Optimization of cutting temperature in machining of titanium alloy using Response Surface Method, Genetic Algorithm and Taguchi method
Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to measure the tool temperature correctly, Finite Element Modeling was used as a modeling tool to predict cutting temperature in the current investi...
        Saved in:
      
    
          | Published in | Materials today : proceedings Vol. 47; pp. 6285 - 6290 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2214-7853 2214-7853  | 
| DOI | 10.1016/j.matpr.2021.05.252 | 
Cover
| Abstract | Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to measure the tool temperature correctly, Finite Element Modeling was used as a modeling tool to predict cutting temperature in the current investigation. Titanium alloys have been generally defined as difficult to cut materials due to their natural properties. The main drawback in machining titanium alloys is high cutting temperature due to high adhesion of tool work interface. This paper presents a finite-element modeling of cutting tool temperature during turning of Titanium alloy Ti-6Al-4 V under dry machining. The ANSYS software was used to determine the cutting temperature at tool nose. The Design of Experiments (DOE) was carried out in Minitab 2018 software. The process parameters considered for design of experiments are cutting speed, feed rate, and depth of cut used for operation. Response Surface Method (RSM) and Taguchi analysis was used to analyse the machining effect on tool material in this study. The purpose of performing an orthogonal array experiment is to determine the optimum level for each of the process parameters and to establish the relative significance of each parameter. An attempt has also been made to optimize the cutting temperature prediction model using Genetic Algorithms (GA) to optimize the objective function. The outcomes acquired through RSM are likewise similar to the outcomes of Genetic Algorithm. The results showed that cutting speed of 120 m/min, feed rate of 0.10 mm/rev and depth of cut of 0.5 mm are desirable for getting optimal conditions. | 
    
|---|---|
| AbstractList | Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to measure the tool temperature correctly, Finite Element Modeling was used as a modeling tool to predict cutting temperature in the current investigation. Titanium alloys have been generally defined as difficult to cut materials due to their natural properties. The main drawback in machining titanium alloys is high cutting temperature due to high adhesion of tool work interface. This paper presents a finite-element modeling of cutting tool temperature during turning of Titanium alloy Ti-6Al-4 V under dry machining. The ANSYS software was used to determine the cutting temperature at tool nose. The Design of Experiments (DOE) was carried out in Minitab 2018 software. The process parameters considered for design of experiments are cutting speed, feed rate, and depth of cut used for operation. Response Surface Method (RSM) and Taguchi analysis was used to analyse the machining effect on tool material in this study. The purpose of performing an orthogonal array experiment is to determine the optimum level for each of the process parameters and to establish the relative significance of each parameter. An attempt has also been made to optimize the cutting temperature prediction model using Genetic Algorithms (GA) to optimize the objective function. The outcomes acquired through RSM are likewise similar to the outcomes of Genetic Algorithm. The results showed that cutting speed of 120 m/min, feed rate of 0.10 mm/rev and depth of cut of 0.5 mm are desirable for getting optimal conditions. | 
    
| Author | Jayarjun Kadam, Bhagyashree Mahajan, K.A.  | 
    
| Author_xml | – sequence: 1 givenname: Bhagyashree surname: Jayarjun Kadam fullname: Jayarjun Kadam, Bhagyashree email: bhagyashreekadam05@gmail.com – sequence: 2 givenname: K.A. surname: Mahajan fullname: Mahajan, K.A.  | 
    
| BookMark | eNqFkE1OwzAQhS1UJErpCdj4ADTYcX4XLKoKClJRJShry3EmravEjmwHqRyAc5O0LBALWM1o5n1Peu8SjbTRgNA1JQElNLndB43wrQ1CEtKAxEEYh2doHIY0mqVZzEY_9gs0dW5PCKFxQjKajNHnuvWqUR_CK6OxqbDsvFd6iz00LVjhOwtYadwIuVN6ePQar7zQqmuwqGtzwJ0b7i_gWqMd4NfOVkICfga_M-UNXoIGrySe11tjld_1mC7xRmy73hI3R9UVOq9E7WD6PSfo7eF-s3icrdbLp8V8NZOMMD8LMxmloqB5VhSsSEmapQkrGIkZobSoEsZ6XRoBhJCATOIUZEZEEokqT2leVmyC8pOvtMY5CxWXfZYhu7dC1ZwSPnTK9_zYKR865STmfac9y36xrVWNsId_qLsTBX2sdwWWO6lASyiVBel5adSf_Bfz6pak | 
    
| CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2022_108031 crossref_primary_10_1007_s00170_022_09286_x crossref_primary_10_1155_2022_7792958 crossref_primary_10_3103_S1068798X23030255 crossref_primary_10_1007_s12008_024_01806_1 crossref_primary_10_1007_s12289_023_01799_4 crossref_primary_10_1080_02670836_2023_2230003 crossref_primary_10_3390_mi14010100 crossref_primary_10_1016_j_measurement_2022_111638  | 
    
| Cites_doi | 10.1177/2516598420941728 10.1007/s00170-016-8969-6 10.1007/s40684-019-00033-4 10.1016/j.jmapro.2019.05.006 10.1504/IJMMM.2013.054277 10.51983/arme-2012.1.2.2298 10.3390/ma12020284 10.1007/978-981-15-9117-4_2 10.1016/j.simpat.2013.09.008 10.1016/j.jmatprotec.2006.06.013 10.1080/10426914.2011.593236  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 | 
    
| Copyright_xml | – notice: 2021 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.matpr.2021.05.252 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2214-7853 | 
    
| EndPage | 6290 | 
    
| ExternalDocumentID | 10_1016_j_matpr_2021_05_252 S2214785321038438  | 
    
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 NCXOZ O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS  | 
    
| ID | FETCH-LOGICAL-c303t-28c47ab198bb3b7078763b3053011bf633c3074ee2e6ec657ec80a64af9719df3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 2214-7853 | 
    
| IngestDate | Wed Oct 01 02:35:33 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Fri Feb 23 02:42:16 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Titanium alloys Taguchi analysis Cutting temperature Genetic Algorithms (GA) Research Surface Method (RSM) Thermal modelling  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c303t-28c47ab198bb3b7078763b3053011bf633c3074ee2e6ec657ec80a64af9719df3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_matpr_2021_05_252 crossref_primary_10_1016_j_matpr_2021_05_252 elsevier_sciencedirect_doi_10_1016_j_matpr_2021_05_252  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021 2021-00-00  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Materials today : proceedings | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Salman Pervaiz, Amir Rashid, Ibrahim Deiab, Cornel Mihai Nicolescu, “An experimental investigation on effect of minimum quantity cooling lubrication (MQCL) in machining titanium alloy (Ti6Al4V)”, in: Springer-Verlag London 2016. Ning, Liang (b0030) 2019; 12 More, Jiang, Brown, Malshe (b0070) 2006; 180 Taguchi (b0085) 1990 Che Haron, Ghani, Ibrahim (b0035) 2007; 106-114 Sahu, Andhare, Andhale, Abraham (b0045) 2017 Chauhan, Dass (b0060) 2012; 27 Montogomery (b0055) 2001 Vikas Upadhyay, P.K. Jain, N.K. Mehta, Machining with minimum quantity lubrication: a step towards green manufacturing, Int. J. Machining Machinability Mater. 13(4) 2013 349. Ezilarasan, Kumar, Velayudham (b0025) 2014; 40 Ross P.J. Taguchi, “Techniques for quality Engineering”, USA: McGraw-Hill; 1996. Kuldeep A. Mahajan, Raju Pawade, and R. Balasubramaniam, “Experimental Study of Effect of Machining Parameters on PMMA in Diamond Turning” : Advances in Manufacturing Processes. Lecture Notes in Mechanical Engineering. Springer, Singapore. December 2020 J. Paulo Davim, Aveiro, Portugal, “Machining of Titanium alloys”; Springer. A. Mahajan, Pawade (b0065) 2021; 4 Salman Pervaiz, Saqib Anwar, Imran Qureshi, Naveed Ahmed, Recent Advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques, Korean Soc. Precision Eng. 2019. Narasimhulu Andriya, P Venkateswara Rao, Sudarsan Ghosh, Dry Machining of Ti-6Al-4V using PVD Coated TiAlN Tools, Proceedings of the World Congress on Engineering 2012 Vol III K. Manoj, M. Husian, N. Upreti, D. Gupta, Genetic algorithm: review and application, Int. J. Inform. Technol. Knowl. Manage. 2 2010. V.C. Venkatesh, S. Izman. Precision Engineering. Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 2010; pp. 99–101. Che Haron (10.1016/j.matpr.2021.05.252_b0035) 2007; 106-114 Taguchi (10.1016/j.matpr.2021.05.252_b0085) 1990 Ezilarasan (10.1016/j.matpr.2021.05.252_b0025) 2014; 40 More (10.1016/j.matpr.2021.05.252_b0070) 2006; 180 10.1016/j.matpr.2021.05.252_b0005 10.1016/j.matpr.2021.05.252_b0015 Chauhan (10.1016/j.matpr.2021.05.252_b0060) 2012; 27 Shokrani (10.1016/j.matpr.2021.05.252_b0100) 2019; 43 10.1016/j.matpr.2021.05.252_b0010 Ning (10.1016/j.matpr.2021.05.252_b0030) 2019; 12 10.1016/j.matpr.2021.05.252_b0020 10.1016/j.matpr.2021.05.252_b0075 10.1016/j.matpr.2021.05.252_b0040 10.1016/j.matpr.2021.05.252_b0095 10.1016/j.matpr.2021.05.252_b0050 A. Mahajan (10.1016/j.matpr.2021.05.252_b0065) 2021; 4 10.1016/j.matpr.2021.05.252_b0080 10.1016/j.matpr.2021.05.252_b0090 Sahu (10.1016/j.matpr.2021.05.252_b0045) 2017 Montogomery (10.1016/j.matpr.2021.05.252_b0055) 2001  | 
    
| References_xml | – volume: 106-114 year: 2007 ident: b0035 article-title: Surface integrity of AISI D2 when turned using coated and uncoated carbide tools” in publication-title: International Journal of Precision Technology – volume: 180 start-page: 253 year: 2006 end-page: 262 ident: b0070 article-title: Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel publication-title: J. Mater. Process. Technol. – volume: 40 start-page: 192 year: 2014 end-page: 207 ident: b0025 article-title: Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy publication-title: Simul. Model. Pract. Theory – reference: Ross P.J. Taguchi, “Techniques for quality Engineering”, USA: McGraw-Hill; 1996. – year: 2001 ident: b0055 article-title: Design and Analysis of Experiments – reference: J. Paulo Davim, Aveiro, Portugal, “Machining of Titanium alloys”; Springer. – reference: K. Manoj, M. Husian, N. Upreti, D. Gupta, Genetic algorithm: review and application, Int. J. Inform. Technol. Knowl. Manage. 2 2010. – reference: Vikas Upadhyay, P.K. Jain, N.K. Mehta, Machining with minimum quantity lubrication: a step towards green manufacturing, Int. J. Machining Machinability Mater. 13(4) 2013 349. – reference: V.C. Venkatesh, S. Izman. Precision Engineering. Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 2010; pp. 99–101. – volume: 12 start-page: 284 year: 2019 ident: b0030 article-title: Predictive modeling of machining temperatures with force-temperature correlation using cutting mechanics and constitutive relation publication-title: Materials – reference: Salman Pervaiz, Amir Rashid, Ibrahim Deiab, Cornel Mihai Nicolescu, “An experimental investigation on effect of minimum quantity cooling lubrication (MQCL) in machining titanium alloy (Ti6Al4V)”, in: Springer-Verlag London 2016. – volume: 4 start-page: 74 year: 2021 end-page: 83 ident: b0065 article-title: Effect of machining parameters and vibration on polymethylmethacrylate curved surface in single-point diamond turning publication-title: Journal of Micromanufacturing – reference: Narasimhulu Andriya, P Venkateswara Rao, Sudarsan Ghosh, Dry Machining of Ti-6Al-4V using PVD Coated TiAlN Tools, Proceedings of the World Congress on Engineering 2012 Vol III – volume: 27 start-page: 531 year: 2012 end-page: 537 ident: b0060 article-title: Optimization of machining parameters in turning of titanium (Grade-5) alloy using response surface methodology publication-title: Mater. Manuf. Processes – reference: Salman Pervaiz, Saqib Anwar, Imran Qureshi, Naveed Ahmed, Recent Advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques, Korean Soc. Precision Eng. 2019. – year: 2017 ident: b0045 article-title: Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration publication-title: IMMT – year: 1990 ident: b0085 article-title: Introduction to Quality Engineering – reference: Kuldeep A. Mahajan, Raju Pawade, and R. Balasubramaniam, “Experimental Study of Effect of Machining Parameters on PMMA in Diamond Turning” : Advances in Manufacturing Processes. Lecture Notes in Mechanical Engineering. Springer, Singapore. December 2020, – volume: 4 start-page: 74 issue: 1 year: 2021 ident: 10.1016/j.matpr.2021.05.252_b0065 article-title: Effect of machining parameters and vibration on polymethylmethacrylate curved surface in single-point diamond turning publication-title: Journal of Micromanufacturing doi: 10.1177/2516598420941728 – ident: 10.1016/j.matpr.2021.05.252_b0005 doi: 10.1007/s00170-016-8969-6 – ident: 10.1016/j.matpr.2021.05.252_b0010 doi: 10.1007/s40684-019-00033-4 – ident: 10.1016/j.matpr.2021.05.252_b0075 – volume: 43 start-page: 229 year: 2019 ident: 10.1016/j.matpr.2021.05.252_b0100 article-title: Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2019.05.006 – ident: 10.1016/j.matpr.2021.05.252_b0020 doi: 10.1504/IJMMM.2013.054277 – year: 1990 ident: 10.1016/j.matpr.2021.05.252_b0085 – ident: 10.1016/j.matpr.2021.05.252_b0050 – ident: 10.1016/j.matpr.2021.05.252_b0040 doi: 10.51983/arme-2012.1.2.2298 – year: 2017 ident: 10.1016/j.matpr.2021.05.252_b0045 article-title: Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration publication-title: IMMT – ident: 10.1016/j.matpr.2021.05.252_b0095 – volume: 12 start-page: 284 year: 2019 ident: 10.1016/j.matpr.2021.05.252_b0030 article-title: Predictive modeling of machining temperatures with force-temperature correlation using cutting mechanics and constitutive relation publication-title: Materials doi: 10.3390/ma12020284 – ident: 10.1016/j.matpr.2021.05.252_b0090 doi: 10.1007/978-981-15-9117-4_2 – volume: 40 start-page: 192 year: 2014 ident: 10.1016/j.matpr.2021.05.252_b0025 article-title: Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2013.09.008 – ident: 10.1016/j.matpr.2021.05.252_b0015 – volume: 180 start-page: 253 year: 2006 ident: 10.1016/j.matpr.2021.05.252_b0070 article-title: Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.06.013 – volume: 27 start-page: 531 issue: 5 year: 2012 ident: 10.1016/j.matpr.2021.05.252_b0060 article-title: Optimization of machining parameters in turning of titanium (Grade-5) alloy using response surface methodology publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2011.593236 – ident: 10.1016/j.matpr.2021.05.252_b0080 – volume: 106-114 year: 2007 ident: 10.1016/j.matpr.2021.05.252_b0035 article-title: Surface integrity of AISI D2 when turned using coated and uncoated carbide tools” in publication-title: International Journal of Precision Technology – year: 2001 ident: 10.1016/j.matpr.2021.05.252_b0055  | 
    
| SSID | ssj0001560816 | 
    
| Score | 2.2140934 | 
    
| Snippet | Cutting temperature during machining plays a very important role in the overall performance of machining processes. Since, it was a very difficult task to... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 6285 | 
    
| SubjectTerms | Cutting temperature Genetic Algorithms (GA) Research Surface Method (RSM) Taguchi analysis Thermal modelling Titanium alloys  | 
    
| Title | Optimization of cutting temperature in machining of titanium alloy using Response Surface Method, Genetic Algorithm and Taguchi method | 
    
| URI | https://dx.doi.org/10.1016/j.matpr.2021.05.252 | 
    
| Volume | 47 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: ACRLP dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: .~1 dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: AIKHN dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2214-7853 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001560816 issn: 2214-7853 databaseCode: AKRWK dateStart: 20140101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409eLFaNRYH80ePBYLy7LAsWlsqqY1sW3SG9mFpWJa2jTl4MWjv9uZBXwkxoNHYCaQYefBMvN9hFxLLTWEXs8SGtwNAb2tEL6DLEfGgiUus7WBXRyNxXDG7-fevEH69SwMtlVWsb-M6SZaV2e6lTW7myzrThhS7EC2YYjxzV0c-OXcRxaDmzfna58FUnpgGFBR3kKFGnzItHlBXbhBXFDmIIIn89jvCepb0hkckoOqWqS98oGOSEPnx-T9Edx8Vc1P0nVK48I0L1OEmaowkmmW05Xpk8QLIIOzZHlWrCj-aH-l2O6-oE9lg6ymk2KbyljTkeGT7lAEo4Zb0t5ysd5mu2dQyxM6lQukTqEl6_QJmQ1up_2hVdEpWDHkqZ3Fgpj7UjlhoJSrEOUHYosCf0cfV6lwXZDzudZMCx0Lz9dxYEvBZRr6Tpik7ilp5utcnxEqua1sDcWEmwgeKFv6YeL7qYLyA75QhGwRVtswiiuscaS8WEZ1U9lLZAwfoeEj24vA8C3S-VTalFAbf4uL-uVEP1ZMBMngL8Xz_ypekH08KjdgLklzty30FZQkO9U2a65N9np3D8PxB1Tz4l8 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLY4BlgQCBA3HhgJTZzESUZUUZWjINFWYrNsxylBbVpVzcDCyO_mPSfhkBADa-ynRC9-h5PP30fImTTSQOoNHW4g3JDQ20lgH-R4UnOW-sw1lnaxd8-7w-DmKXxaIu3mLAzCKuvcX-V0m63rK63am61Znrf6DCV2oNow5PgO_HiZrAYhi3AHdvHmfX1ogZoeWwlUNHDQomEfsjgvaAxnSAzKPKTwZCH7vUJ9qzqdTbJRt4v0snqiLbJkim3y_gBxPqkPUNJpRnVp0csUeaZqkmSaF3RigZI4AHPwMFmRlxOKf9pfKeLdR_SxQsga2i_nmdSG9qyg9DlFNmq4Jb0cj6bzfPEMZkVKB3KE2im0kp3eIcPO1aDddWo9BUdDoVo4LNZBJJWXxEr5Cml-ILkoCHgMcpVx34d5UWAMM9xoHkZGx67kgcySyEvSzN8lK8W0MHuEysBVroFuwk95ECtXRkkaRZmC_gO2KFzuE9b4UOiabBw1L8aiQZW9COt4gY4XbijA8fvk_NNoVnFt_D2dNy9H_FgyAqrBX4YH_zU8JWvdQe9O3F3f3x6SdRypvsYckZXFvDTH0J8s1Ildfx-oduP0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+cutting+temperature+in+machining+of+titanium+alloy+using+Response+Surface+Method%2C+Genetic+Algorithm+and+Taguchi+method&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Jayarjun+Kadam%2C+Bhagyashree&rft.au=Mahajan%2C+K.A.&rft.date=2021&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=47&rft.spage=6285&rft.epage=6290&rft_id=info:doi/10.1016%2Fj.matpr.2021.05.252&rft.externalDocID=S2214785321038438 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |