Diagnostic Strategy Optimization Based on Particle Swarm Algorithm
Fault diagnostic strategy profoundly influences diagnostic efficiency and cost. Diagnostic strategy optimization is a Non-Polynomial optimizing problem, which is a hard one. Applying conventional methods to resolving it, there are some difficulties: more complex to implementing algorithm, more time...
Saved in:
| Published in | Applied Mechanics and Materials Vol. 215-216; pp. 555 - 560 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Zurich
Trans Tech Publications Ltd
01.11.2012
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 3037855010 9783037855010 |
| ISSN | 1660-9336 1662-7482 1662-7482 |
| DOI | 10.4028/www.scientific.net/AMM.215-216.555 |
Cover
| Abstract | Fault diagnostic strategy profoundly influences diagnostic efficiency and cost. Diagnostic strategy optimization is a Non-Polynomial optimizing problem, which is a hard one. Applying conventional methods to resolving it, there are some difficulties: more complex to implementing algorithm, more time to diagnosing and more difficult to attaining global optimum. Particle swarm algorithm (PSA) is a new intelligent optimization algorithm, and applied to optimizing diagnostic strategy. Function of all-in cost is constructed by state probability, isolating matrix and test cost, serving as objective function. Test sequences are directly put into particle codes. Particle speeds are transformed to learning probability towards the best one in the swarm. Given proper parameters in PSA, the method can search the global optimum in a little time. At last, an example shows the approach is feasible and effective. |
|---|---|
| AbstractList | Fault diagnostic strategy profoundly influences diagnostic efficiency and cost. Diagnostic strategy optimization is a Non-Polynomial optimizing problem, which is a hard one. Applying conventional methods to resolving it, there are some difficulties: more complex to implementing algorithm, more time to diagnosing and more difficult to attaining global optimum. Particle swarm algorithm (PSA) is a new intelligent optimization algorithm, and applied to optimizing diagnostic strategy. Function of all-in cost is constructed by state probability, isolating matrix and test cost, serving as objective function. Test sequences are directly put into particle codes. Particle speeds are transformed to learning probability towards the best one in the swarm. Given proper parameters in PSA, the method can search the global optimum in a little time. At last, an example shows the approach is feasible and effective. |
| Author | Zhang, Yan Sheng Qiao, Zhong Tao Jing, Jian Hui |
| Author_xml | – givenname: Jian Hui surname: Jing fullname: Jing, Jian Hui email: jjhsohu@sohu.com organization: Mechanical Engineering College – givenname: Yan Sheng surname: Zhang fullname: Zhang, Yan Sheng email: zhang_sheng_74@163.com organization: Mechanical Engineering College – givenname: Zhong Tao surname: Qiao fullname: Qiao, Zhong Tao email: Qzt7213@sohu.com organization: Mechanical Engineering College |
| BookMark | eNqNkN1LwzAUxYNOcJv-DwXfhHb5ato-7sMv2JgwfQ5pmm4ZazqTjDL_ejMn6KMPl3vhHs45_AagZ1qjALhHMKEQ56Ou6xIntTJe11omRvnReLFIMEpjjFiSpukF6CPGcJzRHF-CAYEky9MUItj7fsC4IIRdg4FzWwgZRTTvg8lMi7VpndcyWnkrvFofo-Xe60Z_Cq9bE02EU1UUjldhg2qnolUnbBONd-vWar9pbsBVLXZO3f7sIXh_fHibPsfz5dPLdDyPZWjiYyxJyQSsKC4ZKcsaU3UqRyqJihJlNKsIo0pJActcKFzkRU4QrBRNS6HquiJDcHf23dv246Cc59v2YE2I5IhSzHDGsiyoJmeVtK1zVtV8b3Uj7JEjyE8geQDJf0HyAJIHkDyADMN4ABlMZmeTQMQ4r-TmT9b_bb4AcVeGUw |
| Cites_doi | 10.1109/icec.1998.699327 10.21236/ada342380 |
| ContentType | Journal Article |
| Copyright | 2012 Trans Tech Publications Ltd Copyright Trans Tech Publications Ltd. Nov 2012 |
| Copyright_xml | – notice: 2012 Trans Tech Publications Ltd – notice: Copyright Trans Tech Publications Ltd. Nov 2012 |
| DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA BENPR BFMQW BGLVJ CCPQU D1I DWQXO FR3 HCIFZ JG9 KB. KR7 L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.4028/www.scientific.net/AMM.215-216.555 |
| DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Continental Europe Database ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database SciTech Premium Collection (Proquest) Materials Research Database Materials Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database (Proquest) Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1662-7482 |
| EndPage | 560 |
| ExternalDocumentID | 3101919671 10_4028_www_scientific_net_AMM_215_216_555 |
| GroupedDBID | .DC 4.4 6J9 8FE 8FG ABHXD ABJCF ABJNI ABUWG ACGFO ACGFS ACIWK AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BFMQW BGLVJ BPHCQ CCPQU CZ9 D1I DB1 DKFMR EBS EJD HCIFZ KB. KC. L6V M7S P2P PDBOC PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS RNS RTP AAYXX ABDNZ ACYGS CITATION PUEGO 7SR 7TB 8BQ 8FD DWQXO FR3 JG9 KR7 PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c303t-2c3b6a0d42b63bbf24e55013dc19b1747d364eeca0b8ae29898310de45baeffd3 |
| IEDL.DBID | BENPR |
| ISBN | 3037855010 9783037855010 |
| ISSN | 1660-9336 1662-7482 |
| IngestDate | Fri Jul 25 12:05:33 EDT 2025 Wed Oct 01 02:01:17 EDT 2025 Fri Oct 03 21:32:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Design for Testability Diagnostic Strategy Particle Swarm Algorithm Test Sequence |
| Language | English |
| License | https://www.scientific.net/PolicyAndEthics/PublishingPolicies https://www.scientific.net/license/TDM_Licenser.pdf |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-2c3b6a0d42b63bbf24e55013dc19b1747d364eeca0b8ae29898310de45baeffd3 |
| Notes | Selected, peer reviewed papers from the 2nd International Conference on Advanced Design and Manufacturing Engineering (ADME 2012), August 16-18, 2012, Taiyuan, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1442627677 |
| PQPubID | 2029177 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_1442627677 crossref_primary_10_4028_www_scientific_net_AMM_215_216_555 transtech_journals_10_4028_www_scientific_net_AMM_215_216_555 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20121101 |
| PublicationDateYYYYMMDD | 2012-11-01 |
| PublicationDate_xml | – month: 11 year: 2012 text: 20121101 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Zurich |
| PublicationPlace_xml | – name: Zurich |
| PublicationTitle | Applied Mechanics and Materials |
| PublicationYear | 2012 |
| Publisher | Trans Tech Publications Ltd |
| Publisher_xml | – name: Trans Tech Publications Ltd |
| References | 1859964 1859962 1859963 1859960 1859961 |
| References_xml | – ident: 1859962 – ident: 1859964 – ident: 1859963 doi: 10.1109/icec.1998.699327 – ident: 1859960 – ident: 1859961 doi: 10.21236/ada342380 |
| SSID | ssj0064148 ssj0001141006 |
| Score | 1.881241 |
| Snippet | Fault diagnostic strategy profoundly influences diagnostic efficiency and cost. Diagnostic strategy optimization is a Non-Polynomial optimizing problem, which... |
| SourceID | proquest crossref transtech |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 555 |
| Title | Diagnostic Strategy Optimization Based on Particle Swarm Algorithm |
| URI | https://www.scientific.net/AMM.215-216.555 https://www.proquest.com/docview/1442627677 |
| Volume | 215-216 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Continental Europe Database isbn: 3037855010 customDbUrl: eissn: 1662-7482 dateEnd: 20200630 omitProxy: false ssIdentifier: ssj0064148 issn: 1660-9336 databaseCode: BFMQW dateStart: 20040901 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central isbn: 3037855010 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-7482 dateEnd: 20200630 omitProxy: true ssIdentifier: ssj0064148 issn: 1660-9336 databaseCode: BENPR dateStart: 20040901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection isbn: 3037855010 customDbUrl: eissn: 1662-7482 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0064148 issn: 1660-9336 databaseCode: 8FG dateStart: 20040901 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BIpX2gGhL1S0U5dBTJUPieB2vKoR2CwtC2i1tQeVm-ZX20F0oTYX498wkTrMnxCFKrERR_NmZhz3zDcAH1OGp94VjqF4NE7l3TCkRqGmHAVWG8eQoTmfy9FKcXQ2uVmDW5sJQWGUrE2tB7a8drZHvo-HPJS9kURze_GFUNYp2V9sSGiaWVvAHNcXYKqxxYsbqwdr4eHb-rVt1obBG2ldsZLUUWV1fK5MyZejaS8r-SPOCWL6yyAjVtZ_BR5Qx6HCp-jObjEUK6KlXEUbT6R7qT8YzuTegzMFlPdcZr-sV6SAiaF3SY5NN2IgGaDJqZsxLWAmLV_BiiZbwNYyPmvg7fCKJ7LX3yReULfOYtJmMUff5BC_O48xLvt-Z23ky-v0TMat-zbfgcnJ88fmUxVoLzGEHK8ZdbqVJveBW5taWXATqM45dNrTotRQ-lyIEZ1KrTCDadqpQ5oMYWBPK0udvoLe4XoS3kKReDV3uleOlEqo0psShc2QZFTa1kvfhU4uMvmkoNTS6IoSrRlx1h6tGXDXiqhFXPKRGXPuw04Kp4-_2V3eTow8H_wFeuv_k1797_PXb8BwtJt4kI-5Ar7r9F96jVVLZXVhVk5PdOOHoPJl-_fEAWuPfAg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkEp7QH0htqWtD-2lkmlie51E1araLaClsFvUgsTN-JVyYBcKqRB_jt_WceI0e6p64RApViIr-jyZb8aeB8A75PDEucxSpFdNBXeW5rnwYWgKj5ShXXAUJ1M5PhZfT_onS3DX5sKEsMpWJ9aK2l3YsEf-EQ1_Jlkms-zz5S8aukaF09W2hYaOrRXcoC4xFhM79v3tDbpw14O9bVzv94zt7hx9GdPYZYBaVN8VZZYbqRMnmJHcmJIJj1Z7il-dFgbt9cxxKby3OjG59qFgeejN5bzoG-3L0nGc9wGsCC4KdP5WRjvTw-_dLk8IowznmA03SJHW_bxSKRNacC5DtknCs1BVLI0VqLrxQ_iAOg0dvLyGpcmQDAFE9a7FcDLZQr6mLJVb_ZCpuMirnbG8WgXOCwVhF3hz9wmsRYOXDBsJfQpLfv4MHi-UQXwOo-0m3g_fILFa7i35hrpsFpNEyQi51hG8OYySTn7c6KsZGZ7_xDWqzmYv4PheUF-H5fnF3G8ASVxeWO5yy8pc5KXWJYqKDZZYZhIjWQ8-tcioy6aEh0LXJ-CqEFfV4aoQV4W4KsQVL6kQ1x5stmCq-Htfq04YezD4C_DC8_-e_uW_p38Lq-OjyYE62Jvuv4JHaK2xJhFyE5arq9_-NVpElXkTxY7A6X1L-h9kwhqT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Strategy+Optimization+Based+on+Particle+Swarm+Algorithm&rft.jtitle=Applied+mechanics+and+materials&rft.au=Zhang%2C+Yan+Sheng&rft.au=Qiao%2C+Zhong+Tao&rft.au=Jing%2C+Jian+Hui&rft.date=2012-11-01&rft.issn=1662-7482&rft.eissn=1662-7482&rft.volume=215-216&rft.spage=555&rft.epage=560&rft_id=info:doi/10.4028%2Fwww.scientific.net%2FAMM.215-216.555&rft.externalDBID=n%2Fa&rft.externalDocID=10_4028_www_scientific_net_AMM_215_216_555 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.scientific.net%2FImage%2FTitleCover%2F2023%3Fwidth%3D600 |