Modeling paired binary data by a new bivariate Bernoulli model with flexible beta kernel correlation

Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982) R model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were...

Full description

Saved in:
Bibliographic Details
Published inTest (Madrid, Spain) Vol. 33; no. 4; pp. 1180 - 1224
Main Authors Li, Xun-Jian, Li, Shuang, Tian, Guo-Liang, Shi, Jianhua
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1133-0686
1863-8260
DOI10.1007/s11749-024-00947-5

Cover

Abstract Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982) R model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were proposed to fit such twin data by considering the intra-person correlation. However, Rosner’s R model can only fit the twin data with an increasing correlation coefficient, Dallal’s model may incur the problem of over–fitting, while Donner’s model can only fit the twin data with a constant correlation. This paper aims to propose a new bivariate Bernoulli model with flexible beta kernel correlation (denoted by Bernoulli 2 bk ) for fitting the paired binary data with a wide range of group–specific disease probabilities. The correlation coefficient of the Bernoulli 2 bk model could be increasing, or decreasing, or unimodal, or convex with respect to the disease probability of one eye. To obtain the maximum likelihood estimates (MLEs) of parameters, we develop a series of minorization–maximization (MM) algorithms by constructing four surrogate functions with closed–form expressions at each iteration of the MM algorithms. Simulation studies are conducted, and two real datasets are analyzed to illustrate the proposed model and methods.
AbstractList Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982) R model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were proposed to fit such twin data by considering the intra-person correlation. However, Rosner’s R model can only fit the twin data with an increasing correlation coefficient, Dallal’s model may incur the problem of over–fitting, while Donner’s model can only fit the twin data with a constant correlation. This paper aims to propose a new bivariate Bernoulli model with flexible beta kernel correlation (denoted by Bernoulli 2 bk ) for fitting the paired binary data with a wide range of group–specific disease probabilities. The correlation coefficient of the Bernoulli 2 bk model could be increasing, or decreasing, or unimodal, or convex with respect to the disease probability of one eye. To obtain the maximum likelihood estimates (MLEs) of parameters, we develop a series of minorization–maximization (MM) algorithms by constructing four surrogate functions with closed–form expressions at each iteration of the MM algorithms. Simulation studies are conducted, and two real datasets are analyzed to illustrate the proposed model and methods.
Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner in Biometrics 38:105-114, 1982) R model, (Dallal in Biometrics 44:253-257, 1988) model and (Donner in Biometrics 45:605-661, 1989) model] were proposed to fit such twin data by considering the intra-person correlation. However, Rosner’s R model can only fit the twin data with an increasing correlation coefficient, Dallal’s model may incur the problem of over–fitting, while Donner’s model can only fit the twin data with a constant correlation. This paper aims to propose a new bivariate Bernoulli model with flexible beta kernel correlation (denoted by Bernoulli2bk) for fitting the paired binary data with a wide range of group–specific disease probabilities. The correlation coefficient of the Bernoulli2bk model could be increasing, or decreasing, or unimodal, or convex with respect to the disease probability of one eye. To obtain the maximum likelihood estimates (MLEs) of parameters, we develop a series of minorization–maximization (MM) algorithms by constructing four surrogate functions with closed–form expressions at each iteration of the MM algorithms. Simulation studies are conducted, and two real datasets are analyzed to illustrate the proposed model and methods.
Author Li, Xun-Jian
Tian, Guo-Liang
Shi, Jianhua
Li, Shuang
Author_xml – sequence: 1
  givenname: Xun-Jian
  orcidid: 0000-0001-6433-741X
  surname: Li
  fullname: Li, Xun-Jian
  organization: Department of Statistics and Data Science, Southern University of Science and Technology, Department of Applied Mathematics, The Hong Kong Polytechnic University
– sequence: 2
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  organization: Department of Mathematics, Dongguan University of Technology
– sequence: 3
  givenname: Guo-Liang
  surname: Tian
  fullname: Tian, Guo-Liang
  email: tiangl@sustech.edu.cn
  organization: Department of Statistics and Data Science, Southern University of Science and Technology, School of Mathematics and Statistics, Minnan Normal University
– sequence: 4
  givenname: Jianhua
  surname: Shi
  fullname: Shi, Jianhua
  email: v0085@126.com
  organization: School of Mathematics and Statistics, Minnan Normal University
BookMark eNp9kLtOAzEQRS0UJJLAD1BZojb47d0SIl5SEA3Ulr1rB4eNN9gbQv4ehyDRUc1o5p47mjsBo9hHB8A5wZcEY3WVCVG8RphyhHHNFRJHYEwqyVBFJR6VnjCGsKzkCZjkvMRYcknJGLRPfeu6EBdwbUJyLbQhmrSDrRkMtDtoYHTbMvw0KZjBwRuXYr_pugBXexBuw_AGfee-gu0ctK5Q70VSNk2fkuvMEPp4Co696bI7-61T8Hp3-zJ7QPPn-8fZ9Rw1DLMBMSOtItSoxktOiWVCYIGddW3TUKakkYR6ITzj3FpVWUYsx0Jw4gXxDaNsCi4OvuvUf2xcHvSy36RYTmpGhFS1oLUoKnpQNanPOTmv1ymsytOaYL1PUx_S1CVN_ZOm3kPsAOUijguX_qz_ob4BS4Z5nA
Cites_doi 10.2307/2533208
10.2307/2530293
10.1080/10543406.2020.1814794
10.1093/oxfordjournals.aje.a112994
10.1214/10-AOS799
10.1080/10543406.2016.1167072
10.1111/j.2517-6161.1992.tb01862.x
10.1177/096228029700600104
10.1090/S0025-5718-1967-0224273-2
10.1016/j.ophtha.2011.01.049
10.2307/2531863
10.1007/s10107-012-0514-2
10.1177/00220345880670110601
10.1109/TSP.2016.2601299
10.1137/1019005
10.1198/0003130042836
10.1137/0801023
10.1186/s12862-015-0307-3
10.2307/2531913
10.1080/10618600.2000.10474858
10.2307/2531501
10.1093/oxfordjournals.aje.a010140
10.1016/j.csda.2007.12.017
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2024
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1007/s11749-024-00947-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1863-8260
EndPage 1224
ExternalDocumentID 10_1007_s11749_024_00947_5
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province
  grantid: 2021J01981; 2021J01982
  funderid: http://dx.doi.org/10.13039/501100003392
– fundername: National Natural Science Foundation of China
  grantid: 12171225
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
67Z
6NX
7WY
8AO
8C1
8FE
8FG
8FI
8FJ
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KDC
KOV
L6V
LLZTM
M0C
M0T
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z81
Z83
Z8U
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c303t-3a6b712a7cf6421b355050ebedcc2376a612f55f344bb78b31b405541f51fc323
IEDL.DBID AGYKE
ISSN 1133-0686
IngestDate Thu Sep 25 00:56:17 EDT 2025
Tue Jul 01 03:58:01 EDT 2025
Fri Feb 21 02:37:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 62P10
MM algorithms
Beta kernel correlation
62-08
model
Bivariate Bernoulli model
Paired binary data
Rosner’s
62F03
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-3a6b712a7cf6421b355050ebedcc2376a612f55f344bb78b31b405541f51fc323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6433-741X
PQID 3156795295
PQPubID 1486339
PageCount 45
ParticipantIDs proquest_journals_3156795295
crossref_primary_10_1007_s11749_024_00947_5
springer_journals_10_1007_s11749_024_00947_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle An Official Journal of the Spanish Society of Statistics and Operations Research
PublicationTitle Test (Madrid, Spain)
PublicationTitleAbbrev TEST
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CA Bodian (947_CR2) 1994; 50
Y Sun (947_CR23) 2017; 65
CX Ma (947_CR17) 2017; 27
GE Dallal (947_CR6) 1988; 44
KY Liang (947_CR15) 1992; 54
GL Tian (947_CR25) 2019; 29
JJE Dennis (947_CR7) 1977; 19
DR Hunter (947_CR12) 2004; 58
Z Rajavi (947_CR20) 2011; 118
NS Tang (947_CR24) 2008; 52
R Mukherjee (947_CR18) 2015; 15
A Donner (947_CR8) 1989; 45
BH Cohen (947_CR5) 1980; 112
A Donner (947_CR9) 1988; 67
YQ Lin (947_CR16) 2021; 31
B Rosner (947_CR21) 1982; 38
SG Nash (947_CR19) 1991; 1
CG Broyden (947_CR4) 1967; 21
RJ Glynn (947_CR10) 2000; 151
X He (947_CR11) 1998; 93
MP Becker (947_CR1) 1997; 6
AS Lewis (947_CR14) 2013; 141
ZI Botev (947_CR3) 2010; 38
K Lange (947_CR13) 2000; 9
B Rosner (947_CR22) 1988; 44
References_xml – volume: 50
  start-page: 183
  issue: 1
  year: 1994
  ident: 947_CR2
  publication-title: Biometrics
  doi: 10.2307/2533208
– volume: 38
  start-page: 105
  issue: 1
  year: 1982
  ident: 947_CR21
  publication-title: Biometrics
  doi: 10.2307/2530293
– volume: 31
  start-page: 91
  issue: 1
  year: 2021
  ident: 947_CR16
  publication-title: J Biopharm Stat
  doi: 10.1080/10543406.2020.1814794
– volume: 112
  start-page: 274
  issue: 2
  year: 1980
  ident: 947_CR5
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a112994
– volume: 38
  start-page: 2916
  issue: 5
  year: 2010
  ident: 947_CR3
  publication-title: Ann Stat
  doi: 10.1214/10-AOS799
– volume: 27
  start-page: 611
  issue: 4
  year: 2017
  ident: 947_CR17
  publication-title: J Biopharm Stat
  doi: 10.1080/10543406.2016.1167072
– volume: 54
  start-page: 3
  issue: 1
  year: 1992
  ident: 947_CR15
  publication-title: J R Stat Soc: Ser B (Stat Methodol)
  doi: 10.1111/j.2517-6161.1992.tb01862.x
– volume: 6
  start-page: 38
  issue: 1
  year: 1997
  ident: 947_CR1
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228029700600104
– volume: 21
  start-page: 368
  issue: 99
  year: 1967
  ident: 947_CR4
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1967-0224273-2
– volume: 118
  start-page: 1812
  issue: 9
  year: 2011
  ident: 947_CR20
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.01.049
– volume: 44
  start-page: 505
  issue: 2
  year: 1988
  ident: 947_CR22
  publication-title: Biometrics
  doi: 10.2307/2531863
– volume: 141
  start-page: 135
  year: 2013
  ident: 947_CR14
  publication-title: Math Program
  doi: 10.1007/s10107-012-0514-2
– volume: 67
  start-page: 1392
  issue: 11
  year: 1988
  ident: 947_CR9
  publication-title: J Dent Res
  doi: 10.1177/00220345880670110601
– volume: 93
  start-page: 643
  issue: 442
  year: 1998
  ident: 947_CR11
  publication-title: J Am Stat Assoc
– volume: 65
  start-page: 794
  issue: 3
  year: 2017
  ident: 947_CR23
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2601299
– volume: 19
  start-page: 46
  issue: 1
  year: 1977
  ident: 947_CR7
  publication-title: SIAM Rev
  doi: 10.1137/1019005
– volume: 58
  start-page: 30
  issue: 1
  year: 2004
  ident: 947_CR12
  publication-title: Am Stat
  doi: 10.1198/0003130042836
– volume: 1
  start-page: 358
  issue: 3
  year: 1991
  ident: 947_CR19
  publication-title: SIAM J Optim
  doi: 10.1137/0801023
– volume: 29
  start-page: 961
  issue: 2
  year: 2019
  ident: 947_CR25
  publication-title: Stat Sin
– volume: 15
  start-page: 1
  issue: 1
  year: 2015
  ident: 947_CR18
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-015-0307-3
– volume: 44
  start-page: 253
  issue: 1
  year: 1988
  ident: 947_CR6
  publication-title: Biometrics
  doi: 10.2307/2531913
– volume: 9
  start-page: 1
  issue: 1
  year: 2000
  ident: 947_CR13
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2000.10474858
– volume: 45
  start-page: 605
  issue: 2
  year: 1989
  ident: 947_CR8
  publication-title: Biometrics
  doi: 10.2307/2531501
– volume: 151
  start-page: 965
  issue: 10
  year: 2000
  ident: 947_CR10
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a010140
– volume: 52
  start-page: 3719
  issue: 7
  year: 2008
  ident: 947_CR24
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2007.12.017
SSID ssj0064621
Score 2.3554492
Snippet Paired binary data often appear in studies of subjects with two sites such as eyes, ears, lungs, kidneys, feet and so on. Three popular models [i.e., (Rosner...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1180
SubjectTerms Algorithms
Binary data
Biometrics
Bivariate analysis
Correlation coefficients
Economics
Finance
Insurance
Management
Mathematics and Statistics
Maximum likelihood estimates
Original Paper
Statistical Theory and Methods
Statistics
Statistics for Business
Title Modeling paired binary data by a new bivariate Bernoulli model with flexible beta kernel correlation
URI https://link.springer.com/article/10.1007/s11749-024-00947-5
https://www.proquest.com/docview/3156795295
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5VB7YwIjEcQxjQZQKBBORyhTZjr2AWkRTJPj13CUxFRUMjIkdK_HZvu9y990BHMUatdyZ89wUxvFEoc1qIlXwwhWxjK0zha2yfT6kgyy5HcphQwqbhGj34JKsTuoZ2Q3B8wVHncIpHE5xuQhtiQYKbsd27-bp7jqcwGmS1nwrtL-oqErakGV-H-WnQpqhzDnHaKVv-muQhTetw0yeT6elObWfc0kc__sp67DaAFDWq1fMBiy40SYsBX7yZBNW7r8zueLVMqHROpnzFhRUOY346-xV41FZMFOxeRmFmTLzwTRDkI4339EARwzLLt3baEzeJlYV3GH005d5SsFpXhwzDp96xi7YYqlISB2Wtw1Z__rxasCbMg3cov4rudCpUVGslfXEmjWCjJ4zXByFtRRzoxFEeSm9SBJj1LkRkUGUKJPIy8hbEYsdaI3GI7cLTBOtVwsnpFYJpSb0Ck8c71HKziNQ7cBxkFX-WmfjyGd5l2lSc5zUvJrUXHbgIIgzb3bmJBdosKoLcm924CRIZ9b892h7_-u-D8sxCbiKfDmAVvk2dYeIX0rTbZZrFxazuPcFv3TmUQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGVoGBAVEoYAHNrDUxHFMx4KoCrSdWqmbZSf2AmqrtiDx77nLBxEIBsbEjgefffcud-8O4Co0aOU6znObWscjhT6rDVTKU5eGMkycTZOs2uc4Hkyjp5mcFaSwdZntXoYkM01dkd0QPHc52hRO6XCKy23YoTAjuVzTsFfq3ziKc7YVel_UUiUuqDK_r_HdHFUY80dYNLM2_X3YK2Ai6-VyPYAtN29CvWQRr5uwO_qqt4pPDcKMecnlQ0ipvxmxzNnSoEJLmc04t4ySQZn9YIYhlMaX7-gmI9Jkd241X1BMiGVtcRj9mmWeCmXaV8esw69ecAqOJNTKI0-eO4Jp_2FyP-BFMwWeoJXacGFiq4LQqMQTt9UKck06KMI0SSgzxiDU8VJ6EUXWqlsrAotYTkaBl4FPRCiOoTZfzN0JMEPkWyOckEZFVEDQK9QL3qOz6DzCyRZcl3uql3nNDF1VRyYJaJSAziSgZQva5bbr4v6stUC3UnUpCNmCm1IU1fDfq53-b_ol1AeT0VAPH8fPZ9AI6WRkuSptqG1Wb-4cEcfGXmQH7BMwV8tT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB3BInEU3IjldEEHBhLHMZRcy40oQIIq8tmAwgoCEnw9MzlYQFAgyiSOldiO501m3huAlVijldv0gRtnPE8U-qwmUo4772IZW2-cLdU-L9Kj6-TkRt58YvGX2e5NSLLiNJBKU15sdF3Y6BHfEEhvc7QvnFLjFJf9MJBQDYkWDOwc3p4eNLtxmqQV9wp9MSqwktbEmZ97-WqceojzW5C0tD2dMdDNU1cpJ3frz4VZt2_fBB3_81rjMFoDU7ZTraQJ6PP5JAw1vOWnSRg5_1B4xaNhQqmVyPMUOKqoRrx21tW4hTpmSpYvo_RTZl6ZZgje8eQLOuaIbdmuf8wfKArFykI8jH4Gs0DSnObeM-PxrjtsglcsFQ-p0vWm4bpzcLV3xOvyDdyiXSy40KlRUayVDcSmNYKcoU1cNM5aysXRCK6ClEEkiTFqy4jIIHqUSRRkFKyIxQy08ofczwLTRPfVwgupVUKShUHhThQCuqc-IIBtw2ozb1m3UunIenrMNKgZDmpWDmom27DQTG1Wf7FPmUBHVm1T2LMNa81M9S7_3tvc35ovw-Dlfic7O744nYfhmOa6TI5ZgFbx-OwXEeIUZqlexe9zSvE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+paired+binary+data+by+a+new+bivariate+Bernoulli+model+with+flexible+beta+kernel+correlation&rft.jtitle=Test+%28Madrid%2C+Spain%29&rft.au=Li%2C+Xun-Jian&rft.au=Li%2C+Shuang&rft.au=Tian%2C+Guo-Liang&rft.au=Shi%2C+Jianhua&rft.date=2024-12-01&rft.issn=1133-0686&rft.eissn=1863-8260&rft.volume=33&rft.issue=4&rft.spage=1180&rft.epage=1224&rft_id=info:doi/10.1007%2Fs11749-024-00947-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11749_024_00947_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1133-0686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1133-0686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1133-0686&client=summon