Optimization of cutting temperature in machining of titanium alloy using Response Surface Method, Genetic Algorithm and Taguchi method

Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to measure the tool temperature correctly, Finite Element Modeling was used as a modeling tool to predict cutting temperature in the current investi...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings Vol. 47; pp. 6285 - 6290
Main Authors Jayarjun Kadam, Bhagyashree, Mahajan, K.A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2021
Subjects
Online AccessGet full text
ISSN2214-7853
2214-7853
DOI10.1016/j.matpr.2021.05.252

Cover

Abstract Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to measure the tool temperature correctly, Finite Element Modeling was used as a modeling tool to predict cutting temperature in the current investigation. Titanium alloys have been generally defined as difficult to cut materials due to their natural properties. The main drawback in machining titanium alloys is high cutting temperature due to high adhesion of tool work interface. This paper presents a finite-element modeling of cutting tool temperature during turning of Titanium alloy Ti-6Al-4 V under dry machining. The ANSYS software was used to determine the cutting temperature at tool nose. The Design of Experiments (DOE) was carried out in Minitab 2018 software. The process parameters considered for design of experiments are cutting speed, feed rate, and depth of cut used for operation. Response Surface Method (RSM) and Taguchi analysis was used to analyse the machining effect on tool material in this study. The purpose of performing an orthogonal array experiment is to determine the optimum level for each of the process parameters and to establish the relative significance of each parameter. An attempt has also been made to optimize the cutting temperature prediction model using Genetic Algorithms (GA) to optimize the objective function. The outcomes acquired through RSM are likewise similar to the outcomes of Genetic Algorithm. The results showed that cutting speed of 120 m/min, feed rate of 0.10 mm/rev and depth of cut of 0.5 mm are desirable for getting optimal conditions.
AbstractList Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to measure the tool temperature correctly, Finite Element Modeling was used as a modeling tool to predict cutting temperature in the current investigation. Titanium alloys have been generally defined as difficult to cut materials due to their natural properties. The main drawback in machining titanium alloys is high cutting temperature due to high adhesion of tool work interface. This paper presents a finite-element modeling of cutting tool temperature during turning of Titanium alloy Ti-6Al-4 V under dry machining. The ANSYS software was used to determine the cutting temperature at tool nose. The Design of Experiments (DOE) was carried out in Minitab 2018 software. The process parameters considered for design of experiments are cutting speed, feed rate, and depth of cut used for operation. Response Surface Method (RSM) and Taguchi analysis was used to analyse the machining effect on tool material in this study. The purpose of performing an orthogonal array experiment is to determine the optimum level for each of the process parameters and to establish the relative significance of each parameter. An attempt has also been made to optimize the cutting temperature prediction model using Genetic Algorithms (GA) to optimize the objective function. The outcomes acquired through RSM are likewise similar to the outcomes of Genetic Algorithm. The results showed that cutting speed of 120 m/min, feed rate of 0.10 mm/rev and depth of cut of 0.5 mm are desirable for getting optimal conditions.
Author Jayarjun Kadam, Bhagyashree
Mahajan, K.A.
Author_xml – sequence: 1
  givenname: Bhagyashree
  surname: Jayarjun Kadam
  fullname: Jayarjun Kadam, Bhagyashree
  email: bhagyashreekadam05@gmail.com
– sequence: 2
  givenname: K.A.
  surname: Mahajan
  fullname: Mahajan, K.A.
BookMark eNqFkE1OwzAQhS1UJErpCdj4ADTYcX4XLKoKClJRJShry3EmravEjmwHqRyAc5O0LBALWM1o5n1Peu8SjbTRgNA1JQElNLndB43wrQ1CEtKAxEEYh2doHIY0mqVZzEY_9gs0dW5PCKFxQjKajNHnuvWqUR_CK6OxqbDsvFd6iz00LVjhOwtYadwIuVN6ePQar7zQqmuwqGtzwJ0b7i_gWqMd4NfOVkICfga_M-UNXoIGrySe11tjld_1mC7xRmy73hI3R9UVOq9E7WD6PSfo7eF-s3icrdbLp8V8NZOMMD8LMxmloqB5VhSsSEmapQkrGIkZobSoEsZ6XRoBhJCATOIUZEZEEokqT2leVmyC8pOvtMY5CxWXfZYhu7dC1ZwSPnTK9_zYKR865STmfac9y36xrVWNsId_qLsTBX2sdwWWO6lASyiVBel5adSf_Bfz6pak
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2022_108031
crossref_primary_10_1007_s00170_022_09286_x
crossref_primary_10_1155_2022_7792958
crossref_primary_10_3103_S1068798X23030255
crossref_primary_10_1007_s12008_024_01806_1
crossref_primary_10_1007_s12289_023_01799_4
crossref_primary_10_1080_02670836_2023_2230003
crossref_primary_10_3390_mi14010100
crossref_primary_10_1016_j_measurement_2022_111638
Cites_doi 10.1177/2516598420941728
10.1007/s00170-016-8969-6
10.1007/s40684-019-00033-4
10.1016/j.jmapro.2019.05.006
10.1504/IJMMM.2013.054277
10.51983/arme-2012.1.2.2298
10.3390/ma12020284
10.1007/978-981-15-9117-4_2
10.1016/j.simpat.2013.09.008
10.1016/j.jmatprotec.2006.06.013
10.1080/10426914.2011.593236
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2021.05.252
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 6290
ExternalDocumentID 10_1016_j_matpr_2021_05_252
S2214785321038438
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c303t-28c47ab198bb3b7078763b3053011bf633c3074ee2e6ec657ec80a64af9719df3
IEDL.DBID .~1
ISSN 2214-7853
IngestDate Wed Oct 01 02:35:33 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Fri Feb 23 02:42:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Titanium alloys
Taguchi analysis
Cutting temperature
Genetic Algorithms (GA)
Research Surface Method (RSM)
Thermal modelling
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-28c47ab198bb3b7078763b3053011bf633c3074ee2e6ec657ec80a64af9719df3
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2021_05_252
crossref_primary_10_1016_j_matpr_2021_05_252
elsevier_sciencedirect_doi_10_1016_j_matpr_2021_05_252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Salman Pervaiz, Amir Rashid, Ibrahim Deiab, Cornel Mihai Nicolescu, “An experimental investigation on effect of minimum quantity cooling lubrication (MQCL) in machining titanium alloy (Ti6Al4V)”, in: Springer-Verlag London 2016.
Ning, Liang (b0030) 2019; 12
More, Jiang, Brown, Malshe (b0070) 2006; 180
Taguchi (b0085) 1990
Che Haron, Ghani, Ibrahim (b0035) 2007; 106-114
Sahu, Andhare, Andhale, Abraham (b0045) 2017
Chauhan, Dass (b0060) 2012; 27
Montogomery (b0055) 2001
Vikas Upadhyay, P.K. Jain, N.K. Mehta, Machining with minimum quantity lubrication: a step towards green manufacturing, Int. J. Machining Machinability Mater. 13(4) 2013 349.
Ezilarasan, Kumar, Velayudham (b0025) 2014; 40
Ross P.J. Taguchi, “Techniques for quality Engineering”, USA: McGraw-Hill; 1996.
Kuldeep A. Mahajan, Raju Pawade, and R. Balasubramaniam, “Experimental Study of Effect of Machining Parameters on PMMA in Diamond Turning” : Advances in Manufacturing Processes. Lecture Notes in Mechanical Engineering. Springer, Singapore. December 2020
J. Paulo Davim, Aveiro, Portugal, “Machining of Titanium alloys”; Springer.
A. Mahajan, Pawade (b0065) 2021; 4
Salman Pervaiz, Saqib Anwar, Imran Qureshi, Naveed Ahmed, Recent Advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques, Korean Soc. Precision Eng. 2019.
Narasimhulu Andriya, P Venkateswara Rao, Sudarsan Ghosh, Dry Machining of Ti-6Al-4V using PVD Coated TiAlN Tools, Proceedings of the World Congress on Engineering 2012 Vol III
K. Manoj, M. Husian, N. Upreti, D. Gupta, Genetic algorithm: review and application, Int. J. Inform. Technol. Knowl. Manage. 2 2010.
V.C. Venkatesh, S. Izman. Precision Engineering. Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 2010; pp. 99–101.
Che Haron (10.1016/j.matpr.2021.05.252_b0035) 2007; 106-114
Taguchi (10.1016/j.matpr.2021.05.252_b0085) 1990
Ezilarasan (10.1016/j.matpr.2021.05.252_b0025) 2014; 40
More (10.1016/j.matpr.2021.05.252_b0070) 2006; 180
10.1016/j.matpr.2021.05.252_b0005
10.1016/j.matpr.2021.05.252_b0015
Chauhan (10.1016/j.matpr.2021.05.252_b0060) 2012; 27
Shokrani (10.1016/j.matpr.2021.05.252_b0100) 2019; 43
10.1016/j.matpr.2021.05.252_b0010
Ning (10.1016/j.matpr.2021.05.252_b0030) 2019; 12
10.1016/j.matpr.2021.05.252_b0020
10.1016/j.matpr.2021.05.252_b0075
10.1016/j.matpr.2021.05.252_b0040
10.1016/j.matpr.2021.05.252_b0095
10.1016/j.matpr.2021.05.252_b0050
A. Mahajan (10.1016/j.matpr.2021.05.252_b0065) 2021; 4
10.1016/j.matpr.2021.05.252_b0080
10.1016/j.matpr.2021.05.252_b0090
Sahu (10.1016/j.matpr.2021.05.252_b0045) 2017
Montogomery (10.1016/j.matpr.2021.05.252_b0055) 2001
References_xml – volume: 106-114
  year: 2007
  ident: b0035
  article-title: Surface integrity of AISI D2 when turned using coated and uncoated carbide tools” in
  publication-title: International Journal of Precision Technology
– volume: 180
  start-page: 253
  year: 2006
  end-page: 262
  ident: b0070
  article-title: Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel
  publication-title: J. Mater. Process. Technol.
– volume: 40
  start-page: 192
  year: 2014
  end-page: 207
  ident: b0025
  article-title: Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy
  publication-title: Simul. Model. Pract. Theory
– reference: Ross P.J. Taguchi, “Techniques for quality Engineering”, USA: McGraw-Hill; 1996.
– year: 2001
  ident: b0055
  article-title: Design and Analysis of Experiments
– reference: J. Paulo Davim, Aveiro, Portugal, “Machining of Titanium alloys”; Springer.
– reference: K. Manoj, M. Husian, N. Upreti, D. Gupta, Genetic algorithm: review and application, Int. J. Inform. Technol. Knowl. Manage. 2 2010.
– reference: Vikas Upadhyay, P.K. Jain, N.K. Mehta, Machining with minimum quantity lubrication: a step towards green manufacturing, Int. J. Machining Machinability Mater. 13(4) 2013 349.
– reference: V.C. Venkatesh, S. Izman. Precision Engineering. Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 2010; pp. 99–101.
– volume: 12
  start-page: 284
  year: 2019
  ident: b0030
  article-title: Predictive modeling of machining temperatures with force-temperature correlation using cutting mechanics and constitutive relation
  publication-title: Materials
– reference: Salman Pervaiz, Amir Rashid, Ibrahim Deiab, Cornel Mihai Nicolescu, “An experimental investigation on effect of minimum quantity cooling lubrication (MQCL) in machining titanium alloy (Ti6Al4V)”, in: Springer-Verlag London 2016.
– volume: 4
  start-page: 74
  year: 2021
  end-page: 83
  ident: b0065
  article-title: Effect of machining parameters and vibration on polymethylmethacrylate curved surface in single-point diamond turning
  publication-title: Journal of Micromanufacturing
– reference: Narasimhulu Andriya, P Venkateswara Rao, Sudarsan Ghosh, Dry Machining of Ti-6Al-4V using PVD Coated TiAlN Tools, Proceedings of the World Congress on Engineering 2012 Vol III
– volume: 27
  start-page: 531
  year: 2012
  end-page: 537
  ident: b0060
  article-title: Optimization of machining parameters in turning of titanium (Grade-5) alloy using response surface methodology
  publication-title: Mater. Manuf. Processes
– reference: Salman Pervaiz, Saqib Anwar, Imran Qureshi, Naveed Ahmed, Recent Advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques, Korean Soc. Precision Eng. 2019.
– year: 2017
  ident: b0045
  article-title: Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration
  publication-title: IMMT
– year: 1990
  ident: b0085
  article-title: Introduction to Quality Engineering
– reference: Kuldeep A. Mahajan, Raju Pawade, and R. Balasubramaniam, “Experimental Study of Effect of Machining Parameters on PMMA in Diamond Turning” : Advances in Manufacturing Processes. Lecture Notes in Mechanical Engineering. Springer, Singapore. December 2020,
– volume: 4
  start-page: 74
  issue: 1
  year: 2021
  ident: 10.1016/j.matpr.2021.05.252_b0065
  article-title: Effect of machining parameters and vibration on polymethylmethacrylate curved surface in single-point diamond turning
  publication-title: Journal of Micromanufacturing
  doi: 10.1177/2516598420941728
– ident: 10.1016/j.matpr.2021.05.252_b0005
  doi: 10.1007/s00170-016-8969-6
– ident: 10.1016/j.matpr.2021.05.252_b0010
  doi: 10.1007/s40684-019-00033-4
– ident: 10.1016/j.matpr.2021.05.252_b0075
– volume: 43
  start-page: 229
  year: 2019
  ident: 10.1016/j.matpr.2021.05.252_b0100
  article-title: Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2019.05.006
– ident: 10.1016/j.matpr.2021.05.252_b0020
  doi: 10.1504/IJMMM.2013.054277
– year: 1990
  ident: 10.1016/j.matpr.2021.05.252_b0085
– ident: 10.1016/j.matpr.2021.05.252_b0050
– ident: 10.1016/j.matpr.2021.05.252_b0040
  doi: 10.51983/arme-2012.1.2.2298
– year: 2017
  ident: 10.1016/j.matpr.2021.05.252_b0045
  article-title: Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration
  publication-title: IMMT
– ident: 10.1016/j.matpr.2021.05.252_b0095
– volume: 12
  start-page: 284
  year: 2019
  ident: 10.1016/j.matpr.2021.05.252_b0030
  article-title: Predictive modeling of machining temperatures with force-temperature correlation using cutting mechanics and constitutive relation
  publication-title: Materials
  doi: 10.3390/ma12020284
– ident: 10.1016/j.matpr.2021.05.252_b0090
  doi: 10.1007/978-981-15-9117-4_2
– volume: 40
  start-page: 192
  year: 2014
  ident: 10.1016/j.matpr.2021.05.252_b0025
  article-title: Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2013.09.008
– ident: 10.1016/j.matpr.2021.05.252_b0015
– volume: 180
  start-page: 253
  year: 2006
  ident: 10.1016/j.matpr.2021.05.252_b0070
  article-title: Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.06.013
– volume: 27
  start-page: 531
  issue: 5
  year: 2012
  ident: 10.1016/j.matpr.2021.05.252_b0060
  article-title: Optimization of machining parameters in turning of titanium (Grade-5) alloy using response surface methodology
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2011.593236
– ident: 10.1016/j.matpr.2021.05.252_b0080
– volume: 106-114
  year: 2007
  ident: 10.1016/j.matpr.2021.05.252_b0035
  article-title: Surface integrity of AISI D2 when turned using coated and uncoated carbide tools” in
  publication-title: International Journal of Precision Technology
– year: 2001
  ident: 10.1016/j.matpr.2021.05.252_b0055
SSID ssj0001560816
Score 2.2140934
Snippet Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 6285
SubjectTerms Cutting temperature
Genetic Algorithms (GA)
Research Surface Method (RSM)
Taguchi analysis
Thermal modelling
Titanium alloys
Title Optimization of cutting temperature in machining of titanium alloy using Response Surface Method, Genetic Algorithm and Taguchi method
URI https://dx.doi.org/10.1016/j.matpr.2021.05.252
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: ACRLP
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: .~1
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AIKHN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AKRWK
  dateStart: 20140101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409eLFaNRYH80ePBYLy7LAsWlsqqY1sW3SG9mFpWJa2jTl4MWjv9uZBXwkxoNHYCaQYefBMvN9hFxLLTWEXs8SGtwNAb2tEL6DLEfGgiUus7WBXRyNxXDG7-fevEH69SwMtlVWsb-M6SZaV2e6lTW7myzrThhS7EC2YYjxzV0c-OXcRxaDmzfna58FUnpgGFBR3kKFGnzItHlBXbhBXFDmIIIn89jvCepb0hkckoOqWqS98oGOSEPnx-T9Edx8Vc1P0nVK48I0L1OEmaowkmmW05Xpk8QLIIOzZHlWrCj-aH-l2O6-oE9lg6ymk2KbyljTkeGT7lAEo4Zb0t5ysd5mu2dQyxM6lQukTqEl6_QJmQ1up_2hVdEpWDHkqZ3Fgpj7UjlhoJSrEOUHYosCf0cfV6lwXZDzudZMCx0Lz9dxYEvBZRr6Tpik7ilp5utcnxEqua1sDcWEmwgeKFv6YeL7qYLyA75QhGwRVtswiiuscaS8WEZ1U9lLZAwfoeEj24vA8C3S-VTalFAbf4uL-uVEP1ZMBMngL8Xz_ypekH08KjdgLklzty30FZQkO9U2a65N9np3D8PxB1Tz4l8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLY4BlgQCBA3HhgJTZzESUZUUZWjINFWYrNsxylBbVpVzcDCyO_mPSfhkBADa-ynRC9-h5PP30fImTTSQOoNHW4g3JDQ20lgH-R4UnOW-sw1lnaxd8-7w-DmKXxaIu3mLAzCKuvcX-V0m63rK63am61Znrf6DCV2oNow5PgO_HiZrAYhi3AHdvHmfX1ogZoeWwlUNHDQomEfsjgvaAxnSAzKPKTwZCH7vUJ9qzqdTbJRt4v0snqiLbJkim3y_gBxPqkPUNJpRnVp0csUeaZqkmSaF3RigZI4AHPwMFmRlxOKf9pfKeLdR_SxQsga2i_nmdSG9qyg9DlFNmq4Jb0cj6bzfPEMZkVKB3KE2im0kp3eIcPO1aDddWo9BUdDoVo4LNZBJJWXxEr5Cml-ILkoCHgMcpVx34d5UWAMM9xoHkZGx67kgcySyEvSzN8lK8W0MHuEysBVroFuwk95ECtXRkkaRZmC_gO2KFzuE9b4UOiabBw1L8aiQZW9COt4gY4XbijA8fvk_NNoVnFt_D2dNy9H_FgyAqrBX4YH_zU8JWvdQe9O3F3f3x6SdRypvsYckZXFvDTH0J8s1Ildfx-oduP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+cutting+temperature+in+machining+of+titanium+alloy+using+Response+Surface+Method%2C+Genetic+Algorithm+and+Taguchi+method&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Jayarjun+Kadam%2C+Bhagyashree&rft.au=Mahajan%2C+K.A.&rft.date=2021&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=47&rft.spage=6285&rft.epage=6290&rft_id=info:doi/10.1016%2Fj.matpr.2021.05.252&rft.externalDocID=S2214785321038438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon