Physical and reactive absorption of CO2 in capillaries: Mass transfer, modelling and produced chemical species

In a circular economy and sustainability context, CO2 utilization is key. For photochemical or electrochemical transformations, CO2 absorption in liquids has become crucial and even a limiting step. This work aimed to establish an average mass transport coefficient (k̅La) characteristic of the CO2 a...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering research & design Vol. 198; pp. 247 - 258
Main Authors Morales, Daniel O., Regalado-Méndez, Alejandro, Pérez-Alonso, César, Natividad, Reyna
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN0263-8762
DOI10.1016/j.cherd.2023.08.045

Cover

Abstract In a circular economy and sustainability context, CO2 utilization is key. For photochemical or electrochemical transformations, CO2 absorption in liquids has become crucial and even a limiting step. This work aimed to establish an average mass transport coefficient (k̅La) characteristic of the CO2 absorption in water and in alkaline solutions in capillary absorbers (2–4 mm) under Taylor flow and recirculation mode. A correlation among prevailing dimensionless numbers (Sh, Re, Ca and Sc) was also established. To achieve so, the absorption of CO2 was conducted in both, water and NaOH solutions (0.5 mol/dm3), and its concentration was monitored by measuring total inorganic carbon and pH. The gas and liquid flowrates used for the tests were 1.66×10−4 L/s and 2.5×10−4 L/s, respectively. The effect of temperature was investigated in the range of 283 and 308 K. The highest k̅La was found to be 12 × 10−2 and 2.1 × 10−2 s−1, for water and NaOH solutions, respectively. The modelling and simulation of the carbon species formation and production was also conducted and a determination coefficient (R2) of 0.99 was found. [Display omitted] •Mass transfer dimensionless numbers correlated for physical and reactive CO2 absorption.•CO2 absorption can be quantified by a Total Organic Carbon analyzer.•k̅La ranges 3–12 × 10−2 s−1 for CO2 physical absorption in capillaries (2–4 mm).•k̅La ranges 1.47–2.1 × 10−2 s−1 for CO2 reactive absorption in capillaries (2–4 mm).
AbstractList In a circular economy and sustainability context, CO2 utilization is key. For photochemical or electrochemical transformations, CO2 absorption in liquids has become crucial and even a limiting step. This work aimed to establish an average mass transport coefficient (k̅La) characteristic of the CO2 absorption in water and in alkaline solutions in capillary absorbers (2–4 mm) under Taylor flow and recirculation mode. A correlation among prevailing dimensionless numbers (Sh, Re, Ca and Sc) was also established. To achieve so, the absorption of CO2 was conducted in both, water and NaOH solutions (0.5 mol/dm3), and its concentration was monitored by measuring total inorganic carbon and pH. The gas and liquid flowrates used for the tests were 1.66×10−4 L/s and 2.5×10−4 L/s, respectively. The effect of temperature was investigated in the range of 283 and 308 K. The highest k̅La was found to be 12 × 10−2 and 2.1 × 10−2 s−1, for water and NaOH solutions, respectively. The modelling and simulation of the carbon species formation and production was also conducted and a determination coefficient (R2) of 0.99 was found. [Display omitted] •Mass transfer dimensionless numbers correlated for physical and reactive CO2 absorption.•CO2 absorption can be quantified by a Total Organic Carbon analyzer.•k̅La ranges 3–12 × 10−2 s−1 for CO2 physical absorption in capillaries (2–4 mm).•k̅La ranges 1.47–2.1 × 10−2 s−1 for CO2 reactive absorption in capillaries (2–4 mm).
Author Regalado-Méndez, Alejandro
Morales, Daniel O.
Natividad, Reyna
Pérez-Alonso, César
Author_xml – sequence: 1
  givenname: Daniel O.
  surname: Morales
  fullname: Morales, Daniel O.
  organization: Chem. Eng. Lab., Centro Conjunto de Investigación en Química Sustentable CCIQS UAEM-UNAM, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, km 14.5, C.P. 50200 Toluca, Mexico
– sequence: 2
  givenname: Alejandro
  orcidid: 0000-0002-5270-745X
  surname: Regalado-Méndez
  fullname: Regalado-Méndez, Alejandro
  organization: Investigation laboratories, Campus Puerto Angel, Universidad del Mar, Puerto Angel 70902, Oaxaca, Mexico
– sequence: 3
  givenname: César
  surname: Pérez-Alonso
  fullname: Pérez-Alonso, César
  organization: Faculty of Chemistry, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, San Cayetano, Toluca, Mexico
– sequence: 4
  givenname: Reyna
  orcidid: 0000-0001-8978-1066
  surname: Natividad
  fullname: Natividad, Reyna
  email: rnatividadr@uaemex.mx
  organization: Chem. Eng. Lab., Centro Conjunto de Investigación en Química Sustentable CCIQS UAEM-UNAM, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, km 14.5, C.P. 50200 Toluca, Mexico
BookMark eNqFkL1OwzAUhT0UibbwBCx-ABKu7cRJkBhQxZ9UVAaYLcd2qKvUjuxQqW-P2zIxwHSlK31H53wzNHHeGYSuCOQECL_Z5Gptgs4pUJZDnUNRTtAUKGdZXXF6jmYxbgCAVEU9Re5tvY9WyR5Lp3EwUo12Z7Bsow_DaL3DvsOLFcXWYSUH2_cyWBNv8auMEY9ButiZcI23Xpu-t-7zmDMEr7-U0ThV2R7T42BU4i7QWSf7aC5_7hx9PD68L56z5erpZXG_zBQDNmaka42kwGpe0hJ4V1eM0vQjRQusJJwzaIpG14TQgrK2KXhFuCkIJZUuFNVsjppTrgo-xmA6oewoD3tSZdsLAuIgS2zEUZY4yBJQiyQrsewXOwS7lWH_D3V3okyatbMmiJgGuyTBBqNGob39k_8GCaqIng
CitedBy_id crossref_primary_10_3390_md23030113
crossref_primary_10_1007_s11244_023_01875_8
crossref_primary_10_3390_catal14070417
Cites_doi 10.1016/j.ces.2006.12.057
10.1016/j.ces.2004.09.011
10.1016/S0301-9322(03)00043-0
10.1039/D3EE00964E
10.1016/j.cep.2018.03.012
10.1016/j.ces.2004.03.010
10.1021/acssuschemeng.2c03038
10.1016/j.cep.2020.107904
10.1016/j.jcou.2016.07.004
10.4319/lo.1982.27.5.0849
10.1016/j.ijheatmasstransfer.2006.03.025
10.1016/j.jclepro.2017.09.118
10.1016/j.fuel.2006.12.005
10.1016/j.cej.2011.11.067
10.1021/je60069a008
10.1016/j.cej.2012.01.054
10.1016/j.ces.2011.07.035
10.1016/j.cej.2010.02.049
10.1016/j.ces.2017.03.029
10.1016/j.cej.2020.124798
10.1016/j.ces.2013.06.005
10.1016/j.cej.2015.10.033
10.1016/j.ces.2005.01.037
10.1016/j.ijheatmasstransfer.2017.06.054
10.1016/j.jcou.2023.102428
10.1016/j.ces.2011.08.029
10.1016/S1385-8947(99)00104-7
10.1016/0009-2509(88)85159-5
10.1002/aic.690240605
10.1016/j.catcom.2016.05.025
10.1016/j.rser.2016.01.026
10.1063/1.1289396
ContentType Journal Article
Copyright 2023 Institution of Chemical Engineers
Copyright_xml – notice: 2023 Institution of Chemical Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.cherd.2023.08.045
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 258
ExternalDocumentID 10_1016_j_cherd_2023_08_045
S0263876223005440
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
XFK
~02
~8M
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACUHS
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-1fbea2038652506f87322fbe14b03516630949d8112423b946716e41217d4c2d3
IEDL.DBID .~1
ISSN 0263-8762
IngestDate Thu Oct 09 00:37:11 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Fri Feb 23 02:35:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CO2 reactive absorption
Capillary reactors
CO2 mass transfer
Taylor flow
CO2 transport correlation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-1fbea2038652506f87322fbe14b03516630949d8112423b946716e41217d4c2d3
ORCID 0000-0002-5270-745X
0000-0001-8978-1066
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_cherd_2023_08_045
crossref_primary_10_1016_j_cherd_2023_08_045
elsevier_sciencedirect_doi_10_1016_j_cherd_2023_08_045
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Chemical engineering research & design
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Cao, Fan, Gonthier, Luo, Wang (bib9) 2011; 66
Tan, Lu, Xu, Luo (bib19) 2012; 181–182
Aussillous, Quéré (bib27) 2000; 12
Chang, Pang, Raziq, Wang, Huang, Ye, Zhang (bib22) 2023
Sattari-Najafabadi, Nasr Esfahany, Wu, Sunden (bib12) 2018; 127
Adamu, Isaacs, Boodhoo, Russo Abegao (bib20) 2023; 70
Akbar, Plummer, Ghiaasiaan (bib14) 2003; 29
Krauβ, Rzehak (bib30) 2017; 166
Natividad, Kulkarni, Nuithitikul, Raymahasay, Wood, Winterbottom (bib24) 2004
Pohorecki, Moniuk (bib32) 1988; 43
Ganapathy, Al-Hajri, Ohadi (bib6) 2013; 101
Tahir (bib25) 2018; 170
Vas Bhat, Kuipers, Versteeg (bib31) 2000; 76
Natividad, Cruz-Olivares, Fishwick, Wood, Winterbottom (bib23) 2007; 86
Tahir, Amin (bib26) 2016; 285
Sobieszuk, Pohorecki, Cygański, Grzelka (bib10) 2011; 66
Tsonopoulos, Coulson, Lawrence (bib33) 1976; 21
Zhu, Lu, Fu, Ma, Li (bib11) 2017; 114
Hurtado, Natividad, García (bib1) 2016; 84
Ganesh (bib4) 2016; 59
Karamian, Sharifnia (bib3) 2016; 16
Tan, Lu, Xu, Luo (bib18) 2012; 186
Zhang, Chen, Tang, Cheng (bib5) 2020; 392
Chen, Tian, Karayiannis (bib15) 2006; 49
Johnson (bib35) 1982; 27
Asiri, Lichtfouse (bib2) 2019
Yue, Chen, Yuan, Luo, Gonthier (bib16) 2007; 62
Edwards, Maurer, Newman, Prausnitz (bib34) 1978; 24
Danckwerts (bib28) 1970
van Baten, Krishna (bib7) 2004; 59
Zhu, Yao, Liu, Chen (bib13) 2020; 150
Bagemihl, Bhatraju, van Ommen, van Steijn (bib21) 2022; 10
Kreutzer (bib17) 2003
Shao, Gavriilidis, Angeli (bib8) 2010; 160
Vandu, Liu, Krishna (bib29) 2005; 60
Hurtado (10.1016/j.cherd.2023.08.045_bib1) 2016; 84
Zhang (10.1016/j.cherd.2023.08.045_bib5) 2020; 392
Zhang (10.1016/j.cherd.2023.08.045_bib9) 2011; 66
Sattari-Najafabadi (10.1016/j.cherd.2023.08.045_bib12) 2018; 127
Zhu (10.1016/j.cherd.2023.08.045_bib13) 2020; 150
van Baten (10.1016/j.cherd.2023.08.045_bib7) 2004; 59
Ganapathy (10.1016/j.cherd.2023.08.045_bib6) 2013; 101
Shao (10.1016/j.cherd.2023.08.045_bib8) 2010; 160
Bagemihl (10.1016/j.cherd.2023.08.045_bib21) 2022; 10
Edwards (10.1016/j.cherd.2023.08.045_bib34) 1978; 24
Sobieszuk (10.1016/j.cherd.2023.08.045_bib10) 2011; 66
Aussillous (10.1016/j.cherd.2023.08.045_bib27) 2000; 12
Karamian (10.1016/j.cherd.2023.08.045_bib3) 2016; 16
Yue (10.1016/j.cherd.2023.08.045_bib16) 2007; 62
Tan (10.1016/j.cherd.2023.08.045_bib19) 2012; 181–182
Zhu (10.1016/j.cherd.2023.08.045_bib11) 2017; 114
Johnson (10.1016/j.cherd.2023.08.045_bib35) 1982; 27
Asiri (10.1016/j.cherd.2023.08.045_bib2) 2019
Ganesh (10.1016/j.cherd.2023.08.045_bib4) 2016; 59
Chang (10.1016/j.cherd.2023.08.045_bib22) 2023
Tsonopoulos (10.1016/j.cherd.2023.08.045_bib33) 1976; 21
Krauβ (10.1016/j.cherd.2023.08.045_bib30) 2017; 166
Vandu (10.1016/j.cherd.2023.08.045_bib29) 2005; 60
Pohorecki (10.1016/j.cherd.2023.08.045_bib32) 1988; 43
Vas Bhat (10.1016/j.cherd.2023.08.045_bib31) 2000; 76
Tan (10.1016/j.cherd.2023.08.045_bib18) 2012; 186
Natividad (10.1016/j.cherd.2023.08.045_bib24) 2004
Kreutzer (10.1016/j.cherd.2023.08.045_bib17) 2003
Tahir (10.1016/j.cherd.2023.08.045_bib26) 2016; 285
Adamu (10.1016/j.cherd.2023.08.045_bib20) 2023; 70
Natividad (10.1016/j.cherd.2023.08.045_bib23) 2007; 86
Chen (10.1016/j.cherd.2023.08.045_bib15) 2006; 49
Danckwerts (10.1016/j.cherd.2023.08.045_bib28) 1970
Tahir (10.1016/j.cherd.2023.08.045_bib25) 2018; 170
Akbar (10.1016/j.cherd.2023.08.045_bib14) 2003; 29
References_xml – volume: 66
  start-page: 5791
  year: 2011
  end-page: 5803
  ident: bib9
  article-title: Gas-liquid flow in circular microchannel. Part I: influence of liquid physical properties and channel diameter on flow patterns
  publication-title: Chem. Eng. Sci.
– volume: 10
  start-page: 12580
  year: 2022
  end-page: 12587
  ident: bib21
  article-title: Electrochemical reduction of CO 2 in tubular flow cells under gas–liquid taylor flow
  publication-title: ACS Sustain. Chem. Eng.
– volume: 60
  start-page: 6430
  year: 2005
  end-page: 6437
  ident: bib29
  article-title: Mass transfer from Taylor bubbles rising in single capillaries
  publication-title: Chem. Eng. Sci.
– volume: 62
  start-page: 2096
  year: 2007
  end-page: 2108
  ident: bib16
  article-title: Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel
  publication-title: Chem. Eng. Sci.
– volume: 392
  year: 2020
  ident: bib5
  article-title: CO
  publication-title: Chem. Eng. J.
– volume: 84
  start-page: 30
  year: 2016
  end-page: 35
  ident: bib1
  article-title: Photocatalytic activity of Cu2O supported on multi layers graphene for CO
  publication-title: Catal. Commun.
– year: 2019
  ident: bib2
  publication-title: Convers. Carbon Dioxide into Hydrocarb. Vol. 1: Catal. ; Vol. 2: Technol.
– volume: 59
  start-page: 2535
  year: 2004
  end-page: 2545
  ident: bib7
  article-title: CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries
  publication-title: Chem. Eng. Sci.
– volume: 285
  start-page: 635
  year: 2016
  end-page: 649
  ident: bib26
  article-title: Performance analysis of nanostructured NiO-In2O3/TiO2 catalyst for CO
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 1677
  year: 1988
  end-page: 1684
  ident: bib32
  article-title: Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions
  publication-title: Chem. Eng. Sci.
– year: 2003
  ident: bib17
  publication-title: Hydrodyn. taylor Flow. capillaries Monolith React.
– year: 2023
  ident: bib22
  article-title: Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 2367
  year: 2000
  end-page: 2371
  ident: bib27
  article-title: Quick deposition of a fluid on the wall of a tube
  publication-title: Phys. Fluids
– volume: 66
  start-page: 6048
  year: 2011
  end-page: 6056
  ident: bib10
  article-title: Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel
  publication-title: Chem. Eng. Sci.
– volume: 49
  start-page: 4220
  year: 2006
  end-page: 4230
  ident: bib15
  article-title: The effect of tube diameter on vertical two-phase flow regimes in small tubes
  publication-title: Int. J. Heat. Mass Transf.
– volume: 29
  start-page: 855
  year: 2003
  end-page: 865
  ident: bib14
  article-title: On gas–liquid two-phase flow regimes in microchannels
  publication-title: Int. J. Multiph. Flow.
– volume: 70
  start-page: 1
  year: 2023
  end-page: 16
  ident: bib20
  article-title: Investigation of Cu/TiO
  publication-title: J. CO
– volume: 76
  start-page: 127
  year: 2000
  end-page: 152
  ident: bib31
  article-title: Mass transfer with complex chemical reactions in gas-liquid systems: Two-step reversible reactions with unit stoichiometric and kinetic orders
  publication-title: Chem. Eng. J.
– volume: 127
  start-page: 213
  year: 2018
  end-page: 237
  ident: bib12
  article-title: Mass transfer between phases in microchannels: a review
  publication-title: Chem. Eng. Process. - Process. Intensif.
– year: 1970
  ident: bib28
  article-title: Gas-Liquid Reactions
– volume: 59
  start-page: 1269
  year: 2016
  end-page: 1297
  ident: bib4
  article-title: Electrochemical conversion of carbon dioxide into renewable fuel chemicals - the role of nanomaterials and the commercialization
  publication-title: Renew. Sustain. Energy Rev.
– volume: 24
  start-page: 966
  year: 1978
  end-page: 976
  ident: bib34
  article-title: Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes
  publication-title: AlChE J.
– volume: 21
  start-page: 190
  year: 1976
  end-page: 193
  ident: bib33
  article-title: Ionization constants of water pollutants
  publication-title: J. Chem. Eng. Data
– volume: 160
  start-page: 873
  year: 2010
  end-page: 881
  ident: bib8
  article-title: Mass transfer during Taylor flow in microchannels with and without chemical reaction
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 849
  year: 1982
  end-page: 855
  ident: bib35
  article-title: Carbon dioxide hydration and dehydration kinetics in seawater
  publication-title: Limnol. Oceanogr.
– volume: 101
  start-page: 69
  year: 2013
  end-page: 80
  ident: bib6
  article-title: Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors
  publication-title: Chem. Eng. Sci.
– volume: 150
  year: 2020
  ident: bib13
  article-title: Theoretical approach to CO
  publication-title: Chem. Eng. Process. - Process. Intensif.
– volume: 86
  start-page: 1304
  year: 2007
  end-page: 1312
  ident: bib23
  article-title: Scaling-out selective hydrogenation reactions: From single capillary reactor to monolith
  publication-title: Fuel
– start-page: 5431
  year: 2004
  end-page: 5438
  ident: bib24
  article-title: Analysis of the performance of single capillary and multiple capillary (monolith) reactors for the multiphase Pd-catalyzed hydrogenation of 2-butyne-1,4-diol
  publication-title: Chem. Eng. Sci.
– volume: 16
  start-page: 194
  year: 2016
  end-page: 203
  ident: bib3
  article-title: On the general mechanism of photocatalytic reduction of CO
  publication-title: J. CO
– volume: 170
  start-page: 242
  year: 2018
  end-page: 250
  ident: bib25
  article-title: Photocatalytic carbon dioxide reduction to fuels in continuous flow monolith photoreactor using montmorillonite dispersed Fe/TiO2 nanocatalyst
  publication-title: J. Clean. Prod.
– volume: 166
  start-page: 193
  year: 2017
  end-page: 209
  ident: bib30
  article-title: Reactive absorption of CO
  publication-title: Chem. Eng. Sci.
– volume: 186
  start-page: 314
  year: 2012
  end-page: 320
  ident: bib18
  article-title: Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel
  publication-title: Chem. Eng. J. 185–
– volume: 114
  start-page: 83
  year: 2017
  end-page: 89
  ident: bib11
  article-title: Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel
  publication-title: Int. J. Heat. Mass Transf.
– volume: 181–182
  start-page: 229
  year: 2012
  end-page: 235
  ident: bib19
  article-title: Mass transfer performance of gas-liquid segmented flow in microchannels
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: 2096
  year: 2007
  ident: 10.1016/j.cherd.2023.08.045_bib16
  article-title: Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.12.057
– start-page: 5431
  year: 2004
  ident: 10.1016/j.cherd.2023.08.045_bib24
  article-title: Analysis of the performance of single capillary and multiple capillary (monolith) reactors for the multiphase Pd-catalyzed hydrogenation of 2-butyne-1,4-diol
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.09.011
– volume: 29
  start-page: 855
  year: 2003
  ident: 10.1016/j.cherd.2023.08.045_bib14
  article-title: On gas–liquid two-phase flow regimes in microchannels
  publication-title: Int. J. Multiph. Flow.
  doi: 10.1016/S0301-9322(03)00043-0
– year: 2023
  ident: 10.1016/j.cherd.2023.08.045_bib22
  article-title: Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00964E
– volume: 127
  start-page: 213
  year: 2018
  ident: 10.1016/j.cherd.2023.08.045_bib12
  article-title: Mass transfer between phases in microchannels: a review
  publication-title: Chem. Eng. Process. - Process. Intensif.
  doi: 10.1016/j.cep.2018.03.012
– volume: 59
  start-page: 2535
  year: 2004
  ident: 10.1016/j.cherd.2023.08.045_bib7
  article-title: CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.03.010
– volume: 10
  start-page: 12580
  year: 2022
  ident: 10.1016/j.cherd.2023.08.045_bib21
  article-title: Electrochemical reduction of CO 2 in tubular flow cells under gas–liquid taylor flow
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c03038
– volume: 150
  year: 2020
  ident: 10.1016/j.cherd.2023.08.045_bib13
  article-title: Theoretical approach to CO2 absorption in microreactors and reactor volume prediction
  publication-title: Chem. Eng. Process. - Process. Intensif.
  doi: 10.1016/j.cep.2020.107904
– year: 1970
  ident: 10.1016/j.cherd.2023.08.045_bib28
– volume: 16
  start-page: 194
  year: 2016
  ident: 10.1016/j.cherd.2023.08.045_bib3
  article-title: On the general mechanism of photocatalytic reduction of CO2
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2016.07.004
– volume: 27
  start-page: 849
  year: 1982
  ident: 10.1016/j.cherd.2023.08.045_bib35
  article-title: Carbon dioxide hydration and dehydration kinetics in seawater
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1982.27.5.0849
– volume: 49
  start-page: 4220
  year: 2006
  ident: 10.1016/j.cherd.2023.08.045_bib15
  article-title: The effect of tube diameter on vertical two-phase flow regimes in small tubes
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.03.025
– volume: 170
  start-page: 242
  year: 2018
  ident: 10.1016/j.cherd.2023.08.045_bib25
  article-title: Photocatalytic carbon dioxide reduction to fuels in continuous flow monolith photoreactor using montmorillonite dispersed Fe/TiO2 nanocatalyst
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.118
– volume: 86
  start-page: 1304
  year: 2007
  ident: 10.1016/j.cherd.2023.08.045_bib23
  article-title: Scaling-out selective hydrogenation reactions: From single capillary reactor to monolith
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.005
– volume: 181–182
  start-page: 229
  year: 2012
  ident: 10.1016/j.cherd.2023.08.045_bib19
  article-title: Mass transfer performance of gas-liquid segmented flow in microchannels
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.11.067
– volume: 21
  start-page: 190
  year: 1976
  ident: 10.1016/j.cherd.2023.08.045_bib33
  article-title: Ionization constants of water pollutants
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je60069a008
– volume: 186
  start-page: 314
  year: 2012
  ident: 10.1016/j.cherd.2023.08.045_bib18
  article-title: Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel
  publication-title: Chem. Eng. J. 185–
  doi: 10.1016/j.cej.2012.01.054
– volume: 66
  start-page: 5791
  year: 2011
  ident: 10.1016/j.cherd.2023.08.045_bib9
  article-title: Gas-liquid flow in circular microchannel. Part I: influence of liquid physical properties and channel diameter on flow patterns
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.07.035
– year: 2019
  ident: 10.1016/j.cherd.2023.08.045_bib2
  publication-title: Convers. Carbon Dioxide into Hydrocarb. Vol. 1: Catal. ; Vol. 2: Technol.
– volume: 160
  start-page: 873
  year: 2010
  ident: 10.1016/j.cherd.2023.08.045_bib8
  article-title: Mass transfer during Taylor flow in microchannels with and without chemical reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.02.049
– year: 2003
  ident: 10.1016/j.cherd.2023.08.045_bib17
  publication-title: Hydrodyn. taylor Flow. capillaries Monolith React.
– volume: 166
  start-page: 193
  year: 2017
  ident: 10.1016/j.cherd.2023.08.045_bib30
  article-title: Reactive absorption of CO2 in NaOH: detailed study of enhancement factor models
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.03.029
– volume: 392
  year: 2020
  ident: 10.1016/j.cherd.2023.08.045_bib5
  article-title: CO2 reduction in a microchannel electrochemical reactor with gas-liquid segmented flow
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124798
– volume: 101
  start-page: 69
  year: 2013
  ident: 10.1016/j.cherd.2023.08.045_bib6
  article-title: Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.06.005
– volume: 285
  start-page: 635
  year: 2016
  ident: 10.1016/j.cherd.2023.08.045_bib26
  article-title: Performance analysis of nanostructured NiO-In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.10.033
– volume: 60
  start-page: 6430
  year: 2005
  ident: 10.1016/j.cherd.2023.08.045_bib29
  article-title: Mass transfer from Taylor bubbles rising in single capillaries
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.01.037
– volume: 114
  start-page: 83
  year: 2017
  ident: 10.1016/j.cherd.2023.08.045_bib11
  article-title: Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.054
– volume: 70
  start-page: 1
  year: 2023
  ident: 10.1016/j.cherd.2023.08.045_bib20
  article-title: Investigation of Cu/TiO2 synthesis methods and conditions for CO2 photocatalytic reduction via conversion of bicarbonate/carbonate to formate
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2023.102428
– volume: 66
  start-page: 6048
  year: 2011
  ident: 10.1016/j.cherd.2023.08.045_bib10
  article-title: Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.08.029
– volume: 76
  start-page: 127
  year: 2000
  ident: 10.1016/j.cherd.2023.08.045_bib31
  article-title: Mass transfer with complex chemical reactions in gas-liquid systems: Two-step reversible reactions with unit stoichiometric and kinetic orders
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(99)00104-7
– volume: 43
  start-page: 1677
  year: 1988
  ident: 10.1016/j.cherd.2023.08.045_bib32
  article-title: Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(88)85159-5
– volume: 24
  start-page: 966
  year: 1978
  ident: 10.1016/j.cherd.2023.08.045_bib34
  article-title: Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes
  publication-title: AlChE J.
  doi: 10.1002/aic.690240605
– volume: 84
  start-page: 30
  year: 2016
  ident: 10.1016/j.cherd.2023.08.045_bib1
  article-title: Photocatalytic activity of Cu2O supported on multi layers graphene for CO2 reduction by water under batch and continuous flow
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2016.05.025
– volume: 59
  start-page: 1269
  year: 2016
  ident: 10.1016/j.cherd.2023.08.045_bib4
  article-title: Electrochemical conversion of carbon dioxide into renewable fuel chemicals - the role of nanomaterials and the commercialization
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.01.026
– volume: 12
  start-page: 2367
  year: 2000
  ident: 10.1016/j.cherd.2023.08.045_bib27
  article-title: Quick deposition of a fluid on the wall of a tube
  publication-title: Phys. Fluids
  doi: 10.1063/1.1289396
SSID ssj0001748
Score 2.4095936
Snippet In a circular economy and sustainability context, CO2 utilization is key. For photochemical or electrochemical transformations, CO2 absorption in liquids has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 247
SubjectTerms Capillary reactors
CO2 mass transfer
CO2 reactive absorption
CO2 transport correlation
Taylor flow
Title Physical and reactive absorption of CO2 in capillaries: Mass transfer, modelling and produced chemical species
URI https://dx.doi.org/10.1016/j.cherd.2023.08.045
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0263-8762
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001748
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  issn: 0263-8762
  databaseCode: ACRLP
  dateStart: 19961101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001748
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0263-8762
  databaseCode: .~1
  dateStart: 19961101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001748
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  issn: 0263-8762
  databaseCode: AIKHN
  dateStart: 19961101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001748
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0263-8762
  databaseCode: AKRWK
  dateStart: 19961101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001748
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qB48raJn1xmyqm8diYgEm7VU2aSkOoq0a58tux0xSGhHbgVDWqo8qJnc-t_ZmQyyxjinm5tNIwjywu_RD8IJNg7oLZEgC-qzBQHE_80Yzfzb15i8RNLQymVRrfX_t07a3NSN9os18uFv1niB4Y2rKLjOucY9zOeYBdDK4-f9I8AHGH9XcWpi2_YR7SOV6oF6QLdZnm8cSapr9Op7UTZ7hHdg1UpIP6bfZJSxUHZGeNQPCQFFOjZpoWGQX8p70XTcX7cqV9AV3mNH506aKgMi2xwxCGxtd0DJiZVhq0qlWP6n44WJiu5yk1C6zKqDRsAhTrMUHuiMyGNy_xyDIdFCwJR1NlOblQqWtjX0-AOn4eBmC_MOZwgX8QAW1AdBdlIYAugFUiAq_p-Io7EKdkXLoZOybtYlmoE0JDWLvAS1UYCZvLPEhtWwRBBrP5TDKZd4jbaC6Rhl4cu1y8JU0e2Wui1Z2guhPsfcm9Dul9C5U1u8bmx_1mSZJfmyQB_79J8PS_gmdkG-_q7L1z0q5WH-oCUEglunqbdcnWIH56mOL19n40-QLy4dz1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcQAOiKcYzxw4rqxr0hc3NDEN2AYSm7Rb1CapNIS6apQrvx07TWFIaAeubR1VTmx_bu3PhFwpxTTzM-kkURY7XAYR-EEmwdxT5koA-J7GRHE0DgZT_jDzZw3Sq3thsKzS-v7Kpxtvba90rDY7xXzeeYHsgaEte8i4zjnk7Rvc90LMwK4_f-o8AHJH1YcWZky_ph4yRV6oGOQL9Zgh8sSmpr_C00rI6e-SHYsV6W31OnukofN9sr3CIHhA8merZ5rkigIANO6LJun7YmmcAV1ktPfk0XlOZVLgiCHMjW_oCEAzLQ1q1cs2NQNxsDPdrFMYGlitqLR0AhQbMkHukEz7d5PewLEjFBwJsal0ulmqE8_FwZ6AdYIsCsGA4VqXp_gLEeAGpHexigB1Aa5KY3Cb3UDzLiQqiktPsSPSzBe5PiY0gs0L_URHcepymYWJ66ZhqGC1gEkmsxbxas0JafnFcczFm6gLyV6FUbdAdQscfsn9Fml_CxUVvcb6x4N6S8SvUyIgAKwTPPmv4CXZHExGQzG8Hz-eki28U5XynZFmufzQ5wBJyvTCHLkvRqbc9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+and+reactive+absorption+of+CO2+in+capillaries%3A+Mass+transfer%2C+modelling+and+produced+chemical+species&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Morales%2C+Daniel+O.&rft.au=Regalado-M%C3%A9ndez%2C+Alejandro&rft.au=P%C3%A9rez-Alonso%2C+C%C3%A9sar&rft.au=Natividad%2C+Reyna&rft.date=2023-10-01&rft.issn=0263-8762&rft.volume=198&rft.spage=247&rft.epage=258&rft_id=info:doi/10.1016%2Fj.cherd.2023.08.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2023_08_045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon