Automation program for optimum design of electric vehicle powertrain systems based on artificial neural network

Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic performance of electric vehicles (EVs). This study developed an automated design program to obtain the optimal design of EVs for various powertrain...

Full description

Saved in:
Bibliographic Details
Published ineTransportation (Amsterdam) Vol. 18; p. 100267
Main Authors Kwon, Kihan, Lim, Sang-Kil, Kim, Dongwoo, Park, Kijong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2023
Subjects
Online AccessGet full text
ISSN2590-1168
2590-1168
DOI10.1016/j.etran.2023.100267

Cover

Abstract Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic performance of electric vehicles (EVs). This study developed an automated design program to obtain the optimal design of EVs for various powertrain systems. The program consists of an EV simulation and artificial neural network (ANN) modeling and optimization tools. The EV simulation tool employs an integrated EV model that can analyze the efficiency and performance of various powertrain systems in a single environment. The ANN modeling and optimization tool first constructs an ANN model, and then performs optimization using the ANN model to address excessive computational efforts arising from the multi-objective genetic algorithm. This study verified the developed program by conducting analysis and optimization of five powertrain systems with the same EV specifications. A multi-objective optimization problem was formulated by considering the design variables as the torque distribution between the motors and gear shifting patterns and ratios of the transmission, and the objectives as the energy consumption and acceleration time. A comparison of the optimization results among the five powertrain systems quantitatively showed the positive effects of the multi-motor and multi-speed powertrain systems. Furthermore, the ANN-based multi-objective optimization process allowed for the efficient determination of the optimum design solutions for the proposed EV powertrain systems. Consequently, these results demonstrated the effectiveness of the automation program in rapid decision-making on EV powertrain system configurations, satisfying each designer’s requirements. •An integrated electric vehicle analysis model for various powertrain systems.•Artificial neural network based multi-objective optimization process for powertrain.•Development of automation program for effective design optimization.•Optimization results for various powertrain systems of electric vehicle.
AbstractList Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic performance of electric vehicles (EVs). This study developed an automated design program to obtain the optimal design of EVs for various powertrain systems. The program consists of an EV simulation and artificial neural network (ANN) modeling and optimization tools. The EV simulation tool employs an integrated EV model that can analyze the efficiency and performance of various powertrain systems in a single environment. The ANN modeling and optimization tool first constructs an ANN model, and then performs optimization using the ANN model to address excessive computational efforts arising from the multi-objective genetic algorithm. This study verified the developed program by conducting analysis and optimization of five powertrain systems with the same EV specifications. A multi-objective optimization problem was formulated by considering the design variables as the torque distribution between the motors and gear shifting patterns and ratios of the transmission, and the objectives as the energy consumption and acceleration time. A comparison of the optimization results among the five powertrain systems quantitatively showed the positive effects of the multi-motor and multi-speed powertrain systems. Furthermore, the ANN-based multi-objective optimization process allowed for the efficient determination of the optimum design solutions for the proposed EV powertrain systems. Consequently, these results demonstrated the effectiveness of the automation program in rapid decision-making on EV powertrain system configurations, satisfying each designer’s requirements. •An integrated electric vehicle analysis model for various powertrain systems.•Artificial neural network based multi-objective optimization process for powertrain.•Development of automation program for effective design optimization.•Optimization results for various powertrain systems of electric vehicle.
ArticleNumber 100267
Author Park, Kijong
Kwon, Kihan
Lim, Sang-Kil
Kim, Dongwoo
Author_xml – sequence: 1
  givenname: Kihan
  surname: Kwon
  fullname: Kwon, Kihan
  organization: Department of Automotive Engineering, Honam University, Gwangju, Republic of Korea
– sequence: 2
  givenname: Sang-Kil
  surname: Lim
  fullname: Lim, Sang-Kil
  organization: Department of Automotive Engineering, Honam University, Gwangju, Republic of Korea
– sequence: 3
  givenname: Dongwoo
  surname: Kim
  fullname: Kim, Dongwoo
  organization: Research and Development Division, Hyundai Motor Company, Hwaseong, Republic of Korea
– sequence: 4
  givenname: Kijong
  orcidid: 0000-0002-9080-3979
  surname: Park
  fullname: Park, Kijong
  email: kjpark@hyundai.com
  organization: Research and Development Division, Hyundai Motor Company, Hwaseong, Republic of Korea
BookMark eNqFkMtOQjEQhhuDiYg8gZu-wMFeDqUsXBDiLSFxo-umtFMsntOStkB4ew_gwrjQ1Uwm883k_65RL8QACN1SMqKEirv1CErSYcQI492EMDG5QH02npKKUiF7P_orNMx5TbqdqeBSjvsozrYltrr4GPAmxVXSLXYx4bgpvt222EL2q4Cjw9CAKckbvIMPbxrAm7iH1H32AedDLtBmvNQZLO5O6VS888brBgfYplMp-5g-b9Cl002G4XcdoPfHh7f5c7V4fXqZzxaV4YSXijMjGSHSEUEmkhvOalPD0jlr2ZJbwahwVtTAhCVjXTshNSeSawNcM8coHyB-vmtSzDmBU5vkW50OihJ11KbW6qRNHbWps7aOmv6ijC8nOceczT_s_ZmFLtbOQ1LZeAgGrE-dOWWj_5P_AslTjpA
CitedBy_id crossref_primary_10_1155_er_9015034
crossref_primary_10_1007_s00521_025_11117_5
crossref_primary_10_1016_j_apenergy_2024_124840
crossref_primary_10_1016_j_energy_2024_132078
crossref_primary_10_1016_j_jpowsour_2024_235564
crossref_primary_10_1016_j_etran_2024_100353
crossref_primary_10_1016_j_energy_2024_133811
crossref_primary_10_1016_j_geits_2025_100286
crossref_primary_10_1109_TTE_2024_3416173
crossref_primary_10_1016_j_energy_2024_132009
crossref_primary_10_3390_app142411559
Cites_doi 10.1016/j.enconman.2023.116683
10.1016/j.energy.2021.121419
10.1016/j.apenergy.2022.119395
10.1016/j.enconman.2021.115054
10.1109/ACCESS.2019.2912994
10.3390/en12030388
10.1016/j.ymssp.2021.107731
10.3390/en11061324
10.1109/TVT.2014.2363144
10.1109/TTE.2021.3081115
10.1080/0305215X.2017.1302439
10.1016/j.energy.2021.119897
10.1016/j.energy.2023.127112
10.1016/j.etran.2022.100221
10.1016/j.etran.2022.100214
10.1016/j.etran.2022.100167
10.1016/j.etran.2022.100188
10.1016/j.apenergy.2019.03.195
10.1177/0954407014521395
10.1016/j.apenergy.2019.114190
10.1177/16878140211022869
10.3390/en15114149
10.4271/08-07-02-0011
10.1016/j.ymssp.2014.05.045
10.1016/j.ymssp.2019.106601
10.1177/1687814020901652
10.1016/j.apenergy.2023.121203
10.1016/j.ymssp.2017.11.033
10.1016/j.energy.2019.07.004
10.3390/en13195073
10.1016/j.apenergy.2016.09.031
10.1016/0378-3758(90)90122-B
10.1109/4235.996017
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.etran.2023.100267
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1168
ExternalDocumentID 10_1016_j_etran_2023_100267
S2590116823000425
GroupedDBID AABXZ
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAXUO
ACDAQ
ACRLP
AEBSH
AEZYN
AFKWA
AFRZQ
AHJVU
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FYGXN
KOM
M41
M~E
ROL
SPC
SPCBC
SSM
SSR
SST
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c303t-32c82008f060783c324c4ebffdd2b3d6216fd64e26d05a4f68a3083ace3a2f213
IEDL.DBID AIKHN
ISSN 2590-1168
IngestDate Thu Apr 24 22:52:27 EDT 2025
Wed Oct 01 04:21:00 EDT 2025
Fri Feb 23 02:36:01 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Powertrain system
Electric vehicles
Multi-objective optimization
Artificial neural network
Automation design program
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-32c82008f060783c324c4ebffdd2b3d6216fd64e26d05a4f68a3083ace3a2f213
ORCID 0000-0002-9080-3979
ParticipantIDs crossref_primary_10_1016_j_etran_2023_100267
crossref_citationtrail_10_1016_j_etran_2023_100267
elsevier_sciencedirect_doi_10_1016_j_etran_2023_100267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle eTransportation (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Shi, Lin (b17) 2019; 243
Tan, Yang, Zhao, Hai, Zhang (b4) 2018; 11
Johnson, Moore, Ylvisaker (b32) 1990; 26
Liang, Yang, Wu, Zhang, Walker (b14) 2018; 104
MathWorks (b33) 2019
Abdelli, Le Berr, Benlamine (b25) 2013
Kwon, Lee, Lim (b13) 2023; 342
Nguyen, Nguyen, Trovão, Ta (b20) 2022; 252
Spanoudakis, Tsourveloudis, Doitsidis, Karapidakis (b6) 2019; 12
Urbina Coronado, Orta Castañón, Ahuett-Garza (b15) 2018; 50
Kwon, Ryu, Seo, Kim, Lee, Min (b28) 2020; 139
Nassar, Shaltout, Hegazi (b31) 2023; 277
Ruan, Song (b16) 2019; 7
Li, Zhu, Zhang, Peng, Chen (b7) 2020; 12
Kwon, Jo, Min (b9) 2021
Zhao, Ling, Liu, Wang, Burke, Lian (b1) 2023; 15
Ahn, Bayrak, Papalambros (b24) 2015; 64
Ahssan, Ektesabi, Gorji (b23) 2018; 7
Deb, Pratap, Agarwal, Meyarivan (b30) 2002; 6
Yu, Lin, Zhao, Yi, Su, Liu (b21) 2022; 321
Wu, Qiang, Pan, Zang (b11) 2022; 15
Nguyen, Walker, Zhang (b19) 2021; 158
Yu, Lin, Tian, Zhao, Liu, Xie (b22) 2023; 272
Dong, Zhao, Xu, Wang, Lin, Liu (b27) 2023; 15
Ahssan, Ektesabi, Gorji (b8) 2020; 13
Sun, Chiu, Zuo, Zhou, Gan, Li (b10) 2021; 13
Wassiliadis, Steinsträter, Schreiber, Rosner, Nicoletti, Schmid (b3) 2022; 12
Lin, Zhao, Pan, Yi (b5) 2019; 185
Gao, Liang, Xiang, Guo, Chen (b29) 2015; 50
Kwon, Seo, Min (b18) 2020; 259
Li, Wang, Xiong, He, Li (b35) 2016; 183
Zhu, Zhang, Walker, Zhou, Zhan, Wei (b34) 2015; 229
Kwon, Lee, Min (b26) 2021; 7
Yuan, Li (b2) 2021; 222
Liu, Gao, Zhai, Huang, Chen, Zhang (b12) 2022
Abdelli (10.1016/j.etran.2023.100267_b25) 2013
Yuan (10.1016/j.etran.2023.100267_b2) 2021; 222
Yu (10.1016/j.etran.2023.100267_b22) 2023; 272
Kwon (10.1016/j.etran.2023.100267_b28) 2020; 139
Kwon (10.1016/j.etran.2023.100267_b18) 2020; 259
Kwon (10.1016/j.etran.2023.100267_b13) 2023; 342
Zhao (10.1016/j.etran.2023.100267_b1) 2023; 15
Nguyen (10.1016/j.etran.2023.100267_b19) 2021; 158
Tan (10.1016/j.etran.2023.100267_b4) 2018; 11
Nguyen (10.1016/j.etran.2023.100267_b20) 2022; 252
Zhu (10.1016/j.etran.2023.100267_b34) 2015; 229
Li (10.1016/j.etran.2023.100267_b35) 2016; 183
Urbina Coronado (10.1016/j.etran.2023.100267_b15) 2018; 50
Dong (10.1016/j.etran.2023.100267_b27) 2023; 15
Zhao (10.1016/j.etran.2023.100267_b17) 2019; 243
Spanoudakis (10.1016/j.etran.2023.100267_b6) 2019; 12
Deb (10.1016/j.etran.2023.100267_b30) 2002; 6
Lin (10.1016/j.etran.2023.100267_b5) 2019; 185
Ahn (10.1016/j.etran.2023.100267_b24) 2015; 64
Gao (10.1016/j.etran.2023.100267_b29) 2015; 50
Johnson (10.1016/j.etran.2023.100267_b32) 1990; 26
Ahssan (10.1016/j.etran.2023.100267_b23) 2018; 7
Kwon (10.1016/j.etran.2023.100267_b26) 2021; 7
Kwon (10.1016/j.etran.2023.100267_b9) 2021
Liang (10.1016/j.etran.2023.100267_b14) 2018; 104
Nassar (10.1016/j.etran.2023.100267_b31) 2023; 277
Ruan (10.1016/j.etran.2023.100267_b16) 2019; 7
Ahssan (10.1016/j.etran.2023.100267_b8) 2020; 13
MathWorks (10.1016/j.etran.2023.100267_b33) 2019
Liu (10.1016/j.etran.2023.100267_b12) 2022
Wassiliadis (10.1016/j.etran.2023.100267_b3) 2022; 12
Li (10.1016/j.etran.2023.100267_b7) 2020; 12
Yu (10.1016/j.etran.2023.100267_b21) 2022; 321
Wu (10.1016/j.etran.2023.100267_b11) 2022; 15
Sun (10.1016/j.etran.2023.100267_b10) 2021; 13
References_xml – volume: 342
  year: 2023
  ident: b13
  article-title: Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis
  publication-title: Appl Energy
– volume: 15
  year: 2023
  ident: b1
  article-title: Machine learning for predicting battery capacity for electric vehicles
  publication-title: eTransportation
– volume: 272
  year: 2023
  ident: b22
  article-title: Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system
  publication-title: Energy
– volume: 7
  start-page: 3110
  year: 2021
  end-page: 3123
  ident: b26
  article-title: Motor and transmission multi-objective optimum design for tracked hybrid electric vehicles considering equivalent inertia of track system
  publication-title: IEEE Trans Transp Electrification
– volume: 13
  year: 2021
  ident: b10
  article-title: Transmission ratio optimization of two-speed gearbox in battery electric passenger vehicles
  publication-title: Adv Mech Eng
– year: 2013
  ident: b25
  article-title: Efficient design methodology of an all-electric vehicle powertrain using multi-objective genetic optimization algorithm
– volume: 12
  start-page: 388
  year: 2019
  ident: b6
  article-title: Experimental research of transmissions on electric vehicles’ energy consumption
  publication-title: Energies
– volume: 104
  start-page: 725
  year: 2018
  end-page: 743
  ident: b14
  article-title: Shifting and power sharing control of a novel dual input clutchless transmission for electric vehicles
  publication-title: Mech Syst Signal Process
– year: 2022
  ident: b12
  article-title: Coordinated control strategy for braking and shifting for electric vehicle with two-speed automatic transmission
  publication-title: eTransportation
– year: 2019
  ident: b33
  article-title: MATLAB App Designer (Ver. R2019a)
– volume: 15
  year: 2023
  ident: b27
  article-title: Rapid assessment of series–parallel hybrid transmission comprehensive performance: A near-global optimal method
  publication-title: eTransportation
– volume: 26
  start-page: 131
  year: 1990
  end-page: 148
  ident: b32
  article-title: Minimax and maximin distance designs
  publication-title: J Stat Plan Inference
– volume: 321
  year: 2022
  ident: b21
  article-title: Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles
  publication-title: Appl Energy
– year: 2021
  ident: b9
  article-title: Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency
  publication-title: Energy
– volume: 158
  year: 2021
  ident: b19
  article-title: Optimization and coordinated control of gear shift and mode transition for a dual-motor electric vehicle
  publication-title: Mech Syst Signal Process
– volume: 7
  start-page: 54330
  year: 2019
  end-page: 54342
  ident: b16
  article-title: A novel dual-motor two-speed direct drive battery electric vehicle drivetrain
  publication-title: IEEE Access
– volume: 7
  start-page: 169
  year: 2018
  end-page: 182
  ident: b23
  article-title: Electric vehicle with multi-speed transmission: A review on performances and complexities
  publication-title: SAE Int J Alternat Powertrains
– volume: 50
  start-page: 615
  year: 2015
  end-page: 631
  ident: b29
  article-title: Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle
  publication-title: Mech Syst Signal Process
– volume: 183
  start-page: 914
  year: 2016
  end-page: 925
  ident: b35
  article-title: AMT downshifting strategy design of HEV during regenerative braking process for energy conservation
  publication-title: Appl Energy
– volume: 13
  start-page: 5073
  year: 2020
  ident: b8
  article-title: Gear ratio optimization along with a novel gearshift scheduling strategy for a two-speed transmission system in electric vehicle
  publication-title: Energies
– volume: 222
  year: 2021
  ident: b2
  article-title: Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems
  publication-title: Energy
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 12
  year: 2022
  ident: b3
  article-title: Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID. 3
  publication-title: eTransportation
– volume: 12
  start-page: 1
  year: 2020
  end-page: 16
  ident: b7
  article-title: Parameters optimization of two-speed powertrain of electric vehicle based on genetic algorithm
  publication-title: Adv Mech Eng
– volume: 15
  start-page: 4149
  year: 2022
  ident: b11
  article-title: Multi-objective optimization of gear ratios of a seamless three-speed automated manual transmission for electric vehicles considering shift performance
  publication-title: Energies
– volume: 243
  start-page: 21
  year: 2019
  end-page: 34
  ident: b17
  article-title: Optimization of integrated energy management for a dual-motor coaxial coupling propulsion electric city bus
  publication-title: Appl Energy
– volume: 185
  start-page: 1
  year: 2019
  end-page: 14
  ident: b5
  article-title: Blending gear shift strategy design and comparison study for a battery electric city bus with AMT
  publication-title: Energy
– volume: 139
  year: 2020
  ident: b28
  article-title: Efficient uncertainty quantification for integrated performance of complex vehicle system
  publication-title: Mech Syst Signal Process
– volume: 64
  start-page: 3870
  year: 2015
  end-page: 3877
  ident: b24
  article-title: Electric vehicle design optimization: Integration of a high-fidelity interior-permanent-magnet motor model
  publication-title: IEEE Trans Veh Technol
– volume: 229
  start-page: 70
  year: 2015
  end-page: 82
  ident: b34
  article-title: Gear shift schedule design for multi-speed pure electric vehicles
  publication-title: Proc Inst Mech Eng D
– volume: 11
  start-page: 1324
  year: 2018
  ident: b4
  article-title: Gear ratio optimization of a multi-speed transmission for electric dump truck operating on the structure route
  publication-title: Energies
– volume: 50
  start-page: 293
  year: 2018
  end-page: 309
  ident: b15
  article-title: Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle
  publication-title: Eng Optim
– volume: 259
  year: 2020
  ident: b18
  article-title: Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system
  publication-title: Appl Energy
– volume: 252
  year: 2022
  ident: b20
  article-title: Optimal drivetrain design methodology for enhancing dynamic and energy performances of dual-motor electric vehicles
  publication-title: Energy Convers Manage
– volume: 277
  year: 2023
  ident: b31
  article-title: Multi-objective optimum energy management strategies for parallel hybrid electric vehicles: A comparative study
  publication-title: Energy Convers Manage
– volume: 277
  year: 2023
  ident: 10.1016/j.etran.2023.100267_b31
  article-title: Multi-objective optimum energy management strategies for parallel hybrid electric vehicles: A comparative study
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2023.116683
– year: 2021
  ident: 10.1016/j.etran.2023.100267_b9
  article-title: Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121419
– volume: 321
  year: 2022
  ident: 10.1016/j.etran.2023.100267_b21
  article-title: Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119395
– volume: 252
  year: 2022
  ident: 10.1016/j.etran.2023.100267_b20
  article-title: Optimal drivetrain design methodology for enhancing dynamic and energy performances of dual-motor electric vehicles
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.115054
– year: 2013
  ident: 10.1016/j.etran.2023.100267_b25
– volume: 7
  start-page: 54330
  year: 2019
  ident: 10.1016/j.etran.2023.100267_b16
  article-title: A novel dual-motor two-speed direct drive battery electric vehicle drivetrain
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912994
– volume: 12
  start-page: 388
  issue: 3
  year: 2019
  ident: 10.1016/j.etran.2023.100267_b6
  article-title: Experimental research of transmissions on electric vehicles’ energy consumption
  publication-title: Energies
  doi: 10.3390/en12030388
– volume: 158
  year: 2021
  ident: 10.1016/j.etran.2023.100267_b19
  article-title: Optimization and coordinated control of gear shift and mode transition for a dual-motor electric vehicle
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107731
– volume: 11
  start-page: 1324
  issue: 6
  year: 2018
  ident: 10.1016/j.etran.2023.100267_b4
  article-title: Gear ratio optimization of a multi-speed transmission for electric dump truck operating on the structure route
  publication-title: Energies
  doi: 10.3390/en11061324
– volume: 64
  start-page: 3870
  issue: 9
  year: 2015
  ident: 10.1016/j.etran.2023.100267_b24
  article-title: Electric vehicle design optimization: Integration of a high-fidelity interior-permanent-magnet motor model
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2014.2363144
– volume: 7
  start-page: 3110
  issue: 4
  year: 2021
  ident: 10.1016/j.etran.2023.100267_b26
  article-title: Motor and transmission multi-objective optimum design for tracked hybrid electric vehicles considering equivalent inertia of track system
  publication-title: IEEE Trans Transp Electrification
  doi: 10.1109/TTE.2021.3081115
– volume: 50
  start-page: 293
  issue: 2
  year: 2018
  ident: 10.1016/j.etran.2023.100267_b15
  article-title: Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2017.1302439
– volume: 222
  year: 2021
  ident: 10.1016/j.etran.2023.100267_b2
  article-title: Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119897
– volume: 272
  year: 2023
  ident: 10.1016/j.etran.2023.100267_b22
  article-title: Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127112
– volume: 15
  year: 2023
  ident: 10.1016/j.etran.2023.100267_b27
  article-title: Rapid assessment of series–parallel hybrid transmission comprehensive performance: A near-global optimal method
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100221
– volume: 15
  year: 2023
  ident: 10.1016/j.etran.2023.100267_b1
  article-title: Machine learning for predicting battery capacity for electric vehicles
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100214
– volume: 12
  year: 2022
  ident: 10.1016/j.etran.2023.100267_b3
  article-title: Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID. 3
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100167
– year: 2022
  ident: 10.1016/j.etran.2023.100267_b12
  article-title: Coordinated control strategy for braking and shifting for electric vehicle with two-speed automatic transmission
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100188
– volume: 243
  start-page: 21
  year: 2019
  ident: 10.1016/j.etran.2023.100267_b17
  article-title: Optimization of integrated energy management for a dual-motor coaxial coupling propulsion electric city bus
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.195
– volume: 229
  start-page: 70
  issue: 1
  year: 2015
  ident: 10.1016/j.etran.2023.100267_b34
  article-title: Gear shift schedule design for multi-speed pure electric vehicles
  publication-title: Proc Inst Mech Eng D
  doi: 10.1177/0954407014521395
– year: 2019
  ident: 10.1016/j.etran.2023.100267_b33
– volume: 259
  year: 2020
  ident: 10.1016/j.etran.2023.100267_b18
  article-title: Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114190
– volume: 13
  issue: 6
  year: 2021
  ident: 10.1016/j.etran.2023.100267_b10
  article-title: Transmission ratio optimization of two-speed gearbox in battery electric passenger vehicles
  publication-title: Adv Mech Eng
  doi: 10.1177/16878140211022869
– volume: 15
  start-page: 4149
  issue: 11
  year: 2022
  ident: 10.1016/j.etran.2023.100267_b11
  article-title: Multi-objective optimization of gear ratios of a seamless three-speed automated manual transmission for electric vehicles considering shift performance
  publication-title: Energies
  doi: 10.3390/en15114149
– volume: 7
  start-page: 169
  issue: 2
  year: 2018
  ident: 10.1016/j.etran.2023.100267_b23
  article-title: Electric vehicle with multi-speed transmission: A review on performances and complexities
  publication-title: SAE Int J Alternat Powertrains
  doi: 10.4271/08-07-02-0011
– volume: 50
  start-page: 615
  year: 2015
  ident: 10.1016/j.etran.2023.100267_b29
  article-title: Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.05.045
– volume: 139
  year: 2020
  ident: 10.1016/j.etran.2023.100267_b28
  article-title: Efficient uncertainty quantification for integrated performance of complex vehicle system
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106601
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.etran.2023.100267_b7
  article-title: Parameters optimization of two-speed powertrain of electric vehicle based on genetic algorithm
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814020901652
– volume: 342
  year: 2023
  ident: 10.1016/j.etran.2023.100267_b13
  article-title: Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121203
– volume: 104
  start-page: 725
  year: 2018
  ident: 10.1016/j.etran.2023.100267_b14
  article-title: Shifting and power sharing control of a novel dual input clutchless transmission for electric vehicles
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.033
– volume: 185
  start-page: 1
  year: 2019
  ident: 10.1016/j.etran.2023.100267_b5
  article-title: Blending gear shift strategy design and comparison study for a battery electric city bus with AMT
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.004
– volume: 13
  start-page: 5073
  issue: 19
  year: 2020
  ident: 10.1016/j.etran.2023.100267_b8
  article-title: Gear ratio optimization along with a novel gearshift scheduling strategy for a two-speed transmission system in electric vehicle
  publication-title: Energies
  doi: 10.3390/en13195073
– volume: 183
  start-page: 914
  year: 2016
  ident: 10.1016/j.etran.2023.100267_b35
  article-title: AMT downshifting strategy design of HEV during regenerative braking process for energy conservation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.031
– volume: 26
  start-page: 131
  issue: 2
  year: 1990
  ident: 10.1016/j.etran.2023.100267_b32
  article-title: Minimax and maximin distance designs
  publication-title: J Stat Plan Inference
  doi: 10.1016/0378-3758(90)90122-B
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.etran.2023.100267_b30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
SSID ssj0002963885
Score 2.3123043
Snippet Many studies have been conducted on various powertrain systems, such as multi-motor, multi-speed, or both, to enhance the energy efficiency and dynamic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100267
SubjectTerms Artificial neural network
Automation design program
Electric vehicles
Multi-objective optimization
Powertrain system
Title Automation program for optimum design of electric vehicle powertrain systems based on artificial neural network
URI https://dx.doi.org/10.1016/j.etran.2023.100267
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2590-1168
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002963885
  issn: 2590-1168
  databaseCode: ACRLP
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 2590-1168
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002963885
  issn: 2590-1168
  databaseCode: AIKHN
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoED4inGY8qBI2VrmobsOE1M4zUhHtJuVZeHGGLrBB2_nzhJJ5AQB059qI5ax7Kd5vNngNOcGqmFSCNmVIoLlG7UvaD2TEqm4lSyjiNJuhvx4TO7HqfjGvSrWhiEVQbf732689bhTjtos72YTtuP1JVNctwpcqa3Bg0bf4SoQ6N3dTMcrX61UDQy15wTRSKUqfiHHNJLlzYsnGMfcUdI6lrO_xKjvsWdwRZshoSR9Pw7bUNNz3dg4xuN4C4UvWVZ-BJEEvBWxOaipLDuYLacEeVQGqQwxDe9mUryqV9wOLLAJmmuTQTxnM4fBOOaInYoVIPnlyDIeukODjO-B8-Dy6f-MAqNFCJpI1QZJVQKxDmYDsddO2mTKMn0xBil6CRRnMbcKM405aqT5sxwkSc2NculTuxc0jjZh_q8mOsDIFymTCVayLjLsGhXKBPrVFkhg4i3vAm0Ul0mA8s4fsVbVsHJXjOn7wz1nXl9N-FsJbTwJBt_P86rOcl-2Epmw8Bfgof_FTyCdbzyIL5jqJfvS31ik5Fy0rLG1n-4vW8Fo_sCwFXgEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHNSD8RnxuQePVuh2dylHQiQgj4uQcNuUfUSMUKLF3-_ObkswMRw8tWk7m3Z2OjPtfvMNQg8JMVLHMQuoUQw-UJpBs0HsnpRUhUzSuiNJGo54d0JfpmxaQu2iFgZglbnv9z7deev8SC3XZm01n9deiSub5LBS5ExvD1Uoixr27ay0ev3uaPOrhYCRueacIBKATME_5JBeOrNh4Qn6iDtCUtdy_o8YtRV3OsfoKE8Yccvf0wkq6eUpOtyiETxDaWudpb4EEed4K2xzUZxad7BYL7ByKA2cGuyb3swl_tZvMBxeQZM01yYCe07nLwxxTWE7FKjB80tgYL10G4cZP0eTzvO43Q3yRgqBtBEqCyIiY8A5mDqHVTtpkyhJ9cwYpcgsUpyE3ChONeGqzhJqeJxENjVLpI7sXJIwukDlZbrUlwhzyaiKdCzDJoWi3ViZUDNlhQwg3pIqIoXqhMxZxuEpPkQBJ3sXTt8C9C28vqvocSO08iQbuy_nxZyIX7YibBjYJXj1X8F7tN8dDwdi0Bv1r9EBnPGAvhtUzj7X-tYmJtnsLje8Hz6n4Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automation+program+for+optimum+design+of+electric+vehicle+powertrain+systems+based+on+artificial+neural+network&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Kwon%2C+Kihan&rft.au=Lim%2C+Sang-Kil&rft.au=Kim%2C+Dongwoo&rft.au=Park%2C+Kijong&rft.date=2023-10-01&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=18&rft.spage=100267&rft_id=info:doi/10.1016%2Fj.etran.2023.100267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_etran_2023_100267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon