Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations
In this paper, we are concerned with the nonlinear differential equation of fractional order D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , 1 < α ≤ 2 , where D 0 + α is the standard Riemann–Liouville fractional order derivative, subject to the boundary conditions u ( 0 ) = 0 , D 0 +...
Saved in:
Published in | Computers & mathematics with applications (1987) Vol. 59; no. 3; pp. 1363 - 1375 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0898-1221 1873-7668 |
DOI | 10.1016/j.camwa.2009.06.029 |
Cover
Abstract | In this paper, we are concerned with the nonlinear differential equation of fractional order
D
0
+
α
u
(
t
)
+
f
(
t
,
u
(
t
)
)
=
0
,
0
<
t
<
1
,
1
<
α
≤
2
,
where
D
0
+
α
is the standard Riemann–Liouville fractional order derivative, subject to the boundary conditions
u
(
0
)
=
0
,
D
0
+
β
u
(
1
)
=
a
D
0
+
β
u
(
ξ
)
.
We obtain the existence and multiplicity results of positive solutions by using some fixed point theorems. |
---|---|
AbstractList | In this paper, we are concerned with the nonlinear differential equation of fractional order
D
0
+
α
u
(
t
)
+
f
(
t
,
u
(
t
)
)
=
0
,
0
<
t
<
1
,
1
<
α
≤
2
,
where
D
0
+
α
is the standard Riemann–Liouville fractional order derivative, subject to the boundary conditions
u
(
0
)
=
0
,
D
0
+
β
u
(
1
)
=
a
D
0
+
β
u
(
ξ
)
.
We obtain the existence and multiplicity results of positive solutions by using some fixed point theorems. |
Author | Li, C.F. Zhou, Yong Luo, X.N. |
Author_xml | – sequence: 1 givenname: C.F. surname: Li fullname: Li, C.F. email: cfli@xtu.edu.cn – sequence: 2 givenname: X.N. surname: Luo fullname: Luo, X.N. email: Luoxn@xtu.edu.cn – sequence: 3 givenname: Yong surname: Zhou fullname: Zhou, Yong email: yzhou@xtu.edu.cn |
BookMark | eNqFkMtOwzAQRS1UJNrCF7DxDySM7SqJFyxQVR5SJTawthx7LFylcbHdAn9P0rJiAavRjHSu7pwZmfShR0KuGZQMWHWzKY3efuiSA8gSqhK4PCNT1tSiqKuqmZApNLIpGOfsgsxS2gDAQnCYku3q06eMvUEaHN2F5LM_IE2h22cf-jRe8xvSNux7q-MXPehuj3QXQ9vhlroQ6dCl8z3qSF3UZqR0R613DiP22Q8Lvu_1Me2SnDvdJbz6mXPyer96WT4W6-eHp-XdujACRC54y1yrq4W10oK1ICpsTQ3IG76AVvDG8lbIVmqJyLjVYGrpqkY7J4wQthFzIk-5JoaUIjplfD5WyFH7TjFQoze1UUdvavSmoFKDt4EVv9hd9Nvh9X-o2xOFw1sHj1El40et1kc0Wdng_-S_AYjCjrQ |
CitedBy_id | crossref_primary_10_1186_s40064_016_2656_9 crossref_primary_10_1142_S1793557122501182 crossref_primary_10_1155_2015_418569 crossref_primary_10_1088_1402_4896_ad85a2 crossref_primary_10_1155_2012_149849 crossref_primary_10_1216_RMJ_2014_44_3_953 crossref_primary_10_1016_j_cnsns_2011_05_007 crossref_primary_10_1155_2020_6738379 crossref_primary_10_1155_2012_527969 crossref_primary_10_1007_s40096_015_0150_0 crossref_primary_10_1155_2011_720702 crossref_primary_10_12677_PM_2017_72012 crossref_primary_10_1016_j_camwa_2010_03_031 crossref_primary_10_1016_j_mcm_2011_04_004 crossref_primary_10_1155_2022_1938290 crossref_primary_10_1007_s12190_012_0564_x crossref_primary_10_14317_jami_2013_221 crossref_primary_10_1186_1687_2770_2012_68 crossref_primary_10_24193_subbmath_2023_3_09 crossref_primary_10_3934_math_2023390 crossref_primary_10_1155_2011_986575 crossref_primary_10_26637_MJM0701_0005 crossref_primary_10_1186_1687_1847_2014_186 crossref_primary_10_1016_j_geomphys_2019_06_004 crossref_primary_10_1186_1687_1847_2012_116 crossref_primary_10_1088_1742_6596_1900_1_012010 crossref_primary_10_1186_s13661_015_0517_z crossref_primary_10_1186_s13661_016_0572_0 crossref_primary_10_1016_j_camwa_2012_01_081 crossref_primary_10_1142_S0218348X22400229 crossref_primary_10_1007_s12190_013_0689_6 crossref_primary_10_1186_s13662_015_0729_7 crossref_primary_10_4208_aamm_2015_m1054 crossref_primary_10_1016_j_neucom_2013_06_034 crossref_primary_10_3934_math_2023804 crossref_primary_10_1016_j_camwa_2011_04_018 crossref_primary_10_1186_s13662_015_0540_5 crossref_primary_10_1016_j_camwa_2011_04_013 crossref_primary_10_1155_2013_376938 crossref_primary_10_1186_1687_2770_2012_81 crossref_primary_10_1007_s12190_011_0505_0 crossref_primary_10_1016_j_amc_2012_10_068 crossref_primary_10_1016_j_amc_2014_12_155 crossref_primary_10_1016_j_aml_2010_04_042 crossref_primary_10_1155_2010_501230 crossref_primary_10_1155_2012_708192 crossref_primary_10_1016_j_cnsns_2012_04_010 crossref_primary_10_1007_s12190_012_0613_5 crossref_primary_10_1155_2014_131548 crossref_primary_10_1007_s13226_020_0423_7 crossref_primary_10_1007_s40096_019_0278_4 crossref_primary_10_1155_2014_984875 crossref_primary_10_1142_S0129167X20500299 crossref_primary_10_1016_j_aej_2021_04_023 crossref_primary_10_1016_j_cnsns_2011_05_034 crossref_primary_10_1155_2022_3386198 crossref_primary_10_1186_1687_1847_2014_151 crossref_primary_10_1155_2014_510808 crossref_primary_10_1080_07362994_2021_1990082 crossref_primary_10_12677_aam_2024_136248 crossref_primary_10_1002_mma_8583 crossref_primary_10_1007_s12591_011_0086_2 crossref_primary_10_1155_2012_423796 crossref_primary_10_1186_1687_1847_2014_51 crossref_primary_10_1007_s11565_013_0181_0 crossref_primary_10_15388_NA_2019_1_7 crossref_primary_10_1186_1687_1847_2013_233 crossref_primary_10_1186_s13662_016_0750_5 crossref_primary_10_1186_1687_1847_2013_114 crossref_primary_10_5269_bspm_62725 crossref_primary_10_1155_2014_790862 crossref_primary_10_1007_s40819_017_0447_9 crossref_primary_10_1155_2013_308024 crossref_primary_10_5269_bspm_64571 crossref_primary_10_1155_2013_473828 crossref_primary_10_1186_1687_1847_2013_78 crossref_primary_10_12677_AAM_2020_99182 crossref_primary_10_1155_2012_540846 crossref_primary_10_1016_j_cnsns_2011_08_032 crossref_primary_10_1016_j_camwa_2011_04_048 crossref_primary_10_53006_rna_938851 crossref_primary_10_1007_s11117_010_0110_8 crossref_primary_10_1016_j_nonrwa_2011_07_034 crossref_primary_10_1080_01630563_2011_631069 crossref_primary_10_3934_math_20231301 crossref_primary_10_1186_s13661_017_0841_6 crossref_primary_10_1155_2010_601492 crossref_primary_10_1016_j_aml_2012_03_018 crossref_primary_10_3934_math_2019_6_1596 crossref_primary_10_1177_09720634241275830 crossref_primary_10_1016_j_camwa_2011_07_026 crossref_primary_10_1155_2012_172963 crossref_primary_10_1155_2014_419514 crossref_primary_10_1186_s13662_015_0375_0 crossref_primary_10_1142_S0218348X20400046 crossref_primary_10_1186_1687_1847_2014_298 crossref_primary_10_1186_s13662_018_1465_6 crossref_primary_10_1080_00036811_2021_1880569 crossref_primary_10_1186_s13662_014_0335_0 crossref_primary_10_1007_s11425_015_5113_2 crossref_primary_10_1016_j_camwa_2011_04_057 crossref_primary_10_14317_jami_2013_877 crossref_primary_10_1186_s13661_016_0643_2 crossref_primary_10_1007_s12190_013_0735_4 crossref_primary_10_1080_17476933_2023_2260988 crossref_primary_10_1186_1687_1847_2013_257 crossref_primary_10_1016_j_jobb_2024_05_002 crossref_primary_10_24193_subbmath_2021_2_12 crossref_primary_10_1186_1687_1847_2014_69 crossref_primary_10_1186_1687_1847_2014_284 crossref_primary_10_1016_j_amc_2015_01_111 crossref_primary_10_1007_s12190_012_0551_2 crossref_primary_10_3390_math12213379 crossref_primary_10_1080_07362994_2020_1815545 crossref_primary_10_1186_1687_2770_2013_23 crossref_primary_10_1186_1687_2770_2012_57 crossref_primary_10_1007_s12190_012_0634_0 crossref_primary_10_1186_1687_1847_2013_368 crossref_primary_10_1016_j_amc_2014_12_092 crossref_primary_10_1016_j_cnsns_2011_07_019 crossref_primary_10_1515_ijnsns_2016_0060 crossref_primary_10_1186_s13661_018_0930_1 crossref_primary_10_1186_s13662_017_1443_4 crossref_primary_10_1186_1687_1847_2013_48 crossref_primary_10_1016_j_amc_2013_10_089 crossref_primary_10_1016_j_aej_2023_03_076 crossref_primary_10_1016_j_camwa_2011_11_021 crossref_primary_10_1016_j_biosystemseng_2021_03_006 crossref_primary_10_5666_KMJ_2016_56_2_419 crossref_primary_10_1186_s13662_015_0714_1 crossref_primary_10_2139_ssrn_4143323 crossref_primary_10_1016_j_amc_2016_10_014 crossref_primary_10_11948_2016081 crossref_primary_10_1155_2012_530624 crossref_primary_10_1007_s12190_015_0950_2 crossref_primary_10_1016_j_amc_2011_04_006 crossref_primary_10_1142_S1793524517500942 crossref_primary_10_21042_AMNS_2016_1_00002 crossref_primary_10_1016_j_camwa_2011_03_041 crossref_primary_10_4134_BKMS_2014_51_2_329 crossref_primary_10_1016_j_apm_2015_02_005 crossref_primary_10_1007_s40840_014_0041_9 crossref_primary_10_1186_1687_1847_2013_304 crossref_primary_10_1186_s13661_016_0553_3 crossref_primary_10_1186_s13662_015_0413_y crossref_primary_10_11948_2018_1227 crossref_primary_10_1155_2013_928147 crossref_primary_10_1155_2013_579740 crossref_primary_10_1016_j_amc_2012_09_008 crossref_primary_10_1142_S1793524515500795 crossref_primary_10_1016_j_aml_2019_03_006 crossref_primary_10_1016_j_na_2011_02_043 crossref_primary_10_11948_2018_938 crossref_primary_10_53006_rna_1114063 crossref_primary_10_1007_s12190_011_0509_9 crossref_primary_10_1155_2020_5895310 crossref_primary_10_1155_2014_231892 crossref_primary_10_1002_mma_3298 crossref_primary_10_1007_s12043_018_1555_8 crossref_primary_10_1155_2015_263748 crossref_primary_10_1186_1687_1847_2014_129 crossref_primary_10_3390_math7030223 crossref_primary_10_1155_2012_180672 crossref_primary_10_1155_2014_871908 crossref_primary_10_1155_2017_4057089 crossref_primary_10_1051_wujns_2022274287 crossref_primary_10_1155_2014_291614 crossref_primary_10_1155_2012_214042 crossref_primary_10_1007_s00009_014_0435_9 crossref_primary_10_1186_s13662_020_02618_9 crossref_primary_10_1186_s13662_020_2518_1 crossref_primary_10_1007_s10986_012_9156_6 crossref_primary_10_1155_2015_736108 crossref_primary_10_1186_s13661_021_01497_7 crossref_primary_10_1016_j_camwa_2012_02_022 crossref_primary_10_1016_j_cnsns_2014_12_002 crossref_primary_10_1186_s13661_019_1190_4 crossref_primary_10_1155_2012_303545 crossref_primary_10_1016_j_camwa_2011_03_076 crossref_primary_10_1007_s12190_011_0475_2 crossref_primary_10_1016_j_camwa_2011_03_073 crossref_primary_10_1186_s13662_017_1099_0 crossref_primary_10_1007_s12190_014_0843_9 crossref_primary_10_1155_2017_4683581 crossref_primary_10_1515_ijnsns_2021_0150 crossref_primary_10_1155_2013_268347 crossref_primary_10_1186_1029_242X_2014_262 crossref_primary_10_32323_ujma_396363 crossref_primary_10_1155_2013_916369 crossref_primary_10_1007_s11071_012_0443_x crossref_primary_10_1016_j_amc_2014_11_092 crossref_primary_10_1155_2013_137890 crossref_primary_10_1007_s12190_012_0626_0 crossref_primary_10_1155_2018_1252767 crossref_primary_10_1016_j_phpro_2012_03_184 crossref_primary_10_1155_2013_493164 crossref_primary_10_1155_2020_8891736 crossref_primary_10_1007_s12190_012_0603_7 crossref_primary_10_1186_s13661_023_01728_z crossref_primary_10_1016_j_aml_2011_11_028 crossref_primary_10_1088_1742_6596_1597_1_012054 crossref_primary_10_3934_math_2024785 crossref_primary_10_11648_j_ijees_20240902_12 crossref_primary_10_1186_1687_2770_2014_69 crossref_primary_10_1155_2020_2651845 crossref_primary_10_11948_20190356 crossref_primary_10_1007_s12190_015_0908_4 crossref_primary_10_31801_cfsuasmas_670823 crossref_primary_10_1155_2013_531038 crossref_primary_10_1016_j_amc_2015_09_040 crossref_primary_10_1016_j_cnsns_2012_08_033 crossref_primary_10_1186_s13661_018_1076_x crossref_primary_10_1155_2013_643571 crossref_primary_10_1186_s13662_016_1062_5 crossref_primary_10_1080_25765299_2020_1850621 crossref_primary_10_1016_j_chaos_2023_113847 |
Cites_doi | 10.1016/S0022-247X(02)00716-3 10.1016/S0022-247X(02)00583-8 10.1016/j.jmaa.2005.02.052 10.1016/j.na.2007.09.025 10.1006/jmaa.1996.0456 10.1512/iumj.1979.28.28046 10.1016/S0362-546X(97)00525-7 10.14232/ejqtde.2008.1.24 10.14232/ejqtde.2008.1.3 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd |
Copyright_xml | – notice: 2009 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.camwa.2009.06.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-7668 |
EndPage | 1375 |
ExternalDocumentID | 10_1016_j_camwa_2009_06_029 S0898122109003915 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-2b1fba64dd9d0dd036ebc70e28240b328d2b39b9a9ee12da0c79f68aff3c33d83 |
IEDL.DBID | AIKHN |
ISSN | 0898-1221 |
IngestDate | Thu Apr 24 23:12:24 EDT 2025 Tue Jul 01 03:38:50 EDT 2025 Fri Feb 23 02:23:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fractional differential equation Riemann–Liouville derivative Boundary value problem Carathéodory conditions Positive solution |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-2b1fba64dd9d0dd036ebc70e28240b328d2b39b9a9ee12da0c79f68aff3c33d83 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0898122109003915 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_camwa_2009_06_029 crossref_primary_10_1016_j_camwa_2009_06_029 elsevier_sciencedirect_doi_10_1016_j_camwa_2009_06_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-01 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computers & mathematics with applications (1987) |
PublicationYear | 2010 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lakshmikantham (b7) 2008; 69 Zhou (b10) 2008; 1 Agarwal, Meehan, O’Regan (b16) 2001 Granas, Guenther, Lee (b18) 1991; 70 Miller, Ross (b2) 1993 Kilbas, Srivastava, Trujillo (b1) 2006; vol. 204 Krasnosel’skii (b15) 1964 Podlubny (b3) 1999 Bakakhani, Gejji (b4) 2003; 278 El-Sayed (b6) 1998; 33 Bai, Lü (b11) 2005; 311 Delbosco, Rodina (b5) 1996; 204 Kosmatov (b12) 2008 Bai (b14) 2008; 2008 Kaufmann, Mboumi (b13) 2008; 2008 Zhou (b9) 2009; 12 Zhang (b8) 2003; 278 Leggett, Williams (b17) 1979; 28 Delbosco (10.1016/j.camwa.2009.06.029_b5) 1996; 204 Bakakhani (10.1016/j.camwa.2009.06.029_b4) 2003; 278 El-Sayed (10.1016/j.camwa.2009.06.029_b6) 1998; 33 Zhou (10.1016/j.camwa.2009.06.029_b9) 2009; 12 Kaufmann (10.1016/j.camwa.2009.06.029_b13) 2008; 2008 Zhou (10.1016/j.camwa.2009.06.029_b10) 2008; 1 Bai (10.1016/j.camwa.2009.06.029_b14) 2008; 2008 Kosmatov (10.1016/j.camwa.2009.06.029_b12) 2008 Podlubny (10.1016/j.camwa.2009.06.029_b3) 1999 Granas (10.1016/j.camwa.2009.06.029_b18) 1991; 70 Kilbas (10.1016/j.camwa.2009.06.029_b1) 2006; vol. 204 Bai (10.1016/j.camwa.2009.06.029_b11) 2005; 311 Agarwal (10.1016/j.camwa.2009.06.029_b16) 2001 Leggett (10.1016/j.camwa.2009.06.029_b17) 1979; 28 Miller (10.1016/j.camwa.2009.06.029_b2) 1993 Krasnosel’skii (10.1016/j.camwa.2009.06.029_b15) 1964 Lakshmikantham (10.1016/j.camwa.2009.06.029_b7) 2008; 69 Zhang (10.1016/j.camwa.2009.06.029_b8) 2003; 278 |
References_xml | – volume: 69 start-page: 3337 year: 2008 end-page: 3343 ident: b7 article-title: Theory of fractional functional differential equations publication-title: Nonlinear Anal. – volume: 28 start-page: 673 year: 1979 end-page: 688 ident: b17 article-title: Multiple positive fixed points of nonlinear operators on ordered Banach space publication-title: Indiana Univ. Math. J. – year: 1993 ident: b2 article-title: An Introduction to the Fractional Calculus and Fractional Differential Equations – volume: 2008 start-page: 1 year: 2008 end-page: 10 ident: b14 article-title: Triple positive solutions for a boundary value problem of nonlinear fractional differential equation publication-title: Electron. J. Qual. Theory Diff. Equ. – year: 2001 ident: b16 article-title: Fixed Point Theory and Applications – year: 1999 ident: b3 article-title: Fractional Differential Equations, Mathematics in Science and Engineering – volume: vol. 204 year: 2006 ident: b1 publication-title: Theory and Applications of Fractional Differential Equations – volume: 70 start-page: 153 year: 1991 end-page: 196 ident: b18 article-title: Some general existence principle in the Caratheodory theory of nonlinear systems publication-title: J. Math. Pures Appl. – volume: 33 start-page: 181 year: 1998 end-page: 186 ident: b6 article-title: Nonlinear functional differential equations of arbitrary orders publication-title: Nonlinear Anal. – volume: 204 start-page: 609 year: 1996 end-page: 625 ident: b5 article-title: Existence and uniqueness for a nonlinear fractional differential equation publication-title: J. Math. Anal. Appl. – year: 2008 ident: b12 article-title: A singular boundary value problem for nonlinear differential equations of fractional order publication-title: J. Appl. Math. Comput. – volume: 2008 start-page: 1 year: 2008 end-page: 11 ident: b13 article-title: Positive solutions of a boundary value problem for a nonlinear fractional differential equation publication-title: Electron. J. Qual. Theory Diff. Equ. – volume: 1 start-page: 239 year: 2008 end-page: 244 ident: b10 article-title: Existence and uniqueness of fractional functional differential equations with unbounded delay publication-title: Int. J. Dyn. Syst. Differ. Equ. – volume: 278 start-page: 434 year: 2003 end-page: 442 ident: b4 article-title: Existence of positive solutions of nonlinear fractional differential equations publication-title: J. Math. Anal. Appl. – volume: 278 start-page: 136 year: 2003 end-page: 148 ident: b8 article-title: Existence of positive solution for some class of nonlinear fractional differential equations publication-title: J. Math. Anal. Appl. – year: 1964 ident: b15 article-title: Topological Methods in the Theory of Nonlinear Integral Equations – volume: 311 start-page: 495 year: 2005 end-page: 505 ident: b11 article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation publication-title: J. Math. Anal. Appl. – volume: 12 start-page: 195 year: 2009 end-page: 204 ident: b9 article-title: Existence and uniqueness of solutions for a system of fractional differential equations publication-title: J. Frac. Calc. Appl. Anal. – volume: vol. 204 year: 2006 ident: 10.1016/j.camwa.2009.06.029_b1 – volume: 278 start-page: 434 year: 2003 ident: 10.1016/j.camwa.2009.06.029_b4 article-title: Existence of positive solutions of nonlinear fractional differential equations publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00716-3 – year: 1993 ident: 10.1016/j.camwa.2009.06.029_b2 – year: 2008 ident: 10.1016/j.camwa.2009.06.029_b12 article-title: A singular boundary value problem for nonlinear differential equations of fractional order publication-title: J. Appl. Math. Comput. – year: 1964 ident: 10.1016/j.camwa.2009.06.029_b15 – year: 1999 ident: 10.1016/j.camwa.2009.06.029_b3 – volume: 70 start-page: 153 year: 1991 ident: 10.1016/j.camwa.2009.06.029_b18 article-title: Some general existence principle in the Caratheodory theory of nonlinear systems publication-title: J. Math. Pures Appl. – volume: 278 start-page: 136 year: 2003 ident: 10.1016/j.camwa.2009.06.029_b8 article-title: Existence of positive solution for some class of nonlinear fractional differential equations publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00583-8 – volume: 311 start-page: 495 year: 2005 ident: 10.1016/j.camwa.2009.06.029_b11 article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.02.052 – volume: 12 start-page: 195 year: 2009 ident: 10.1016/j.camwa.2009.06.029_b9 article-title: Existence and uniqueness of solutions for a system of fractional differential equations publication-title: J. Frac. Calc. Appl. Anal. – volume: 69 start-page: 3337 year: 2008 ident: 10.1016/j.camwa.2009.06.029_b7 article-title: Theory of fractional functional differential equations publication-title: Nonlinear Anal. doi: 10.1016/j.na.2007.09.025 – volume: 1 start-page: 239 issue: 4 year: 2008 ident: 10.1016/j.camwa.2009.06.029_b10 article-title: Existence and uniqueness of fractional functional differential equations with unbounded delay publication-title: Int. J. Dyn. Syst. Differ. Equ. – year: 2001 ident: 10.1016/j.camwa.2009.06.029_b16 – volume: 204 start-page: 609 year: 1996 ident: 10.1016/j.camwa.2009.06.029_b5 article-title: Existence and uniqueness for a nonlinear fractional differential equation publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1996.0456 – volume: 28 start-page: 673 year: 1979 ident: 10.1016/j.camwa.2009.06.029_b17 article-title: Multiple positive fixed points of nonlinear operators on ordered Banach space publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1979.28.28046 – volume: 33 start-page: 181 year: 1998 ident: 10.1016/j.camwa.2009.06.029_b6 article-title: Nonlinear functional differential equations of arbitrary orders publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(97)00525-7 – volume: 2008 start-page: 1 issue: 24 year: 2008 ident: 10.1016/j.camwa.2009.06.029_b14 article-title: Triple positive solutions for a boundary value problem of nonlinear fractional differential equation publication-title: Electron. J. Qual. Theory Diff. Equ. doi: 10.14232/ejqtde.2008.1.24 – volume: 2008 start-page: 1 issue: 3 year: 2008 ident: 10.1016/j.camwa.2009.06.029_b13 article-title: Positive solutions of a boundary value problem for a nonlinear fractional differential equation publication-title: Electron. J. Qual. Theory Diff. Equ. doi: 10.14232/ejqtde.2008.1.3 |
SSID | ssj0004320 |
Score | 2.4291723 |
Snippet | In this paper, we are concerned with the nonlinear differential equation of fractional order
D
0
+
α
u
(
t
)
+
f
(
t
,
u
(
t
)
)
=
0
,
0
<
t
<
1
,
1
<
α
≤
2
,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1363 |
SubjectTerms | Boundary value problem Carathéodory conditions Fractional differential equation Positive solution Riemann–Liouville derivative |
Title | Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations |
URI | https://dx.doi.org/10.1016/j.camwa.2009.06.029 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ5oe_Hi21gfDQePYim0Cxyr0bSa9KJNetvAAkmNj1rr6-JvFxbWR2I8eNslzC4Bdr6Zzcc3AAchyeC2a3BbcIY7BXVYcS0wd1Q4RUz4vR_YFsOsP-qcj7vjBTipzsIEWmXy_dGnl946tbTSbLamk0nrkgjp0YkGZmEpc74IderRXtSg3htc9IdfxyNZVGf0_XEwqMSHSppXoW5fVNKtzI5IGWr-AlDfQOdsFZZTtIh6cUBrsGDv1mGlqsSA0oe5Abenr2G5_DW6dygSsZ4t-txXodVHekiXRZRmbyhofFuUqskgH7iiu6iZoWbIzeJhB__iqnyKdwM3yD5EWfDHTRidnV6d9HEqpIALj1BzTHXbaZV1jJGGGONBy-qCE-vTrQ7RjApDNZNaKmltmxpFCi5dJpRzrGDMCLYFNT8Kuw1I0y6Tzj9EqZC5OEGcFppzlxFHpBINoNXs5UVSGQ_FLm7yik52nZdTHupfyjyQ6qhswOGn0TSKbPzdPauWJf-xV3IPA38Z7vzXcBeWImsg0Fj2oDafPdl9H4zMdRMWj97bzbTl_N1gfPwBrPnimQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECa1HvTi21ifHDyKpbDdhaM2bVqtvdgmvW1ggaSmrbXW178XFtZHYnrwtiHMLoHZmYF8fB8A526Tkei6QjWWUBRlxCCRSIYSQ5gRWLnjfYe26MXtQXQzrA9LoFHchXGwyhD7fUzPo3VoqYbZrM5Go-o9ZtxmJ-KQhTnN-QpYtdUAdq7dGV5_X46knpvR9kaue0E9lIO8MjF5E4G1Mr7EeaH5R3r6kXJaW2Aj1Irwyg9nG5T0dAdsFjoMMPyWu2DSfHeLZZ_ho4EehvWq4ZdXuVZb50GZSyjNP6Bj-NYwaMlAW7bCqWfMEHNo5v6qg_1wIZ5ig8AY6idPCv68BwatZr_RRkFGAWU2Py0QkTUjRRwpxRVWyqYsLbMEa7vZirCkhCkiKZdccK1rRAmcJdzETBhDM0oVo_ugbEehDwCUpE65sS8Rwu1bDMNGMpkkJsYGc8EqgBSzl2aBY9xJXYzTAkz2kOZT7tQveeogdYRXwMWX0cxTbCzvHhfLkv7ylNQmgWWGh_81PANr7f5dN-12erdHYN3jBxyg5RiUF_MXfWLLkoU8zd3uE17I4m0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+positive+solutions+of+the+boundary+value+problem+for+nonlinear+fractional+differential+equations&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Li%2C+C.F.&rft.au=Luo%2C+X.N.&rft.au=Zhou%2C+Yong&rft.date=2010-02-01&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=59&rft.issue=3&rft.spage=1363&rft.epage=1375&rft_id=info:doi/10.1016%2Fj.camwa.2009.06.029&rft.externalDocID=S0898122109003915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon |