The evolutionary analysis of investment in CCS-EOR under dual carbon target—From the perspective of multi-agent involvement
•The government's clean electricity subsidy and carbon utilization subsidy have pushed the timing of CCS retrofitting significantly forward, but the initial investment subsidy has little impact on it.•Under the cooperation mode of coal-fired power plants and oilfield enterprises, the optimal co...
Saved in:
Published in | International journal of greenhouse gas control Vol. 135; p. 104107 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1750-5836 1878-0148 |
DOI | 10.1016/j.ijggc.2024.104107 |
Cover
Abstract | •The government's clean electricity subsidy and carbon utilization subsidy have pushed the timing of CCS retrofitting significantly forward, but the initial investment subsidy has little impact on it.•Under the cooperation mode of coal-fired power plants and oilfield enterprises, the optimal cost-sharing ratio of the initial investment for coal-fired power plants is about 0.4 to promote both sides to reach cooperation faster.•The carbon tax policy effectively propels the development of CCS-EOR technology. When the carbon tax rises from 30 CNY/t to 120CNY/t, power plants will conduct CCS retrofitting investment two years in advance.
Carbon capture and storage with enhanced oil recovery (CCS-EOR) technology plays a crucial role in achieving dual carbon targets in China. And the rapid diffusion of technology requires collaboration among various stakeholders involved in industrial chain of CCS-EOR project and then it will cause conflict of interest among the participants. In order to solve the problem existing in CCS-EOR promotion and propel the rapid deployment of low-carbon technology in China, the paper constructs a tripartite evolutionary game model by incorporating the strategic choices of coal-fired power plants, oilfield enterprises and governments into the framework, explores the respective dynamic evolutionary path of three parties and analyzes the impact of each parameter change on the system evolution results Through the numerical simulation, the paper identifies the optimal evolutionary path to spur the application of CCS-EOR and determine their strategy choices of three involved subjects in the game framework. Based on the sensitivity analysis, results are given as follows: (1) The government's clean electricity subsidy and carbon utilization subsidy have pushed the timing of CCS retrofitting significantly forward, but the initial investment subsidy has little impact on it; (2) Under the cooperation mode of coal-fired power plants and oilfield enterprises, the optimal cost-sharing ratio of the initial investment for coal-fired power plants is about 0.4 to promote both sides to reach cooperation faster. Once it exceeds 0.4, the probability of cooperation between them will be significantly reduced; (3) The carbon tax policy effectively propels the development of CCS-EOR technology. When the carbon tax rises from 30 CNY/t to 120CNY/t, power plants will conduct CCS retrofitting investment two years in advance. |
---|---|
AbstractList | •The government's clean electricity subsidy and carbon utilization subsidy have pushed the timing of CCS retrofitting significantly forward, but the initial investment subsidy has little impact on it.•Under the cooperation mode of coal-fired power plants and oilfield enterprises, the optimal cost-sharing ratio of the initial investment for coal-fired power plants is about 0.4 to promote both sides to reach cooperation faster.•The carbon tax policy effectively propels the development of CCS-EOR technology. When the carbon tax rises from 30 CNY/t to 120CNY/t, power plants will conduct CCS retrofitting investment two years in advance.
Carbon capture and storage with enhanced oil recovery (CCS-EOR) technology plays a crucial role in achieving dual carbon targets in China. And the rapid diffusion of technology requires collaboration among various stakeholders involved in industrial chain of CCS-EOR project and then it will cause conflict of interest among the participants. In order to solve the problem existing in CCS-EOR promotion and propel the rapid deployment of low-carbon technology in China, the paper constructs a tripartite evolutionary game model by incorporating the strategic choices of coal-fired power plants, oilfield enterprises and governments into the framework, explores the respective dynamic evolutionary path of three parties and analyzes the impact of each parameter change on the system evolution results Through the numerical simulation, the paper identifies the optimal evolutionary path to spur the application of CCS-EOR and determine their strategy choices of three involved subjects in the game framework. Based on the sensitivity analysis, results are given as follows: (1) The government's clean electricity subsidy and carbon utilization subsidy have pushed the timing of CCS retrofitting significantly forward, but the initial investment subsidy has little impact on it; (2) Under the cooperation mode of coal-fired power plants and oilfield enterprises, the optimal cost-sharing ratio of the initial investment for coal-fired power plants is about 0.4 to promote both sides to reach cooperation faster. Once it exceeds 0.4, the probability of cooperation between them will be significantly reduced; (3) The carbon tax policy effectively propels the development of CCS-EOR technology. When the carbon tax rises from 30 CNY/t to 120CNY/t, power plants will conduct CCS retrofitting investment two years in advance. |
ArticleNumber | 104107 |
Author | Zhang, Weiwei Tian, Jie Chen, Ximei |
Author_xml | – sequence: 1 givenname: Weiwei surname: Zhang fullname: Zhang, Weiwei email: weiwei@ctbu.edu.cn – sequence: 2 givenname: Ximei orcidid: 0009-0004-8883-2086 surname: Chen fullname: Chen, Ximei – sequence: 3 givenname: Jie surname: Tian fullname: Tian, Jie |
BookMark | eNqFkMFKwzAYgINMcJs-gZe8QGfSNG168CBjU2Ew0HkOWfp3ZnTpSLLCDoIP4RP6JKbOkwc95Sfh-8L_jdDAthYQuqZkQgnNb7YTs91s9CQlaRZvMkqKMzSkohAJoZkYxLngJOGC5Rdo5P2WkJzGhyF6W70Chq5tDsG0VrkjVlY1R288bmtsbAc-7MCGOOLp9DmZLZ_wwVbgcHVQDdbKrVuLg3IbCJ_vH3PX7nCIyj04vwcdTAe9aHdogknU5mSK33XQWy_Rea0aD1c_5xi9zGer6UOyWN4_Tu8WiWaEhYRm65yuq7JQGad5VuaE1zwvcuCK8lIAU1QLTkTBaqVJmpZ1kbG0EmkmlGYFZ2NUnrzatd47qKU2QfUbB6dMIymRfUe5ld8dZd9RnjpGlv1i987sYql_qNsTBXGtzoCTXhuwGirjYhZZteZP_gtvBZGN |
CitedBy_id | crossref_primary_10_1016_j_energy_2025_135384 crossref_primary_10_1021_acs_energyfuels_4c06309 crossref_primary_10_3389_fenrg_2024_1428624 |
Cites_doi | 10.1016/j.jenvman.2021.112717 10.1016/j.apenergy.2022.119514 10.1016/j.egypro.2017.03.1837 10.1016/j.rser.2020.109799 10.1007/s42773-023-00237-7 10.1016/S1876-3804(22)60324-0 10.1016/0196-8904(93)90069-M 10.1016/j.ijggc.2013.07.017 10.1016/j.jclepro.2018.05.019 10.1016/j.energy.2021.120297 10.2307/2938222 10.1016/j.renene.2022.04.164 10.1016/j.apenergy.2019.04.025 10.1016/j.jclepro.2022.133724 10.1016/j.decarb.2023.100018 10.1016/j.egypro.2017.03.1724 10.1016/j.asieco.2022.101527 10.1016/j.fuel.2023.127897 10.1016/j.ijggc.2018.08.013 10.1016/j.energy.2019.116352 10.1016/j.energy.2022.124000 10.1016/j.ijggc.2019.102857 10.1007/s10098-021-02025-y 10.1016/j.petrol.2019.106720 10.1016/j.jclepro.2021.126768 10.1016/j.jclepro.2022.131384 10.1016/j.apenergy.2017.02.056 10.1038/s41558-020-00960-0 10.1016/j.egypro.2011.02.575 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijggc.2024.104107 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0148 |
ExternalDocumentID | 10_1016_j_ijggc_2024_104107 S1750583624000501 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE IMUCA J1W JARJE KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSE SSJ SSR SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-14b61bd97a451649605f5676e5a1598e3a1c850873fac0229f7432d8248ac3753 |
IEDL.DBID | .~1 |
ISSN | 1750-5836 |
IngestDate | Tue Jul 01 04:37:46 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Tue Jun 18 08:51:17 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Investment analysis CCS-EOR technology Evolutionary game theory cooperation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-14b61bd97a451649605f5676e5a1598e3a1c850873fac0229f7432d8248ac3753 |
ORCID | 0009-0004-8883-2086 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijggc_2024_104107 crossref_primary_10_1016_j_ijggc_2024_104107 elsevier_sciencedirect_doi_10_1016_j_ijggc_2024_104107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of greenhouse gas control |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Huang, Wang, Meng (bib0008) 2020; 186 Lin, Tan (bib0014) 2021; 298 Wang, Mao, Chen, Wang (bib0024) 2022; 193 Guo, Zhong, Chen (bib0009) 2022; 252 Zhao, Yu, Lili (bib0034) 2022; 24 Pettinau, Ferrara, Tola, Cau (bib0019) 2017; 193 Liu, Zhang, Li, Chen, Teng (bib0015) 2022; 322 Zhao, Liu (bib0035) 2019; 189 Zhang, Yang, Lu (bib0032) 2023 Friedman (bib0006) 1991 Elias, Wahab, Fang (bib0004) 2018; 192 Jiang, Rui, Hazlett, Lu (bib0011) 2019; 247 Liu, Li, Zhang, Lau (bib0016) 2022; 351 Garba, Galadima (bib0007) 2020 Xu, Zhang, Shen, Wei, Fan (bib0027) 2021; 292 Allinson, Burt, Campbell, Constable, Crombie, Lee, Solsbey (bib0002) 2017; 114 Pörtner, Roberts, Adams, Adler, Aldunce, Ali, Ibrahim (bib0020) 2022 Morgan, Ampomah, Grigg (bib0017) 2023; 342 Blunt, Fayers, Orr (bib0003) 1993; 34 Ouyang, Guo (bib0018) 2022; 82 Zhang, Z., Pan, S.Y., Li, H., Cai, J., Olabi, A.G., Anthony, E.J., .& Manovic, V. Recent advances in carbon dioxide utilization. Renewable and sustainable energy reviews, 2020, 125: 109799. Thorne, Sundseth, Bouman (bib0023) 2020; 92 Lacy, Serralde, Climent (bib0012) 2013; 19 Shiyi, Desheng, Junshi (bib0021) 2022; 49 (bib0010) 2021 Zhang, Liao, Wang (bib0030) 2021; 225 Sun, Liu, Zhu, Zhang, Chen, Wang, Wang (bib0022) 2023 Welkenhuysen, Meyvis, Swennen (bib0026) 2018; 78 Zhang, Lin, Xue (bib0029) 2017; 114 Agarwal, Parsons (bib0001) 2011; 4 Fang, Huang, Lu, Wu, Chen, Yang, Wang (bib0005) 2023; 5 Li, Wei, Dai (bib0013) 2022; 373 Wei, Kang, Liu, Li, Wang, Hou, Yu (bib0025) 2021; 11 Zhang, Zhang, Government (bib0028) 2017 Zhang, Dai, Luo, Ou (bib0031) 2021; 23 Blunt (10.1016/j.ijggc.2024.104107_bib0003) 1993; 34 Xu (10.1016/j.ijggc.2024.104107_bib0027) 2021; 292 Guo (10.1016/j.ijggc.2024.104107_bib0009) 2022; 252 Jiang (10.1016/j.ijggc.2024.104107_bib0011) 2019; 247 Liu (10.1016/j.ijggc.2024.104107_bib0015) 2022; 322 Allinson (10.1016/j.ijggc.2024.104107_bib0002) 2017; 114 Welkenhuysen (10.1016/j.ijggc.2024.104107_bib0026) 2018; 78 Agarwal (10.1016/j.ijggc.2024.104107_bib0001) 2011; 4 Elias (10.1016/j.ijggc.2024.104107_bib0004) 2018; 192 Wang (10.1016/j.ijggc.2024.104107_bib0024) 2022; 193 Zhao (10.1016/j.ijggc.2024.104107_bib0035) 2019; 189 Sun (10.1016/j.ijggc.2024.104107_bib0022) 2023 Lin (10.1016/j.ijggc.2024.104107_bib0014) 2021; 298 Ouyang (10.1016/j.ijggc.2024.104107_bib0018) 2022; 82 Pörtner (10.1016/j.ijggc.2024.104107_bib0020) 2022 Liu (10.1016/j.ijggc.2024.104107_bib0016) 2022; 351 Zhang (10.1016/j.ijggc.2024.104107_bib0031) 2021; 23 Zhang (10.1016/j.ijggc.2024.104107_bib0030) 2021; 225 Garba (10.1016/j.ijggc.2024.104107_bib0007) 2020 Shiyi (10.1016/j.ijggc.2024.104107_bib0021) 2022; 49 Lacy (10.1016/j.ijggc.2024.104107_bib0012) 2013; 19 Friedman (10.1016/j.ijggc.2024.104107_bib0006) 1991 10.1016/j.ijggc.2024.104107_bib0033 Li (10.1016/j.ijggc.2024.104107_bib0013) 2022; 373 Zhao (10.1016/j.ijggc.2024.104107_bib0034) 2022; 24 Wei (10.1016/j.ijggc.2024.104107_bib0025) 2021; 11 Morgan (10.1016/j.ijggc.2024.104107_bib0017) 2023; 342 Guo (10.1016/j.ijggc.2024.104107_bib0008) 2020; 186 Zhang (10.1016/j.ijggc.2024.104107_bib0029) 2017; 114 (10.1016/j.ijggc.2024.104107_bib0010) 2021 Pettinau (10.1016/j.ijggc.2024.104107_bib0019) 2017; 193 Thorne (10.1016/j.ijggc.2024.104107_bib0023) 2020; 92 Zhang (10.1016/j.ijggc.2024.104107_bib0032) 2023 Zhang (10.1016/j.ijggc.2024.104107_bib0028) 2017 Fang (10.1016/j.ijggc.2024.104107_bib0005) 2023; 5 |
References_xml | – year: 2021 ident: bib0010 article-title: About CCUS – volume: 82 year: 2022 ident: bib0018 article-title: Carbon capture and storage investment strategy towards the dual carbon goals publication-title: J. Asian Econ. – start-page: 3056 year: 2022 ident: bib0020 article-title: Impacts, Adaptation and Vulnerability – volume: 189 year: 2019 ident: bib0035 article-title: A novel analysis of carbon capture and storage (CCS) technology adoption: an evolutionary game model between stakeholders publication-title: Energy – volume: 373 year: 2022 ident: bib0013 article-title: Investment in CO publication-title: J. Clean. Prod. – volume: 114 start-page: 6950 year: 2017 end-page: 6956 ident: bib0002 article-title: Best practice for transitioning from carbon dioxide (CO publication-title: Energy Procedia – volume: 351 year: 2022 ident: bib0016 article-title: T.echno-economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal-fired power plants publication-title: J. Clean. Prod. – volume: 192 start-page: 722 year: 2018 end-page: 734 ident: bib0004 article-title: Retrofitting carbon capture and storage to natural gas-fired power plants: a real-options approach publication-title: J. Clean. Prod. – volume: 186 year: 2020 ident: bib0008 article-title: I.ntegrated operation for the planning of CO publication-title: J. Petrol. Sci. Eng. – volume: 49 start-page: 955 year: 2022 end-page: 962 ident: bib0021 article-title: Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization publication-title: Petrol. Explor. Dev. – volume: 193 start-page: 426 year: 2017 end-page: 439 ident: bib0019 article-title: Techno-economic comparison between different technologies for CO publication-title: Appl. Energy – volume: 342 year: 2023 ident: bib0017 article-title: Techno-economic life cycle assessment of CO publication-title: Fuel – volume: 92 year: 2020 ident: bib0023 article-title: Technical and environmental viability of a European CO publication-title: Int. J. Greenhouse Gas Control – volume: 23 start-page: 1311 year: 2021 end-page: 1326 ident: bib0031 article-title: Policy incentives in carbon capture utilization and storage (CCUS) investment based on real options analysis publication-title: Clean. Technol. Environ. Policy. – volume: 19 start-page: 212 year: 2013 end-page: 219 ident: bib0012 article-title: Initial assessment of the potential for future CCUS with EOR projects in Mexico using CO publication-title: Int. J. Greenhouse Gas Control – year: 2020 ident: bib0007 article-title: Carbon Capture and Storage (CCS) technology: Challenges to Implementation – volume: 298 year: 2021 ident: bib0014 article-title: How much impact will low oil price and carbon trading mechanism have on the value of carbon capture utilization and storage (CCUS) project? Analysis based on real option method publication-title: J. Clean. Prod. – volume: 322 year: 2022 ident: bib0015 article-title: Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect publication-title: Appl. Energy – volume: 114 start-page: 5869 year: 2017 end-page: 5873 ident: bib0029 article-title: Sinopec Zhongyuan oil field company refinery CCS-EOR project publication-title: Energy Procedia – start-page: 637 year: 1991 end-page: 666 ident: bib0006 article-title: Evolutionary games in economics publication-title: Econometrica: J. Econometr. Soc. – volume: 247 start-page: 190 year: 2019 end-page: 211 ident: bib0011 article-title: An integrated technical-economic model for evaluating CO publication-title: Appl. Energy – year: 2023 ident: bib0022 article-title: Non-noble metal single atom-based catalysts for electrochemical reduction of CO publication-title: DeCarbon – volume: 292 year: 2021 ident: bib0027 article-title: A.ssessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China publication-title: J. Environ. Manage. – volume: 78 start-page: 271 year: 2018 end-page: 285 ident: bib0026 article-title: Economic threshold of CO publication-title: Int. J. Greenhouse Gas Control – volume: 24 start-page: 24 year: 2022 end-page: 38 ident: bib0034 article-title: Financing incentives for the commercialization of carbon capture and storage (CCS) publication-title: J. Beijing Univ. Technol. (Soc. Sci. Ed.) – reference: Zhang, Z., Pan, S.Y., Li, H., Cai, J., Olabi, A.G., Anthony, E.J., .& Manovic, V. Recent advances in carbon dioxide utilization. Renewable and sustainable energy reviews, 2020, 125: 109799. – volume: 4 start-page: 5786 year: 2011 end-page: 5793 ident: bib0001 article-title: Commercial structures for integrated CCS-EOR projects publication-title: Energy Procedia – volume: 34 start-page: 1197 year: 1993 end-page: 1204 ident: bib0003 article-title: Carbon dioxide in enhanced oil recovery publication-title: Energy Convers. Manag. – year: 2017 ident: bib0028 article-title: power stations and technology diffusion in CCS publication-title: Sci. Technol. Manage. Res. – volume: 225 year: 2021 ident: bib0030 article-title: How to promote zero-carbon oilfield target? A technical-economic model to analyze the economic and environmental benefits of Recycle-CCS-EOR project publication-title: Energy – volume: 193 start-page: 669 year: 2022 end-page: 686 ident: bib0024 article-title: Uncovering the dynamics and uncertainties of substituting coal power with renewable energy resources publication-title: Renew. Energy – volume: 5 start-page: 42 year: 2023 ident: bib0005 article-title: Biochar-based materials in environmental pollutant elimination, H publication-title: Biochar. – volume: 252 year: 2022 ident: bib0009 article-title: Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics publication-title: Energy – year: 2023 ident: bib0032 article-title: Annual Report of Carbon Capture, Utilization and Storage (CCUS) in China (2023) – volume: 11 start-page: 112 year: 2021 end-page: 118 ident: bib0025 article-title: A proposed global layout of carbon capture and storage in line with a 2 C climate target publication-title: Nat. Clim. Chang. – year: 2021 ident: 10.1016/j.ijggc.2024.104107_bib0010 – volume: 292 year: 2021 ident: 10.1016/j.ijggc.2024.104107_bib0027 article-title: A.ssessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112717 – volume: 322 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0015 article-title: Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119514 – volume: 114 start-page: 6950 year: 2017 ident: 10.1016/j.ijggc.2024.104107_bib0002 article-title: Best practice for transitioning from carbon dioxide (CO2) enhanced oil recovery EOR to CO2 storage publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1837 – ident: 10.1016/j.ijggc.2024.104107_bib0033 doi: 10.1016/j.rser.2020.109799 – volume: 5 start-page: 42 issue: 1 year: 2023 ident: 10.1016/j.ijggc.2024.104107_bib0005 article-title: Biochar-based materials in environmental pollutant elimination, H2 production and CO2 capture applications publication-title: Biochar. doi: 10.1007/s42773-023-00237-7 – year: 2023 ident: 10.1016/j.ijggc.2024.104107_bib0032 – volume: 49 start-page: 955 issue: 4 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0021 article-title: Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization publication-title: Petrol. Explor. Dev. doi: 10.1016/S1876-3804(22)60324-0 – issue: 6 year: 2017 ident: 10.1016/j.ijggc.2024.104107_bib0028 article-title: power stations and technology diffusion in CCS publication-title: Sci. Technol. Manage. Res. – volume: 34 start-page: 1197 year: 1993 ident: 10.1016/j.ijggc.2024.104107_bib0003 article-title: Carbon dioxide in enhanced oil recovery publication-title: Energy Convers. Manag. doi: 10.1016/0196-8904(93)90069-M – start-page: 3056 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0020 – volume: 19 start-page: 212 year: 2013 ident: 10.1016/j.ijggc.2024.104107_bib0012 article-title: Initial assessment of the potential for future CCUS with EOR projects in Mexico using CO2 captured from fossil fuel industrial plants publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.07.017 – volume: 192 start-page: 722 year: 2018 ident: 10.1016/j.ijggc.2024.104107_bib0004 article-title: Retrofitting carbon capture and storage to natural gas-fired power plants: a real-options approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.05.019 – volume: 24 start-page: 24 issue: 1 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0034 article-title: Financing incentives for the commercialization of carbon capture and storage (CCS) publication-title: J. Beijing Univ. Technol. (Soc. Sci. Ed.) – volume: 225 year: 2021 ident: 10.1016/j.ijggc.2024.104107_bib0030 article-title: How to promote zero-carbon oilfield target? A technical-economic model to analyze the economic and environmental benefits of Recycle-CCS-EOR project publication-title: Energy doi: 10.1016/j.energy.2021.120297 – start-page: 637 year: 1991 ident: 10.1016/j.ijggc.2024.104107_bib0006 article-title: Evolutionary games in economics publication-title: Econometrica: J. Econometr. Soc. doi: 10.2307/2938222 – year: 2020 ident: 10.1016/j.ijggc.2024.104107_bib0007 – volume: 193 start-page: 669 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0024 article-title: Uncovering the dynamics and uncertainties of substituting coal power with renewable energy resources publication-title: Renew. Energy doi: 10.1016/j.renene.2022.04.164 – volume: 247 start-page: 190 year: 2019 ident: 10.1016/j.ijggc.2024.104107_bib0011 article-title: An integrated technical-economic model for evaluating CO2 enhanced oil recovery development publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.025 – volume: 373 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0013 article-title: Investment in CO2 capture and storage combined with enhanced oil recovery in China: a case study of China's first megaton-scale project publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133724 – year: 2023 ident: 10.1016/j.ijggc.2024.104107_bib0022 article-title: Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: synthesis approaches and performance evaluation publication-title: DeCarbon doi: 10.1016/j.decarb.2023.100018 – volume: 114 start-page: 5869 year: 2017 ident: 10.1016/j.ijggc.2024.104107_bib0029 article-title: Sinopec Zhongyuan oil field company refinery CCS-EOR project publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1724 – volume: 82 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0018 article-title: Carbon capture and storage investment strategy towards the dual carbon goals publication-title: J. Asian Econ. doi: 10.1016/j.asieco.2022.101527 – volume: 342 year: 2023 ident: 10.1016/j.ijggc.2024.104107_bib0017 article-title: Techno-economic life cycle assessment of CO2-EOR operations towards net negative emissions at farnsworth field unit publication-title: Fuel doi: 10.1016/j.fuel.2023.127897 – volume: 78 start-page: 271 year: 2018 ident: 10.1016/j.ijggc.2024.104107_bib0026 article-title: Economic threshold of CO2-EOR and CO2 storage in the North Sea: a case study of the Claymore, Scott and Buzzard oil fields publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2018.08.013 – volume: 189 year: 2019 ident: 10.1016/j.ijggc.2024.104107_bib0035 article-title: A novel analysis of carbon capture and storage (CCS) technology adoption: an evolutionary game model between stakeholders publication-title: Energy doi: 10.1016/j.energy.2019.116352 – volume: 252 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0009 article-title: Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics publication-title: Energy doi: 10.1016/j.energy.2022.124000 – volume: 92 year: 2020 ident: 10.1016/j.ijggc.2024.104107_bib0023 article-title: Technical and environmental viability of a European CO2 EOR system publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2019.102857 – volume: 23 start-page: 1311 year: 2021 ident: 10.1016/j.ijggc.2024.104107_bib0031 article-title: Policy incentives in carbon capture utilization and storage (CCUS) investment based on real options analysis publication-title: Clean. Technol. Environ. Policy. doi: 10.1007/s10098-021-02025-y – volume: 186 year: 2020 ident: 10.1016/j.ijggc.2024.104107_bib0008 article-title: I.ntegrated operation for the planning of CO2 capture path in CCS–EOR project publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2019.106720 – volume: 298 year: 2021 ident: 10.1016/j.ijggc.2024.104107_bib0014 article-title: How much impact will low oil price and carbon trading mechanism have on the value of carbon capture utilization and storage (CCUS) project? Analysis based on real option method publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126768 – volume: 351 year: 2022 ident: 10.1016/j.ijggc.2024.104107_bib0016 article-title: T.echno-economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal-fired power plants publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131384 – volume: 193 start-page: 426 year: 2017 ident: 10.1016/j.ijggc.2024.104107_bib0019 article-title: Techno-economic comparison between different technologies for CO2-free power generation from coal publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.056 – volume: 11 start-page: 112 issue: 2 year: 2021 ident: 10.1016/j.ijggc.2024.104107_bib0025 article-title: A proposed global layout of carbon capture and storage in line with a 2 C climate target publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-00960-0 – volume: 4 start-page: 5786 year: 2011 ident: 10.1016/j.ijggc.2024.104107_bib0001 article-title: Commercial structures for integrated CCS-EOR projects publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.02.575 |
SSID | ssj0061148 |
Score | 2.443849 |
Snippet | •The government's clean electricity subsidy and carbon utilization subsidy have pushed the timing of CCS retrofitting significantly forward, but the initial... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104107 |
SubjectTerms | CCS-EOR technology cooperation Evolutionary game theory Investment analysis |
Title | The evolutionary analysis of investment in CCS-EOR under dual carbon target—From the perspective of multi-agent involvement |
URI | https://dx.doi.org/10.1016/j.ijggc.2024.104107 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGja_PYbJJjKS3VYoXWYm9hs8mWFG1KiIIHxR_hL_SXuLNJagXpwVMeZDZhdpiZ3cz3DUIXIralZ8QmcS3bIVSEgoR-6BFXmkYUCeFLF9DItwPWG9ObiTOpoXaFhYGyytL3Fz5de-vyTrPUZnORJM2RCnyG4ykHTDWLiUawUxds_ep9WebBIN_XoEjHAIQRq5iHdI1XMptOgcfQovCv04Sesn9Fp5WI091B22WqiFvF1-yiWjzfQ1srBIL76E3NMo5fSvPh2SvmJckITiVONIcGbP-pU9xuj0jnbogBNZZhgGBhwbMwneOiGvzr47ObpU9YZYR48QPBhIF01SHh02Ik9TpNMp4foHG3c9_ukbKhAhEqUuXEpCEzw8h3ObTnpWrx4kiHuSx2uMpqvNjmpvBUxubakgsV3NVEUduKPIt6XNhqYXOI6vN0Hh8h7EsKQlRGPqPSNjxhCccKXenbvrAidoysSpGBKNnGoenFY1CVlc0Crf0AtB8U2j9Gl0uhRUG2sf5xVs1Q8MtmAhUO1gme_FfwFG3CVVEqdobqefYcn6ukJA8b2uoaaKN13e8N4NgfPvS_AZDQ5CQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-pBfGJ97sGja_PYbJKjlJaqbQXbQm9hs8mWFm1LqIIHxR_hL_SXOLNJqoJ48BaSzCbMDDOzyTffEHKmUlcHVmoz33E9xlWsWBzGAfO1bSWJUqH2sRu53RHNPr8eeIMlUit7YRBWWcT-PKabaF2cqRbarM5Go2oXEp_lBRCAuWExgS3QCscxB-DUF68LnIfAgt90RXoWthiJknrIgLxG4-EQiQwdjj87bRwq-1t6-pZyGptko6gV6WX-OltkKZ1sk_VvDII75AXMTNOnwn9k9kxlwTJCp5qODIkGfv-DQ1qrdVn99o5i21hGsQeLKpnF0wnN4eAfb--NbPpAoSSks68eTFzIwA6ZHOYrweMMy_h8l_Qb9V6tyYqJCkxBqpozm8fCjpPQlzifl8PuxdOe8EXqSShrgtSVtgqgZPNdLRVkd7AUd50kcHgglQs7mz2yPJlO0n1CQ81RiOskFFy7VqAc5Tmxr0M3VE4iKsQpFRmpgm4cp17cRyWubBwZ7Ueo_SjXfoWcL4RmOdvG37eL0kLRD6eJIB_8JXjwX8FTstrstVtR66pzc0jW8EqOGzsiy_PsMT2GCmUenxgP_AStX-QK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolutionary+analysis+of+investment+in+CCS-EOR+under+dual+carbon+target%E2%80%94From+the+perspective+of+multi-agent+involvement&rft.jtitle=International+journal+of+greenhouse+gas+control&rft.au=Zhang%2C+Weiwei&rft.au=Chen%2C+Ximei&rft.au=Tian%2C+Jie&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=1750-5836&rft.eissn=1878-0148&rft.volume=135&rft_id=info:doi/10.1016%2Fj.ijggc.2024.104107&rft.externalDocID=S1750583624000501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-5836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-5836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-5836&client=summon |