Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems
Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intell...
        Saved in:
      
    
          | Published in | Mathematics and computers in simulation Vol. 192; pp. 84 - 110 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-4754 1872-7166  | 
| DOI | 10.1016/j.matcom.2021.08.013 | 
Cover
| Abstract | Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intelligent foraging behavior of honey badger, to mathematically develop an efficient search strategy for solving optimization problems. The dynamic search behavior of honey badger with digging and honey finding approaches are formulated into exploration and exploitation phases in HBA. Moreover, with controlled randomization techniques, HBA maintains ample population diversity even towards the end of the search process. To assess the efficiency of HBA, 24 standard benchmark functions, CEC’17 test-suite, and four engineering design problems are solved. The solutions obtained using the HBA have been compared with ten well-known metaheuristic algorithms including Simulated annealing (SA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Success-History based Adaptive Differential Evolution variants with linear population size reduction (L-SHADE), Moth-flame Optimization (MFO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), Thermal Exchange Optimization (TEO) and Harris hawks optimization (HHO). The experimental results, along with statistical analysis, reveal the effectiveness of HBA for solving optimization problems with complex search-space, as well as, its superiority in terms of convergence speed and exploration–exploitation balance, as compared to other methods used in this study. The source code of HBA is currently available for public at https://www.mathworks.com/matlabcentral/fileexchange/98204-honey-badger-algorithm.
•A novel metaheuristic algorithm called Honey Badger algorithm (HBA) is proposed.•HBA is tested on 24 functions, 4 engineering design problems and CEC’17 test suite.•The results on the test beds revealed the competitiveness of HBA.•HBA showed a superior performance to find global optima. | 
    
|---|---|
| AbstractList | Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intelligent foraging behavior of honey badger, to mathematically develop an efficient search strategy for solving optimization problems. The dynamic search behavior of honey badger with digging and honey finding approaches are formulated into exploration and exploitation phases in HBA. Moreover, with controlled randomization techniques, HBA maintains ample population diversity even towards the end of the search process. To assess the efficiency of HBA, 24 standard benchmark functions, CEC’17 test-suite, and four engineering design problems are solved. The solutions obtained using the HBA have been compared with ten well-known metaheuristic algorithms including Simulated annealing (SA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Success-History based Adaptive Differential Evolution variants with linear population size reduction (L-SHADE), Moth-flame Optimization (MFO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), Thermal Exchange Optimization (TEO) and Harris hawks optimization (HHO). The experimental results, along with statistical analysis, reveal the effectiveness of HBA for solving optimization problems with complex search-space, as well as, its superiority in terms of convergence speed and exploration–exploitation balance, as compared to other methods used in this study. The source code of HBA is currently available for public at https://www.mathworks.com/matlabcentral/fileexchange/98204-honey-badger-algorithm.
•A novel metaheuristic algorithm called Honey Badger algorithm (HBA) is proposed.•HBA is tested on 24 functions, 4 engineering design problems and CEC’17 test suite.•The results on the test beds revealed the competitiveness of HBA.•HBA showed a superior performance to find global optima. | 
    
| Author | Mabrouk, Mai S. Hashim, Fatma A. Hussain, Kashif Houssein, Essam H. Al-Atabany, Walid  | 
    
| Author_xml | – sequence: 1 givenname: Fatma A. surname: Hashim fullname: Hashim, Fatma A. organization: Faculty of Engineering, Helwan University, Egypt – sequence: 2 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. organization: Faculty of Computers and Information, Minia University, Egypt – sequence: 3 givenname: Kashif orcidid: 0000-0003-0011-2726 surname: Hussain fullname: Hussain, Kashif email: kashifhussain.bukc@bahria.edu.pk organization: Department of Computer Science, Bahria University, Karachi Campus, Pakistan – sequence: 4 givenname: Mai S. surname: Mabrouk fullname: Mabrouk, Mai S. organization: Faculty of Engineering, Misr University for Science and Technology, Egypt – sequence: 5 givenname: Walid surname: Al-Atabany fullname: Al-Atabany, Walid organization: Information Technology and Computer Science School, Nile University, Egypt  | 
    
| BookMark | eNqFkEFOwzAQRS0EEm3hBix8gYRxnDhpF0ilAoqEYEPXluuMW1dJXNmmqJyelMKGBazmS6P3NfOG5LRzHRJyxSBlwMT1Jm1V1K5NM8hYClUKjJ-QAavKLCmZEKdkALyskrws8nMyDGEDAH0uBmQx76v29FbVK_R02qyct3HdTugzvtMWo1rjm7chWk3Vz5Ia52lwzc52K-q20bb2Q0XrOrr1btlgGy7ImVFNwMvvOSKL-7vX2Tx5enl4nE2fEs0hi4lGlkNheI4KDVSKCaYMGLMUos6FWTJuSpFlRow51Lwu9BhYno-RFZyxrC74iEyOvdq7EDwaqW38OiV6ZRvJQB4EyY08CpIHQRIq2Qvq4fwXvPW2VX7_H3ZzxLB_bGfRy6Atdhpr61FHWTv7d8EngaOFvw | 
    
| CitedBy_id | crossref_primary_10_1007_s00500_024_09893_8 crossref_primary_10_1007_s11067_025_09679_x crossref_primary_10_1088_2631_8695_ad22be crossref_primary_10_32604_cmc_2024_053189 crossref_primary_10_1007_s10586_024_04666_2 crossref_primary_10_1016_j_compbiomed_2024_108780 crossref_primary_10_1049_gtd2_13077 crossref_primary_10_1016_j_rico_2025_100518 crossref_primary_10_1007_s11042_024_19996_x crossref_primary_10_1016_j_advengsoft_2022_103362 crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1016_j_bspc_2023_105643 crossref_primary_10_1080_03081079_2024_2422094 crossref_primary_10_32604_iasc_2023_029804 crossref_primary_10_1016_j_enconman_2022_115539 crossref_primary_10_1016_j_future_2022_11_008 crossref_primary_10_1007_s11042_024_19437_9 crossref_primary_10_1007_s00521_022_08015_5 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1016_j_ijepes_2024_110085 crossref_primary_10_1108_IJICC_03_2022_0062 crossref_primary_10_1038_s41598_024_66450_x crossref_primary_10_1016_j_ins_2022_01_075 crossref_primary_10_3390_sym15071432 crossref_primary_10_1142_S0219649224500047 crossref_primary_10_1016_j_cma_2022_115676 crossref_primary_10_1007_s10064_024_03819_2 crossref_primary_10_1016_j_aej_2024_02_024 crossref_primary_10_1016_j_mtcomm_2024_108174 crossref_primary_10_1007_s10586_024_04654_6 crossref_primary_10_3390_en15207603 crossref_primary_10_1007_s10586_024_04448_w crossref_primary_10_1016_j_enconman_2024_118264 crossref_primary_10_1038_s41598_024_76545_0 crossref_primary_10_1007_s11269_023_03497_x crossref_primary_10_1016_j_bspc_2022_104165 crossref_primary_10_1016_j_uclim_2024_102233 crossref_primary_10_1007_s40098_024_00933_6 crossref_primary_10_1016_j_eswa_2022_118256 crossref_primary_10_4236_jcc_2025_131007 crossref_primary_10_3390_math10071057 crossref_primary_10_3390_s23115358 crossref_primary_10_1016_j_swevo_2024_101626 crossref_primary_10_1142_S0218126625500902 crossref_primary_10_1142_S021800142452013X crossref_primary_10_3934_math_2024252 crossref_primary_10_21605_cukurovaumfd_1334214 crossref_primary_10_1016_j_epsr_2023_109970 crossref_primary_10_1016_j_heliyon_2024_e32399 crossref_primary_10_1080_13682199_2023_2176804 crossref_primary_10_1007_s00603_024_03947_x crossref_primary_10_3390_math11051077 crossref_primary_10_3390_app142311414 crossref_primary_10_3390_su14148897 crossref_primary_10_1007_s11277_022_09500_9 crossref_primary_10_1016_j_isatra_2023_04_001 crossref_primary_10_1016_j_eswa_2022_119211 crossref_primary_10_1109_ACCESS_2024_3362059 crossref_primary_10_1142_S0218126624501378 crossref_primary_10_1080_0305215X_2023_2254701 crossref_primary_10_1007_s10586_024_04328_3 crossref_primary_10_1371_journal_pone_0316326 crossref_primary_10_1016_j_enconman_2022_115521 crossref_primary_10_1016_j_rineng_2024_103860 crossref_primary_10_1016_j_suscom_2023_100949 crossref_primary_10_1002_dac_5761 crossref_primary_10_1007_s40998_023_00664_z crossref_primary_10_1007_s42979_023_02003_9 crossref_primary_10_1016_j_knosys_2022_110206 crossref_primary_10_1016_j_ymssp_2024_111270 crossref_primary_10_1007_s00202_023_01862_y crossref_primary_10_1088_1402_4896_ad86f7 crossref_primary_10_1016_j_mtcomm_2023_107939 crossref_primary_10_3390_biomimetics9100602 crossref_primary_10_1109_ACCESS_2023_3332902 crossref_primary_10_1007_s10586_024_04382_x crossref_primary_10_3390_e24081018 crossref_primary_10_1007_s12530_023_09495_z crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1016_j_bspc_2023_105849 crossref_primary_10_1016_j_asoc_2024_111455 crossref_primary_10_3390_biomimetics8050411 crossref_primary_10_1016_j_asoc_2025_112967 crossref_primary_10_3390_pr13010256 crossref_primary_10_1007_s10462_024_10729_y crossref_primary_10_1016_j_apm_2024_04_057 crossref_primary_10_1007_s00500_024_10302_3 crossref_primary_10_1016_j_knosys_2024_112039 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_3390_w16172458 crossref_primary_10_1016_j_egyr_2025_02_004 crossref_primary_10_1016_j_aej_2024_02_012 crossref_primary_10_1155_2022_1796642 crossref_primary_10_3390_en17163935 crossref_primary_10_3390_math10234519 crossref_primary_10_1002_dac_5810 crossref_primary_10_1142_S0218625X24500495 crossref_primary_10_1016_j_cej_2024_151743 crossref_primary_10_32604_cmc_2023_038787 crossref_primary_10_1016_j_est_2024_112635 crossref_primary_10_3233_JIFS_213206 crossref_primary_10_1016_j_matcom_2022_05_015 crossref_primary_10_1007_s12065_024_00937_4 crossref_primary_10_1016_j_asoc_2024_111566 crossref_primary_10_3390_math10132329 crossref_primary_10_47134_ppm_v2i2_1480 crossref_primary_10_1080_10255842_2023_2252551 crossref_primary_10_1007_s00521_021_06580_9 crossref_primary_10_1016_j_cma_2023_115878 crossref_primary_10_1109_ACCESS_2023_3326758 crossref_primary_10_1016_j_ijhydene_2023_10_146 crossref_primary_10_1109_ACCESS_2023_3283422 crossref_primary_10_1177_0958305X231210994 crossref_primary_10_3390_en16062878 crossref_primary_10_1007_s10462_023_10567_4 crossref_primary_10_29130_dubited_1185476 crossref_primary_10_3390_electronics11213463 crossref_primary_10_1007_s41870_024_02030_6 crossref_primary_10_1007_s11277_023_10420_5 crossref_primary_10_1080_15376494_2024_2352800 crossref_primary_10_1007_s12530_023_09493_1 crossref_primary_10_1016_j_istruc_2024_106239 crossref_primary_10_1016_j_jrmge_2024_09_015 crossref_primary_10_1016_j_energy_2022_125985 crossref_primary_10_3390_en16052409 crossref_primary_10_1007_s42235_023_00356_8 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_3390_math10132219 crossref_primary_10_3934_era_2025079 crossref_primary_10_1142_S0218625X22501268 crossref_primary_10_1016_j_aej_2022_06_017 crossref_primary_10_3390_biomimetics8060470 crossref_primary_10_1016_j_jfranklin_2024_107398 crossref_primary_10_1016_j_advengsoft_2024_103857 crossref_primary_10_1111_jph_70001 crossref_primary_10_1016_j_egyr_2022_05_192 crossref_primary_10_1080_15325008_2023_2275717 crossref_primary_10_23939_mmc2025_01_001 crossref_primary_10_1016_j_arcontrol_2024_100973 crossref_primary_10_1038_s41598_024_70572_7 crossref_primary_10_3390_biomimetics8010121 crossref_primary_10_1080_10589759_2024_2320749 crossref_primary_10_3389_fmech_2022_1126450 crossref_primary_10_1016_j_bspc_2023_105423 crossref_primary_10_1007_s12530_024_09569_6 crossref_primary_10_1016_j_eswa_2022_119015 crossref_primary_10_1038_s41598_024_63746_w crossref_primary_10_1007_s12530_022_09433_5 crossref_primary_10_1016_j_eswa_2023_121609 crossref_primary_10_1007_s10278_023_00878_x crossref_primary_10_1007_s13042_022_01758_6 crossref_primary_10_1016_j_ifacol_2022_05_040 crossref_primary_10_3390_a17120573 crossref_primary_10_1016_j_jpowsour_2022_232610 crossref_primary_10_1007_s00521_024_09485_5 crossref_primary_10_1038_s41598_024_54384_3 crossref_primary_10_1088_1361_6501_ad37d0 crossref_primary_10_3233_JIFS_235563 crossref_primary_10_1007_s12065_024_00914_x crossref_primary_10_1016_j_eswa_2023_121975 crossref_primary_10_1016_j_engappai_2023_106672 crossref_primary_10_1007_s11760_024_03422_8 crossref_primary_10_3233_MGS_230003 crossref_primary_10_1016_j_suscom_2025_101081 crossref_primary_10_1002_aisy_202200097 crossref_primary_10_1016_j_eswa_2024_125047 crossref_primary_10_3233_JIFS_221036 crossref_primary_10_1002_dac_5704 crossref_primary_10_3233_JIFS_221039 crossref_primary_10_1016_j_cie_2023_109773 crossref_primary_10_1016_j_knosys_2023_110940 crossref_primary_10_1016_j_compbiomed_2024_109348 crossref_primary_10_1016_j_epsr_2025_111588 crossref_primary_10_1080_13682199_2023_2208927 crossref_primary_10_1093_comjnl_bxac002 crossref_primary_10_1007_s10586_024_04319_4 crossref_primary_10_32604_cmes_2023_025908 crossref_primary_10_1007_s00521_024_09497_1 crossref_primary_10_1016_j_eswa_2023_121501 crossref_primary_10_1515_mt_2024_0151 crossref_primary_10_1007_s12530_024_09645_x crossref_primary_10_1109_TDEI_2024_3395235 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_1007_s00202_023_02232_4 crossref_primary_10_1038_s41598_024_70497_1 crossref_primary_10_3390_su17062718 crossref_primary_10_1007_s10489_022_03796_7 crossref_primary_10_1007_s10462_024_10786_3 crossref_primary_10_1016_j_energy_2023_129188 crossref_primary_10_1155_2023_3397430 crossref_primary_10_3390_math10101626 crossref_primary_10_1007_s11220_023_00457_y crossref_primary_10_1007_s00500_023_08925_z crossref_primary_10_3390_biomimetics8020149 crossref_primary_10_1002_oca_3178 crossref_primary_10_3390_pr10122532 crossref_primary_10_1007_s11269_022_03256_4 crossref_primary_10_3233_IDT_240476 crossref_primary_10_3233_IDT_240479 crossref_primary_10_1016_j_egyr_2024_07_036 crossref_primary_10_1109_ACCESS_2024_3365700 crossref_primary_10_1016_j_bspc_2023_105910 crossref_primary_10_1016_j_engfailanal_2022_106829 crossref_primary_10_1016_j_asoc_2023_110953 crossref_primary_10_1016_j_chaos_2025_116203 crossref_primary_10_1007_s40996_023_01068_z crossref_primary_10_1016_j_eswa_2022_116924 crossref_primary_10_1109_ACCESS_2022_3172789 crossref_primary_10_1007_s00500_022_07466_1 crossref_primary_10_1007_s12559_024_10300_5 crossref_primary_10_1007_s00500_022_07115_7 crossref_primary_10_1016_j_aej_2023_02_023 crossref_primary_10_1016_j_comcom_2023_08_011 crossref_primary_10_1016_j_renene_2024_121182 crossref_primary_10_1016_j_suscom_2025_101082 crossref_primary_10_3390_pr10081451 crossref_primary_10_1007_s12597_024_00869_8 crossref_primary_10_1049_gtd2_13242 crossref_primary_10_1080_21681015_2025_2471897 crossref_primary_10_1002_oca_3164 crossref_primary_10_1007_s11227_022_04644_8 crossref_primary_10_1016_j_matcom_2023_10_006 crossref_primary_10_1016_j_undsp_2024_01_004 crossref_primary_10_1109_TIM_2022_3228003 crossref_primary_10_1038_s41598_025_92187_2 crossref_primary_10_1016_j_energy_2024_131419 crossref_primary_10_1109_ACCESS_2024_3446239 crossref_primary_10_1109_TGCN_2022_3216882 crossref_primary_10_1007_s11227_023_05529_0 crossref_primary_10_1007_s10462_024_11032_6 crossref_primary_10_1007_s11227_023_05628_y crossref_primary_10_1007_s10462_025_11120_1 crossref_primary_10_3389_fenrg_2022_1011887 crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_59782_iam_v1i2_223 crossref_primary_10_3233_JIFS_222503 crossref_primary_10_1038_s41598_023_50910_x crossref_primary_10_1515_mt_2022_0055 crossref_primary_10_32604_csse_2023_037066 crossref_primary_10_48084_etasr_5661 crossref_primary_10_1007_s11042_024_18824_6 crossref_primary_10_1007_s42417_024_01545_3 crossref_primary_10_1007_s11042_024_20447_w crossref_primary_10_1016_j_measurement_2023_113032 crossref_primary_10_23919_CSMS_2024_0011 crossref_primary_10_1007_s11227_023_05560_1 crossref_primary_10_3233_MGS_230040 crossref_primary_10_1186_s40537_025_01116_7 crossref_primary_10_1016_j_aej_2023_10_055 crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_1007_s00521_024_10484_9 crossref_primary_10_1109_ACCESS_2023_3279416 crossref_primary_10_1007_s42107_023_00579_4 crossref_primary_10_1016_j_fraope_2023_100024 crossref_primary_10_1515_mt_2022_0050 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1007_s10586_024_04525_0 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_1016_j_eswa_2023_121413 crossref_primary_10_1016_j_measurement_2024_115022 crossref_primary_10_1007_s10462_024_10981_2 crossref_primary_10_1016_j_eswa_2025_127206 crossref_primary_10_1007_s00521_023_08813_5 crossref_primary_10_1002_oca_3065 crossref_primary_10_1007_s42600_024_00391_2 crossref_primary_10_1007_s11227_023_05047_z crossref_primary_10_1016_j_eij_2024_100486 crossref_primary_10_1016_j_bspc_2025_107558 crossref_primary_10_1016_j_jvcir_2024_104309 crossref_primary_10_1016_j_heliyon_2023_e21596 crossref_primary_10_1007_s10846_023_01907_1 crossref_primary_10_1007_s12065_024_00945_4 crossref_primary_10_1016_j_est_2023_107094 crossref_primary_10_1016_j_est_2024_111894 crossref_primary_10_1016_j_ijleo_2022_169731 crossref_primary_10_1109_ACCESS_2022_3173401 crossref_primary_10_3390_app13116805 crossref_primary_10_1016_j_ijleo_2024_172014 crossref_primary_10_1016_j_eswa_2023_122873 crossref_primary_10_3390_f16020253 crossref_primary_10_1007_s10922_024_09806_y crossref_primary_10_1016_j_knosys_2025_113020 crossref_primary_10_3390_electronics12092042 crossref_primary_10_3390_biomimetics9030137 crossref_primary_10_1016_j_dcan_2024_09_001 crossref_primary_10_3390_en15165891 crossref_primary_10_1016_j_aej_2024_11_035 crossref_primary_10_1016_j_asoc_2025_113071 crossref_primary_10_1002_oca_3018 crossref_primary_10_1002_cpe_7382 crossref_primary_10_1016_j_matcom_2022_02_030 crossref_primary_10_1109_ACCESS_2023_3320931 crossref_primary_10_1016_j_asoc_2024_111722 crossref_primary_10_35940_ijeat_E3552_0611522 crossref_primary_10_1016_j_asoc_2023_110514 crossref_primary_10_1016_j_epsr_2022_108955 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_1016_j_swevo_2024_101795 crossref_primary_10_3934_mbe_2023547 crossref_primary_10_1007_s11042_024_19187_8 crossref_primary_10_1038_s41598_024_61434_3 crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1080_03772063_2023_2301653 crossref_primary_10_1007_s00500_023_09214_5 crossref_primary_10_1007_s42235_023_00447_6 crossref_primary_10_1016_j_eij_2024_100584 crossref_primary_10_1088_1674_1056_ace4b5 crossref_primary_10_4018_IJSIR_314210 crossref_primary_10_1109_ACCESS_2023_3299031 crossref_primary_10_1109_JSEN_2024_3429237 crossref_primary_10_3390_aerospace12020101 crossref_primary_10_1007_s10586_024_04547_8 crossref_primary_10_3390_app15020718 crossref_primary_10_1038_s41598_024_76410_0 crossref_primary_10_1093_ce_zkac010 crossref_primary_10_2166_wcc_2023_225 crossref_primary_10_3390_math11194080 crossref_primary_10_1016_j_knosys_2023_110454 crossref_primary_10_1016_j_knosys_2024_111960 crossref_primary_10_1016_j_comnet_2025_111149 crossref_primary_10_1007_s11042_024_18353_2 crossref_primary_10_1016_j_asej_2025_103342 crossref_primary_10_3390_electronics13224491 crossref_primary_10_1007_s10586_024_04851_3 crossref_primary_10_1016_j_heliyon_2024_e40068 crossref_primary_10_1038_s41598_025_87867_y crossref_primary_10_1109_TIM_2024_3369151 crossref_primary_10_1016_j_egyr_2022_10_316 crossref_primary_10_1038_s41598_024_55040_6 crossref_primary_10_1109_ACCESS_2023_3267110 crossref_primary_10_1515_mt_2022_0013 crossref_primary_10_1007_s40436_023_00461_1 crossref_primary_10_3390_en17184572 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_1007_s10462_023_10658_2 crossref_primary_10_1016_j_adhoc_2024_103474 crossref_primary_10_1016_j_ijcce_2024_09_004 crossref_primary_10_1007_s41870_024_02068_6 crossref_primary_10_1016_j_matcom_2023_04_027 crossref_primary_10_1007_s10586_024_04293_x crossref_primary_10_1109_ACCESS_2024_3390723 crossref_primary_10_3390_su14095005 crossref_primary_10_1016_j_swevo_2024_101779 crossref_primary_10_1016_j_egyr_2024_09_021 crossref_primary_10_1016_j_eswa_2023_121218 crossref_primary_10_1007_s00500_023_08033_y crossref_primary_10_1016_j_eswa_2023_122544 crossref_primary_10_1016_j_mtcomm_2024_109642 crossref_primary_10_3390_make7010024 crossref_primary_10_1016_j_mtcomm_2024_108551 crossref_primary_10_1016_j_eswa_2023_120484 crossref_primary_10_1038_s41598_024_78569_y crossref_primary_10_1109_ACCESS_2024_3466170 crossref_primary_10_3934_mbe_2023767 crossref_primary_10_1016_j_eswa_2023_120482 crossref_primary_10_3390_w16060874 crossref_primary_10_1016_j_jappgeo_2023_105236 crossref_primary_10_55546_jmm_1291032 crossref_primary_10_1515_mt_2022_0123 crossref_primary_10_1016_j_advengsoft_2024_103671 crossref_primary_10_1016_j_fluid_2022_113682 crossref_primary_10_1007_s11063_023_11321_1 crossref_primary_10_1016_j_ijcce_2025_01_003 crossref_primary_10_1109_ACCESS_2022_3186519 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_3390_brainsci13060893 crossref_primary_10_1038_s41598_023_43622_9 crossref_primary_10_1007_s41870_024_02046_y crossref_primary_10_1016_j_eswa_2023_122559 crossref_primary_10_3390_fractalfract7020119 crossref_primary_10_1007_s10586_024_04765_0 crossref_primary_10_1007_s12559_023_10149_0 crossref_primary_10_3390_pr13010174 crossref_primary_10_1007_s11761_023_00357_9 crossref_primary_10_1016_j_bspc_2024_107170 crossref_primary_10_1016_j_swevo_2024_101766 crossref_primary_10_1177_24056456241297357 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1007_s11760_023_02938_9 crossref_primary_10_1002_tal_2207 crossref_primary_10_1016_j_advengsoft_2025_103883 crossref_primary_10_1108_JM2_02_2024_0047 crossref_primary_10_1016_j_jenvman_2022_115498 crossref_primary_10_1109_ACCESS_2024_3367288 crossref_primary_10_1016_j_anucene_2023_109963 crossref_primary_10_1016_j_isci_2023_106679 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_1016_j_est_2025_115316 crossref_primary_10_3390_foods12091773 crossref_primary_10_3390_biomimetics8080619 crossref_primary_10_1007_s11082_022_04139_z crossref_primary_10_1007_s10586_024_04618_w crossref_primary_10_1371_journal_pone_0313713 crossref_primary_10_1007_s10845_023_02182_5 crossref_primary_10_1515_mt_2022_0119 crossref_primary_10_1109_ACCESS_2024_3392482 crossref_primary_10_1038_s41598_024_83589_9 crossref_primary_10_1016_j_asej_2023_102223 crossref_primary_10_1016_j_cma_2022_114901 crossref_primary_10_1016_j_rineng_2024_103161 crossref_primary_10_1109_ACCESS_2024_3452511 crossref_primary_10_1016_j_qref_2024_101866 crossref_primary_10_1016_j_ijft_2024_101043 crossref_primary_10_3390_math11153335 crossref_primary_10_1007_s41870_025_02404_4 crossref_primary_10_1016_j_ijhydene_2023_07_172 crossref_primary_10_12677_ORF_2023_135539 crossref_primary_10_46604_ijeti_2024_13683 crossref_primary_10_1016_j_aej_2023_12_028 crossref_primary_10_1016_j_heliyon_2024_e31629 crossref_primary_10_1007_s40747_023_01186_1 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1142_S0219519423500501 crossref_primary_10_3934_era_2024109 crossref_primary_10_1007_s10278_022_00752_2 crossref_primary_10_1007_s40430_022_03911_2 crossref_primary_10_1007_s10586_024_04605_1 crossref_primary_10_1016_j_eswa_2025_127026 crossref_primary_10_1016_j_eswa_2023_122460 crossref_primary_10_3390_en18051258 crossref_primary_10_1016_j_cosrev_2025_100740 crossref_primary_10_1007_s00202_024_02402_y crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_35377_saucis___1474767 crossref_primary_10_1016_j_bspc_2023_105069 crossref_primary_10_1142_S0219691323500340 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1016_j_asoc_2023_110573 crossref_primary_10_1007_s41939_023_00225_1 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_1016_j_ijhydene_2024_09_027 crossref_primary_10_1016_j_aej_2023_04_052 crossref_primary_10_3390_electronics11091475 crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1007_s10462_024_10986_x crossref_primary_10_1007_s11036_024_02304_0 crossref_primary_10_31796_ogummf_1012709 crossref_primary_10_3390_f15091512 crossref_primary_10_3390_s23218939 crossref_primary_10_3390_math11030707 crossref_primary_10_1002_gj_4885 crossref_primary_10_1016_j_aej_2023_12_054 crossref_primary_10_32604_cmes_2024_056693 crossref_primary_10_1155_2022_5830766 crossref_primary_10_1016_j_csi_2023_103802 crossref_primary_10_1049_cth2_12504 crossref_primary_10_3390_math10122081 crossref_primary_10_1016_j_compbiomed_2022_106123 crossref_primary_10_1109_JSEN_2023_3324845 crossref_primary_10_1016_j_epsr_2023_109393 crossref_primary_10_1016_j_asej_2024_102978 crossref_primary_10_1080_15325008_2022_2136295 crossref_primary_10_1093_jcde_qwad017 crossref_primary_10_3390_biomimetics9010021 crossref_primary_10_3390_s22051795 crossref_primary_10_1016_j_asej_2024_102732 crossref_primary_10_1016_j_knosys_2023_110470 crossref_primary_10_1080_15325008_2024_2319719 crossref_primary_10_3233_IDT_220215 crossref_primary_10_1109_ACCESS_2022_3203730 crossref_primary_10_1002_est2_428 crossref_primary_10_1088_1757_899X_1237_1_012011 crossref_primary_10_1038_s41598_025_85709_5 crossref_primary_10_1007_s43926_024_00070_9 crossref_primary_10_3233_JHS_230086 crossref_primary_10_1007_s00704_025_05360_y crossref_primary_10_3390_biomimetics8030278 crossref_primary_10_1109_ACCESS_2024_3427632 crossref_primary_10_1016_j_rineng_2024_103357 crossref_primary_10_1177_09287329241312628 crossref_primary_10_3390_en15197366 crossref_primary_10_1080_01969722_2022_2122001 crossref_primary_10_1002_smr_2679 crossref_primary_10_1007_s12559_022_10099_z crossref_primary_10_3390_biomimetics10030168 crossref_primary_10_1007_s41939_024_00481_9 crossref_primary_10_1016_j_seta_2022_102005 crossref_primary_10_1007_s11831_024_10202_7 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1155_2022_9588610 crossref_primary_10_3390_s24175720 crossref_primary_10_1016_j_knosys_2023_111032 crossref_primary_10_1016_j_cma_2024_116840 crossref_primary_10_1155_2022_6017066 crossref_primary_10_3390_math11030522 crossref_primary_10_1016_j_energy_2024_130362 crossref_primary_10_3390_biomimetics9010008 crossref_primary_10_3390_pr12020285 crossref_primary_10_1016_j_eswa_2024_124973 crossref_primary_10_3390_su14138069 crossref_primary_10_1016_j_kjs_2023_02_009 crossref_primary_10_1016_j_oceaneng_2024_117951 crossref_primary_10_1016_j_egyr_2023_10_002 crossref_primary_10_1007_s12046_024_02588_8 crossref_primary_10_1007_s12065_024_00997_6 crossref_primary_10_1016_j_bspc_2025_107612 crossref_primary_10_1109_ACCESS_2024_3463953 crossref_primary_10_1007_s11277_024_11245_6 crossref_primary_10_3390_math13010121 crossref_primary_10_1016_j_bspc_2024_106269 crossref_primary_10_1016_j_cma_2023_116062 crossref_primary_10_1109_TGRS_2024_3462752 crossref_primary_10_1007_s10723_024_09740_y crossref_primary_10_1080_01969722_2023_2175120 crossref_primary_10_1111_coin_70036 crossref_primary_10_3934_math_2024972 crossref_primary_10_23919_PCMP_2023_000129 crossref_primary_10_1007_s11042_023_15066_w crossref_primary_10_3390_en17174373 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1155_2022_1966054 crossref_primary_10_1007_s00202_024_02885_9 crossref_primary_10_1080_00207217_2023_2173806 crossref_primary_10_1109_ACCESS_2024_3369039 crossref_primary_10_7717_peerj_cs_2278 crossref_primary_10_1016_j_aeue_2022_154218 crossref_primary_10_1007_s10489_024_05413_1 crossref_primary_10_1093_jcde_qwad110 crossref_primary_10_1016_j_cma_2023_116199 crossref_primary_10_1016_j_eswa_2024_124882 crossref_primary_10_3390_biomimetics7040204 crossref_primary_10_1002_cpe_7205 crossref_primary_10_1016_j_phycom_2023_102260 crossref_primary_10_1007_s10661_024_12357_z crossref_primary_10_1007_s11042_024_19726_3 crossref_primary_10_1016_j_matcom_2022_11_020 crossref_primary_10_32604_iasc_2023_030495 crossref_primary_10_1080_15325008_2024_2304147 crossref_primary_10_1007_s00521_023_09200_w crossref_primary_10_1016_j_fraope_2024_100141 crossref_primary_10_3390_math12101513 crossref_primary_10_1007_s11356_022_23653_x crossref_primary_10_1007_s11277_024_11674_3 crossref_primary_10_2339_politeknik_1155696 crossref_primary_10_32604_cmes_2024_055171 crossref_primary_10_1016_j_eswa_2021_116468 crossref_primary_10_1038_s41598_024_82648_5 crossref_primary_10_1007_s00202_024_02314_x crossref_primary_10_1016_j_aej_2022_02_009 crossref_primary_10_1007_s10489_022_03977_4 crossref_primary_10_1038_s41598_024_72541_6 crossref_primary_10_1364_OE_540940 crossref_primary_10_1016_j_knosys_2023_111134 crossref_primary_10_1002_dac_6016 crossref_primary_10_1007_s11042_023_15785_0 crossref_primary_10_1016_j_compbiomed_2023_106691 crossref_primary_10_1186_s44147_023_00274_w crossref_primary_10_1016_j_eswa_2023_122272 crossref_primary_10_1007_s12065_024_00909_8 crossref_primary_10_1016_j_procs_2024_08_097 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_1007_s41939_023_00364_5 crossref_primary_10_1049_hve2_12408 crossref_primary_10_1016_j_matcom_2022_10_007 crossref_primary_10_53982_ajerd_2024_0702_01_j crossref_primary_10_1016_j_eswa_2024_123428 crossref_primary_10_1007_s10586_024_04713_y crossref_primary_10_1007_s10586_024_04345_2 crossref_primary_10_1007_s11760_024_03130_3 crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_1142_S0219519424500477 crossref_primary_10_1111_coin_70014 crossref_primary_10_3390_biomimetics9070399 crossref_primary_10_1016_j_eswa_2023_121189 crossref_primary_10_1007_s00500_024_09765_1 crossref_primary_10_1016_j_ijleo_2023_171465 crossref_primary_10_1016_j_ecoinf_2025_103063 crossref_primary_10_1016_j_energy_2023_130051 crossref_primary_10_1007_s13042_024_02361_7 crossref_primary_10_1038_s41598_024_83234_5 crossref_primary_10_1177_0958305X231189187 crossref_primary_10_1007_s11227_025_07139_4 crossref_primary_10_3390_sym17030356 crossref_primary_10_32604_cmes_2024_052001 crossref_primary_10_1016_j_psep_2024_05_027 crossref_primary_10_1016_j_sysarc_2023_102871 crossref_primary_10_1007_s00500_023_09276_5 crossref_primary_10_1007_s10586_023_03989_w crossref_primary_10_3233_JIFS_235387 crossref_primary_10_1007_s10489_022_03438_y crossref_primary_10_1142_S0219649224500680 crossref_primary_10_3233_WEB_230063 crossref_primary_10_3389_fenrg_2022_875332 crossref_primary_10_1002_cpe_7971 crossref_primary_10_1007_s10586_024_04361_2 crossref_primary_10_1016_j_ecoinf_2025_103051 crossref_primary_10_1016_j_enconman_2024_118784 crossref_primary_10_3389_fenrg_2022_941705 crossref_primary_10_1016_j_suscom_2024_101023 crossref_primary_10_3390_a17110472 crossref_primary_10_1016_j_egyr_2023_01_028 crossref_primary_10_1016_j_seta_2024_103885 crossref_primary_10_1016_j_engappai_2022_104854 crossref_primary_10_1364_OE_461116 crossref_primary_10_1038_s41598_024_53602_2 crossref_primary_10_1109_TAI_2024_3385386 crossref_primary_10_1007_s10825_022_01928_3 crossref_primary_10_1007_s44196_025_00759_x crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1007_s10462_022_10233_1 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1080_0952813X_2023_2217831 crossref_primary_10_1016_j_cie_2023_109166 crossref_primary_10_3390_math11051256 crossref_primary_10_1038_s41598_024_84227_0 crossref_primary_10_1007_s00202_024_02717_w crossref_primary_10_1080_21681163_2022_2058616 crossref_primary_10_32604_cmes_2024_053236 crossref_primary_10_1016_j_matcom_2022_12_027 crossref_primary_10_1016_j_egyr_2023_10_037 crossref_primary_10_1007_s10668_023_02954_2 crossref_primary_10_1007_s41939_024_00540_1 crossref_primary_10_1080_01969722_2022_2145660 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_3390_biomimetics8060507 crossref_primary_10_3390_en15207473 crossref_primary_10_1016_j_engappai_2022_104722 crossref_primary_10_1016_j_asoc_2023_111033 crossref_primary_10_1016_j_measurement_2023_112505 crossref_primary_10_3390_su15021589 crossref_primary_10_1007_s10462_024_11029_1 crossref_primary_10_1080_15325008_2024_2344200 crossref_primary_10_29130_dubited_1205144 crossref_primary_10_1007_s10586_024_04309_6 crossref_primary_10_1109_ACCESS_2022_3177218 crossref_primary_10_3233_JIFS_236577 crossref_primary_10_1142_S0217984924503421 crossref_primary_10_1007_s00500_023_09351_x crossref_primary_10_1007_s12083_024_01708_9 crossref_primary_10_1109_ACCESS_2024_3377143 crossref_primary_10_1007_s42235_024_00558_8 crossref_primary_10_1016_j_matcom_2022_12_022 crossref_primary_10_3390_biomimetics10020092 crossref_primary_10_1093_jcde_qwad094 crossref_primary_10_1007_s11276_024_03806_1 crossref_primary_10_1016_j_cma_2023_116446 crossref_primary_10_1016_j_yofte_2024_104111 crossref_primary_10_23919_PCMP_2023_000187 crossref_primary_10_1016_j_suscom_2024_101006 crossref_primary_10_1016_j_stress_2024_100702 crossref_primary_10_1089_big_2023_0146 crossref_primary_10_1007_s00521_022_07925_8 crossref_primary_10_1080_01969722_2023_2175145 crossref_primary_10_1016_j_est_2024_114484 crossref_primary_10_1007_s10462_022_10234_0 crossref_primary_10_1109_TPWRS_2022_3204176 crossref_primary_10_1016_j_ecmx_2023_100405 crossref_primary_10_1142_S0219622022500754 crossref_primary_10_1016_j_apm_2025_116029 crossref_primary_10_17780_ksujes_1213693 crossref_primary_10_37391_ijeer_120303 crossref_primary_10_38016_jista_1200225 crossref_primary_10_1088_1402_4896_ad8e0e crossref_primary_10_1016_j_bspc_2024_106894 crossref_primary_10_1038_s41598_024_54510_1 crossref_primary_10_1016_j_knosys_2022_108411 crossref_primary_10_1016_j_fuel_2023_127783 crossref_primary_10_1007_s42044_025_00245_9 crossref_primary_10_1007_s42979_024_03609_3 crossref_primary_10_1007_s11042_023_18057_z crossref_primary_10_1016_j_energy_2022_124363 crossref_primary_10_1007_s00500_024_09823_8 crossref_primary_10_3390_mi15080998 crossref_primary_10_3934_era_2024030 crossref_primary_10_1016_j_asoc_2024_112019 crossref_primary_10_1109_ACCESS_2025_3548875 crossref_primary_10_1002_est2_512 crossref_primary_10_1007_s10462_023_10683_1 crossref_primary_10_1016_j_iswa_2025_200486 crossref_primary_10_1007_s10878_024_01189_9 crossref_primary_10_1093_jcde_qwae058 crossref_primary_10_3390_pr10112254 crossref_primary_10_1093_ae_tmae037 crossref_primary_10_1155_2022_4587880 crossref_primary_10_1007_s10586_024_04901_w crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_3390_math12030435 crossref_primary_10_1016_j_renene_2022_12_120 crossref_primary_10_3390_biomimetics9120732 crossref_primary_10_1002_eng2_12974 crossref_primary_10_3390_math10244734 crossref_primary_10_1007_s40747_023_01082_8 crossref_primary_10_1080_01969722_2022_2146849 crossref_primary_10_3233_JCS_230049 crossref_primary_10_1109_ACCESS_2023_3287859 crossref_primary_10_1016_j_istruc_2024_107722 crossref_primary_10_1080_01969722_2022_2157612 crossref_primary_10_1007_s12204_023_2591_1 crossref_primary_10_1142_S0129054122420151 crossref_primary_10_3390_fractalfract6110682 crossref_primary_10_3390_computers11120170 crossref_primary_10_1109_ACCESS_2022_3229964 crossref_primary_10_3390_s22124492 crossref_primary_10_1007_s42235_022_00223_y crossref_primary_10_1038_s41598_024_77225_9 crossref_primary_10_12677_ecl_2024_1341832 crossref_primary_10_1016_j_engappai_2023_106389 crossref_primary_10_1109_ACCESS_2024_3372851 crossref_primary_10_1007_s00521_022_07836_8 crossref_primary_10_3233_JIFS_231922 crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1016_j_bspc_2024_106636 crossref_primary_10_1080_15325008_2023_2240800 crossref_primary_10_1038_s41598_024_81594_6 crossref_primary_10_1080_15325008_2023_2280109 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1088_1742_6596_2774_1_012088 crossref_primary_10_5937_str2201022M crossref_primary_10_3390_machines10060469 crossref_primary_10_1038_s41598_024_80894_1 crossref_primary_10_1007_s10489_023_04473_z crossref_primary_10_1007_s00500_023_09023_w crossref_primary_10_1080_1206212X_2023_2212945 crossref_primary_10_3390_biomimetics9110701 crossref_primary_10_3390_s24227161 crossref_primary_10_1080_01969722_2022_2151189 crossref_primary_10_1080_03772063_2024_2425775 crossref_primary_10_3390_math11183861 crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_1016_j_est_2022_106468 crossref_primary_10_3389_fenrg_2024_1357863 crossref_primary_10_3390_biomimetics9120757 crossref_primary_10_3390_biomimetics9080474 crossref_primary_10_1038_s41598_024_65926_0 crossref_primary_10_1016_j_eswa_2023_119941 crossref_primary_10_1007_s10586_024_04508_1 crossref_primary_10_1007_s11042_024_19760_1 crossref_primary_10_1016_j_autcon_2024_105655 crossref_primary_10_1007_s11227_025_07106_z crossref_primary_10_1016_j_matcom_2022_06_007 crossref_primary_10_32604_iasc_2023_032160 crossref_primary_10_1007_s10825_024_02204_2 crossref_primary_10_1007_s44196_022_00092_7 crossref_primary_10_1142_S0219519423500082 crossref_primary_10_1080_03772063_2024_2353336 crossref_primary_10_1109_ACCESS_2023_3286661 crossref_primary_10_1016_j_cma_2023_116238 crossref_primary_10_1016_j_psep_2024_04_063  | 
    
| Cites_doi | 10.1016/j.engappai.2020.103731 10.1016/j.ins.2013.01.020 10.1007/s11235-019-00559-7 10.1016/j.bspc.2018.05.039 10.1007/s00521-018-3592-0 10.1006/anbe.2003.2223 10.1016/j.eswa.2021.115253 10.1126/science.220.4598.671 10.1016/j.eswa.2020.113364 10.1016/j.eswa.2020.114159 10.1016/j.advengsoft.2017.03.014 10.1504/IJBIC.2016.081335 10.1016/j.advengsoft.2017.05.014 10.1016/j.future.2019.07.015 10.1016/j.eswa.2021.114689 10.1103/PhysRevLett.98.021101 10.1016/j.knosys.2015.07.006 10.1007/s00521-019-04611-0 10.1016/j.jksuci.2018.09.017 10.1007/s10489-020-01893-z 10.1007/s10462-017-9605-z 10.1017/S0952836904005990 10.1007/s00500-011-0754-8 10.1115/1.2919393 10.1016/j.ins.2013.02.041 10.1016/j.advengsoft.2016.01.008 10.1016/j.engappai.2021.104155 10.1016/j.asoc.2012.11.026 10.1016/j.advengsoft.2017.01.004 10.1145/2480741.2480752 10.1162/106365601750190398 10.1016/j.eswa.2021.114778 10.1016/S0166-3615(99)00046-9 10.4169/amer.math.monthly.122.02.144 10.1016/j.future.2019.02.028 10.1016/j.engappai.2021.104309 10.1109/4235.585893 10.1515/jaiscr-2015-0001  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 International Association for Mathematics and Computers in Simulation (IMACS) | 
    
| Copyright_xml | – notice: 2021 International Association for Mathematics and Computers in Simulation (IMACS) | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.matcom.2021.08.013 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7166 | 
    
| EndPage | 110 | 
    
| ExternalDocumentID | 10_1016_j_matcom_2021_08_013 S0378475421002901  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c302t-ce1405f34eaef08a161af0ffb66d46fb13f7622f6930d3d5c901449e153112d53 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-4754 | 
    
| IngestDate | Thu Apr 24 22:56:04 EDT 2025 Thu Oct 16 04:27:37 EDT 2025 Fri Feb 23 02:47:17 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Exploration and exploitation Swarm intelligence algorithms Honey Badger Algorithm Meta-heuristic algorithms Optimization problems Nature-inspired algorithms  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c302t-ce1405f34eaef08a161af0ffb66d46fb13f7622f6930d3d5c901449e153112d53 | 
    
| ORCID | 0000-0002-8127-7233 0000-0003-0011-2726  | 
    
| PageCount | 27 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2021_08_013 crossref_primary_10_1016_j_matcom_2021_08_013 elsevier_sciencedirect_doi_10_1016_j_matcom_2021_08_013  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2022 2022-02-00  | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Mathematics and computers in simulation | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Gong Dunwei, Ji (b11) 2013; 233 Hassan, Houssein, Mahdy, Kamel (b17) 2021; 100 Mirjalili (b42) 2015; 89 Tanabe, Fukunaga (b50) 2014 Houssein, Helmy, Oliva, Elngar, Shaban (b22) 2021; 167 Kaveh, Dadras (b37) 2017; 110 Heptner (b20) 2001 Sadollah, Bahreininejad, Eskandar, Hamdi (b48) 2013; 13 Yazdani, Jolai (b54) 2016; 3 Heidari, Seyedali, Hossam, Ibrahim, Majdi, Huiling (b19) 2019; 97 Kanoosh, Houssein, Selim (b34) 2019; 2019 Houssein, Saad, Hashim, Shaban, Hassaballah (b26) 2020; 94 Coello (b8) 2000; 41 Begg, Begg, Du Toit, Mills (b3) 2003; 66 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b15) 2020; 51 Kapner, Cook, Adelberger, Gundlach, Heckel, Hoyle, Swanson (b35) 2007; 98 Keith, C. Begg, The Honey Badger, 0000. Russell, Kennedy (b47) 1995 Akopyan (b2) 2015; 122 Cheng, Shi, Qin, Zhang, Bai (b7) 2014; 4 Neggaz, Houssein, Hussain (b44) 2020; 152 Kirkpatrick, Gelatt, Vecchi (b40) 1983; 220 . Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (b13) 2019; 32 Hassanien, Kilany, Houssein, AlQaheri (b18) 2018; 45 Wolpert, Macready (b52) 1997; 1 Hansen, Ostermeier (b12) 2001; 9 Houssein, Mahdy, Blondin, Shebl, Mohamed (b24) 2021; 174 Hashim, Mabrouk, Al-Atabany (b16) 2017 Ahmed, Houssein, Hassanien, Taha, Hassanien (b1) 2019; 72 Holland (b21) 1975 Dhiman, Kumar (b10) 2017; 114 James (b31) 2003 Begg, Begg, Du Toit, Mills (b4) 2005; 265 Jamil, Yang (b32) 2013; 4 Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b14) 2019; 101 Hussain, Salleh, Cheng, Shi (b29) 2018; 31 Wang, Deb, Gao, Coelho (b51) 2016; 8 Kazemzadeh-Parsi (b38) 2014; 38 Bonabeau, Marco, Dorigo, Théraulaz, Theraulaz (b5) 1999 Kannan, Kramer (b33) 1994; 116 Rechenberg (b46) 1978 Houssein, Helmy, Rezk, Nassef (b23) 2021; 103 Parejo, Ruiz-Cortés, Lozano, Fernandez (b45) 2012; 16 Houssein, Mahdy, Fathy, Rezk (b25) 2021; 183 Saremi, Mirjalili, Lewis (b49) 2017; 105 Hussain, Salleh, Cheng, Shi (b28) 2018; 52 Hussain, Salleh, Cheng, Shi, Naseem (b30) 2018; 32 Kaveh, Dadras (b36) 2017; 110 BoussaïD, Lepagnot, Siarry (b6) 2013; 237 Hussain, Neggaz, Zhu, Houssein (b27) 2021; 176 Wu, Mallipeddi, Suganthan (b53) 2017 Črepinšek, Liu, Mernik (b9) 2013; 45 Mezura-Montes, Coello (b41) 2005 Mirjalili, Lewis (b43) 2016; 95 Mezura-Montes (10.1016/j.matcom.2021.08.013_b41) 2005 Wang (10.1016/j.matcom.2021.08.013_b51) 2016; 8 Kazemzadeh-Parsi (10.1016/j.matcom.2021.08.013_b38) 2014; 38 Houssein (10.1016/j.matcom.2021.08.013_b25) 2021; 183 BoussaïD (10.1016/j.matcom.2021.08.013_b6) 2013; 237 Kapner (10.1016/j.matcom.2021.08.013_b35) 2007; 98 Kaveh (10.1016/j.matcom.2021.08.013_b37) 2017; 110 Wu (10.1016/j.matcom.2021.08.013_b53) 2017 Houssein (10.1016/j.matcom.2021.08.013_b26) 2020; 94 Neggaz (10.1016/j.matcom.2021.08.013_b44) 2020; 152 Parejo (10.1016/j.matcom.2021.08.013_b45) 2012; 16 Holland (10.1016/j.matcom.2021.08.013_b21) 1975 Hashim (10.1016/j.matcom.2021.08.013_b16) 2017 Hassan (10.1016/j.matcom.2021.08.013_b17) 2021; 100 Begg (10.1016/j.matcom.2021.08.013_b4) 2005; 265 Hussain (10.1016/j.matcom.2021.08.013_b30) 2018; 32 Gong Dunwei (10.1016/j.matcom.2021.08.013_b11) 2013; 233 Sadollah (10.1016/j.matcom.2021.08.013_b48) 2013; 13 Russell (10.1016/j.matcom.2021.08.013_b47) 1995 Ahmed (10.1016/j.matcom.2021.08.013_b1) 2019; 72 Begg (10.1016/j.matcom.2021.08.013_b3) 2003; 66 Heptner (10.1016/j.matcom.2021.08.013_b20) 2001 Hashim (10.1016/j.matcom.2021.08.013_b13) 2019; 32 Houssein (10.1016/j.matcom.2021.08.013_b24) 2021; 174 Mirjalili (10.1016/j.matcom.2021.08.013_b42) 2015; 89 Wolpert (10.1016/j.matcom.2021.08.013_b52) 1997; 1 Kannan (10.1016/j.matcom.2021.08.013_b33) 1994; 116 Akopyan (10.1016/j.matcom.2021.08.013_b2) 2015; 122 Yazdani (10.1016/j.matcom.2021.08.013_b54) 2016; 3 Dhiman (10.1016/j.matcom.2021.08.013_b10) 2017; 114 Houssein (10.1016/j.matcom.2021.08.013_b22) 2021; 167 Cheng (10.1016/j.matcom.2021.08.013_b7) 2014; 4 Bonabeau (10.1016/j.matcom.2021.08.013_b5) 1999 Hansen (10.1016/j.matcom.2021.08.013_b12) 2001; 9 Saremi (10.1016/j.matcom.2021.08.013_b49) 2017; 105 Tanabe (10.1016/j.matcom.2021.08.013_b50) 2014 Houssein (10.1016/j.matcom.2021.08.013_b23) 2021; 103 Coello (10.1016/j.matcom.2021.08.013_b8) 2000; 41 Hussain (10.1016/j.matcom.2021.08.013_b28) 2018; 52 Kanoosh (10.1016/j.matcom.2021.08.013_b34) 2019; 2019 Hashim (10.1016/j.matcom.2021.08.013_b14) 2019; 101 Mirjalili (10.1016/j.matcom.2021.08.013_b43) 2016; 95 James (10.1016/j.matcom.2021.08.013_b31) 2003 Kirkpatrick (10.1016/j.matcom.2021.08.013_b40) 1983; 220 Hussain (10.1016/j.matcom.2021.08.013_b27) 2021; 176 Jamil (10.1016/j.matcom.2021.08.013_b32) 2013; 4 Hassanien (10.1016/j.matcom.2021.08.013_b18) 2018; 45 Hussain (10.1016/j.matcom.2021.08.013_b29) 2018; 31 Črepinšek (10.1016/j.matcom.2021.08.013_b9) 2013; 45 Rechenberg (10.1016/j.matcom.2021.08.013_b46) 1978 10.1016/j.matcom.2021.08.013_b39 Hashim (10.1016/j.matcom.2021.08.013_b15) 2020; 51 Kaveh (10.1016/j.matcom.2021.08.013_b36) 2017; 110 Heidari (10.1016/j.matcom.2021.08.013_b19) 2019; 97  | 
    
| References_xml | – volume: 31 start-page: 7665 year: 2018 end-page: 7683 ident: b29 article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms publication-title: Neural Comput. Appl. – volume: 110 start-page: 69 year: 2017 end-page: 84 ident: b37 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. – volume: 66 start-page: 917 year: 2003 end-page: 929 ident: b3 article-title: Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae), in the southern kalahari publication-title: Anim. Behav. – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b48 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. – volume: 4 start-page: 83 year: 2014 end-page: 97 ident: b7 article-title: Population diversity maintenance in brain storm optimization algorithm publication-title: J. Artif. Intell. Soft Comput. Res. – volume: 32 start-page: 10759 year: 2019 end-page: 10771 ident: b13 article-title: A modified henry gas solubility optimization for solving motif discovery problem publication-title: Neural Comput. Appl. – volume: 2019 year: 2019 ident: b34 article-title: Salp swarm algorithm for node localization in wireless sensor networks publication-title: J. Comput. Netw. Commun. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b43 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 4 start-page: 150 year: 2013 end-page: 194 ident: b32 article-title: A literature survey of benchmark functions for global optimization problems publication-title: J. Math. Model. Numer. Optim. – reference: . Keith, C. Begg, The Honey Badger, 0000. – start-page: 652 year: 2005 end-page: 662 ident: b41 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms publication-title: Mexican International Conference on Artificial Intelligence – start-page: 83 year: 1978 end-page: 114 ident: b46 article-title: Evolutionsstrategien – volume: 38 start-page: 403 year: 2014 ident: b38 article-title: A modified firefly algorithm for engineering design optimization problems publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng. – volume: 16 start-page: 527 year: 2012 end-page: 561 ident: b45 article-title: Metaheuristic optimization frameworks: a survey and benchmarking publication-title: Soft Comput. – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b49 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv. Eng. Softw. – volume: 32 start-page: 794 year: 2018 end-page: 808 ident: b30 article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b8 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – year: 2001 ident: b20 article-title: Mammals of the Soviet Union: Vol. 2, Part 1b: Carnivora (Weasels, Additional Species) – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b40 article-title: Optimization by simulated annealing publication-title: Science – volume: 122 start-page: 144 year: 2015 end-page: 150 ident: b2 article-title: Geometry of the cardioid publication-title: Amer. Math. Monthly – volume: 265 start-page: 17 year: 2005 end-page: 22 ident: b4 article-title: Life-history variables of an atypical mustelid, the honey badger mellivora capensis publication-title: J. Zool. – start-page: 141 year: 2017 end-page: 146 ident: b16 article-title: Gwomf: Grey wolf optimization for motif finding publication-title: 2017 13th International Computer Engineering Conference (ICENCO) – volume: 8 start-page: 394 year: 2016 end-page: 409 ident: b51 article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour publication-title: Int. J. Bio-Inspired Comput. – volume: 103 year: 2021 ident: b23 article-title: An enhanced archimedes optimization algorithm based on local escaping operator and orthogonal learning for PEM fuel cell parameter identification publication-title: Eng. Appl. Artif. Intell. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b19 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 183 year: 2021 ident: b25 article-title: A modified marine predator algorithm based on opposition based learning for tracking the global MPP of shaded PV system publication-title: Expert Syst. Appl. – volume: 72 start-page: 243 year: 2019 end-page: 259 ident: b1 article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm publication-title: Telecommun. Syst. – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b10 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: b12 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b52 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 51 start-page: 1531 year: 2020 end-page: 1551 ident: b15 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – start-page: 1658 year: 2014 end-page: 1665 ident: b50 article-title: Improving the search performance of SHADE using linear population size reduction publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC) – volume: 45 start-page: 182 year: 2018 end-page: 191 ident: b18 article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression publication-title: Biomed. Signal Process. Control – volume: 176 year: 2021 ident: b27 article-title: An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection publication-title: Expert Syst. Appl. – volume: 3 start-page: 24 year: 2016 end-page: 36 ident: b54 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: J. Comput. Des. Eng. – year: 1999 ident: b5 article-title: Swarm Intelligence: from Natural to Artificial Systems, Vol. 1 – volume: 237 start-page: 82 year: 2013 end-page: 117 ident: b6 article-title: A survey on optimization metaheuristics publication-title: Inform. Sci. – volume: 94 year: 2020 ident: b26 article-title: Lévy Flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 100 year: 2021 ident: b17 article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems publication-title: Eng. Appl. Artif. Intell. – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: b33 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. – volume: 52 start-page: 2191 year: 2018 end-page: 2233 ident: b28 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – volume: 152 year: 2020 ident: b44 article-title: An efficient henry gas solubility optimization for feature selection publication-title: Expert Syst. Appl. – volume: 98 year: 2007 ident: b35 article-title: Tests of the gravitational inverse-square law below the dark-energy length scale publication-title: Phys. Rev. Lett. – reference: . – volume: 167 year: 2021 ident: b22 article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. – volume: 45 start-page: 1 year: 2013 end-page: 33 ident: b9 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Comput. Surv. – start-page: 39 year: 1995 end-page: 43 ident: b47 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science – year: 1975 ident: b21 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 174 year: 2021 ident: b24 article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems publication-title: Expert Syst. Appl. – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b14 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. – year: 2003 ident: b31 article-title: Introduction to Stochastics Search and Optimization – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b42 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 110 start-page: 69 year: 2017 end-page: 84 ident: b36 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. – volume: 233 start-page: 141 year: 2013 end-page: 161 ident: b11 article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems publication-title: Inform. Sci. – year: 2017 ident: b53 article-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization – volume: 94 year: 2020 ident: 10.1016/j.matcom.2021.08.013_b26 article-title: Lévy Flight distribution: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – ident: 10.1016/j.matcom.2021.08.013_b39 – volume: 233 start-page: 141 year: 2013 ident: 10.1016/j.matcom.2021.08.013_b11 article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.01.020 – volume: 72 start-page: 243 year: 2019 ident: 10.1016/j.matcom.2021.08.013_b1 article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm publication-title: Telecommun. Syst. doi: 10.1007/s11235-019-00559-7 – year: 2017 ident: 10.1016/j.matcom.2021.08.013_b53 – volume: 45 start-page: 182 year: 2018 ident: 10.1016/j.matcom.2021.08.013_b18 article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.05.039 – volume: 31 start-page: 7665 year: 2018 ident: 10.1016/j.matcom.2021.08.013_b29 article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3592-0 – volume: 66 start-page: 917 issue: 5 year: 2003 ident: 10.1016/j.matcom.2021.08.013_b3 article-title: Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae), in the southern kalahari publication-title: Anim. Behav. doi: 10.1006/anbe.2003.2223 – volume: 183 year: 2021 ident: 10.1016/j.matcom.2021.08.013_b25 article-title: A modified marine predator algorithm based on opposition based learning for tracking the global MPP of shaded PV system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115253 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.matcom.2021.08.013_b40 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 152 year: 2020 ident: 10.1016/j.matcom.2021.08.013_b44 article-title: An efficient henry gas solubility optimization for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113364 – start-page: 1658 year: 2014 ident: 10.1016/j.matcom.2021.08.013_b50 article-title: Improving the search performance of SHADE using linear population size reduction – volume: 167 year: 2021 ident: 10.1016/j.matcom.2021.08.013_b22 article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114159 – volume: 110 start-page: 69 year: 2017 ident: 10.1016/j.matcom.2021.08.013_b37 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – volume: 8 start-page: 394 issue: 6 year: 2016 ident: 10.1016/j.matcom.2021.08.013_b51 article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2016.081335 – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.matcom.2021.08.013_b10 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.014 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.matcom.2021.08.013_b14 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 174 year: 2021 ident: 10.1016/j.matcom.2021.08.013_b24 article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114689 – volume: 98 issue: 2 year: 2007 ident: 10.1016/j.matcom.2021.08.013_b35 article-title: Tests of the gravitational inverse-square law below the dark-energy length scale publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.021101 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.matcom.2021.08.013_b42 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 38 start-page: 403 issue: M2 year: 2014 ident: 10.1016/j.matcom.2021.08.013_b38 article-title: A modified firefly algorithm for engineering design optimization problems publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng. – start-page: 39 year: 1995 ident: 10.1016/j.matcom.2021.08.013_b47 article-title: A new optimizer using particle swarm theory – start-page: 652 year: 2005 ident: 10.1016/j.matcom.2021.08.013_b41 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms – volume: 32 start-page: 10759 year: 2019 ident: 10.1016/j.matcom.2021.08.013_b13 article-title: A modified henry gas solubility optimization for solving motif discovery problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04611-0 – volume: 32 start-page: 794 issue: 7 year: 2018 ident: 10.1016/j.matcom.2021.08.013_b30 article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement publication-title: J. King Saud Univ.-Comput. Inf. Sci. doi: 10.1016/j.jksuci.2018.09.017 – year: 1999 ident: 10.1016/j.matcom.2021.08.013_b5 – volume: 51 start-page: 1531 year: 2020 ident: 10.1016/j.matcom.2021.08.013_b15 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 52 start-page: 2191 year: 2018 ident: 10.1016/j.matcom.2021.08.013_b28 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – year: 2001 ident: 10.1016/j.matcom.2021.08.013_b20 – volume: 265 start-page: 17 issue: 1 year: 2005 ident: 10.1016/j.matcom.2021.08.013_b4 article-title: Life-history variables of an atypical mustelid, the honey badger mellivora capensis publication-title: J. Zool. doi: 10.1017/S0952836904005990 – volume: 16 start-page: 527 issue: 3 year: 2012 ident: 10.1016/j.matcom.2021.08.013_b45 article-title: Metaheuristic optimization frameworks: a survey and benchmarking publication-title: Soft Comput. doi: 10.1007/s00500-011-0754-8 – volume: 2019 year: 2019 ident: 10.1016/j.matcom.2021.08.013_b34 article-title: Salp swarm algorithm for node localization in wireless sensor networks publication-title: J. Comput. Netw. Commun. – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.matcom.2021.08.013_b33 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 237 start-page: 82 year: 2013 ident: 10.1016/j.matcom.2021.08.013_b6 article-title: A survey on optimization metaheuristics publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.02.041 – volume: 110 start-page: 69 year: 2017 ident: 10.1016/j.matcom.2021.08.013_b36 article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.03.014 – volume: 3 start-page: 24 issue: 1 year: 2016 ident: 10.1016/j.matcom.2021.08.013_b54 article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm publication-title: J. Comput. Des. Eng. – year: 2003 ident: 10.1016/j.matcom.2021.08.013_b31 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.matcom.2021.08.013_b43 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 100 year: 2021 ident: 10.1016/j.matcom.2021.08.013_b17 article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104155 – year: 1975 ident: 10.1016/j.matcom.2021.08.013_b21 – start-page: 83 year: 1978 ident: 10.1016/j.matcom.2021.08.013_b46 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.matcom.2021.08.013_b48 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.matcom.2021.08.013_b49 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 10.1016/j.matcom.2021.08.013_b9 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 10.1016/j.matcom.2021.08.013_b12 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – volume: 176 year: 2021 ident: 10.1016/j.matcom.2021.08.013_b27 article-title: An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114778 – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.matcom.2021.08.013_b8 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – start-page: 141 year: 2017 ident: 10.1016/j.matcom.2021.08.013_b16 article-title: Gwomf: Grey wolf optimization for motif finding – volume: 122 start-page: 144 issue: 2 year: 2015 ident: 10.1016/j.matcom.2021.08.013_b2 article-title: Geometry of the cardioid publication-title: Amer. Math. Monthly doi: 10.4169/amer.math.monthly.122.02.144 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.matcom.2021.08.013_b19 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 103 year: 2021 ident: 10.1016/j.matcom.2021.08.013_b23 article-title: An enhanced archimedes optimization algorithm based on local escaping operator and orthogonal learning for PEM fuel cell parameter identification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104309 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.matcom.2021.08.013_b52 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 4 start-page: 150 issue: 2 year: 2013 ident: 10.1016/j.matcom.2021.08.013_b32 article-title: A literature survey of benchmark functions for global optimization problems publication-title: J. Math. Model. Numer. Optim. – volume: 4 start-page: 83 issue: 2 year: 2014 ident: 10.1016/j.matcom.2021.08.013_b7 article-title: Population diversity maintenance in brain storm optimization algorithm publication-title: J. Artif. Intell. Soft Comput. Res. doi: 10.1515/jaiscr-2015-0001  | 
    
| SSID | ssj0007545 | 
    
| Score | 2.7175393 | 
    
| Snippet | Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 84 | 
    
| SubjectTerms | Exploration and exploitation Honey Badger Algorithm Meta-heuristic algorithms Nature-inspired algorithms Optimization problems Swarm intelligence algorithms  | 
    
| Title | Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems | 
    
| URI | https://dx.doi.org/10.1016/j.matcom.2021.08.013 | 
    
| Volume | 192 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: ACRLP dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AIKHN dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHV1LHzaNhKBQogdYFK3SI7ttuivgTpwMJv5-w4PCQEEmtylqyz_d05-e4-hM4NZLlJrEKiCxERiPhw5mRXEZlSUwSGQ8xyLN9BnA3Du1E0aqB-XQtjaZUe-ytMd2jtn3S8Nzur6bTzQHkC0BqFzHYRTV0NVxgmVsXg4u2T5gEGjsYIxsRa1-VzjuMFSaHljDAIdK6RZ8B_Dk9fQs7NDtryuSLuVdPZRQ292EPbtQ4D9sdyHw2z5UK_4iuhxvC4Nxsv4cY_mV9iQDA816WY6HXVkBmL-iWGZBXDvrPfE_AScGPuCzKxl5h5OUDDm-vHfka8XAIpOGUlKTRcliJwrxba0K6AXE4YaoyMYS1iIwNuAPmYseKHiquosH9Qw1QD5kHSpSJ-iJoLmO8RwoxLDXfXRAcKIr7spomMDBWCqSRgBaUtxGsv5YXvJW4lLWZ5TRp7yivf5ta3uVW6DHgLkY9Rq6qXxh_2Sb0A-bc9kQPc_zry-N8jT9AmswUOjpd9iprl81qfQdpRyrbbV2200bu9zwbvLk7YBQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHlhNEztOGrZSUQUoXWilbpad2G1RX4J2YOG3c04cHhICidU-S9bZ_u4u-e4OoQsDXm4UZgHRqeQELD68OdXIiIo9k_qGgc3KWb7dMOkHdwM-qKBWmQtjaZUO-wtMz9HajdSdNuuL8bj-6LEIoJUH1FYRjW0O11rAaWQjsMu3T54HSOQ8RpAmVrzMn8tJXuAVWtIIBUuXV_L02c_26YvNaW-jTecs4maxnx1U0bNdtFU2YsDuXe6hfjKf6Vd8LbMhDDcnwzmE_KPpFQYIw1O9lCO9KioyY1lOYvBWMVw8-0EBzwE4pi4jE7seMy_7qN--6bUS4volkJR5dElSDdESB_1qqY3XkODMSeMZo0I4jNAonxmAPmps98OMZTy1v1CDWAPogdeVcXaAqjPY7yHClCkNwWuk_QxMvmrEkeLGk5JmkU9Tz6shVmpJpK6YuO1pMREla-xJFLoVVrfCtrr0WQ2Rj1WLopjGH_JReQDi26UQgPe_rjz698pztJ70Hjqic9u9P0Yb1GY75CTtE1RdPq_0KfggS3WW37F3UenZmg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Honey+Badger+Algorithm%3A+New+metaheuristic+algorithm+for+solving+optimization+problems&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Hashim%2C+Fatma+A.&rft.au=Houssein%2C+Essam+H.&rft.au=Hussain%2C+Kashif&rft.au=Mabrouk%2C+Mai+S.&rft.date=2022-02-01&rft.issn=0378-4754&rft.volume=192&rft.spage=84&rft.epage=110&rft_id=info:doi/10.1016%2Fj.matcom.2021.08.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2021_08_013 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |