Automation program for optimum design of electric vehicle powertrain systems based on artificial neural network
Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic performance of electric vehicles (EVs). This study developed an automated design program to obtain the optimal design of EVs for various powertrain...
Saved in:
| Published in | eTransportation (Amsterdam) Vol. 18; p. 100267 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2590-1168 2590-1168 |
| DOI | 10.1016/j.etran.2023.100267 |
Cover
| Abstract | Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic performance of electric vehicles (EVs). This study developed an automated design program to obtain the optimal design of EVs for various powertrain systems. The program consists of an EV simulation and artificial neural network (ANN) modeling and optimization tools. The EV simulation tool employs an integrated EV model that can analyze the efficiency and performance of various powertrain systems in a single environment. The ANN modeling and optimization tool first constructs an ANN model, and then performs optimization using the ANN model to address excessive computational efforts arising from the multi-objective genetic algorithm. This study verified the developed program by conducting analysis and optimization of five powertrain systems with the same EV specifications. A multi-objective optimization problem was formulated by considering the design variables as the torque distribution between the motors and gear shifting patterns and ratios of the transmission, and the objectives as the energy consumption and acceleration time. A comparison of the optimization results among the five powertrain systems quantitatively showed the positive effects of the multi-motor and multi-speed powertrain systems. Furthermore, the ANN-based multi-objective optimization process allowed for the efficient determination of the optimum design solutions for the proposed EV powertrain systems. Consequently, these results demonstrated the effectiveness of the automation program in rapid decision-making on EV powertrain system configurations, satisfying each designer’s requirements.
•An integrated electric vehicle analysis model for various powertrain systems.•Artificial neural network based multi-objective optimization process for powertrain.•Development of automation program for effective design optimization.•Optimization results for various powertrain systems of electric vehicle. |
|---|---|
| AbstractList | Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic performance of electric vehicles (EVs). This study developed an automated design program to obtain the optimal design of EVs for various powertrain systems. The program consists of an EV simulation and artificial neural network (ANN) modeling and optimization tools. The EV simulation tool employs an integrated EV model that can analyze the efficiency and performance of various powertrain systems in a single environment. The ANN modeling and optimization tool first constructs an ANN model, and then performs optimization using the ANN model to address excessive computational efforts arising from the multi-objective genetic algorithm. This study verified the developed program by conducting analysis and optimization of five powertrain systems with the same EV specifications. A multi-objective optimization problem was formulated by considering the design variables as the torque distribution between the motors and gear shifting patterns and ratios of the transmission, and the objectives as the energy consumption and acceleration time. A comparison of the optimization results among the five powertrain systems quantitatively showed the positive effects of the multi-motor and multi-speed powertrain systems. Furthermore, the ANN-based multi-objective optimization process allowed for the efficient determination of the optimum design solutions for the proposed EV powertrain systems. Consequently, these results demonstrated the effectiveness of the automation program in rapid decision-making on EV powertrain system configurations, satisfying each designer’s requirements.
•An integrated electric vehicle analysis model for various powertrain systems.•Artificial neural network based multi-objective optimization process for powertrain.•Development of automation program for effective design optimization.•Optimization results for various powertrain systems of electric vehicle. |
| ArticleNumber | 100267 |
| Author | Park, Kijong Kwon, Kihan Lim, Sang-Kil Kim, Dongwoo |
| Author_xml | – sequence: 1 givenname: Kihan surname: Kwon fullname: Kwon, Kihan organization: Department of Automotive Engineering, Honam University, Gwangju, Republic of Korea – sequence: 2 givenname: Sang-Kil surname: Lim fullname: Lim, Sang-Kil organization: Department of Automotive Engineering, Honam University, Gwangju, Republic of Korea – sequence: 3 givenname: Dongwoo surname: Kim fullname: Kim, Dongwoo organization: Research and Development Division, Hyundai Motor Company, Hwaseong, Republic of Korea – sequence: 4 givenname: Kijong orcidid: 0000-0002-9080-3979 surname: Park fullname: Park, Kijong email: kjpark@hyundai.com organization: Research and Development Division, Hyundai Motor Company, Hwaseong, Republic of Korea |
| BookMark | eNqFkMtOQjEQhhuDiYg8gZu-wMFeDqUsXBDiLSFxo-umtFMsntOStkB4ew_gwrjQ1Uwm883k_65RL8QACN1SMqKEirv1CErSYcQI492EMDG5QH02npKKUiF7P_orNMx5TbqdqeBSjvsozrYltrr4GPAmxVXSLXYx4bgpvt222EL2q4Cjw9CAKckbvIMPbxrAm7iH1H32AedDLtBmvNQZLO5O6VS888brBgfYplMp-5g-b9Cl002G4XcdoPfHh7f5c7V4fXqZzxaV4YSXijMjGSHSEUEmkhvOalPD0jlr2ZJbwahwVtTAhCVjXTshNSeSawNcM8coHyB-vmtSzDmBU5vkW50OihJ11KbW6qRNHbWps7aOmv6ijC8nOceczT_s_ZmFLtbOQ1LZeAgGrE-dOWWj_5P_AslTjpA |
| CitedBy_id | crossref_primary_10_1155_er_9015034 crossref_primary_10_1007_s00521_025_11117_5 crossref_primary_10_1016_j_apenergy_2024_124840 crossref_primary_10_1016_j_energy_2024_132078 crossref_primary_10_1016_j_jpowsour_2024_235564 crossref_primary_10_1016_j_etran_2024_100353 crossref_primary_10_1016_j_energy_2024_133811 crossref_primary_10_1016_j_geits_2025_100286 crossref_primary_10_1109_TTE_2024_3416173 crossref_primary_10_1016_j_energy_2024_132009 crossref_primary_10_3390_app142411559 |
| Cites_doi | 10.1016/j.enconman.2023.116683 10.1016/j.energy.2021.121419 10.1016/j.apenergy.2022.119395 10.1016/j.enconman.2021.115054 10.1109/ACCESS.2019.2912994 10.3390/en12030388 10.1016/j.ymssp.2021.107731 10.3390/en11061324 10.1109/TVT.2014.2363144 10.1109/TTE.2021.3081115 10.1080/0305215X.2017.1302439 10.1016/j.energy.2021.119897 10.1016/j.energy.2023.127112 10.1016/j.etran.2022.100221 10.1016/j.etran.2022.100214 10.1016/j.etran.2022.100167 10.1016/j.etran.2022.100188 10.1016/j.apenergy.2019.03.195 10.1177/0954407014521395 10.1016/j.apenergy.2019.114190 10.1177/16878140211022869 10.3390/en15114149 10.4271/08-07-02-0011 10.1016/j.ymssp.2014.05.045 10.1016/j.ymssp.2019.106601 10.1177/1687814020901652 10.1016/j.apenergy.2023.121203 10.1016/j.ymssp.2017.11.033 10.1016/j.energy.2019.07.004 10.3390/en13195073 10.1016/j.apenergy.2016.09.031 10.1016/0378-3758(90)90122-B 10.1109/4235.996017 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.etran.2023.100267 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2590-1168 |
| ExternalDocumentID | 10_1016_j_etran_2023_100267 S2590116823000425 |
| GroupedDBID | AABXZ AAEDW AAHCO AAIAV AAKOC AALRI AAXUO ACDAQ ACRLP AEBSH AEZYN AFKWA AFRZQ AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK EBS EFJIC EFLBG EJD FDB FYGXN KOM M41 M~E ROL SPC SPCBC SSM SSR SST T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS |
| ID | FETCH-LOGICAL-c303t-32c82008f060783c324c4ebffdd2b3d6216fd64e26d05a4f68a3083ace3a2f213 |
| IEDL.DBID | AIKHN |
| ISSN | 2590-1168 |
| IngestDate | Thu Apr 24 22:52:27 EDT 2025 Wed Oct 01 04:21:00 EDT 2025 Fri Feb 23 02:36:01 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Powertrain system Electric vehicles Multi-objective optimization Artificial neural network Automation design program |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-32c82008f060783c324c4ebffdd2b3d6216fd64e26d05a4f68a3083ace3a2f213 |
| ORCID | 0000-0002-9080-3979 |
| ParticipantIDs | crossref_primary_10_1016_j_etran_2023_100267 crossref_citationtrail_10_1016_j_etran_2023_100267 elsevier_sciencedirect_doi_10_1016_j_etran_2023_100267 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | eTransportation (Amsterdam) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhao, Shi, Lin (b17) 2019; 243 Tan, Yang, Zhao, Hai, Zhang (b4) 2018; 11 Johnson, Moore, Ylvisaker (b32) 1990; 26 Liang, Yang, Wu, Zhang, Walker (b14) 2018; 104 MathWorks (b33) 2019 Abdelli, Le Berr, Benlamine (b25) 2013 Kwon, Lee, Lim (b13) 2023; 342 Nguyen, Nguyen, Trovão, Ta (b20) 2022; 252 Spanoudakis, Tsourveloudis, Doitsidis, Karapidakis (b6) 2019; 12 Urbina Coronado, Orta Castañón, Ahuett-Garza (b15) 2018; 50 Kwon, Ryu, Seo, Kim, Lee, Min (b28) 2020; 139 Nassar, Shaltout, Hegazi (b31) 2023; 277 Ruan, Song (b16) 2019; 7 Li, Zhu, Zhang, Peng, Chen (b7) 2020; 12 Kwon, Jo, Min (b9) 2021 Zhao, Ling, Liu, Wang, Burke, Lian (b1) 2023; 15 Ahn, Bayrak, Papalambros (b24) 2015; 64 Ahssan, Ektesabi, Gorji (b23) 2018; 7 Deb, Pratap, Agarwal, Meyarivan (b30) 2002; 6 Yu, Lin, Zhao, Yi, Su, Liu (b21) 2022; 321 Wu, Qiang, Pan, Zang (b11) 2022; 15 Nguyen, Walker, Zhang (b19) 2021; 158 Yu, Lin, Tian, Zhao, Liu, Xie (b22) 2023; 272 Dong, Zhao, Xu, Wang, Lin, Liu (b27) 2023; 15 Ahssan, Ektesabi, Gorji (b8) 2020; 13 Sun, Chiu, Zuo, Zhou, Gan, Li (b10) 2021; 13 Wassiliadis, Steinsträter, Schreiber, Rosner, Nicoletti, Schmid (b3) 2022; 12 Lin, Zhao, Pan, Yi (b5) 2019; 185 Gao, Liang, Xiang, Guo, Chen (b29) 2015; 50 Kwon, Seo, Min (b18) 2020; 259 Li, Wang, Xiong, He, Li (b35) 2016; 183 Zhu, Zhang, Walker, Zhou, Zhan, Wei (b34) 2015; 229 Kwon, Lee, Min (b26) 2021; 7 Yuan, Li (b2) 2021; 222 Liu, Gao, Zhai, Huang, Chen, Zhang (b12) 2022 Abdelli (10.1016/j.etran.2023.100267_b25) 2013 Yuan (10.1016/j.etran.2023.100267_b2) 2021; 222 Yu (10.1016/j.etran.2023.100267_b22) 2023; 272 Kwon (10.1016/j.etran.2023.100267_b28) 2020; 139 Kwon (10.1016/j.etran.2023.100267_b18) 2020; 259 Kwon (10.1016/j.etran.2023.100267_b13) 2023; 342 Zhao (10.1016/j.etran.2023.100267_b1) 2023; 15 Nguyen (10.1016/j.etran.2023.100267_b19) 2021; 158 Tan (10.1016/j.etran.2023.100267_b4) 2018; 11 Nguyen (10.1016/j.etran.2023.100267_b20) 2022; 252 Zhu (10.1016/j.etran.2023.100267_b34) 2015; 229 Li (10.1016/j.etran.2023.100267_b35) 2016; 183 Urbina Coronado (10.1016/j.etran.2023.100267_b15) 2018; 50 Dong (10.1016/j.etran.2023.100267_b27) 2023; 15 Zhao (10.1016/j.etran.2023.100267_b17) 2019; 243 Spanoudakis (10.1016/j.etran.2023.100267_b6) 2019; 12 Deb (10.1016/j.etran.2023.100267_b30) 2002; 6 Lin (10.1016/j.etran.2023.100267_b5) 2019; 185 Ahn (10.1016/j.etran.2023.100267_b24) 2015; 64 Gao (10.1016/j.etran.2023.100267_b29) 2015; 50 Johnson (10.1016/j.etran.2023.100267_b32) 1990; 26 Ahssan (10.1016/j.etran.2023.100267_b23) 2018; 7 Kwon (10.1016/j.etran.2023.100267_b26) 2021; 7 Kwon (10.1016/j.etran.2023.100267_b9) 2021 Liang (10.1016/j.etran.2023.100267_b14) 2018; 104 Nassar (10.1016/j.etran.2023.100267_b31) 2023; 277 Ruan (10.1016/j.etran.2023.100267_b16) 2019; 7 Ahssan (10.1016/j.etran.2023.100267_b8) 2020; 13 MathWorks (10.1016/j.etran.2023.100267_b33) 2019 Liu (10.1016/j.etran.2023.100267_b12) 2022 Wassiliadis (10.1016/j.etran.2023.100267_b3) 2022; 12 Li (10.1016/j.etran.2023.100267_b7) 2020; 12 Yu (10.1016/j.etran.2023.100267_b21) 2022; 321 Wu (10.1016/j.etran.2023.100267_b11) 2022; 15 Sun (10.1016/j.etran.2023.100267_b10) 2021; 13 |
| References_xml | – volume: 342 year: 2023 ident: b13 article-title: Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis publication-title: Appl Energy – volume: 15 year: 2023 ident: b1 article-title: Machine learning for predicting battery capacity for electric vehicles publication-title: eTransportation – volume: 272 year: 2023 ident: b22 article-title: Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system publication-title: Energy – volume: 7 start-page: 3110 year: 2021 end-page: 3123 ident: b26 article-title: Motor and transmission multi-objective optimum design for tracked hybrid electric vehicles considering equivalent inertia of track system publication-title: IEEE Trans Transp Electrification – volume: 13 year: 2021 ident: b10 article-title: Transmission ratio optimization of two-speed gearbox in battery electric passenger vehicles publication-title: Adv Mech Eng – year: 2013 ident: b25 article-title: Efficient design methodology of an all-electric vehicle powertrain using multi-objective genetic optimization algorithm – volume: 12 start-page: 388 year: 2019 ident: b6 article-title: Experimental research of transmissions on electric vehicles’ energy consumption publication-title: Energies – volume: 104 start-page: 725 year: 2018 end-page: 743 ident: b14 article-title: Shifting and power sharing control of a novel dual input clutchless transmission for electric vehicles publication-title: Mech Syst Signal Process – year: 2022 ident: b12 article-title: Coordinated control strategy for braking and shifting for electric vehicle with two-speed automatic transmission publication-title: eTransportation – year: 2019 ident: b33 article-title: MATLAB App Designer (Ver. R2019a) – volume: 15 year: 2023 ident: b27 article-title: Rapid assessment of series–parallel hybrid transmission comprehensive performance: A near-global optimal method publication-title: eTransportation – volume: 26 start-page: 131 year: 1990 end-page: 148 ident: b32 article-title: Minimax and maximin distance designs publication-title: J Stat Plan Inference – volume: 321 year: 2022 ident: b21 article-title: Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles publication-title: Appl Energy – year: 2021 ident: b9 article-title: Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency publication-title: Energy – volume: 158 year: 2021 ident: b19 article-title: Optimization and coordinated control of gear shift and mode transition for a dual-motor electric vehicle publication-title: Mech Syst Signal Process – volume: 7 start-page: 54330 year: 2019 end-page: 54342 ident: b16 article-title: A novel dual-motor two-speed direct drive battery electric vehicle drivetrain publication-title: IEEE Access – volume: 7 start-page: 169 year: 2018 end-page: 182 ident: b23 article-title: Electric vehicle with multi-speed transmission: A review on performances and complexities publication-title: SAE Int J Alternat Powertrains – volume: 50 start-page: 615 year: 2015 end-page: 631 ident: b29 article-title: Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle publication-title: Mech Syst Signal Process – volume: 183 start-page: 914 year: 2016 end-page: 925 ident: b35 article-title: AMT downshifting strategy design of HEV during regenerative braking process for energy conservation publication-title: Appl Energy – volume: 13 start-page: 5073 year: 2020 ident: b8 article-title: Gear ratio optimization along with a novel gearshift scheduling strategy for a two-speed transmission system in electric vehicle publication-title: Energies – volume: 222 year: 2021 ident: b2 article-title: Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems publication-title: Energy – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b30 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – volume: 12 year: 2022 ident: b3 article-title: Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID. 3 publication-title: eTransportation – volume: 12 start-page: 1 year: 2020 end-page: 16 ident: b7 article-title: Parameters optimization of two-speed powertrain of electric vehicle based on genetic algorithm publication-title: Adv Mech Eng – volume: 15 start-page: 4149 year: 2022 ident: b11 article-title: Multi-objective optimization of gear ratios of a seamless three-speed automated manual transmission for electric vehicles considering shift performance publication-title: Energies – volume: 243 start-page: 21 year: 2019 end-page: 34 ident: b17 article-title: Optimization of integrated energy management for a dual-motor coaxial coupling propulsion electric city bus publication-title: Appl Energy – volume: 185 start-page: 1 year: 2019 end-page: 14 ident: b5 article-title: Blending gear shift strategy design and comparison study for a battery electric city bus with AMT publication-title: Energy – volume: 139 year: 2020 ident: b28 article-title: Efficient uncertainty quantification for integrated performance of complex vehicle system publication-title: Mech Syst Signal Process – volume: 64 start-page: 3870 year: 2015 end-page: 3877 ident: b24 article-title: Electric vehicle design optimization: Integration of a high-fidelity interior-permanent-magnet motor model publication-title: IEEE Trans Veh Technol – volume: 229 start-page: 70 year: 2015 end-page: 82 ident: b34 article-title: Gear shift schedule design for multi-speed pure electric vehicles publication-title: Proc Inst Mech Eng D – volume: 11 start-page: 1324 year: 2018 ident: b4 article-title: Gear ratio optimization of a multi-speed transmission for electric dump truck operating on the structure route publication-title: Energies – volume: 50 start-page: 293 year: 2018 end-page: 309 ident: b15 article-title: Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle publication-title: Eng Optim – volume: 259 year: 2020 ident: b18 article-title: Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system publication-title: Appl Energy – volume: 252 year: 2022 ident: b20 article-title: Optimal drivetrain design methodology for enhancing dynamic and energy performances of dual-motor electric vehicles publication-title: Energy Convers Manage – volume: 277 year: 2023 ident: b31 article-title: Multi-objective optimum energy management strategies for parallel hybrid electric vehicles: A comparative study publication-title: Energy Convers Manage – volume: 277 year: 2023 ident: 10.1016/j.etran.2023.100267_b31 article-title: Multi-objective optimum energy management strategies for parallel hybrid electric vehicles: A comparative study publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2023.116683 – year: 2021 ident: 10.1016/j.etran.2023.100267_b9 article-title: Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency publication-title: Energy doi: 10.1016/j.energy.2021.121419 – volume: 321 year: 2022 ident: 10.1016/j.etran.2023.100267_b21 article-title: Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119395 – volume: 252 year: 2022 ident: 10.1016/j.etran.2023.100267_b20 article-title: Optimal drivetrain design methodology for enhancing dynamic and energy performances of dual-motor electric vehicles publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.115054 – year: 2013 ident: 10.1016/j.etran.2023.100267_b25 – volume: 7 start-page: 54330 year: 2019 ident: 10.1016/j.etran.2023.100267_b16 article-title: A novel dual-motor two-speed direct drive battery electric vehicle drivetrain publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912994 – volume: 12 start-page: 388 issue: 3 year: 2019 ident: 10.1016/j.etran.2023.100267_b6 article-title: Experimental research of transmissions on electric vehicles’ energy consumption publication-title: Energies doi: 10.3390/en12030388 – volume: 158 year: 2021 ident: 10.1016/j.etran.2023.100267_b19 article-title: Optimization and coordinated control of gear shift and mode transition for a dual-motor electric vehicle publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.107731 – volume: 11 start-page: 1324 issue: 6 year: 2018 ident: 10.1016/j.etran.2023.100267_b4 article-title: Gear ratio optimization of a multi-speed transmission for electric dump truck operating on the structure route publication-title: Energies doi: 10.3390/en11061324 – volume: 64 start-page: 3870 issue: 9 year: 2015 ident: 10.1016/j.etran.2023.100267_b24 article-title: Electric vehicle design optimization: Integration of a high-fidelity interior-permanent-magnet motor model publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2014.2363144 – volume: 7 start-page: 3110 issue: 4 year: 2021 ident: 10.1016/j.etran.2023.100267_b26 article-title: Motor and transmission multi-objective optimum design for tracked hybrid electric vehicles considering equivalent inertia of track system publication-title: IEEE Trans Transp Electrification doi: 10.1109/TTE.2021.3081115 – volume: 50 start-page: 293 issue: 2 year: 2018 ident: 10.1016/j.etran.2023.100267_b15 article-title: Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle publication-title: Eng Optim doi: 10.1080/0305215X.2017.1302439 – volume: 222 year: 2021 ident: 10.1016/j.etran.2023.100267_b2 article-title: Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems publication-title: Energy doi: 10.1016/j.energy.2021.119897 – volume: 272 year: 2023 ident: 10.1016/j.etran.2023.100267_b22 article-title: Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system publication-title: Energy doi: 10.1016/j.energy.2023.127112 – volume: 15 year: 2023 ident: 10.1016/j.etran.2023.100267_b27 article-title: Rapid assessment of series–parallel hybrid transmission comprehensive performance: A near-global optimal method publication-title: eTransportation doi: 10.1016/j.etran.2022.100221 – volume: 15 year: 2023 ident: 10.1016/j.etran.2023.100267_b1 article-title: Machine learning for predicting battery capacity for electric vehicles publication-title: eTransportation doi: 10.1016/j.etran.2022.100214 – volume: 12 year: 2022 ident: 10.1016/j.etran.2023.100267_b3 article-title: Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID. 3 publication-title: eTransportation doi: 10.1016/j.etran.2022.100167 – year: 2022 ident: 10.1016/j.etran.2023.100267_b12 article-title: Coordinated control strategy for braking and shifting for electric vehicle with two-speed automatic transmission publication-title: eTransportation doi: 10.1016/j.etran.2022.100188 – volume: 243 start-page: 21 year: 2019 ident: 10.1016/j.etran.2023.100267_b17 article-title: Optimization of integrated energy management for a dual-motor coaxial coupling propulsion electric city bus publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.195 – volume: 229 start-page: 70 issue: 1 year: 2015 ident: 10.1016/j.etran.2023.100267_b34 article-title: Gear shift schedule design for multi-speed pure electric vehicles publication-title: Proc Inst Mech Eng D doi: 10.1177/0954407014521395 – year: 2019 ident: 10.1016/j.etran.2023.100267_b33 – volume: 259 year: 2020 ident: 10.1016/j.etran.2023.100267_b18 article-title: Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114190 – volume: 13 issue: 6 year: 2021 ident: 10.1016/j.etran.2023.100267_b10 article-title: Transmission ratio optimization of two-speed gearbox in battery electric passenger vehicles publication-title: Adv Mech Eng doi: 10.1177/16878140211022869 – volume: 15 start-page: 4149 issue: 11 year: 2022 ident: 10.1016/j.etran.2023.100267_b11 article-title: Multi-objective optimization of gear ratios of a seamless three-speed automated manual transmission for electric vehicles considering shift performance publication-title: Energies doi: 10.3390/en15114149 – volume: 7 start-page: 169 issue: 2 year: 2018 ident: 10.1016/j.etran.2023.100267_b23 article-title: Electric vehicle with multi-speed transmission: A review on performances and complexities publication-title: SAE Int J Alternat Powertrains doi: 10.4271/08-07-02-0011 – volume: 50 start-page: 615 year: 2015 ident: 10.1016/j.etran.2023.100267_b29 article-title: Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.05.045 – volume: 139 year: 2020 ident: 10.1016/j.etran.2023.100267_b28 article-title: Efficient uncertainty quantification for integrated performance of complex vehicle system publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.106601 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.etran.2023.100267_b7 article-title: Parameters optimization of two-speed powertrain of electric vehicle based on genetic algorithm publication-title: Adv Mech Eng doi: 10.1177/1687814020901652 – volume: 342 year: 2023 ident: 10.1016/j.etran.2023.100267_b13 article-title: Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121203 – volume: 104 start-page: 725 year: 2018 ident: 10.1016/j.etran.2023.100267_b14 article-title: Shifting and power sharing control of a novel dual input clutchless transmission for electric vehicles publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.033 – volume: 185 start-page: 1 year: 2019 ident: 10.1016/j.etran.2023.100267_b5 article-title: Blending gear shift strategy design and comparison study for a battery electric city bus with AMT publication-title: Energy doi: 10.1016/j.energy.2019.07.004 – volume: 13 start-page: 5073 issue: 19 year: 2020 ident: 10.1016/j.etran.2023.100267_b8 article-title: Gear ratio optimization along with a novel gearshift scheduling strategy for a two-speed transmission system in electric vehicle publication-title: Energies doi: 10.3390/en13195073 – volume: 183 start-page: 914 year: 2016 ident: 10.1016/j.etran.2023.100267_b35 article-title: AMT downshifting strategy design of HEV during regenerative braking process for energy conservation publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.09.031 – volume: 26 start-page: 131 issue: 2 year: 1990 ident: 10.1016/j.etran.2023.100267_b32 article-title: Minimax and maximin distance designs publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(90)90122-B – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.etran.2023.100267_b30 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 |
| SSID | ssj0002963885 |
| Score | 2.3123043 |
| Snippet | Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100267 |
| SubjectTerms | Artificial neural network Automation design program Electric vehicles Multi-objective optimization Powertrain system |
| Title | Automation program for optimum design of electric vehicle powertrain systems based on artificial neural network |
| URI | https://dx.doi.org/10.1016/j.etran.2023.100267 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2590-1168 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002963885 issn: 2590-1168 databaseCode: ACRLP dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 2590-1168 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002963885 issn: 2590-1168 databaseCode: AIKHN dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoED4inGY8qBI2VrmobsOE1M4zUhHtJuVZeHGGLrBB2_nzhJJ5AQB059qI5ax7Kd5vNngNOcGqmFSCNmVIoLlG7UvaD2TEqm4lSyjiNJuhvx4TO7HqfjGvSrWhiEVQbf732689bhTjtos72YTtuP1JVNctwpcqa3Bg0bf4SoQ6N3dTMcrX61UDQy15wTRSKUqfiHHNJLlzYsnGMfcUdI6lrO_xKjvsWdwRZshoSR9Pw7bUNNz3dg4xuN4C4UvWVZ-BJEEvBWxOaipLDuYLacEeVQGqQwxDe9mUryqV9wOLLAJmmuTQTxnM4fBOOaInYoVIPnlyDIeukODjO-B8-Dy6f-MAqNFCJpI1QZJVQKxDmYDsddO2mTKMn0xBil6CRRnMbcKM405aqT5sxwkSc2NculTuxc0jjZh_q8mOsDIFymTCVayLjLsGhXKBPrVFkhg4i3vAm0Ul0mA8s4fsVbVsHJXjOn7wz1nXl9N-FsJbTwJBt_P86rOcl-2Epmw8Bfgof_FTyCdbzyIL5jqJfvS31ik5Fy0rLG1n-4vW8Fo_sCwFXgEA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHNSD8RnxuQePVuh2dylHQiQgj4uQcNuUfUSMUKLF3-_ObkswMRw8tWk7m3Z2OjPtfvMNQg8JMVLHMQuoUQw-UJpBs0HsnpRUhUzSuiNJGo54d0JfpmxaQu2iFgZglbnv9z7deev8SC3XZm01n9deiSub5LBS5ExvD1Uoixr27ay0ev3uaPOrhYCRueacIBKATME_5JBeOrNh4Qn6iDtCUtdy_o8YtRV3OsfoKE8Yccvf0wkq6eUpOtyiETxDaWudpb4EEed4K2xzUZxad7BYL7ByKA2cGuyb3swl_tZvMBxeQZM01yYCe07nLwxxTWE7FKjB80tgYL10G4cZP0eTzvO43Q3yRgqBtBEqCyIiY8A5mDqHVTtpkyhJ9cwYpcgsUpyE3ChONeGqzhJqeJxENjVLpI7sXJIwukDlZbrUlwhzyaiKdCzDJoWi3ViZUDNlhQwg3pIqIoXqhMxZxuEpPkQBJ3sXTt8C9C28vqvocSO08iQbuy_nxZyIX7YibBjYJXj1X8F7tN8dDwdi0Bv1r9EBnPGAvhtUzj7X-tYmJtnsLje8Hz6n4Vw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automation+program+for+optimum+design+of+electric+vehicle+powertrain+systems+based+on+artificial+neural+network&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Kwon%2C+Kihan&rft.au=Lim%2C+Sang-Kil&rft.au=Kim%2C+Dongwoo&rft.au=Park%2C+Kijong&rft.date=2023-10-01&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=18&rft.spage=100267&rft_id=info:doi/10.1016%2Fj.etran.2023.100267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_etran_2023_100267 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon |