science, Southern University of Science and Technology, School of Mathematics and Statistics, Minnan Normal University – sequence: 4 givenname: Jianhua surname: Shi fullname: Shi, Jianhua email: v0085@126.com organization: School of Mathematics and Statistics, Minnan Normal University |
BookMark | eNp9kLtOAzEQRS0UJJLAD1BZojb47d0SIl5SEA3Ulr1rB4eNN9gbQv4ehyDRUc1o5p47mjsBo9hHB8A5wZcEY3WVCVG8RphyhHHNFRJHYEwqyVBFJR6VnjCGsKzkCZjkvMRYcknJGLRPfeu6EBdwbUJyLbQhmrSDrRkMtDtoYHTbMvw0KZjBwRuXYr_pugBXexBuw_AGfee-gu0ctK5Q70VSNk2fkuvMEPp4Co696bI7-61T8Hp3-zJ7QPPn-8fZ9Rw1DLMBMSOtItSoxktOiWVCYIGddW3TUKakkYR6ITzj3FpVWUYsx0Jw4gXxDaNsCi4OvuvUf2xcHvSy36RYTmpGhFS1oLUoKnpQNanPOTmv1ymsytOaYL1PUx_S1CVN_ZOm3kPsAOUijguX_qz_ob4BS4Z5nA |
Cites_doi | 10.2307/2533208 10.2307/2530293 10.1080/10543406.2020.1814794 10.1093/oxfordjournals.aje.a112994 10.1214/10-AOS799 10.1080/10543406.2016.1167072 10.1111/j.2517-6161.1992.tb01862.x 10.1177/096228029700600104 10.1090/S0025-5718-1967-0224273-2 10.1016/j.ophtha.2011.01.049 10.2307/2531863 10.1007/s10107-012-0514-2 10.1177/00220345880670110601 10.1109/TSP.2016.2601299 10.1137/1019005 10.1198/0003130042836 10.1137/0801023 10.1186/s12862-015-0307-3 10.2307/2531913 10.1080/10618600.2000.10474858 10.2307/2531501 10.1093/oxfordjournals.aje.a010140 10.1016/j.csda.2007.12.017 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1007/s11749-024-00947-5 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1863-8260 |
EndPage | 1224 |
ExternalDocumentID | 10_1007_s11749_024_00947_5 |
GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province grantid: 2021J01981; 2021J01982 funderid: http://dx.doi.org/10.13039/501100003392 – fundername: National Natural Science Foundation of China grantid: 12171225 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VS 67Z 6NX 7WY 8AO 8C1 8FE 8FG 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQUVI ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KDC KOV L6V LLZTM M0C M0T M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7R Z81 Z83 Z8U ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c303t-3a6b712a7cf6421b355050ebedcc2376a612f55f344bb78b31b405541f51fc323 |
IEDL.DBID | AGYKE |
ISSN | 1133-0686 |
IngestDate | Thu Sep 25 00:56:17 EDT 2025 Tue Jul 01 03:58:01 EDT 2025 Fri Feb 21 02:37:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 62P10 MM algorithms Beta kernel correlation 62-08 model Bivariate Bernoulli model Paired binary data Rosner’s 62F03 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-3a6b712a7cf6421b355050ebedcc2376a612f55f344bb78b31b405541f51fc323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6433-741X |
PQID | 3156795295 |
PQPubID | 1486339 |
PageCount | 45 |
ParticipantIDs | proquest_journals_3156795295 crossref_primary_10_1007_s11749_024_00947_5 springer_journals_10_1007_s11749_024_00947_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | An Official Journal of the Spanish Society of Statistics and Operations Research |
PublicationTitle | Test (Madrid, Spain) |
PublicationTitleAbbrev | TEST |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | CA Bodian (947_CR2) 1994; 50 Y Sun (947_CR23) 2017; 65 CX Ma (947_CR17) 2017; 27 GE Dallal (947_CR6) 1988; 44 KY Liang (947_CR15) 1992; 54 GL Tian (947_CR25) 2019; 29 JJE Dennis (947_CR7) 1977; 19 DR Hunter (947_CR12) 2004; 58 Z Rajavi (947_CR20) 2011; 118 NS Tang (947_CR24) 2008; 52 R Mukherjee (947_CR18) 2015; 15 A Donner (947_CR8) 1989; 45 BH Cohen (947_CR5) 1980; 112 A Donner (947_CR9) 1988; 67 YQ Lin (947_CR16) 2021; 31 B Rosner (947_CR21) 1982; 38 SG Nash (947_CR19) 1991; 1 CG Broyden (947_CR4) 1967; 21 RJ Glynn (947_CR10) 2000; 151 X He (947_CR11) 1998; 93 MP Becker (947_CR1) 1997; 6 AS Lewis (947_CR14) 2013; 141 ZI Botev (947_CR3) 2010; 38 K Lange (947_CR13) 2000; 9 B Rosner (947_CR22) 1988; 44 |
References_xml | – volume: 50 start-page: 183 issue: 1 year: 1994 ident: 947_CR2 publication-title: Biometrics doi: 10.2307/2533208 – volume: 38 start-page: 105 issue: 1 year: 1982 ident: 947_CR21 publication-title: Biometrics doi: 10.2307/2530293 – volume: 31 start-page: 91 issue: 1 year: 2021 ident: 947_CR16 publication-title: J Biopharm Stat doi: 10.1080/10543406.2020.1814794 – volume: 112 start-page: 274 issue: 2 year: 1980 ident: 947_CR5 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a112994 – volume: 38 start-page: 2916 issue: 5 year: 2010 ident: 947_CR3 publication-title: Ann Stat doi: 10.1214/10-AOS799 – volume: 27 start-page: 611 issue: 4 year: 2017 ident: 947_CR17 publication-title: J Biopharm Stat doi: 10.1080/10543406.2016.1167072 – volume: 54 start-page: 3 issue: 1 year: 1992 ident: 947_CR15 publication-title: J R Stat Soc: Ser B (Stat Methodol) doi: 10.1111/j.2517-6161.1992.tb01862.x – volume: 6 start-page: 38 issue: 1 year: 1997 ident: 947_CR1 publication-title: Stat Methods Med Res doi: 10.1177/096228029700600104 – volume: 21 start-page: 368 issue: 99 year: 1967 ident: 947_CR4 publication-title: Math Comput doi: 10.1090/S0025-5718-1967-0224273-2 – volume: 118 start-page: 1812 issue: 9 year: 2011 ident: 947_CR20 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2011.01.049 – volume: 44 start-page: 505 issue: 2 year: 1988 ident: 947_CR22 publication-title: Biometrics doi: 10.2307/2531863 – volume: 141 start-page: 135 year: 2013 ident: 947_CR14 publication-title: Math Program doi: 10.1007/s10107-012-0514-2 – volume: 67 start-page: 1392 issue: 11 year: 1988 ident: 947_CR9 publication-title: J Dent Res doi: 10.1177/00220345880670110601 – volume: 93 start-page: 643 issue: 442 year: 1998 ident: 947_CR11 publication-title: J Am Stat Assoc – volume: 65 start-page: 794 issue: 3 year: 2017 ident: 947_CR23 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2016.2601299 – volume: 19 start-page: 46 issue: 1 year: 1977 ident: 947_CR7 publication-title: SIAM Rev doi: 10.1137/1019005 – volume: 58 start-page: 30 issue: 1 year: 2004 ident: 947_CR12 publication-title: Am Stat doi: 10.1198/0003130042836 – volume: 1 start-page: 358 issue: 3 year: 1991 ident: 947_CR19 publication-title: SIAM J Optim doi: 10.1137/0801023 – volume: 29 start-page: 961 issue: 2 year: 2019 ident: 947_CR25 publication-title: Stat Sin – volume: 15 start-page: 1 issue: 1 year: 2015 ident: 947_CR18 publication-title: BMC Evol Biol doi: 10.1186/s12862-015-0307-3 – volume: 44 start-page: 253 issue: 1 year: 1988 ident: 947_CR6 publication-title: Biometrics doi: 10.2307/2531913 – volume: 9 start-page: 1 issue: 1 year: 2000 ident: 947_CR13 publication-title: J Comput Graph Stat doi: 10.1080/10618600.2000.10474858 – volume: 45 start-page: 605 issue: 2 year: 1989 ident: 947_CR8 publication-title: Biometrics doi: 10.2307/2531501 – volume: 151 start-page: 965 issue: 10 year: 2000 ident: 947_CR10 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a010140 – volume: 52 start-page: 3719 issue: 7 year: 2008 ident: 947_CR24 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2007.12.017 |
SSID | ssj0064621 |
Score | 2.3554492 |
Snippet | Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1180 |
SubjectTerms | Algorithms Binary data Biometrics Bivariate analysis Correlation coefficients Economics Finance Insurance Management Mathematics and Statistics Maximum likelihood estimates Original Paper Statistical Theory and Methods Statistics Statistics for Business |
Title | Modeling paired binary data by a new bivariate Bernoulli model with flexible beta kernel correlation |
URI | https://link.springer.com/article/10.1007/s11749-024-00947-5 https://www.proquest.com/docview/3156795295 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5VB7YwIjEcQxjQZQKBBORyhTZjr2AWkRTJPj13CUxFRUMjIkdK_HZvu9y990BHMUatdyZ89wUxvFEoc1qIlXwwhWxjK0zha2yfT6kgyy5HcphQwqbhGj34JKsTuoZ2Q3B8wVHncIpHE5xuQhtiQYKbsd27-bp7jqcwGmS1nwrtL-oqErakGV-H-WnQpqhzDnHaKVv-muQhTetw0yeT6elObWfc0kc__sp67DaAFDWq1fMBiy40SYsBX7yZBNW7r8zueLVMqHROpnzFhRUOY346-xV41FZMFOxeRmFmTLzwTRDkI4339EARwzLLt3baEzeJlYV3GH005d5SsFpXhwzDp96xi7YYqlISB2Wtw1Z__rxasCbMg3cov4rudCpUVGslfXEmjWCjJ4zXByFtRRzoxFEeSm9SBJj1LkRkUGUKJPIy8hbEYsdaI3GI7cLTBOtVwsnpFYJpSb0Ck8c71HKziNQ7cBxkFX-WmfjyGd5l2lSc5zUvJrUXHbgIIgzb3bmJBdosKoLcm924CRIZ9b892h7_-u-D8sxCbiKfDmAVvk2dYeIX0rTbZZrFxazuPcFv3TmUQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGVoGBAVEoYAHNrDUxHFMx4KoCrSdWqmbZSf2AmqrtiDx77nLBxEIBsbEjgefffcud-8O4Co0aOU6znObWscjhT6rDVTKU5eGMkycTZOs2uc4Hkyjp5mcFaSwdZntXoYkM01dkd0QPHc52hRO6XCKy23YoTAjuVzTsFfq3ziKc7YVel_UUiUuqDK_r_HdHFUY80dYNLM2_X3YK2Ai6-VyPYAtN29CvWQRr5uwO_qqt4pPDcKMecnlQ0ipvxmxzNnSoEJLmc04t4ySQZn9YIYhlMaX7-gmI9Jkd241X1BMiGVtcRj9mmWeCmXaV8esw69ecAqOJNTKI0-eO4Jp_2FyP-BFMwWeoJXacGFiq4LQqMQTt9UKck06KMI0SSgzxiDU8VJ6EUXWqlsrAotYTkaBl4FPRCiOoTZfzN0JMEPkWyOckEZFVEDQK9QL3qOz6DzCyRZcl3uql3nNDF1VRyYJaJSAziSgZQva5bbr4v6stUC3UnUpCNmCm1IU1fDfq53-b_ol1AeT0VAPH8fPZ9AI6WRkuSptqG1Wb-4cEcfGXmQH7BMwV8tT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB3BInEU3IjldEEHBhLHMZRcy40oQIIq8tmAwgoCEnw9MzlYQFAgyiSOldiO501m3huAlVijldv0gRtnPE8U-qwmUo4772IZW2-cLdU-L9Kj6-TkRt58YvGX2e5NSLLiNJBKU15sdF3Y6BHfEEhvc7QvnFLjFJf9MJBQDYkWDOwc3p4eNLtxmqQV9wp9MSqwktbEmZ97-WqceojzW5C0tD2dMdDNU1cpJ3frz4VZt2_fBB3_81rjMFoDU7ZTraQJ6PP5JAw1vOWnSRg5_1B4xaNhQqmVyPMUOKqoRrx21tW4hTpmSpYvo_RTZl6ZZgje8eQLOuaIbdmuf8wfKArFykI8jH4Gs0DSnObeM-PxrjtsglcsFQ-p0vWm4bpzcLV3xOvyDdyiXSy40KlRUayVDcSmNYKcoU1cNM5aysXRCK6ClEEkiTFqy4jIIHqUSRRkFKyIxQy08ofczwLTRPfVwgupVUKShUHhThQCuqc-IIBtw2ozb1m3UunIenrMNKgZDmpWDmom27DQTG1Wf7FPmUBHVm1T2LMNa81M9S7_3tvc35ovw-Dlfic7O744nYfhmOa6TI5ZgFbx-OwXEeIUZqlexe9zSvE0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+paired+binary+data+by+a+new+bivariate+Bernoulli+model+with+flexible+beta+kernel+correlation&rft.jtitle=Test+%28Madrid%2C+Spain%29&rft.au=Li%2C+Xun-Jian&rft.au=Li%2C+Shuang&rft.au=Tian%2C+Guo-Liang&rft.au=Shi%2C+Jianhua&rft.date=2024-12-01&rft.issn=1133-0686&rft.eissn=1863-8260&rft.volume=33&rft.issue=4&rft.spage=1180&rft.epage=1224&rft_id=info:doi/10.1007%2Fs11749-024-00947-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11749_024_00947_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1133-0686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1133-0686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1133-0686&client=summon |