Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations

In this paper, we are concerned with the nonlinear differential equation of fractional order D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , 1 < α ≤ 2 , where D 0 + α is the standard Riemann–Liouville fractional order derivative, subject to the boundary conditions u ( 0 ) = 0 , D 0 +...

Full description

Saved in:
Bibliographic Details
Published inComputers & mathematics with applications (1987) Vol. 59; no. 3; pp. 1363 - 1375
Main Authors Li, C.F., Luo, X.N., Zhou, Yong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2010
Subjects
Online AccessGet full text
ISSN0898-1221
1873-7668
DOI10.1016/j.camwa.2009.06.029

Cover

Abstract In this paper, we are concerned with the nonlinear differential equation of fractional order D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , 1 < α ≤ 2 , where D 0 + α is the standard Riemann–Liouville fractional order derivative, subject to the boundary conditions u ( 0 ) = 0 , D 0 + β u ( 1 ) = a D 0 + β u ( ξ ) . We obtain the existence and multiplicity results of positive solutions by using some fixed point theorems.
AbstractList In this paper, we are concerned with the nonlinear differential equation of fractional order D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , 1 < α ≤ 2 , where D 0 + α is the standard Riemann–Liouville fractional order derivative, subject to the boundary conditions u ( 0 ) = 0 , D 0 + β u ( 1 ) = a D 0 + β u ( ξ ) . We obtain the existence and multiplicity results of positive solutions by using some fixed point theorems.
Author Li, C.F.
Zhou, Yong
Luo, X.N.
Author_xml – sequence: 1
  givenname: C.F.
  surname: Li
  fullname: Li, C.F.
  email: cfli@xtu.edu.cn
– sequence: 2
  givenname: X.N.
  surname: Luo
  fullname: Luo, X.N.
  email: Luoxn@xtu.edu.cn
– sequence: 3
  givenname: Yong
  surname: Zhou
  fullname: Zhou, Yong
  email: yzhou@xtu.edu.cn
BookMark eNqFkMtOwzAQRS1UJNrCF7DxDySM7SqJFyxQVR5SJTawthx7LFylcbHdAn9P0rJiAavRjHSu7pwZmfShR0KuGZQMWHWzKY3efuiSA8gSqhK4PCNT1tSiqKuqmZApNLIpGOfsgsxS2gDAQnCYku3q06eMvUEaHN2F5LM_IE2h22cf-jRe8xvSNux7q-MXPehuj3QXQ9vhlroQ6dCl8z3qSF3UZqR0R613DiP22Q8Lvu_1Me2SnDvdJbz6mXPyer96WT4W6-eHp-XdujACRC54y1yrq4W10oK1ICpsTQ3IG76AVvDG8lbIVmqJyLjVYGrpqkY7J4wQthFzIk-5JoaUIjplfD5WyFH7TjFQoze1UUdvavSmoFKDt4EVv9hd9Nvh9X-o2xOFw1sHj1El40et1kc0Wdng_-S_AYjCjrQ
CitedBy_id crossref_primary_10_1186_s40064_016_2656_9
crossref_primary_10_1142_S1793557122501182
crossref_primary_10_1155_2015_418569
crossref_primary_10_1088_1402_4896_ad85a2
crossref_primary_10_1155_2012_149849
crossref_primary_10_1216_RMJ_2014_44_3_953
crossref_primary_10_1016_j_cnsns_2011_05_007
crossref_primary_10_1155_2020_6738379
crossref_primary_10_1155_2012_527969
crossref_primary_10_1007_s40096_015_0150_0
crossref_primary_10_1155_2011_720702
crossref_primary_10_12677_PM_2017_72012
crossref_primary_10_1016_j_camwa_2010_03_031
crossref_primary_10_1016_j_mcm_2011_04_004
crossref_primary_10_1155_2022_1938290
crossref_primary_10_1007_s12190_012_0564_x
crossref_primary_10_14317_jami_2013_221
crossref_primary_10_1186_1687_2770_2012_68
crossref_primary_10_24193_subbmath_2023_3_09
crossref_primary_10_3934_math_2023390
crossref_primary_10_1155_2011_986575
crossref_primary_10_26637_MJM0701_0005
crossref_primary_10_1186_1687_1847_2014_186
crossref_primary_10_1016_j_geomphys_2019_06_004
crossref_primary_10_1186_1687_1847_2012_116
crossref_primary_10_1088_1742_6596_1900_1_012010
crossref_primary_10_1186_s13661_015_0517_z
crossref_primary_10_1186_s13661_016_0572_0
crossref_primary_10_1016_j_camwa_2012_01_081
crossref_primary_10_1142_S0218348X22400229
crossref_primary_10_1007_s12190_013_0689_6
crossref_primary_10_1186_s13662_015_0729_7
crossref_primary_10_4208_aamm_2015_m1054
crossref_primary_10_1016_j_neucom_2013_06_034
crossref_primary_10_3934_math_2023804
crossref_primary_10_1016_j_camwa_2011_04_018
crossref_primary_10_1186_s13662_015_0540_5
crossref_primary_10_1016_j_camwa_2011_04_013
crossref_primary_10_1155_2013_376938
crossref_primary_10_1186_1687_2770_2012_81
crossref_primary_10_1007_s12190_011_0505_0
crossref_primary_10_1016_j_amc_2012_10_068
crossref_primary_10_1016_j_amc_2014_12_155
crossref_primary_10_1016_j_aml_2010_04_042
crossref_primary_10_1155_2010_501230
crossref_primary_10_1155_2012_708192
crossref_primary_10_1016_j_cnsns_2012_04_010
crossref_primary_10_1007_s12190_012_0613_5
crossref_primary_10_1155_2014_131548
crossref_primary_10_1007_s13226_020_0423_7
crossref_primary_10_1007_s40096_019_0278_4
crossref_primary_10_1155_2014_984875
crossref_primary_10_1142_S0129167X20500299
crossref_primary_10_1016_j_aej_2021_04_023
crossref_primary_10_1016_j_cnsns_2011_05_034
crossref_primary_10_1155_2022_3386198
crossref_primary_10_1186_1687_1847_2014_151
crossref_primary_10_1155_2014_510808
crossref_primary_10_1080_07362994_2021_1990082
crossref_primary_10_12677_aam_2024_136248
crossref_primary_10_1002_mma_8583
crossref_primary_10_1007_s12591_011_0086_2
crossref_primary_10_1155_2012_423796
crossref_primary_10_1186_1687_1847_2014_51
crossref_primary_10_1007_s11565_013_0181_0
crossref_primary_10_15388_NA_2019_1_7
crossref_primary_10_1186_1687_1847_2013_233
crossref_primary_10_1186_s13662_016_0750_5
crossref_primary_10_1186_1687_1847_2013_114
crossref_primary_10_5269_bspm_62725
crossref_primary_10_1155_2014_790862
crossref_primary_10_1007_s40819_017_0447_9
crossref_primary_10_1155_2013_308024
crossref_primary_10_5269_bspm_64571
crossref_primary_10_1155_2013_473828
crossref_primary_10_1186_1687_1847_2013_78
crossref_primary_10_12677_AAM_2020_99182
crossref_primary_10_1155_2012_540846
crossref_primary_10_1016_j_cnsns_2011_08_032
crossref_primary_10_1016_j_camwa_2011_04_048
crossref_primary_10_53006_rna_938851
crossref_primary_10_1007_s11117_010_0110_8
crossref_primary_10_1016_j_nonrwa_2011_07_034
crossref_primary_10_1080_01630563_2011_631069
crossref_primary_10_3934_math_20231301
crossref_primary_10_1186_s13661_017_0841_6
crossref_primary_10_1155_2010_601492
crossref_primary_10_1016_j_aml_2012_03_018
crossref_primary_10_3934_math_2019_6_1596
crossref_primary_10_1177_09720634241275830
crossref_primary_10_1016_j_camwa_2011_07_026
crossref_primary_10_1155_2012_172963
crossref_primary_10_1155_2014_419514
crossref_primary_10_1186_s13662_015_0375_0
crossref_primary_10_1142_S0218348X20400046
crossref_primary_10_1186_1687_1847_2014_298
crossref_primary_10_1186_s13662_018_1465_6
crossref_primary_10_1080_00036811_2021_1880569
crossref_primary_10_1186_s13662_014_0335_0
crossref_primary_10_1007_s11425_015_5113_2
crossref_primary_10_1016_j_camwa_2011_04_057
crossref_primary_10_14317_jami_2013_877
crossref_primary_10_1186_s13661_016_0643_2
crossref_primary_10_1007_s12190_013_0735_4
crossref_primary_10_1080_17476933_2023_2260988
crossref_primary_10_1186_1687_1847_2013_257
crossref_primary_10_1016_j_jobb_2024_05_002
crossref_primary_10_24193_subbmath_2021_2_12
crossref_primary_10_1186_1687_1847_2014_69
crossref_primary_10_1186_1687_1847_2014_284
crossref_primary_10_1016_j_amc_2015_01_111
crossref_primary_10_1007_s12190_012_0551_2
crossref_primary_10_3390_math12213379
crossref_primary_10_1080_07362994_2020_1815545
crossref_primary_10_1186_1687_2770_2013_23
crossref_primary_10_1186_1687_2770_2012_57
crossref_primary_10_1007_s12190_012_0634_0
crossref_primary_10_1186_1687_1847_2013_368
crossref_primary_10_1016_j_amc_2014_12_092
crossref_primary_10_1016_j_cnsns_2011_07_019
crossref_primary_10_1515_ijnsns_2016_0060
crossref_primary_10_1186_s13661_018_0930_1
crossref_primary_10_1186_s13662_017_1443_4
crossref_primary_10_1186_1687_1847_2013_48
crossref_primary_10_1016_j_amc_2013_10_089
crossref_primary_10_1016_j_aej_2023_03_076
crossref_primary_10_1016_j_camwa_2011_11_021
crossref_primary_10_1016_j_biosystemseng_2021_03_006
crossref_primary_10_5666_KMJ_2016_56_2_419
crossref_primary_10_1186_s13662_015_0714_1
crossref_primary_10_2139_ssrn_4143323
crossref_primary_10_1016_j_amc_2016_10_014
crossref_primary_10_11948_2016081
crossref_primary_10_1155_2012_530624
crossref_primary_10_1007_s12190_015_0950_2
crossref_primary_10_1016_j_amc_2011_04_006
crossref_primary_10_1142_S1793524517500942
crossref_primary_10_21042_AMNS_2016_1_00002
crossref_primary_10_1016_j_camwa_2011_03_041
crossref_primary_10_4134_BKMS_2014_51_2_329
crossref_primary_10_1016_j_apm_2015_02_005
crossref_primary_10_1007_s40840_014_0041_9
crossref_primary_10_1186_1687_1847_2013_304
crossref_primary_10_1186_s13661_016_0553_3
crossref_primary_10_1186_s13662_015_0413_y
crossref_primary_10_11948_2018_1227
crossref_primary_10_1155_2013_928147
crossref_primary_10_1155_2013_579740
crossref_primary_10_1016_j_amc_2012_09_008
crossref_primary_10_1142_S1793524515500795
crossref_primary_10_1016_j_aml_2019_03_006
crossref_primary_10_1016_j_na_2011_02_043
crossref_primary_10_11948_2018_938
crossref_primary_10_53006_rna_1114063
crossref_primary_10_1007_s12190_011_0509_9
crossref_primary_10_1155_2020_5895310
crossref_primary_10_1155_2014_231892
crossref_primary_10_1002_mma_3298
crossref_primary_10_1007_s12043_018_1555_8
crossref_primary_10_1155_2015_263748
crossref_primary_10_1186_1687_1847_2014_129
crossref_primary_10_3390_math7030223
crossref_primary_10_1155_2012_180672
crossref_primary_10_1155_2014_871908
crossref_primary_10_1155_2017_4057089
crossref_primary_10_1051_wujns_2022274287
crossref_primary_10_1155_2014_291614
crossref_primary_10_1155_2012_214042
crossref_primary_10_1007_s00009_014_0435_9
crossref_primary_10_1186_s13662_020_02618_9
crossref_primary_10_1186_s13662_020_2518_1
crossref_primary_10_1007_s10986_012_9156_6
crossref_primary_10_1155_2015_736108
crossref_primary_10_1186_s13661_021_01497_7
crossref_primary_10_1016_j_camwa_2012_02_022
crossref_primary_10_1016_j_cnsns_2014_12_002
crossref_primary_10_1186_s13661_019_1190_4
crossref_primary_10_1155_2012_303545
crossref_primary_10_1016_j_camwa_2011_03_076
crossref_primary_10_1007_s12190_011_0475_2
crossref_primary_10_1016_j_camwa_2011_03_073
crossref_primary_10_1186_s13662_017_1099_0
crossref_primary_10_1007_s12190_014_0843_9
crossref_primary_10_1155_2017_4683581
crossref_primary_10_1515_ijnsns_2021_0150
crossref_primary_10_1155_2013_268347
crossref_primary_10_1186_1029_242X_2014_262
crossref_primary_10_32323_ujma_396363
crossref_primary_10_1155_2013_916369
crossref_primary_10_1007_s11071_012_0443_x
crossref_primary_10_1016_j_amc_2014_11_092
crossref_primary_10_1155_2013_137890
crossref_primary_10_1007_s12190_012_0626_0
crossref_primary_10_1155_2018_1252767
crossref_primary_10_1016_j_phpro_2012_03_184
crossref_primary_10_1155_2013_493164
crossref_primary_10_1155_2020_8891736
crossref_primary_10_1007_s12190_012_0603_7
crossref_primary_10_1186_s13661_023_01728_z
crossref_primary_10_1016_j_aml_2011_11_028
crossref_primary_10_1088_1742_6596_1597_1_012054
crossref_primary_10_3934_math_2024785
crossref_primary_10_11648_j_ijees_20240902_12
crossref_primary_10_1186_1687_2770_2014_69
crossref_primary_10_1155_2020_2651845
crossref_primary_10_11948_20190356
crossref_primary_10_1007_s12190_015_0908_4
crossref_primary_10_31801_cfsuasmas_670823
crossref_primary_10_1155_2013_531038
crossref_primary_10_1016_j_amc_2015_09_040
crossref_primary_10_1016_j_cnsns_2012_08_033
crossref_primary_10_1186_s13661_018_1076_x
crossref_primary_10_1155_2013_643571
crossref_primary_10_1186_s13662_016_1062_5
crossref_primary_10_1080_25765299_2020_1850621
crossref_primary_10_1016_j_chaos_2023_113847
Cites_doi 10.1016/S0022-247X(02)00716-3
10.1016/S0022-247X(02)00583-8
10.1016/j.jmaa.2005.02.052
10.1016/j.na.2007.09.025
10.1006/jmaa.1996.0456
10.1512/iumj.1979.28.28046
10.1016/S0362-546X(97)00525-7
10.14232/ejqtde.2008.1.24
10.14232/ejqtde.2008.1.3
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.camwa.2009.06.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-7668
EndPage 1375
ExternalDocumentID 10_1016_j_camwa_2009_06_029
S0898122109003915
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-2b1fba64dd9d0dd036ebc70e28240b328d2b39b9a9ee12da0c79f68aff3c33d83
IEDL.DBID AIKHN
ISSN 0898-1221
IngestDate Thu Apr 24 23:12:24 EDT 2025
Tue Jul 01 03:38:50 EDT 2025
Fri Feb 23 02:23:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fractional differential equation
Riemann–Liouville derivative
Boundary value problem
Carathéodory conditions
Positive solution
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-2b1fba64dd9d0dd036ebc70e28240b328d2b39b9a9ee12da0c79f68aff3c33d83
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0898122109003915
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_camwa_2009_06_029
crossref_primary_10_1016_j_camwa_2009_06_029
elsevier_sciencedirect_doi_10_1016_j_camwa_2009_06_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers & mathematics with applications (1987)
PublicationYear 2010
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lakshmikantham (b7) 2008; 69
Zhou (b10) 2008; 1
Agarwal, Meehan, O’Regan (b16) 2001
Granas, Guenther, Lee (b18) 1991; 70
Miller, Ross (b2) 1993
Kilbas, Srivastava, Trujillo (b1) 2006; vol. 204
Krasnosel’skii (b15) 1964
Podlubny (b3) 1999
Bakakhani, Gejji (b4) 2003; 278
El-Sayed (b6) 1998; 33
Bai, Lü (b11) 2005; 311
Delbosco, Rodina (b5) 1996; 204
Kosmatov (b12) 2008
Bai (b14) 2008; 2008
Kaufmann, Mboumi (b13) 2008; 2008
Zhou (b9) 2009; 12
Zhang (b8) 2003; 278
Leggett, Williams (b17) 1979; 28
Delbosco (10.1016/j.camwa.2009.06.029_b5) 1996; 204
Bakakhani (10.1016/j.camwa.2009.06.029_b4) 2003; 278
El-Sayed (10.1016/j.camwa.2009.06.029_b6) 1998; 33
Zhou (10.1016/j.camwa.2009.06.029_b9) 2009; 12
Kaufmann (10.1016/j.camwa.2009.06.029_b13) 2008; 2008
Zhou (10.1016/j.camwa.2009.06.029_b10) 2008; 1
Bai (10.1016/j.camwa.2009.06.029_b14) 2008; 2008
Kosmatov (10.1016/j.camwa.2009.06.029_b12) 2008
Podlubny (10.1016/j.camwa.2009.06.029_b3) 1999
Granas (10.1016/j.camwa.2009.06.029_b18) 1991; 70
Kilbas (10.1016/j.camwa.2009.06.029_b1) 2006; vol. 204
Bai (10.1016/j.camwa.2009.06.029_b11) 2005; 311
Agarwal (10.1016/j.camwa.2009.06.029_b16) 2001
Leggett (10.1016/j.camwa.2009.06.029_b17) 1979; 28
Miller (10.1016/j.camwa.2009.06.029_b2) 1993
Krasnosel’skii (10.1016/j.camwa.2009.06.029_b15) 1964
Lakshmikantham (10.1016/j.camwa.2009.06.029_b7) 2008; 69
Zhang (10.1016/j.camwa.2009.06.029_b8) 2003; 278
References_xml – volume: 69
  start-page: 3337
  year: 2008
  end-page: 3343
  ident: b7
  article-title: Theory of fractional functional differential equations
  publication-title: Nonlinear Anal.
– volume: 28
  start-page: 673
  year: 1979
  end-page: 688
  ident: b17
  article-title: Multiple positive fixed points of nonlinear operators on ordered Banach space
  publication-title: Indiana Univ. Math. J.
– year: 1993
  ident: b2
  article-title: An Introduction to the Fractional Calculus and Fractional Differential Equations
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 10
  ident: b14
  article-title: Triple positive solutions for a boundary value problem of nonlinear fractional differential equation
  publication-title: Electron. J. Qual. Theory Diff. Equ.
– year: 2001
  ident: b16
  article-title: Fixed Point Theory and Applications
– year: 1999
  ident: b3
  article-title: Fractional Differential Equations, Mathematics in Science and Engineering
– volume: vol. 204
  year: 2006
  ident: b1
  publication-title: Theory and Applications of Fractional Differential Equations
– volume: 70
  start-page: 153
  year: 1991
  end-page: 196
  ident: b18
  article-title: Some general existence principle in the Caratheodory theory of nonlinear systems
  publication-title: J. Math. Pures Appl.
– volume: 33
  start-page: 181
  year: 1998
  end-page: 186
  ident: b6
  article-title: Nonlinear functional differential equations of arbitrary orders
  publication-title: Nonlinear Anal.
– volume: 204
  start-page: 609
  year: 1996
  end-page: 625
  ident: b5
  article-title: Existence and uniqueness for a nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
– year: 2008
  ident: b12
  article-title: A singular boundary value problem for nonlinear differential equations of fractional order
  publication-title: J. Appl. Math. Comput.
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 11
  ident: b13
  article-title: Positive solutions of a boundary value problem for a nonlinear fractional differential equation
  publication-title: Electron. J. Qual. Theory Diff. Equ.
– volume: 1
  start-page: 239
  year: 2008
  end-page: 244
  ident: b10
  article-title: Existence and uniqueness of fractional functional differential equations with unbounded delay
  publication-title: Int. J. Dyn. Syst. Differ. Equ.
– volume: 278
  start-page: 434
  year: 2003
  end-page: 442
  ident: b4
  article-title: Existence of positive solutions of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
– volume: 278
  start-page: 136
  year: 2003
  end-page: 148
  ident: b8
  article-title: Existence of positive solution for some class of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
– year: 1964
  ident: b15
  article-title: Topological Methods in the Theory of Nonlinear Integral Equations
– volume: 311
  start-page: 495
  year: 2005
  end-page: 505
  ident: b11
  article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
– volume: 12
  start-page: 195
  year: 2009
  end-page: 204
  ident: b9
  article-title: Existence and uniqueness of solutions for a system of fractional differential equations
  publication-title: J. Frac. Calc. Appl. Anal.
– volume: vol. 204
  year: 2006
  ident: 10.1016/j.camwa.2009.06.029_b1
– volume: 278
  start-page: 434
  year: 2003
  ident: 10.1016/j.camwa.2009.06.029_b4
  article-title: Existence of positive solutions of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00716-3
– year: 1993
  ident: 10.1016/j.camwa.2009.06.029_b2
– year: 2008
  ident: 10.1016/j.camwa.2009.06.029_b12
  article-title: A singular boundary value problem for nonlinear differential equations of fractional order
  publication-title: J. Appl. Math. Comput.
– year: 1964
  ident: 10.1016/j.camwa.2009.06.029_b15
– year: 1999
  ident: 10.1016/j.camwa.2009.06.029_b3
– volume: 70
  start-page: 153
  year: 1991
  ident: 10.1016/j.camwa.2009.06.029_b18
  article-title: Some general existence principle in the Caratheodory theory of nonlinear systems
  publication-title: J. Math. Pures Appl.
– volume: 278
  start-page: 136
  year: 2003
  ident: 10.1016/j.camwa.2009.06.029_b8
  article-title: Existence of positive solution for some class of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00583-8
– volume: 311
  start-page: 495
  year: 2005
  ident: 10.1016/j.camwa.2009.06.029_b11
  article-title: Positive solutions for boundary value problem of nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.02.052
– volume: 12
  start-page: 195
  year: 2009
  ident: 10.1016/j.camwa.2009.06.029_b9
  article-title: Existence and uniqueness of solutions for a system of fractional differential equations
  publication-title: J. Frac. Calc. Appl. Anal.
– volume: 69
  start-page: 3337
  year: 2008
  ident: 10.1016/j.camwa.2009.06.029_b7
  article-title: Theory of fractional functional differential equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.09.025
– volume: 1
  start-page: 239
  issue: 4
  year: 2008
  ident: 10.1016/j.camwa.2009.06.029_b10
  article-title: Existence and uniqueness of fractional functional differential equations with unbounded delay
  publication-title: Int. J. Dyn. Syst. Differ. Equ.
– year: 2001
  ident: 10.1016/j.camwa.2009.06.029_b16
– volume: 204
  start-page: 609
  year: 1996
  ident: 10.1016/j.camwa.2009.06.029_b5
  article-title: Existence and uniqueness for a nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1996.0456
– volume: 28
  start-page: 673
  year: 1979
  ident: 10.1016/j.camwa.2009.06.029_b17
  article-title: Multiple positive fixed points of nonlinear operators on ordered Banach space
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1979.28.28046
– volume: 33
  start-page: 181
  year: 1998
  ident: 10.1016/j.camwa.2009.06.029_b6
  article-title: Nonlinear functional differential equations of arbitrary orders
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(97)00525-7
– volume: 2008
  start-page: 1
  issue: 24
  year: 2008
  ident: 10.1016/j.camwa.2009.06.029_b14
  article-title: Triple positive solutions for a boundary value problem of nonlinear fractional differential equation
  publication-title: Electron. J. Qual. Theory Diff. Equ.
  doi: 10.14232/ejqtde.2008.1.24
– volume: 2008
  start-page: 1
  issue: 3
  year: 2008
  ident: 10.1016/j.camwa.2009.06.029_b13
  article-title: Positive solutions of a boundary value problem for a nonlinear fractional differential equation
  publication-title: Electron. J. Qual. Theory Diff. Equ.
  doi: 10.14232/ejqtde.2008.1.3
SSID ssj0004320
Score 2.4291723
Snippet In this paper, we are concerned with the nonlinear differential equation of fractional order D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , 1 < α ≤ 2 ,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1363
SubjectTerms Boundary value problem
Carathéodory conditions
Fractional differential equation
Positive solution
Riemann–Liouville derivative
Title Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations
URI https://dx.doi.org/10.1016/j.camwa.2009.06.029
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ5oe_Hi21gfDQePYim0Cxyr0bSa9KJNetvAAkmNj1rr6-JvFxbWR2I8eNslzC4Bdr6Zzcc3AAchyeC2a3BbcIY7BXVYcS0wd1Q4RUz4vR_YFsOsP-qcj7vjBTipzsIEWmXy_dGnl946tbTSbLamk0nrkgjp0YkGZmEpc74IderRXtSg3htc9IdfxyNZVGf0_XEwqMSHSppXoW5fVNKtzI5IGWr-AlDfQOdsFZZTtIh6cUBrsGDv1mGlqsSA0oe5Abenr2G5_DW6dygSsZ4t-txXodVHekiXRZRmbyhofFuUqskgH7iiu6iZoWbIzeJhB__iqnyKdwM3yD5EWfDHTRidnV6d9HEqpIALj1BzTHXbaZV1jJGGGONBy-qCE-vTrQ7RjApDNZNaKmltmxpFCi5dJpRzrGDMCLYFNT8Kuw1I0y6Tzj9EqZC5OEGcFppzlxFHpBINoNXs5UVSGQ_FLm7yik52nZdTHupfyjyQ6qhswOGn0TSKbPzdPauWJf-xV3IPA38Z7vzXcBeWImsg0Fj2oDafPdl9H4zMdRMWj97bzbTl_N1gfPwBrPnimQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECa1HvTi21ifHDyKpbDdhaM2bVqtvdgmvW1ggaSmrbXW178XFtZHYnrwtiHMLoHZmYF8fB8A526Tkei6QjWWUBRlxCCRSIYSQ5gRWLnjfYe26MXtQXQzrA9LoFHchXGwyhD7fUzPo3VoqYbZrM5Go-o9ZtxmJ-KQhTnN-QpYtdUAdq7dGV5_X46knpvR9kaue0E9lIO8MjF5E4G1Mr7EeaH5R3r6kXJaW2Aj1Irwyg9nG5T0dAdsFjoMMPyWu2DSfHeLZZ_ho4EehvWq4ZdXuVZb50GZSyjNP6Bj-NYwaMlAW7bCqWfMEHNo5v6qg_1wIZ5ig8AY6idPCv68BwatZr_RRkFGAWU2Py0QkTUjRRwpxRVWyqYsLbMEa7vZirCkhCkiKZdccK1rRAmcJdzETBhDM0oVo_ugbEehDwCUpE65sS8Rwu1bDMNGMpkkJsYGc8EqgBSzl2aBY9xJXYzTAkz2kOZT7tQveeogdYRXwMWX0cxTbCzvHhfLkv7ylNQmgWWGh_81PANr7f5dN-12erdHYN3jBxyg5RiUF_MXfWLLkoU8zd3uE17I4m0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+positive+solutions+of+the+boundary+value+problem+for+nonlinear+fractional+differential+equations&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Li%2C+C.F.&rft.au=Luo%2C+X.N.&rft.au=Zhou%2C+Yong&rft.date=2010-02-01&rft.pub=Elsevier+Ltd&rft.issn=0898-1221&rft.eissn=1873-7668&rft.volume=59&rft.issue=3&rft.spage=1363&rft.epage=1375&rft_id=info:doi/10.1016%2Fj.camwa.2009.06.029&rft.externalDocID=S0898122109003915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon