Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems

Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intell...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 192; pp. 84 - 110
Main Authors Hashim, Fatma A., Houssein, Essam H., Hussain, Kashif, Mabrouk, Mai S., Al-Atabany, Walid
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text
ISSN0378-4754
1872-7166
DOI10.1016/j.matcom.2021.08.013

Cover

Abstract Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intelligent foraging behavior of honey badger, to mathematically develop an efficient search strategy for solving optimization problems. The dynamic search behavior of honey badger with digging and honey finding approaches are formulated into exploration and exploitation phases in HBA. Moreover, with controlled randomization techniques, HBA maintains ample population diversity even towards the end of the search process. To assess the efficiency of HBA, 24 standard benchmark functions, CEC’17 test-suite, and four engineering design problems are solved. The solutions obtained using the HBA have been compared with ten well-known metaheuristic algorithms including Simulated annealing (SA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Success-History based Adaptive Differential Evolution variants with linear population size reduction (L-SHADE), Moth-flame Optimization (MFO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), Thermal Exchange Optimization (TEO) and Harris hawks optimization (HHO). The experimental results, along with statistical analysis, reveal the effectiveness of HBA for solving optimization problems with complex search-space, as well as, its superiority in terms of convergence speed and exploration–exploitation balance, as compared to other methods used in this study. The source code of HBA is currently available for public at https://www.mathworks.com/matlabcentral/fileexchange/98204-honey-badger-algorithm. •A novel metaheuristic algorithm called Honey Badger algorithm (HBA) is proposed.•HBA is tested on 24 functions, 4 engineering design problems and CEC’17 test suite.•The results on the test beds revealed the competitiveness of HBA.•HBA showed a superior performance to find global optima.
AbstractList Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intelligent foraging behavior of honey badger, to mathematically develop an efficient search strategy for solving optimization problems. The dynamic search behavior of honey badger with digging and honey finding approaches are formulated into exploration and exploitation phases in HBA. Moreover, with controlled randomization techniques, HBA maintains ample population diversity even towards the end of the search process. To assess the efficiency of HBA, 24 standard benchmark functions, CEC’17 test-suite, and four engineering design problems are solved. The solutions obtained using the HBA have been compared with ten well-known metaheuristic algorithms including Simulated annealing (SA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Success-History based Adaptive Differential Evolution variants with linear population size reduction (L-SHADE), Moth-flame Optimization (MFO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), Thermal Exchange Optimization (TEO) and Harris hawks optimization (HHO). The experimental results, along with statistical analysis, reveal the effectiveness of HBA for solving optimization problems with complex search-space, as well as, its superiority in terms of convergence speed and exploration–exploitation balance, as compared to other methods used in this study. The source code of HBA is currently available for public at https://www.mathworks.com/matlabcentral/fileexchange/98204-honey-badger-algorithm. •A novel metaheuristic algorithm called Honey Badger algorithm (HBA) is proposed.•HBA is tested on 24 functions, 4 engineering design problems and CEC’17 test suite.•The results on the test beds revealed the competitiveness of HBA.•HBA showed a superior performance to find global optima.
Author Mabrouk, Mai S.
Hashim, Fatma A.
Hussain, Kashif
Houssein, Essam H.
Al-Atabany, Walid
Author_xml – sequence: 1
  givenname: Fatma A.
  surname: Hashim
  fullname: Hashim, Fatma A.
  organization: Faculty of Engineering, Helwan University, Egypt
– sequence: 2
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  organization: Faculty of Computers and Information, Minia University, Egypt
– sequence: 3
  givenname: Kashif
  orcidid: 0000-0003-0011-2726
  surname: Hussain
  fullname: Hussain, Kashif
  email: kashifhussain.bukc@bahria.edu.pk
  organization: Department of Computer Science, Bahria University, Karachi Campus, Pakistan
– sequence: 4
  givenname: Mai S.
  surname: Mabrouk
  fullname: Mabrouk, Mai S.
  organization: Faculty of Engineering, Misr University for Science and Technology, Egypt
– sequence: 5
  givenname: Walid
  surname: Al-Atabany
  fullname: Al-Atabany, Walid
  organization: Information Technology and Computer Science School, Nile University, Egypt
BookMark eNqFkEFOwzAQRS0EEm3hBix8gYRxnDhpF0ilAoqEYEPXluuMW1dJXNmmqJyelMKGBazmS6P3NfOG5LRzHRJyxSBlwMT1Jm1V1K5NM8hYClUKjJ-QAavKLCmZEKdkALyskrws8nMyDGEDAH0uBmQx76v29FbVK_R02qyct3HdTugzvtMWo1rjm7chWk3Vz5Ia52lwzc52K-q20bb2Q0XrOrr1btlgGy7ImVFNwMvvOSKL-7vX2Tx5enl4nE2fEs0hi4lGlkNheI4KDVSKCaYMGLMUos6FWTJuSpFlRow51Lwu9BhYno-RFZyxrC74iEyOvdq7EDwaqW38OiV6ZRvJQB4EyY08CpIHQRIq2Qvq4fwXvPW2VX7_H3ZzxLB_bGfRy6Atdhpr61FHWTv7d8EngaOFvw
CitedBy_id crossref_primary_10_1007_s00500_024_09893_8
crossref_primary_10_1007_s11067_025_09679_x
crossref_primary_10_1088_2631_8695_ad22be
crossref_primary_10_32604_cmc_2024_053189
crossref_primary_10_1007_s10586_024_04666_2
crossref_primary_10_1016_j_compbiomed_2024_108780
crossref_primary_10_1049_gtd2_13077
crossref_primary_10_1016_j_rico_2025_100518
crossref_primary_10_1007_s11042_024_19996_x
crossref_primary_10_1016_j_advengsoft_2022_103362
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1016_j_bspc_2023_105643
crossref_primary_10_1080_03081079_2024_2422094
crossref_primary_10_32604_iasc_2023_029804
crossref_primary_10_1016_j_enconman_2022_115539
crossref_primary_10_1016_j_future_2022_11_008
crossref_primary_10_1007_s11042_024_19437_9
crossref_primary_10_1007_s00521_022_08015_5
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1016_j_ijepes_2024_110085
crossref_primary_10_1108_IJICC_03_2022_0062
crossref_primary_10_1038_s41598_024_66450_x
crossref_primary_10_1016_j_ins_2022_01_075
crossref_primary_10_3390_sym15071432
crossref_primary_10_1142_S0219649224500047
crossref_primary_10_1016_j_cma_2022_115676
crossref_primary_10_1007_s10064_024_03819_2
crossref_primary_10_1016_j_aej_2024_02_024
crossref_primary_10_1016_j_mtcomm_2024_108174
crossref_primary_10_1007_s10586_024_04654_6
crossref_primary_10_3390_en15207603
crossref_primary_10_1007_s10586_024_04448_w
crossref_primary_10_1016_j_enconman_2024_118264
crossref_primary_10_1038_s41598_024_76545_0
crossref_primary_10_1007_s11269_023_03497_x
crossref_primary_10_1016_j_bspc_2022_104165
crossref_primary_10_1016_j_uclim_2024_102233
crossref_primary_10_1007_s40098_024_00933_6
crossref_primary_10_1016_j_eswa_2022_118256
crossref_primary_10_4236_jcc_2025_131007
crossref_primary_10_3390_math10071057
crossref_primary_10_3390_s23115358
crossref_primary_10_1016_j_swevo_2024_101626
crossref_primary_10_1142_S0218126625500902
crossref_primary_10_1142_S021800142452013X
crossref_primary_10_3934_math_2024252
crossref_primary_10_21605_cukurovaumfd_1334214
crossref_primary_10_1016_j_epsr_2023_109970
crossref_primary_10_1016_j_heliyon_2024_e32399
crossref_primary_10_1080_13682199_2023_2176804
crossref_primary_10_1007_s00603_024_03947_x
crossref_primary_10_3390_math11051077
crossref_primary_10_3390_app142311414
crossref_primary_10_3390_su14148897
crossref_primary_10_1007_s11277_022_09500_9
crossref_primary_10_1016_j_isatra_2023_04_001
crossref_primary_10_1016_j_eswa_2022_119211
crossref_primary_10_1109_ACCESS_2024_3362059
crossref_primary_10_1142_S0218126624501378
crossref_primary_10_1080_0305215X_2023_2254701
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_1371_journal_pone_0316326
crossref_primary_10_1016_j_enconman_2022_115521
crossref_primary_10_1016_j_rineng_2024_103860
crossref_primary_10_1016_j_suscom_2023_100949
crossref_primary_10_1002_dac_5761
crossref_primary_10_1007_s40998_023_00664_z
crossref_primary_10_1007_s42979_023_02003_9
crossref_primary_10_1016_j_knosys_2022_110206
crossref_primary_10_1016_j_ymssp_2024_111270
crossref_primary_10_1007_s00202_023_01862_y
crossref_primary_10_1088_1402_4896_ad86f7
crossref_primary_10_1016_j_mtcomm_2023_107939
crossref_primary_10_3390_biomimetics9100602
crossref_primary_10_1109_ACCESS_2023_3332902
crossref_primary_10_1007_s10586_024_04382_x
crossref_primary_10_3390_e24081018
crossref_primary_10_1007_s12530_023_09495_z
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1016_j_bspc_2023_105849
crossref_primary_10_1016_j_asoc_2024_111455
crossref_primary_10_3390_biomimetics8050411
crossref_primary_10_1016_j_asoc_2025_112967
crossref_primary_10_3390_pr13010256
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_1016_j_apm_2024_04_057
crossref_primary_10_1007_s00500_024_10302_3
crossref_primary_10_1016_j_knosys_2024_112039
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_3390_w16172458
crossref_primary_10_1016_j_egyr_2025_02_004
crossref_primary_10_1016_j_aej_2024_02_012
crossref_primary_10_1155_2022_1796642
crossref_primary_10_3390_en17163935
crossref_primary_10_3390_math10234519
crossref_primary_10_1002_dac_5810
crossref_primary_10_1142_S0218625X24500495
crossref_primary_10_1016_j_cej_2024_151743
crossref_primary_10_32604_cmc_2023_038787
crossref_primary_10_1016_j_est_2024_112635
crossref_primary_10_3233_JIFS_213206
crossref_primary_10_1016_j_matcom_2022_05_015
crossref_primary_10_1007_s12065_024_00937_4
crossref_primary_10_1016_j_asoc_2024_111566
crossref_primary_10_3390_math10132329
crossref_primary_10_47134_ppm_v2i2_1480
crossref_primary_10_1080_10255842_2023_2252551
crossref_primary_10_1007_s00521_021_06580_9
crossref_primary_10_1016_j_cma_2023_115878
crossref_primary_10_1109_ACCESS_2023_3326758
crossref_primary_10_1016_j_ijhydene_2023_10_146
crossref_primary_10_1109_ACCESS_2023_3283422
crossref_primary_10_1177_0958305X231210994
crossref_primary_10_3390_en16062878
crossref_primary_10_1007_s10462_023_10567_4
crossref_primary_10_29130_dubited_1185476
crossref_primary_10_3390_electronics11213463
crossref_primary_10_1007_s41870_024_02030_6
crossref_primary_10_1007_s11277_023_10420_5
crossref_primary_10_1080_15376494_2024_2352800
crossref_primary_10_1007_s12530_023_09493_1
crossref_primary_10_1016_j_istruc_2024_106239
crossref_primary_10_1016_j_jrmge_2024_09_015
crossref_primary_10_1016_j_energy_2022_125985
crossref_primary_10_3390_en16052409
crossref_primary_10_1007_s42235_023_00356_8
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_3390_math10132219
crossref_primary_10_3934_era_2025079
crossref_primary_10_1142_S0218625X22501268
crossref_primary_10_1016_j_aej_2022_06_017
crossref_primary_10_3390_biomimetics8060470
crossref_primary_10_1016_j_jfranklin_2024_107398
crossref_primary_10_1016_j_advengsoft_2024_103857
crossref_primary_10_1111_jph_70001
crossref_primary_10_1016_j_egyr_2022_05_192
crossref_primary_10_1080_15325008_2023_2275717
crossref_primary_10_23939_mmc2025_01_001
crossref_primary_10_1016_j_arcontrol_2024_100973
crossref_primary_10_1038_s41598_024_70572_7
crossref_primary_10_3390_biomimetics8010121
crossref_primary_10_1080_10589759_2024_2320749
crossref_primary_10_3389_fmech_2022_1126450
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1007_s12530_024_09569_6
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_1038_s41598_024_63746_w
crossref_primary_10_1007_s12530_022_09433_5
crossref_primary_10_1016_j_eswa_2023_121609
crossref_primary_10_1007_s10278_023_00878_x
crossref_primary_10_1007_s13042_022_01758_6
crossref_primary_10_1016_j_ifacol_2022_05_040
crossref_primary_10_3390_a17120573
crossref_primary_10_1016_j_jpowsour_2022_232610
crossref_primary_10_1007_s00521_024_09485_5
crossref_primary_10_1038_s41598_024_54384_3
crossref_primary_10_1088_1361_6501_ad37d0
crossref_primary_10_3233_JIFS_235563
crossref_primary_10_1007_s12065_024_00914_x
crossref_primary_10_1016_j_eswa_2023_121975
crossref_primary_10_1016_j_engappai_2023_106672
crossref_primary_10_1007_s11760_024_03422_8
crossref_primary_10_3233_MGS_230003
crossref_primary_10_1016_j_suscom_2025_101081
crossref_primary_10_1002_aisy_202200097
crossref_primary_10_1016_j_eswa_2024_125047
crossref_primary_10_3233_JIFS_221036
crossref_primary_10_1002_dac_5704
crossref_primary_10_3233_JIFS_221039
crossref_primary_10_1016_j_cie_2023_109773
crossref_primary_10_1016_j_knosys_2023_110940
crossref_primary_10_1016_j_compbiomed_2024_109348
crossref_primary_10_1016_j_epsr_2025_111588
crossref_primary_10_1080_13682199_2023_2208927
crossref_primary_10_1093_comjnl_bxac002
crossref_primary_10_1007_s10586_024_04319_4
crossref_primary_10_32604_cmes_2023_025908
crossref_primary_10_1007_s00521_024_09497_1
crossref_primary_10_1016_j_eswa_2023_121501
crossref_primary_10_1515_mt_2024_0151
crossref_primary_10_1007_s12530_024_09645_x
crossref_primary_10_1109_TDEI_2024_3395235
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_1007_s00202_023_02232_4
crossref_primary_10_1038_s41598_024_70497_1
crossref_primary_10_3390_su17062718
crossref_primary_10_1007_s10489_022_03796_7
crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_1016_j_energy_2023_129188
crossref_primary_10_1155_2023_3397430
crossref_primary_10_3390_math10101626
crossref_primary_10_1007_s11220_023_00457_y
crossref_primary_10_1007_s00500_023_08925_z
crossref_primary_10_3390_biomimetics8020149
crossref_primary_10_1002_oca_3178
crossref_primary_10_3390_pr10122532
crossref_primary_10_1007_s11269_022_03256_4
crossref_primary_10_3233_IDT_240476
crossref_primary_10_3233_IDT_240479
crossref_primary_10_1016_j_egyr_2024_07_036
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_1016_j_bspc_2023_105910
crossref_primary_10_1016_j_engfailanal_2022_106829
crossref_primary_10_1016_j_asoc_2023_110953
crossref_primary_10_1016_j_chaos_2025_116203
crossref_primary_10_1007_s40996_023_01068_z
crossref_primary_10_1016_j_eswa_2022_116924
crossref_primary_10_1109_ACCESS_2022_3172789
crossref_primary_10_1007_s00500_022_07466_1
crossref_primary_10_1007_s12559_024_10300_5
crossref_primary_10_1007_s00500_022_07115_7
crossref_primary_10_1016_j_aej_2023_02_023
crossref_primary_10_1016_j_comcom_2023_08_011
crossref_primary_10_1016_j_renene_2024_121182
crossref_primary_10_1016_j_suscom_2025_101082
crossref_primary_10_3390_pr10081451
crossref_primary_10_1007_s12597_024_00869_8
crossref_primary_10_1049_gtd2_13242
crossref_primary_10_1080_21681015_2025_2471897
crossref_primary_10_1002_oca_3164
crossref_primary_10_1007_s11227_022_04644_8
crossref_primary_10_1016_j_matcom_2023_10_006
crossref_primary_10_1016_j_undsp_2024_01_004
crossref_primary_10_1109_TIM_2022_3228003
crossref_primary_10_1038_s41598_025_92187_2
crossref_primary_10_1016_j_energy_2024_131419
crossref_primary_10_1109_ACCESS_2024_3446239
crossref_primary_10_1109_TGCN_2022_3216882
crossref_primary_10_1007_s11227_023_05529_0
crossref_primary_10_1007_s10462_024_11032_6
crossref_primary_10_1007_s11227_023_05628_y
crossref_primary_10_1007_s10462_025_11120_1
crossref_primary_10_3389_fenrg_2022_1011887
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_59782_iam_v1i2_223
crossref_primary_10_3233_JIFS_222503
crossref_primary_10_1038_s41598_023_50910_x
crossref_primary_10_1515_mt_2022_0055
crossref_primary_10_32604_csse_2023_037066
crossref_primary_10_48084_etasr_5661
crossref_primary_10_1007_s11042_024_18824_6
crossref_primary_10_1007_s42417_024_01545_3
crossref_primary_10_1007_s11042_024_20447_w
crossref_primary_10_1016_j_measurement_2023_113032
crossref_primary_10_23919_CSMS_2024_0011
crossref_primary_10_1007_s11227_023_05560_1
crossref_primary_10_3233_MGS_230040
crossref_primary_10_1186_s40537_025_01116_7
crossref_primary_10_1016_j_aej_2023_10_055
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_1007_s00521_024_10484_9
crossref_primary_10_1109_ACCESS_2023_3279416
crossref_primary_10_1007_s42107_023_00579_4
crossref_primary_10_1016_j_fraope_2023_100024
crossref_primary_10_1515_mt_2022_0050
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1016_j_eswa_2023_121413
crossref_primary_10_1016_j_measurement_2024_115022
crossref_primary_10_1007_s10462_024_10981_2
crossref_primary_10_1016_j_eswa_2025_127206
crossref_primary_10_1007_s00521_023_08813_5
crossref_primary_10_1002_oca_3065
crossref_primary_10_1007_s42600_024_00391_2
crossref_primary_10_1007_s11227_023_05047_z
crossref_primary_10_1016_j_eij_2024_100486
crossref_primary_10_1016_j_bspc_2025_107558
crossref_primary_10_1016_j_jvcir_2024_104309
crossref_primary_10_1016_j_heliyon_2023_e21596
crossref_primary_10_1007_s10846_023_01907_1
crossref_primary_10_1007_s12065_024_00945_4
crossref_primary_10_1016_j_est_2023_107094
crossref_primary_10_1016_j_est_2024_111894
crossref_primary_10_1016_j_ijleo_2022_169731
crossref_primary_10_1109_ACCESS_2022_3173401
crossref_primary_10_3390_app13116805
crossref_primary_10_1016_j_ijleo_2024_172014
crossref_primary_10_1016_j_eswa_2023_122873
crossref_primary_10_3390_f16020253
crossref_primary_10_1007_s10922_024_09806_y
crossref_primary_10_1016_j_knosys_2025_113020
crossref_primary_10_3390_electronics12092042
crossref_primary_10_3390_biomimetics9030137
crossref_primary_10_1016_j_dcan_2024_09_001
crossref_primary_10_3390_en15165891
crossref_primary_10_1016_j_aej_2024_11_035
crossref_primary_10_1016_j_asoc_2025_113071
crossref_primary_10_1002_oca_3018
crossref_primary_10_1002_cpe_7382
crossref_primary_10_1016_j_matcom_2022_02_030
crossref_primary_10_1109_ACCESS_2023_3320931
crossref_primary_10_1016_j_asoc_2024_111722
crossref_primary_10_35940_ijeat_E3552_0611522
crossref_primary_10_1016_j_asoc_2023_110514
crossref_primary_10_1016_j_epsr_2022_108955
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1016_j_swevo_2024_101795
crossref_primary_10_3934_mbe_2023547
crossref_primary_10_1007_s11042_024_19187_8
crossref_primary_10_1038_s41598_024_61434_3
crossref_primary_10_1016_j_advengsoft_2024_103696
crossref_primary_10_1080_03772063_2023_2301653
crossref_primary_10_1007_s00500_023_09214_5
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_1016_j_eij_2024_100584
crossref_primary_10_1088_1674_1056_ace4b5
crossref_primary_10_4018_IJSIR_314210
crossref_primary_10_1109_ACCESS_2023_3299031
crossref_primary_10_1109_JSEN_2024_3429237
crossref_primary_10_3390_aerospace12020101
crossref_primary_10_1007_s10586_024_04547_8
crossref_primary_10_3390_app15020718
crossref_primary_10_1038_s41598_024_76410_0
crossref_primary_10_1093_ce_zkac010
crossref_primary_10_2166_wcc_2023_225
crossref_primary_10_3390_math11194080
crossref_primary_10_1016_j_knosys_2023_110454
crossref_primary_10_1016_j_knosys_2024_111960
crossref_primary_10_1016_j_comnet_2025_111149
crossref_primary_10_1007_s11042_024_18353_2
crossref_primary_10_1016_j_asej_2025_103342
crossref_primary_10_3390_electronics13224491
crossref_primary_10_1007_s10586_024_04851_3
crossref_primary_10_1016_j_heliyon_2024_e40068
crossref_primary_10_1038_s41598_025_87867_y
crossref_primary_10_1109_TIM_2024_3369151
crossref_primary_10_1016_j_egyr_2022_10_316
crossref_primary_10_1038_s41598_024_55040_6
crossref_primary_10_1109_ACCESS_2023_3267110
crossref_primary_10_1515_mt_2022_0013
crossref_primary_10_1007_s40436_023_00461_1
crossref_primary_10_3390_en17184572
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1007_s10462_023_10658_2
crossref_primary_10_1016_j_adhoc_2024_103474
crossref_primary_10_1016_j_ijcce_2024_09_004
crossref_primary_10_1007_s41870_024_02068_6
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1007_s10586_024_04293_x
crossref_primary_10_1109_ACCESS_2024_3390723
crossref_primary_10_3390_su14095005
crossref_primary_10_1016_j_swevo_2024_101779
crossref_primary_10_1016_j_egyr_2024_09_021
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1007_s00500_023_08033_y
crossref_primary_10_1016_j_eswa_2023_122544
crossref_primary_10_1016_j_mtcomm_2024_109642
crossref_primary_10_3390_make7010024
crossref_primary_10_1016_j_mtcomm_2024_108551
crossref_primary_10_1016_j_eswa_2023_120484
crossref_primary_10_1038_s41598_024_78569_y
crossref_primary_10_1109_ACCESS_2024_3466170
crossref_primary_10_3934_mbe_2023767
crossref_primary_10_1016_j_eswa_2023_120482
crossref_primary_10_3390_w16060874
crossref_primary_10_1016_j_jappgeo_2023_105236
crossref_primary_10_55546_jmm_1291032
crossref_primary_10_1515_mt_2022_0123
crossref_primary_10_1016_j_advengsoft_2024_103671
crossref_primary_10_1016_j_fluid_2022_113682
crossref_primary_10_1007_s11063_023_11321_1
crossref_primary_10_1016_j_ijcce_2025_01_003
crossref_primary_10_1109_ACCESS_2022_3186519
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_3390_brainsci13060893
crossref_primary_10_1038_s41598_023_43622_9
crossref_primary_10_1007_s41870_024_02046_y
crossref_primary_10_1016_j_eswa_2023_122559
crossref_primary_10_3390_fractalfract7020119
crossref_primary_10_1007_s10586_024_04765_0
crossref_primary_10_1007_s12559_023_10149_0
crossref_primary_10_3390_pr13010174
crossref_primary_10_1007_s11761_023_00357_9
crossref_primary_10_1016_j_bspc_2024_107170
crossref_primary_10_1016_j_swevo_2024_101766
crossref_primary_10_1177_24056456241297357
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1007_s11760_023_02938_9
crossref_primary_10_1002_tal_2207
crossref_primary_10_1016_j_advengsoft_2025_103883
crossref_primary_10_1108_JM2_02_2024_0047
crossref_primary_10_1016_j_jenvman_2022_115498
crossref_primary_10_1109_ACCESS_2024_3367288
crossref_primary_10_1016_j_anucene_2023_109963
crossref_primary_10_1016_j_isci_2023_106679
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1016_j_est_2025_115316
crossref_primary_10_3390_foods12091773
crossref_primary_10_3390_biomimetics8080619
crossref_primary_10_1007_s11082_022_04139_z
crossref_primary_10_1007_s10586_024_04618_w
crossref_primary_10_1371_journal_pone_0313713
crossref_primary_10_1007_s10845_023_02182_5
crossref_primary_10_1515_mt_2022_0119
crossref_primary_10_1109_ACCESS_2024_3392482
crossref_primary_10_1038_s41598_024_83589_9
crossref_primary_10_1016_j_asej_2023_102223
crossref_primary_10_1016_j_cma_2022_114901
crossref_primary_10_1016_j_rineng_2024_103161
crossref_primary_10_1109_ACCESS_2024_3452511
crossref_primary_10_1016_j_qref_2024_101866
crossref_primary_10_1016_j_ijft_2024_101043
crossref_primary_10_3390_math11153335
crossref_primary_10_1007_s41870_025_02404_4
crossref_primary_10_1016_j_ijhydene_2023_07_172
crossref_primary_10_12677_ORF_2023_135539
crossref_primary_10_46604_ijeti_2024_13683
crossref_primary_10_1016_j_aej_2023_12_028
crossref_primary_10_1016_j_heliyon_2024_e31629
crossref_primary_10_1007_s40747_023_01186_1
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1142_S0219519423500501
crossref_primary_10_3934_era_2024109
crossref_primary_10_1007_s10278_022_00752_2
crossref_primary_10_1007_s40430_022_03911_2
crossref_primary_10_1007_s10586_024_04605_1
crossref_primary_10_1016_j_eswa_2025_127026
crossref_primary_10_1016_j_eswa_2023_122460
crossref_primary_10_3390_en18051258
crossref_primary_10_1016_j_cosrev_2025_100740
crossref_primary_10_1007_s00202_024_02402_y
crossref_primary_10_3390_biomimetics9020065
crossref_primary_10_35377_saucis___1474767
crossref_primary_10_1016_j_bspc_2023_105069
crossref_primary_10_1142_S0219691323500340
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1016_j_asoc_2023_110573
crossref_primary_10_1007_s41939_023_00225_1
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1016_j_ijhydene_2024_09_027
crossref_primary_10_1016_j_aej_2023_04_052
crossref_primary_10_3390_electronics11091475
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1007_s10462_024_10986_x
crossref_primary_10_1007_s11036_024_02304_0
crossref_primary_10_31796_ogummf_1012709
crossref_primary_10_3390_f15091512
crossref_primary_10_3390_s23218939
crossref_primary_10_3390_math11030707
crossref_primary_10_1002_gj_4885
crossref_primary_10_1016_j_aej_2023_12_054
crossref_primary_10_32604_cmes_2024_056693
crossref_primary_10_1155_2022_5830766
crossref_primary_10_1016_j_csi_2023_103802
crossref_primary_10_1049_cth2_12504
crossref_primary_10_3390_math10122081
crossref_primary_10_1016_j_compbiomed_2022_106123
crossref_primary_10_1109_JSEN_2023_3324845
crossref_primary_10_1016_j_epsr_2023_109393
crossref_primary_10_1016_j_asej_2024_102978
crossref_primary_10_1080_15325008_2022_2136295
crossref_primary_10_1093_jcde_qwad017
crossref_primary_10_3390_biomimetics9010021
crossref_primary_10_3390_s22051795
crossref_primary_10_1016_j_asej_2024_102732
crossref_primary_10_1016_j_knosys_2023_110470
crossref_primary_10_1080_15325008_2024_2319719
crossref_primary_10_3233_IDT_220215
crossref_primary_10_1109_ACCESS_2022_3203730
crossref_primary_10_1002_est2_428
crossref_primary_10_1088_1757_899X_1237_1_012011
crossref_primary_10_1038_s41598_025_85709_5
crossref_primary_10_1007_s43926_024_00070_9
crossref_primary_10_3233_JHS_230086
crossref_primary_10_1007_s00704_025_05360_y
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_1109_ACCESS_2024_3427632
crossref_primary_10_1016_j_rineng_2024_103357
crossref_primary_10_1177_09287329241312628
crossref_primary_10_3390_en15197366
crossref_primary_10_1080_01969722_2022_2122001
crossref_primary_10_1002_smr_2679
crossref_primary_10_1007_s12559_022_10099_z
crossref_primary_10_3390_biomimetics10030168
crossref_primary_10_1007_s41939_024_00481_9
crossref_primary_10_1016_j_seta_2022_102005
crossref_primary_10_1007_s11831_024_10202_7
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1155_2022_9588610
crossref_primary_10_3390_s24175720
crossref_primary_10_1016_j_knosys_2023_111032
crossref_primary_10_1016_j_cma_2024_116840
crossref_primary_10_1155_2022_6017066
crossref_primary_10_3390_math11030522
crossref_primary_10_1016_j_energy_2024_130362
crossref_primary_10_3390_biomimetics9010008
crossref_primary_10_3390_pr12020285
crossref_primary_10_1016_j_eswa_2024_124973
crossref_primary_10_3390_su14138069
crossref_primary_10_1016_j_kjs_2023_02_009
crossref_primary_10_1016_j_oceaneng_2024_117951
crossref_primary_10_1016_j_egyr_2023_10_002
crossref_primary_10_1007_s12046_024_02588_8
crossref_primary_10_1007_s12065_024_00997_6
crossref_primary_10_1016_j_bspc_2025_107612
crossref_primary_10_1109_ACCESS_2024_3463953
crossref_primary_10_1007_s11277_024_11245_6
crossref_primary_10_3390_math13010121
crossref_primary_10_1016_j_bspc_2024_106269
crossref_primary_10_1016_j_cma_2023_116062
crossref_primary_10_1109_TGRS_2024_3462752
crossref_primary_10_1007_s10723_024_09740_y
crossref_primary_10_1080_01969722_2023_2175120
crossref_primary_10_1111_coin_70036
crossref_primary_10_3934_math_2024972
crossref_primary_10_23919_PCMP_2023_000129
crossref_primary_10_1007_s11042_023_15066_w
crossref_primary_10_3390_en17174373
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1155_2022_1966054
crossref_primary_10_1007_s00202_024_02885_9
crossref_primary_10_1080_00207217_2023_2173806
crossref_primary_10_1109_ACCESS_2024_3369039
crossref_primary_10_7717_peerj_cs_2278
crossref_primary_10_1016_j_aeue_2022_154218
crossref_primary_10_1007_s10489_024_05413_1
crossref_primary_10_1093_jcde_qwad110
crossref_primary_10_1016_j_cma_2023_116199
crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_3390_biomimetics7040204
crossref_primary_10_1002_cpe_7205
crossref_primary_10_1016_j_phycom_2023_102260
crossref_primary_10_1007_s10661_024_12357_z
crossref_primary_10_1007_s11042_024_19726_3
crossref_primary_10_1016_j_matcom_2022_11_020
crossref_primary_10_32604_iasc_2023_030495
crossref_primary_10_1080_15325008_2024_2304147
crossref_primary_10_1007_s00521_023_09200_w
crossref_primary_10_1016_j_fraope_2024_100141
crossref_primary_10_3390_math12101513
crossref_primary_10_1007_s11356_022_23653_x
crossref_primary_10_1007_s11277_024_11674_3
crossref_primary_10_2339_politeknik_1155696
crossref_primary_10_32604_cmes_2024_055171
crossref_primary_10_1016_j_eswa_2021_116468
crossref_primary_10_1038_s41598_024_82648_5
crossref_primary_10_1007_s00202_024_02314_x
crossref_primary_10_1016_j_aej_2022_02_009
crossref_primary_10_1007_s10489_022_03977_4
crossref_primary_10_1038_s41598_024_72541_6
crossref_primary_10_1364_OE_540940
crossref_primary_10_1016_j_knosys_2023_111134
crossref_primary_10_1002_dac_6016
crossref_primary_10_1007_s11042_023_15785_0
crossref_primary_10_1016_j_compbiomed_2023_106691
crossref_primary_10_1186_s44147_023_00274_w
crossref_primary_10_1016_j_eswa_2023_122272
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1016_j_procs_2024_08_097
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1007_s41939_023_00364_5
crossref_primary_10_1049_hve2_12408
crossref_primary_10_1016_j_matcom_2022_10_007
crossref_primary_10_53982_ajerd_2024_0702_01_j
crossref_primary_10_1016_j_eswa_2024_123428
crossref_primary_10_1007_s10586_024_04713_y
crossref_primary_10_1007_s10586_024_04345_2
crossref_primary_10_1007_s11760_024_03130_3
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_1142_S0219519424500477
crossref_primary_10_1111_coin_70014
crossref_primary_10_3390_biomimetics9070399
crossref_primary_10_1016_j_eswa_2023_121189
crossref_primary_10_1007_s00500_024_09765_1
crossref_primary_10_1016_j_ijleo_2023_171465
crossref_primary_10_1016_j_ecoinf_2025_103063
crossref_primary_10_1016_j_energy_2023_130051
crossref_primary_10_1007_s13042_024_02361_7
crossref_primary_10_1038_s41598_024_83234_5
crossref_primary_10_1177_0958305X231189187
crossref_primary_10_1007_s11227_025_07139_4
crossref_primary_10_3390_sym17030356
crossref_primary_10_32604_cmes_2024_052001
crossref_primary_10_1016_j_psep_2024_05_027
crossref_primary_10_1016_j_sysarc_2023_102871
crossref_primary_10_1007_s00500_023_09276_5
crossref_primary_10_1007_s10586_023_03989_w
crossref_primary_10_3233_JIFS_235387
crossref_primary_10_1007_s10489_022_03438_y
crossref_primary_10_1142_S0219649224500680
crossref_primary_10_3233_WEB_230063
crossref_primary_10_3389_fenrg_2022_875332
crossref_primary_10_1002_cpe_7971
crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_1016_j_ecoinf_2025_103051
crossref_primary_10_1016_j_enconman_2024_118784
crossref_primary_10_3389_fenrg_2022_941705
crossref_primary_10_1016_j_suscom_2024_101023
crossref_primary_10_3390_a17110472
crossref_primary_10_1016_j_egyr_2023_01_028
crossref_primary_10_1016_j_seta_2024_103885
crossref_primary_10_1016_j_engappai_2022_104854
crossref_primary_10_1364_OE_461116
crossref_primary_10_1038_s41598_024_53602_2
crossref_primary_10_1109_TAI_2024_3385386
crossref_primary_10_1007_s10825_022_01928_3
crossref_primary_10_1007_s44196_025_00759_x
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1080_0952813X_2023_2217831
crossref_primary_10_1016_j_cie_2023_109166
crossref_primary_10_3390_math11051256
crossref_primary_10_1038_s41598_024_84227_0
crossref_primary_10_1007_s00202_024_02717_w
crossref_primary_10_1080_21681163_2022_2058616
crossref_primary_10_32604_cmes_2024_053236
crossref_primary_10_1016_j_matcom_2022_12_027
crossref_primary_10_1016_j_egyr_2023_10_037
crossref_primary_10_1007_s10668_023_02954_2
crossref_primary_10_1007_s41939_024_00540_1
crossref_primary_10_1080_01969722_2022_2145660
crossref_primary_10_3390_biomimetics8060508
crossref_primary_10_3390_biomimetics8060507
crossref_primary_10_3390_en15207473
crossref_primary_10_1016_j_engappai_2022_104722
crossref_primary_10_1016_j_asoc_2023_111033
crossref_primary_10_1016_j_measurement_2023_112505
crossref_primary_10_3390_su15021589
crossref_primary_10_1007_s10462_024_11029_1
crossref_primary_10_1080_15325008_2024_2344200
crossref_primary_10_29130_dubited_1205144
crossref_primary_10_1007_s10586_024_04309_6
crossref_primary_10_1109_ACCESS_2022_3177218
crossref_primary_10_3233_JIFS_236577
crossref_primary_10_1142_S0217984924503421
crossref_primary_10_1007_s00500_023_09351_x
crossref_primary_10_1007_s12083_024_01708_9
crossref_primary_10_1109_ACCESS_2024_3377143
crossref_primary_10_1007_s42235_024_00558_8
crossref_primary_10_1016_j_matcom_2022_12_022
crossref_primary_10_3390_biomimetics10020092
crossref_primary_10_1093_jcde_qwad094
crossref_primary_10_1007_s11276_024_03806_1
crossref_primary_10_1016_j_cma_2023_116446
crossref_primary_10_1016_j_yofte_2024_104111
crossref_primary_10_23919_PCMP_2023_000187
crossref_primary_10_1016_j_suscom_2024_101006
crossref_primary_10_1016_j_stress_2024_100702
crossref_primary_10_1089_big_2023_0146
crossref_primary_10_1007_s00521_022_07925_8
crossref_primary_10_1080_01969722_2023_2175145
crossref_primary_10_1016_j_est_2024_114484
crossref_primary_10_1007_s10462_022_10234_0
crossref_primary_10_1109_TPWRS_2022_3204176
crossref_primary_10_1016_j_ecmx_2023_100405
crossref_primary_10_1142_S0219622022500754
crossref_primary_10_1016_j_apm_2025_116029
crossref_primary_10_17780_ksujes_1213693
crossref_primary_10_37391_ijeer_120303
crossref_primary_10_38016_jista_1200225
crossref_primary_10_1088_1402_4896_ad8e0e
crossref_primary_10_1016_j_bspc_2024_106894
crossref_primary_10_1038_s41598_024_54510_1
crossref_primary_10_1016_j_knosys_2022_108411
crossref_primary_10_1016_j_fuel_2023_127783
crossref_primary_10_1007_s42044_025_00245_9
crossref_primary_10_1007_s42979_024_03609_3
crossref_primary_10_1007_s11042_023_18057_z
crossref_primary_10_1016_j_energy_2022_124363
crossref_primary_10_1007_s00500_024_09823_8
crossref_primary_10_3390_mi15080998
crossref_primary_10_3934_era_2024030
crossref_primary_10_1016_j_asoc_2024_112019
crossref_primary_10_1109_ACCESS_2025_3548875
crossref_primary_10_1002_est2_512
crossref_primary_10_1007_s10462_023_10683_1
crossref_primary_10_1016_j_iswa_2025_200486
crossref_primary_10_1007_s10878_024_01189_9
crossref_primary_10_1093_jcde_qwae058
crossref_primary_10_3390_pr10112254
crossref_primary_10_1093_ae_tmae037
crossref_primary_10_1155_2022_4587880
crossref_primary_10_1007_s10586_024_04901_w
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_3390_math12030435
crossref_primary_10_1016_j_renene_2022_12_120
crossref_primary_10_3390_biomimetics9120732
crossref_primary_10_1002_eng2_12974
crossref_primary_10_3390_math10244734
crossref_primary_10_1007_s40747_023_01082_8
crossref_primary_10_1080_01969722_2022_2146849
crossref_primary_10_3233_JCS_230049
crossref_primary_10_1109_ACCESS_2023_3287859
crossref_primary_10_1016_j_istruc_2024_107722
crossref_primary_10_1080_01969722_2022_2157612
crossref_primary_10_1007_s12204_023_2591_1
crossref_primary_10_1142_S0129054122420151
crossref_primary_10_3390_fractalfract6110682
crossref_primary_10_3390_computers11120170
crossref_primary_10_1109_ACCESS_2022_3229964
crossref_primary_10_3390_s22124492
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_1038_s41598_024_77225_9
crossref_primary_10_12677_ecl_2024_1341832
crossref_primary_10_1016_j_engappai_2023_106389
crossref_primary_10_1109_ACCESS_2024_3372851
crossref_primary_10_1007_s00521_022_07836_8
crossref_primary_10_3233_JIFS_231922
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1016_j_bspc_2024_106636
crossref_primary_10_1080_15325008_2023_2240800
crossref_primary_10_1038_s41598_024_81594_6
crossref_primary_10_1080_15325008_2023_2280109
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1088_1742_6596_2774_1_012088
crossref_primary_10_5937_str2201022M
crossref_primary_10_3390_machines10060469
crossref_primary_10_1038_s41598_024_80894_1
crossref_primary_10_1007_s10489_023_04473_z
crossref_primary_10_1007_s00500_023_09023_w
crossref_primary_10_1080_1206212X_2023_2212945
crossref_primary_10_3390_biomimetics9110701
crossref_primary_10_3390_s24227161
crossref_primary_10_1080_01969722_2022_2151189
crossref_primary_10_1080_03772063_2024_2425775
crossref_primary_10_3390_math11183861
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_1016_j_est_2022_106468
crossref_primary_10_3389_fenrg_2024_1357863
crossref_primary_10_3390_biomimetics9120757
crossref_primary_10_3390_biomimetics9080474
crossref_primary_10_1038_s41598_024_65926_0
crossref_primary_10_1016_j_eswa_2023_119941
crossref_primary_10_1007_s10586_024_04508_1
crossref_primary_10_1007_s11042_024_19760_1
crossref_primary_10_1016_j_autcon_2024_105655
crossref_primary_10_1007_s11227_025_07106_z
crossref_primary_10_1016_j_matcom_2022_06_007
crossref_primary_10_32604_iasc_2023_032160
crossref_primary_10_1007_s10825_024_02204_2
crossref_primary_10_1007_s44196_022_00092_7
crossref_primary_10_1142_S0219519423500082
crossref_primary_10_1080_03772063_2024_2353336
crossref_primary_10_1109_ACCESS_2023_3286661
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_1016_j_psep_2024_04_063
Cites_doi 10.1016/j.engappai.2020.103731
10.1016/j.ins.2013.01.020
10.1007/s11235-019-00559-7
10.1016/j.bspc.2018.05.039
10.1007/s00521-018-3592-0
10.1006/anbe.2003.2223
10.1016/j.eswa.2021.115253
10.1126/science.220.4598.671
10.1016/j.eswa.2020.113364
10.1016/j.eswa.2020.114159
10.1016/j.advengsoft.2017.03.014
10.1504/IJBIC.2016.081335
10.1016/j.advengsoft.2017.05.014
10.1016/j.future.2019.07.015
10.1016/j.eswa.2021.114689
10.1103/PhysRevLett.98.021101
10.1016/j.knosys.2015.07.006
10.1007/s00521-019-04611-0
10.1016/j.jksuci.2018.09.017
10.1007/s10489-020-01893-z
10.1007/s10462-017-9605-z
10.1017/S0952836904005990
10.1007/s00500-011-0754-8
10.1115/1.2919393
10.1016/j.ins.2013.02.041
10.1016/j.advengsoft.2016.01.008
10.1016/j.engappai.2021.104155
10.1016/j.asoc.2012.11.026
10.1016/j.advengsoft.2017.01.004
10.1145/2480741.2480752
10.1162/106365601750190398
10.1016/j.eswa.2021.114778
10.1016/S0166-3615(99)00046-9
10.4169/amer.math.monthly.122.02.144
10.1016/j.future.2019.02.028
10.1016/j.engappai.2021.104309
10.1109/4235.585893
10.1515/jaiscr-2015-0001
ContentType Journal Article
Copyright 2021 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2021 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2021.08.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 110
ExternalDocumentID 10_1016_j_matcom_2021_08_013
S0378475421002901
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c302t-ce1405f34eaef08a161af0ffb66d46fb13f7622f6930d3d5c901449e153112d53
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Thu Apr 24 22:56:04 EDT 2025
Thu Oct 16 04:27:37 EDT 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Exploration and exploitation
Swarm intelligence algorithms
Honey Badger Algorithm
Meta-heuristic algorithms
Optimization problems
Nature-inspired algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-ce1405f34eaef08a161af0ffb66d46fb13f7622f6930d3d5c901449e153112d53
ORCID 0000-0002-8127-7233
0000-0003-0011-2726
PageCount 27
ParticipantIDs crossref_citationtrail_10_1016_j_matcom_2021_08_013
crossref_primary_10_1016_j_matcom_2021_08_013
elsevier_sciencedirect_doi_10_1016_j_matcom_2021_08_013
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gong Dunwei, Ji (b11) 2013; 233
Hassan, Houssein, Mahdy, Kamel (b17) 2021; 100
Mirjalili (b42) 2015; 89
Tanabe, Fukunaga (b50) 2014
Houssein, Helmy, Oliva, Elngar, Shaban (b22) 2021; 167
Kaveh, Dadras (b37) 2017; 110
Heptner (b20) 2001
Sadollah, Bahreininejad, Eskandar, Hamdi (b48) 2013; 13
Yazdani, Jolai (b54) 2016; 3
Heidari, Seyedali, Hossam, Ibrahim, Majdi, Huiling (b19) 2019; 97
Kanoosh, Houssein, Selim (b34) 2019; 2019
Houssein, Saad, Hashim, Shaban, Hassaballah (b26) 2020; 94
Coello (b8) 2000; 41
Begg, Begg, Du Toit, Mills (b3) 2003; 66
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b15) 2020; 51
Kapner, Cook, Adelberger, Gundlach, Heckel, Hoyle, Swanson (b35) 2007; 98
Keith, C. Begg, The Honey Badger, 0000.
Russell, Kennedy (b47) 1995
Akopyan (b2) 2015; 122
Cheng, Shi, Qin, Zhang, Bai (b7) 2014; 4
Neggaz, Houssein, Hussain (b44) 2020; 152
Kirkpatrick, Gelatt, Vecchi (b40) 1983; 220
.
Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (b13) 2019; 32
Hassanien, Kilany, Houssein, AlQaheri (b18) 2018; 45
Wolpert, Macready (b52) 1997; 1
Hansen, Ostermeier (b12) 2001; 9
Houssein, Mahdy, Blondin, Shebl, Mohamed (b24) 2021; 174
Hashim, Mabrouk, Al-Atabany (b16) 2017
Ahmed, Houssein, Hassanien, Taha, Hassanien (b1) 2019; 72
Holland (b21) 1975
Dhiman, Kumar (b10) 2017; 114
James (b31) 2003
Begg, Begg, Du Toit, Mills (b4) 2005; 265
Jamil, Yang (b32) 2013; 4
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b14) 2019; 101
Hussain, Salleh, Cheng, Shi (b29) 2018; 31
Wang, Deb, Gao, Coelho (b51) 2016; 8
Kazemzadeh-Parsi (b38) 2014; 38
Bonabeau, Marco, Dorigo, Théraulaz, Theraulaz (b5) 1999
Kannan, Kramer (b33) 1994; 116
Rechenberg (b46) 1978
Houssein, Helmy, Rezk, Nassef (b23) 2021; 103
Parejo, Ruiz-Cortés, Lozano, Fernandez (b45) 2012; 16
Houssein, Mahdy, Fathy, Rezk (b25) 2021; 183
Saremi, Mirjalili, Lewis (b49) 2017; 105
Hussain, Salleh, Cheng, Shi (b28) 2018; 52
Hussain, Salleh, Cheng, Shi, Naseem (b30) 2018; 32
Kaveh, Dadras (b36) 2017; 110
BoussaïD, Lepagnot, Siarry (b6) 2013; 237
Hussain, Neggaz, Zhu, Houssein (b27) 2021; 176
Wu, Mallipeddi, Suganthan (b53) 2017
Črepinšek, Liu, Mernik (b9) 2013; 45
Mezura-Montes, Coello (b41) 2005
Mirjalili, Lewis (b43) 2016; 95
Mezura-Montes (10.1016/j.matcom.2021.08.013_b41) 2005
Wang (10.1016/j.matcom.2021.08.013_b51) 2016; 8
Kazemzadeh-Parsi (10.1016/j.matcom.2021.08.013_b38) 2014; 38
Houssein (10.1016/j.matcom.2021.08.013_b25) 2021; 183
BoussaïD (10.1016/j.matcom.2021.08.013_b6) 2013; 237
Kapner (10.1016/j.matcom.2021.08.013_b35) 2007; 98
Kaveh (10.1016/j.matcom.2021.08.013_b37) 2017; 110
Wu (10.1016/j.matcom.2021.08.013_b53) 2017
Houssein (10.1016/j.matcom.2021.08.013_b26) 2020; 94
Neggaz (10.1016/j.matcom.2021.08.013_b44) 2020; 152
Parejo (10.1016/j.matcom.2021.08.013_b45) 2012; 16
Holland (10.1016/j.matcom.2021.08.013_b21) 1975
Hashim (10.1016/j.matcom.2021.08.013_b16) 2017
Hassan (10.1016/j.matcom.2021.08.013_b17) 2021; 100
Begg (10.1016/j.matcom.2021.08.013_b4) 2005; 265
Hussain (10.1016/j.matcom.2021.08.013_b30) 2018; 32
Gong Dunwei (10.1016/j.matcom.2021.08.013_b11) 2013; 233
Sadollah (10.1016/j.matcom.2021.08.013_b48) 2013; 13
Russell (10.1016/j.matcom.2021.08.013_b47) 1995
Ahmed (10.1016/j.matcom.2021.08.013_b1) 2019; 72
Begg (10.1016/j.matcom.2021.08.013_b3) 2003; 66
Heptner (10.1016/j.matcom.2021.08.013_b20) 2001
Hashim (10.1016/j.matcom.2021.08.013_b13) 2019; 32
Houssein (10.1016/j.matcom.2021.08.013_b24) 2021; 174
Mirjalili (10.1016/j.matcom.2021.08.013_b42) 2015; 89
Wolpert (10.1016/j.matcom.2021.08.013_b52) 1997; 1
Kannan (10.1016/j.matcom.2021.08.013_b33) 1994; 116
Akopyan (10.1016/j.matcom.2021.08.013_b2) 2015; 122
Yazdani (10.1016/j.matcom.2021.08.013_b54) 2016; 3
Dhiman (10.1016/j.matcom.2021.08.013_b10) 2017; 114
Houssein (10.1016/j.matcom.2021.08.013_b22) 2021; 167
Cheng (10.1016/j.matcom.2021.08.013_b7) 2014; 4
Bonabeau (10.1016/j.matcom.2021.08.013_b5) 1999
Hansen (10.1016/j.matcom.2021.08.013_b12) 2001; 9
Saremi (10.1016/j.matcom.2021.08.013_b49) 2017; 105
Tanabe (10.1016/j.matcom.2021.08.013_b50) 2014
Houssein (10.1016/j.matcom.2021.08.013_b23) 2021; 103
Coello (10.1016/j.matcom.2021.08.013_b8) 2000; 41
Hussain (10.1016/j.matcom.2021.08.013_b28) 2018; 52
Kanoosh (10.1016/j.matcom.2021.08.013_b34) 2019; 2019
Hashim (10.1016/j.matcom.2021.08.013_b14) 2019; 101
Mirjalili (10.1016/j.matcom.2021.08.013_b43) 2016; 95
James (10.1016/j.matcom.2021.08.013_b31) 2003
Kirkpatrick (10.1016/j.matcom.2021.08.013_b40) 1983; 220
Hussain (10.1016/j.matcom.2021.08.013_b27) 2021; 176
Jamil (10.1016/j.matcom.2021.08.013_b32) 2013; 4
Hassanien (10.1016/j.matcom.2021.08.013_b18) 2018; 45
Hussain (10.1016/j.matcom.2021.08.013_b29) 2018; 31
Črepinšek (10.1016/j.matcom.2021.08.013_b9) 2013; 45
Rechenberg (10.1016/j.matcom.2021.08.013_b46) 1978
10.1016/j.matcom.2021.08.013_b39
Hashim (10.1016/j.matcom.2021.08.013_b15) 2020; 51
Kaveh (10.1016/j.matcom.2021.08.013_b36) 2017; 110
Heidari (10.1016/j.matcom.2021.08.013_b19) 2019; 97
References_xml – volume: 31
  start-page: 7665
  year: 2018
  end-page: 7683
  ident: b29
  article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms
  publication-title: Neural Comput. Appl.
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b37
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
– volume: 66
  start-page: 917
  year: 2003
  end-page: 929
  ident: b3
  article-title: Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae), in the southern kalahari
  publication-title: Anim. Behav.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b48
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 83
  year: 2014
  end-page: 97
  ident: b7
  article-title: Population diversity maintenance in brain storm optimization algorithm
  publication-title: J. Artif. Intell. Soft Comput. Res.
– volume: 32
  start-page: 10759
  year: 2019
  end-page: 10771
  ident: b13
  article-title: A modified henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Comput. Appl.
– volume: 2019
  year: 2019
  ident: b34
  article-title: Salp swarm algorithm for node localization in wireless sensor networks
  publication-title: J. Comput. Netw. Commun.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b43
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: b32
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: J. Math. Model. Numer. Optim.
– reference: . Keith, C. Begg, The Honey Badger, 0000.
– start-page: 652
  year: 2005
  end-page: 662
  ident: b41
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
  publication-title: Mexican International Conference on Artificial Intelligence
– start-page: 83
  year: 1978
  end-page: 114
  ident: b46
  article-title: Evolutionsstrategien
– volume: 38
  start-page: 403
  year: 2014
  ident: b38
  article-title: A modified firefly algorithm for engineering design optimization problems
  publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng.
– volume: 16
  start-page: 527
  year: 2012
  end-page: 561
  ident: b45
  article-title: Metaheuristic optimization frameworks: a survey and benchmarking
  publication-title: Soft Comput.
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b49
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 32
  start-page: 794
  year: 2018
  end-page: 808
  ident: b30
  article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: b8
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– year: 2001
  ident: b20
  article-title: Mammals of the Soviet Union: Vol. 2, Part 1b: Carnivora (Weasels, Additional Species)
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b40
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 122
  start-page: 144
  year: 2015
  end-page: 150
  ident: b2
  article-title: Geometry of the cardioid
  publication-title: Amer. Math. Monthly
– volume: 265
  start-page: 17
  year: 2005
  end-page: 22
  ident: b4
  article-title: Life-history variables of an atypical mustelid, the honey badger mellivora capensis
  publication-title: J. Zool.
– start-page: 141
  year: 2017
  end-page: 146
  ident: b16
  article-title: Gwomf: Grey wolf optimization for motif finding
  publication-title: 2017 13th International Computer Engineering Conference (ICENCO)
– volume: 8
  start-page: 394
  year: 2016
  end-page: 409
  ident: b51
  article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 103
  year: 2021
  ident: b23
  article-title: An enhanced archimedes optimization algorithm based on local escaping operator and orthogonal learning for PEM fuel cell parameter identification
  publication-title: Eng. Appl. Artif. Intell.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b19
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 183
  year: 2021
  ident: b25
  article-title: A modified marine predator algorithm based on opposition based learning for tracking the global MPP of shaded PV system
  publication-title: Expert Syst. Appl.
– volume: 72
  start-page: 243
  year: 2019
  end-page: 259
  ident: b1
  article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm
  publication-title: Telecommun. Syst.
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b10
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: b12
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b52
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 51
  start-page: 1531
  year: 2020
  end-page: 1551
  ident: b15
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– start-page: 1658
  year: 2014
  end-page: 1665
  ident: b50
  article-title: Improving the search performance of SHADE using linear population size reduction
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– volume: 45
  start-page: 182
  year: 2018
  end-page: 191
  ident: b18
  article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression
  publication-title: Biomed. Signal Process. Control
– volume: 176
  year: 2021
  ident: b27
  article-title: An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 24
  year: 2016
  end-page: 36
  ident: b54
  article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm
  publication-title: J. Comput. Des. Eng.
– year: 1999
  ident: b5
  article-title: Swarm Intelligence: from Natural to Artificial Systems, Vol. 1
– volume: 237
  start-page: 82
  year: 2013
  end-page: 117
  ident: b6
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
– volume: 94
  year: 2020
  ident: b26
  article-title: Lévy Flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 100
  year: 2021
  ident: b17
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: b33
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
– volume: 52
  start-page: 2191
  year: 2018
  end-page: 2233
  ident: b28
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 152
  year: 2020
  ident: b44
  article-title: An efficient henry gas solubility optimization for feature selection
  publication-title: Expert Syst. Appl.
– volume: 98
  year: 2007
  ident: b35
  article-title: Tests of the gravitational inverse-square law below the dark-energy length scale
  publication-title: Phys. Rev. Lett.
– reference: .
– volume: 167
  year: 2021
  ident: b22
  article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 1
  year: 2013
  end-page: 33
  ident: b9
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b47
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– year: 1975
  ident: b21
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– volume: 174
  year: 2021
  ident: b24
  article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b14
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– year: 2003
  ident: b31
  article-title: Introduction to Stochastics Search and Optimization
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b42
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b36
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
– volume: 233
  start-page: 141
  year: 2013
  end-page: 161
  ident: b11
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inform. Sci.
– year: 2017
  ident: b53
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization
– volume: 94
  year: 2020
  ident: 10.1016/j.matcom.2021.08.013_b26
  article-title: Lévy Flight distribution: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103731
– ident: 10.1016/j.matcom.2021.08.013_b39
– volume: 233
  start-page: 141
  year: 2013
  ident: 10.1016/j.matcom.2021.08.013_b11
  article-title: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.01.020
– volume: 72
  start-page: 243
  year: 2019
  ident: 10.1016/j.matcom.2021.08.013_b1
  article-title: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-019-00559-7
– year: 2017
  ident: 10.1016/j.matcom.2021.08.013_b53
– volume: 45
  start-page: 182
  year: 2018
  ident: 10.1016/j.matcom.2021.08.013_b18
  article-title: Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.05.039
– volume: 31
  start-page: 7665
  year: 2018
  ident: 10.1016/j.matcom.2021.08.013_b29
  article-title: On the exploration and exploitation in popular swarm-based metaheuristic algorithms
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3592-0
– volume: 66
  start-page: 917
  issue: 5
  year: 2003
  ident: 10.1016/j.matcom.2021.08.013_b3
  article-title: Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae), in the southern kalahari
  publication-title: Anim. Behav.
  doi: 10.1006/anbe.2003.2223
– volume: 183
  year: 2021
  ident: 10.1016/j.matcom.2021.08.013_b25
  article-title: A modified marine predator algorithm based on opposition based learning for tracking the global MPP of shaded PV system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115253
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.matcom.2021.08.013_b40
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 152
  year: 2020
  ident: 10.1016/j.matcom.2021.08.013_b44
  article-title: An efficient henry gas solubility optimization for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113364
– start-page: 1658
  year: 2014
  ident: 10.1016/j.matcom.2021.08.013_b50
  article-title: Improving the search performance of SHADE using linear population size reduction
– volume: 167
  year: 2021
  ident: 10.1016/j.matcom.2021.08.013_b22
  article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114159
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.matcom.2021.08.013_b37
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 8
  start-page: 394
  issue: 6
  year: 2016
  ident: 10.1016/j.matcom.2021.08.013_b51
  article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2016.081335
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.matcom.2021.08.013_b10
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.matcom.2021.08.013_b14
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 174
  year: 2021
  ident: 10.1016/j.matcom.2021.08.013_b24
  article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114689
– volume: 98
  issue: 2
  year: 2007
  ident: 10.1016/j.matcom.2021.08.013_b35
  article-title: Tests of the gravitational inverse-square law below the dark-energy length scale
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.021101
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.matcom.2021.08.013_b42
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 38
  start-page: 403
  issue: M2
  year: 2014
  ident: 10.1016/j.matcom.2021.08.013_b38
  article-title: A modified firefly algorithm for engineering design optimization problems
  publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng.
– start-page: 39
  year: 1995
  ident: 10.1016/j.matcom.2021.08.013_b47
  article-title: A new optimizer using particle swarm theory
– start-page: 652
  year: 2005
  ident: 10.1016/j.matcom.2021.08.013_b41
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
– volume: 32
  start-page: 10759
  year: 2019
  ident: 10.1016/j.matcom.2021.08.013_b13
  article-title: A modified henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04611-0
– volume: 32
  start-page: 794
  issue: 7
  year: 2018
  ident: 10.1016/j.matcom.2021.08.013_b30
  article-title: Artificial bee colony algorithm: A component-wise analysis using diversity measurement
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2018.09.017
– year: 1999
  ident: 10.1016/j.matcom.2021.08.013_b5
– volume: 51
  start-page: 1531
  year: 2020
  ident: 10.1016/j.matcom.2021.08.013_b15
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 52
  start-page: 2191
  year: 2018
  ident: 10.1016/j.matcom.2021.08.013_b28
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– year: 2001
  ident: 10.1016/j.matcom.2021.08.013_b20
– volume: 265
  start-page: 17
  issue: 1
  year: 2005
  ident: 10.1016/j.matcom.2021.08.013_b4
  article-title: Life-history variables of an atypical mustelid, the honey badger mellivora capensis
  publication-title: J. Zool.
  doi: 10.1017/S0952836904005990
– volume: 16
  start-page: 527
  issue: 3
  year: 2012
  ident: 10.1016/j.matcom.2021.08.013_b45
  article-title: Metaheuristic optimization frameworks: a survey and benchmarking
  publication-title: Soft Comput.
  doi: 10.1007/s00500-011-0754-8
– volume: 2019
  year: 2019
  ident: 10.1016/j.matcom.2021.08.013_b34
  article-title: Salp swarm algorithm for node localization in wireless sensor networks
  publication-title: J. Comput. Netw. Commun.
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 10.1016/j.matcom.2021.08.013_b33
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 237
  start-page: 82
  year: 2013
  ident: 10.1016/j.matcom.2021.08.013_b6
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.02.041
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.matcom.2021.08.013_b36
  article-title: A novel meta-heuristic optimization algorithm: thermal exchange optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 3
  start-page: 24
  issue: 1
  year: 2016
  ident: 10.1016/j.matcom.2021.08.013_b54
  article-title: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm
  publication-title: J. Comput. Des. Eng.
– year: 2003
  ident: 10.1016/j.matcom.2021.08.013_b31
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.matcom.2021.08.013_b43
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 100
  year: 2021
  ident: 10.1016/j.matcom.2021.08.013_b17
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104155
– year: 1975
  ident: 10.1016/j.matcom.2021.08.013_b21
– start-page: 83
  year: 1978
  ident: 10.1016/j.matcom.2021.08.013_b46
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.matcom.2021.08.013_b48
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.matcom.2021.08.013_b49
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 10.1016/j.matcom.2021.08.013_b9
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.matcom.2021.08.013_b12
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 176
  year: 2021
  ident: 10.1016/j.matcom.2021.08.013_b27
  article-title: An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114778
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.matcom.2021.08.013_b8
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– start-page: 141
  year: 2017
  ident: 10.1016/j.matcom.2021.08.013_b16
  article-title: Gwomf: Grey wolf optimization for motif finding
– volume: 122
  start-page: 144
  issue: 2
  year: 2015
  ident: 10.1016/j.matcom.2021.08.013_b2
  article-title: Geometry of the cardioid
  publication-title: Amer. Math. Monthly
  doi: 10.4169/amer.math.monthly.122.02.144
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.matcom.2021.08.013_b19
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 103
  year: 2021
  ident: 10.1016/j.matcom.2021.08.013_b23
  article-title: An enhanced archimedes optimization algorithm based on local escaping operator and orthogonal learning for PEM fuel cell parameter identification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104309
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.matcom.2021.08.013_b52
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.matcom.2021.08.013_b32
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: J. Math. Model. Numer. Optim.
– volume: 4
  start-page: 83
  issue: 2
  year: 2014
  ident: 10.1016/j.matcom.2021.08.013_b7
  article-title: Population diversity maintenance in brain storm optimization algorithm
  publication-title: J. Artif. Intell. Soft Comput. Res.
  doi: 10.1515/jaiscr-2015-0001
SSID ssj0007545
Score 2.7175393
Snippet Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 84
SubjectTerms Exploration and exploitation
Honey Badger Algorithm
Meta-heuristic algorithms
Nature-inspired algorithms
Optimization problems
Swarm intelligence algorithms
Title Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems
URI https://dx.doi.org/10.1016/j.matcom.2021.08.013
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: ACRLP
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIKHN
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHV1LHzaNhKBQogdYFK3SI7ttuivgTpwMJv5-w4PCQEEmtylqyz_d05-e4-hM4NZLlJrEKiCxERiPhw5mRXEZlSUwSGQ8xyLN9BnA3Du1E0aqB-XQtjaZUe-ytMd2jtn3S8Nzur6bTzQHkC0BqFzHYRTV0NVxgmVsXg4u2T5gEGjsYIxsRa1-VzjuMFSaHljDAIdK6RZ8B_Dk9fQs7NDtryuSLuVdPZRQ292EPbtQ4D9sdyHw2z5UK_4iuhxvC4Nxsv4cY_mV9iQDA816WY6HXVkBmL-iWGZBXDvrPfE_AScGPuCzKxl5h5OUDDm-vHfka8XAIpOGUlKTRcliJwrxba0K6AXE4YaoyMYS1iIwNuAPmYseKHiquosH9Qw1QD5kHSpSJ-iJoLmO8RwoxLDXfXRAcKIr7spomMDBWCqSRgBaUtxGsv5YXvJW4lLWZ5TRp7yivf5ta3uVW6DHgLkY9Rq6qXxh_2Sb0A-bc9kQPc_zry-N8jT9AmswUOjpd9iprl81qfQdpRyrbbV2200bu9zwbvLk7YBQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHlhNEztOGrZSUQUoXWilbpad2G1RX4J2YOG3c04cHhICidU-S9bZ_u4u-e4OoQsDXm4UZgHRqeQELD68OdXIiIo9k_qGgc3KWb7dMOkHdwM-qKBWmQtjaZUO-wtMz9HajdSdNuuL8bj-6LEIoJUH1FYRjW0O11rAaWQjsMu3T54HSOQ8RpAmVrzMn8tJXuAVWtIIBUuXV_L02c_26YvNaW-jTecs4maxnx1U0bNdtFU2YsDuXe6hfjKf6Vd8LbMhDDcnwzmE_KPpFQYIw1O9lCO9KioyY1lOYvBWMVw8-0EBzwE4pi4jE7seMy_7qN--6bUS4volkJR5dElSDdESB_1qqY3XkODMSeMZo0I4jNAonxmAPmps98OMZTy1v1CDWAPogdeVcXaAqjPY7yHClCkNwWuk_QxMvmrEkeLGk5JmkU9Tz6shVmpJpK6YuO1pMREla-xJFLoVVrfCtrr0WQ2Rj1WLopjGH_JReQDi26UQgPe_rjz698pztJ70Hjqic9u9P0Yb1GY75CTtE1RdPq_0KfggS3WW37F3UenZmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Honey+Badger+Algorithm%3A+New+metaheuristic+algorithm+for+solving+optimization+problems&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Hashim%2C+Fatma+A.&rft.au=Houssein%2C+Essam+H.&rft.au=Hussain%2C+Kashif&rft.au=Mabrouk%2C+Mai+S.&rft.date=2022-02-01&rft.issn=0378-4754&rft.volume=192&rft.spage=84&rft.epage=110&rft_id=info:doi/10.1016%2Fj.matcom.2021.08.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2021_08_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon