Deep Learning-Based Tract Classification of Preoperative DWI Tractography Advances the Prediction of Short-Term Postoperative Language Improvement in Children With Drug-Resistant Epilepsy

Objective: To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modular networks (LMNs) within the preoperative whole-br...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 72; no. 2; pp. 565 - 576
Main Authors Lee, Min-Hee, Banerjee, Soumyanil, Uda, Hiroshi, Carlson, Alanna, Dong, Ming, Rothermel, Robert, Juhasz, Csaba, Asano, Eishi, Jeong, Jeong-Won
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2024.3463481

Cover

Abstract Objective: To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modular networks (LMNs) within the preoperative whole-brain diffusion-weighted imaging connectome (wDWIC). Methods: We employed a three-step approach. First, our previous DCNN-based tract classification to detect true-positive eloquent tracts was extended using an open-source database of high-quality wDWIC to facilitate the accurate classification of true-positive tracts within the preoperative backbone wDWIC of individual patients. Next, we applied psychometry-driven DWIC analysis to the resulting DCNN-based backbone wDWIC in order to create core, expressive, and receptive LMNs. Finally, graph and circuit theory-based connectivity markers were assessed within the three LMNs and compared using a series of machine learning algorithms to predict the presence of postoperative language improvement from a given LMN. Results: The results showed that the extended DCNN tract classification significantly improved the reproducibility of connectivity markers by up to 35.5<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> of F-statistics across different LMNs. The prediction accuracy increased by up to 40<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> across different machine learning algorithms. Notably, the best algorithm achieved the accuracy of 96<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>/94<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>/96<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> to predict the presence of language improvement about two months after surgery in core/expressive/receptive domain of an independent validation cohort. Conclusion: These domains hold great potential to assist physicians in identifying candidates whose language skills stand to benefit from early surgery. Significance: DCNN tract classification may be an effective tool to improve predicting short-term postoperative language improvement in pediatric epilepsy surgery.
AbstractList To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modular networks (LMNs) within the preoperative whole-brain diffusion-weighted imaging connectome (wDWIC). We employed a three-step approach. First, our previous DCNN-based tract classification to detect true-positive eloquent tracts was extended using an open-source database of high-quality wDWIC to facilitate the accurate classification of true-positive tracts within the preoperative backbone wDWIC of individual patients. Next, we applied psychometry-driven DWIC analysis to the resulting DCNN-based backbone wDWIC in order to create core, expressive, and receptive LMNs. Finally, graph and circuit theory-based connectivity markers were assessed within the three LMNs and compared using a series of machine learning algorithms to predict the presence of postoperative language improvement from a given LMN. The results showed that the extended DCNN tract classification significantly improved the reproducibility of connectivity markers by up to 35.5 of F-statistics across different LMNs. The prediction accuracy increased by up to 40 across different machine learning algorithms. Notably, the best algorithm achieved the accuracy of 96/94/96 to predict the presence of language improvement about two months after surgery in core/expressive/receptive domain of an independent validation cohort. These domains hold great potential to assist physicians in identifying candidates whose language skills stand to benefit from early surgery. DCNN tract classification may be an effective tool to improve predicting short-term postoperative language improvement in pediatric epilepsy surgery.
To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modular networks (LMNs) within the preoperative whole-brain diffusion-weighted imaging connectome (wDWIC).OBJECTIVETo develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modular networks (LMNs) within the preoperative whole-brain diffusion-weighted imaging connectome (wDWIC).We employed a three-step approach. First, our previous DCNN-based tract classification to detect true-positive eloquent tracts was extended using an open-source database of high-quality wDWIC to facilitate the accurate classification of true-positive tracts within the preoperative backbone wDWIC of individual patients. Next, we applied psychometry-driven DWIC analysis to the resulting DCNN-based backbone wDWIC in order to create core, expressive, and receptive LMNs. Finally, graph and circuit theory-based connectivity markers were assessed within the three LMNs and compared using a series of machine learning algorithms to predict the presence of postoperative language improvement from a given LMN.METHODSWe employed a three-step approach. First, our previous DCNN-based tract classification to detect true-positive eloquent tracts was extended using an open-source database of high-quality wDWIC to facilitate the accurate classification of true-positive tracts within the preoperative backbone wDWIC of individual patients. Next, we applied psychometry-driven DWIC analysis to the resulting DCNN-based backbone wDWIC in order to create core, expressive, and receptive LMNs. Finally, graph and circuit theory-based connectivity markers were assessed within the three LMNs and compared using a series of machine learning algorithms to predict the presence of postoperative language improvement from a given LMN.The results showed that the extended DCNN tract classification significantly improved the reproducibility of connectivity markers by up to 35.5 of F-statistics across different LMNs. The prediction accuracy increased by up to 40 across different machine learning algorithms. Notably, the best algorithm achieved the accuracy of 96/94/96 to predict the presence of language improvement about two months after surgery in core/expressive/receptive domain of an independent validation cohort.RESULTSThe results showed that the extended DCNN tract classification significantly improved the reproducibility of connectivity markers by up to 35.5 of F-statistics across different LMNs. The prediction accuracy increased by up to 40 across different machine learning algorithms. Notably, the best algorithm achieved the accuracy of 96/94/96 to predict the presence of language improvement about two months after surgery in core/expressive/receptive domain of an independent validation cohort.These domains hold great potential to assist physicians in identifying candidates whose language skills stand to benefit from early surgery.CONCLUSIONThese domains hold great potential to assist physicians in identifying candidates whose language skills stand to benefit from early surgery.DCNN tract classification may be an effective tool to improve predicting short-term postoperative language improvement in pediatric epilepsy surgery.SIGNIFICANCEDCNN tract classification may be an effective tool to improve predicting short-term postoperative language improvement in pediatric epilepsy surgery.
Objective: To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modular networks (LMNs) within the preoperative whole-brain diffusion-weighted imaging connectome (wDWIC). Methods: We employed a three-step approach. First, our previous DCNN-based tract classification to detect true-positive eloquent tracts was extended using an open-source database of high-quality wDWIC to facilitate the accurate classification of true-positive tracts within the preoperative backbone wDWIC of individual patients. Next, we applied psychometry-driven DWIC analysis to the resulting DCNN-based backbone wDWIC in order to create core, expressive, and receptive LMNs. Finally, graph and circuit theory-based connectivity markers were assessed within the three LMNs and compared using a series of machine learning algorithms to predict the presence of postoperative language improvement from a given LMN. Results: The results showed that the extended DCNN tract classification significantly improved the reproducibility of connectivity markers by up to 35.5<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> of F-statistics across different LMNs. The prediction accuracy increased by up to 40<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> across different machine learning algorithms. Notably, the best algorithm achieved the accuracy of 96<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>/94<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>/96<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> to predict the presence of language improvement about two months after surgery in core/expressive/receptive domain of an independent validation cohort. Conclusion: These domains hold great potential to assist physicians in identifying candidates whose language skills stand to benefit from early surgery. Significance: DCNN tract classification may be an effective tool to improve predicting short-term postoperative language improvement in pediatric epilepsy surgery.
Objective: To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modular networks (LMNs) within the preoperative whole-brain diffusion-weighted imaging connectome (wDWIC). Methods: We employed a three-step approach. First, our previous DCNN-based tract classification to detect true-positive eloquent tracts was extended using an open-source database of high-quality wDWIC to facilitate the accurate classification of true-positive tracts within the preoperative backbone wDWIC of individual patients. Next, we applied psychometry-driven DWIC analysis to the resulting DCNN-based backbone wDWIC in order to create core, expressive, and receptive LMNs. Finally, graph and circuit theory-based connectivity markers were assessed within the three LMNs and compared using a series of machine learning algorithms to predict the presence of postoperative language improvement from a given LMN. Results: The results showed that the extended DCNN tract classification significantly improved the reproducibility of connectivity markers by up to 35.5[Formula Omitted] of F-statistics across different LMNs. The prediction accuracy increased by up to 40[Formula Omitted] across different machine learning algorithms. Notably, the best algorithm achieved the accuracy of 96[Formula Omitted]/94[Formula Omitted]/96[Formula Omitted] to predict the presence of language improvement about two months after surgery in core/expressive/receptive domain of an independent validation cohort. Conclusion: These domains hold great potential to assist physicians in identifying candidates whose language skills stand to benefit from early surgery. Significance: DCNN tract classification may be an effective tool to improve predicting short-term postoperative language improvement in pediatric epilepsy surgery.
Author Dong, Ming
Jeong, Jeong-Won
Uda, Hiroshi
Lee, Min-Hee
Rothermel, Robert
Carlson, Alanna
Banerjee, Soumyanil
Juhasz, Csaba
Asano, Eishi
Author_xml – sequence: 1
  givenname: Min-Hee
  orcidid: 0000-0002-1932-9557
  surname: Lee
  fullname: Lee, Min-Hee
  organization: Department of Pediatrics, Wayne State University School of Medicine, USA
– sequence: 2
  givenname: Soumyanil
  orcidid: 0000-0003-4165-8637
  surname: Banerjee
  fullname: Banerjee, Soumyanil
  organization: Department of Computer Science, Wayne State University School of Engineering, USA
– sequence: 3
  givenname: Hiroshi
  orcidid: 0000-0002-7814-697X
  surname: Uda
  fullname: Uda, Hiroshi
  organization: Department of Pediatrics, Wayne State University School of Medicine, USA
– sequence: 4
  givenname: Alanna
  surname: Carlson
  fullname: Carlson, Alanna
  organization: Department of Pediatrics, Wayne State University School of Medicine, USA
– sequence: 5
  givenname: Ming
  orcidid: 0000-0001-8133-7809
  surname: Dong
  fullname: Dong, Ming
  organization: Department of Computer Science, Wayne State University School of Engineering, USA
– sequence: 6
  givenname: Robert
  surname: Rothermel
  fullname: Rothermel, Robert
  organization: Department of Psychiatry, Wayne State University School of Medicine, and Children's Hospital of Michigan, USA
– sequence: 7
  givenname: Csaba
  orcidid: 0000-0002-5067-5554
  surname: Juhasz
  fullname: Juhasz, Csaba
  organization: Departments of Pediatrics, Neurology, and Translational Neuroscience Program, Wayne State University School of Medicine, USA
– sequence: 8
  givenname: Eishi
  orcidid: 0000-0001-8391-4067
  surname: Asano
  fullname: Asano, Eishi
  organization: Departments of Pediatrics, Neurology, and Translational Neuroscience Program, Wayne State University School of Medicine, USA
– sequence: 9
  givenname: Jeong-Won
  orcidid: 0000-0003-4498-0939
  surname: Jeong
  fullname: Jeong, Jeong-Won
  email: jjeong@med.wayne.edu
  organization: Departments of Pediatrics, Neurology, and Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39292577$$D View this record in MEDLINE/PubMed
BookMark eNpdkdFu0zAUhi00xLrBAyAhZIkbblLsOHacy60tUKmICYp2GXnOSeopsYPtVOqz8XK4ageIK-v4fP_RL31X6MI6Cwi9pmROKak-bG-_rOY5yYs5KwQrJH2GZpRzmeWc0Qs0I4TKrMqr4hJdhfCYxkIW4gW6ZOkz52U5Q7-WACPegPLW2C67VQEavPVKR7zoVQimNVpF4yx2Lb7z4Ebwad4DXt6vT6DrvBp3B3zT7JXVEHDcwRFtjH4Kft85H7Mt-AHfuRD_Htko202qA7weRu_2MICN2Fi82Jm-8WDxvYk7vPRTl32DYEJUab8aTQ9jOLxEz1vVB3h1fq_Rj4-r7eJztvn6ab242WSakTxmKmcPTGhJhSwVlW2pNKVVy6EgnKuG5YqWhCougLCW06rQhKtStC2jUjSEs2v0_nQ3Vfw5QYj1YIKGvlcW3BRqRokoWc4LmdB3_6GPbvI2tUsUl7SSqUSi3p6p6WGAph69GZQ_1E9aEkBPgPYuBA_tH4SS-qi-Pqqvj-rrs_qUeXPKGAD4hxeSVYKx37jVq6I
CODEN IEBEAX
Cites_doi 10.1097/WNR.0000000000001881
10.3758/BF03193146
10.1177/1073858413513502
10.1111/j.1528-1167.2011.03282.x
10.3389/fninf.2010.00117
10.1111/j.1528-1167.2007.01421.x
10.1002/hbm.25437
10.1080/13696998.2017.1412975
10.1007/978-1-84996-396-1_2
10.1109/TMI.2019.2902073
10.1016/j.tics.2004.07.008
10.1111/j.1469-8749.2002.tb00325.x
10.1089/brain.2011.0033
10.1109/TMI.2014.2355175
10.1093/brain/awx051
10.1007/978-3-031-16431-6_18
10.1371/journal.pone.0212470
10.1109/ICCV.2015.123
10.1016/j.yebeh.2021.107909
10.1007/978-3-319-46478-7_31
10.1093/brain/awr027
10.3389/fneur.2021.646075
10.1093/cercor/bhn102
10.1212/WNL.0000000000003407
10.1016/j.neuroimage.2012.06.005
10.1016/0378-8733(78)90021-7
10.1212/01.WNL.0000031792.89992.EC
10.1109/42.750253
10.1212/01.wnl.0000252807.38124.a3
10.1002/jmri.26794
10.1007/978-3-030-11018-5_63
10.1109/ISBI.2018.8363748
10.1016/j.neuroimage.2023.119954
10.5555/3045118.3045336
10.1213/ane.0b013e318167ad77
10.2307/3033543
10.1007/BF01164627
10.2217/iim.10.21
10.1016/j.neuroimage.2011.02.014
10.1371/journal.pcbi.0030017
10.1016/j.bandl.2020.104743
10.1111/epi.12912
10.1007/978-3-319-66182-7_63
10.1002/hbm.23287
10.1213/01.ane.0000255729.96438.b0
10.1109/iccv.2017.324
10.1016/j.neuroimage.2015.10.019
10.1080/87565641.2017.1334783
10.1016/j.neuroimage.2012.11.049
10.1212/WNL.0b013e3181eee457
10.1016/j.neuroimage.2009.10.003
10.1007/978-3-030-87444-5_2
10.1016/j.socnet.2004.11.009
10.1109/TMI.2020.3036933
10.1038/s41467-017-01285-x
10.1111/j.1528-1167.2010.02773.x
10.1109/TBME.2020.2977531
10.1016/j.neuroimage.2004.07.010
10.1016/j.mri.2018.11.014
10.1016/j.neuroimage.2023.120086
10.1038/s41390-021-01550-2
10.1016/j.neuroimage.2008.05.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2024.3463481
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 576
ExternalDocumentID 39292577
10_1109_TBME_2024_3463481
10683963
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01NS089659; R01NS064033
  funderid: 10.13039/100000002
– fundername: NINDS NIH HHS
  grantid: R01 NS089659
– fundername: NINDS NIH HHS
  grantid: R01 NS064033
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c302t-a23b36c81687a18f7ac119f5e4055ad32a1701a56e03f5194c05a76ff3186d053
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Wed Oct 01 13:16:20 EDT 2025
Mon Jun 30 10:15:12 EDT 2025
Mon Jul 21 06:07:00 EDT 2025
Wed Oct 01 04:08:59 EDT 2025
Wed Aug 27 01:55:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-a23b36c81687a18f7ac119f5e4055ad32a1701a56e03f5194c05a76ff3186d053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8391-4067
0000-0002-1932-9557
0000-0002-7814-697X
0000-0003-4165-8637
0000-0001-8133-7809
0000-0002-5067-5554
0000-0003-4498-0939
PMID 39292577
PQID 3158198687
PQPubID 85474
PageCount 12
ParticipantIDs pubmed_primary_39292577
proquest_journals_3158198687
proquest_miscellaneous_3106732548
ieee_primary_10683963
crossref_primary_10_1109_TBME_2024_3463481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref58
ref53
ref52
ref11
Lee (ref22) 2019
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Semel (ref14) 2003
Diniel (ref56) 1990
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
Nocedal (ref50) 2006
ref6
ref5
ref40
ref35
Loh (ref62) 2002; 12
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
Kingma (ref38) 2015
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref66
ref21
ref65
ref28
ref27
ref29
Tournier (ref31) 2010
ref60
ref61
References_xml – ident: ref64
  doi: 10.1097/WNR.0000000000001881
– ident: ref57
  doi: 10.3758/BF03193146
– ident: ref15
  doi: 10.1177/1073858413513502
– ident: ref5
  doi: 10.1111/j.1528-1167.2011.03282.x
– ident: ref39
  doi: 10.3389/fninf.2010.00117
– volume: 12
  start-page: 361
  year: 2002
  ident: ref62
  article-title: Regression trees with unbiased variable selection and interaction detection
  publication-title: Statist. Sin.
– ident: ref3
  doi: 10.1111/j.1528-1167.2007.01421.x
– ident: ref17
  doi: 10.1002/hbm.25437
– volume-title: Proc. Int. Soc. Magn. Reson. Med
  year: 2019
  ident: ref22
  article-title: Improving reproducibility of diffusion connectome analysis using deep convolutional neural network model
– ident: ref4
  doi: 10.1080/13696998.2017.1412975
– ident: ref47
  doi: 10.1007/978-1-84996-396-1_2
– ident: ref9
  doi: 10.1109/TMI.2019.2902073
– ident: ref42
  doi: 10.1016/j.tics.2004.07.008
– ident: ref61
  doi: 10.1111/j.1469-8749.2002.tb00325.x
– ident: ref21
  doi: 10.1089/brain.2011.0033
– ident: ref28
  doi: 10.1109/TMI.2014.2355175
– volume-title: Clinical Evaluation of Language Fundamentals
  year: 2003
  ident: ref14
– ident: ref65
  doi: 10.1093/brain/awx051
– ident: ref24
  doi: 10.1007/978-3-031-16431-6_18
– ident: ref48
  doi: 10.1371/journal.pone.0212470
– ident: ref51
  doi: 10.1109/ICCV.2015.123
– ident: ref16
  doi: 10.1016/j.yebeh.2021.107909
– ident: ref27
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref58
  doi: 10.1093/brain/awr027
– ident: ref67
  doi: 10.3389/fneur.2021.646075
– ident: ref12
  doi: 10.1093/cercor/bhn102
– ident: ref8
  doi: 10.1212/WNL.0000000000003407
– ident: ref33
  doi: 10.1016/j.neuroimage.2012.06.005
– start-page: 1
  volume-title: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc
  year: 2015
  ident: ref38
  article-title: Adam: A method for stochastic optimization
– ident: ref43
  doi: 10.1016/0378-8733(78)90021-7
– ident: ref6
  doi: 10.1212/01.WNL.0000031792.89992.EC
– ident: ref40
  doi: 10.1109/42.750253
– ident: ref1
  doi: 10.1212/01.wnl.0000252807.38124.a3
– ident: ref69
  doi: 10.1002/jmri.26794
– ident: ref26
  doi: 10.1007/978-3-030-11018-5_63
– ident: ref54
  doi: 10.1109/ISBI.2018.8363748
– ident: ref63
  doi: 10.1016/j.neuroimage.2023.119954
– ident: ref36
  doi: 10.5555/3045118.3045336
– volume-title: Proc. Int. Soc. Magn. Reson. Med. Int. Soc. Magn. Reson. Med.
  year: 2010
  ident: ref31
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
– ident: ref19
  doi: 10.1213/ane.0b013e318167ad77
– ident: ref45
  doi: 10.2307/3033543
– ident: ref46
  doi: 10.1007/BF01164627
– volume-title: Numerical Optimization
  year: 2006
  ident: ref50
– ident: ref20
  doi: 10.2217/iim.10.21
– ident: ref35
  doi: 10.1016/j.neuroimage.2011.02.014
– ident: ref44
  doi: 10.1371/journal.pcbi.0030017
– ident: ref13
  doi: 10.1016/j.bandl.2020.104743
– ident: ref2
  doi: 10.1111/epi.12912
– ident: ref23
  doi: 10.1007/978-3-319-66182-7_63
– ident: ref60
  doi: 10.1002/hbm.23287
– ident: ref18
  doi: 10.1213/01.ane.0000255729.96438.b0
– ident: ref25
  doi: 10.1109/iccv.2017.324
– year: 1990
  ident: ref56
  article-title: KruskalWallis one-way analysis of variance by ranks
– ident: ref30
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: ref66
  doi: 10.1080/87565641.2017.1334783
– ident: ref32
  doi: 10.1016/j.neuroimage.2012.11.049
– ident: ref7
  doi: 10.1212/WNL.0b013e3181eee457
– ident: ref41
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref37
  doi: 10.1007/978-3-030-87444-5_2
– ident: ref49
  doi: 10.1016/j.socnet.2004.11.009
– ident: ref52
  doi: 10.1109/TMI.2020.3036933
– ident: ref11
  doi: 10.1038/s41467-017-01285-x
– ident: ref59
  doi: 10.1111/j.1528-1167.2010.02773.x
– ident: ref10
  doi: 10.1109/TBME.2020.2977531
– ident: ref34
  doi: 10.1016/j.neuroimage.2004.07.010
– ident: ref68
  doi: 10.1016/j.mri.2018.11.014
– ident: ref55
  doi: 10.1016/j.neuroimage.2023.120086
– ident: ref53
  doi: 10.1038/s41390-021-01550-2
– ident: ref29
  doi: 10.1016/j.neuroimage.2008.05.002
SSID ssj0014846
Score 2.4678352
Snippet Objective: To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative...
To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 565
SubjectTerms Adolescent
Algorithms
Artificial neural networks
Brain - diagnostic imaging
Child
Child, Preschool
Classification
Connectome - methods
Deep convolutional neural network
Deep Learning
Diffusion Tensor Imaging - methods
Drug resistance
Drug Resistant Epilepsy - diagnostic imaging
Drug Resistant Epilepsy - surgery
Epilepsy
Female
Graph theory
Humans
Image Interpretation, Computer-Assisted - methods
Language
Learning algorithms
Machine learning
Machine learning algorithms
Magnetic resonance imaging
Male
network connectivity marker
Neural networks
Neuroimaging
pediatric epilepsy surgery
Pediatrics
Postoperative Period
prediction of language improvement
Predictions
psychometry-driven language modular network
Reproducibility of results
Statistical analysis
Surgery
Surgical instruments
Title Deep Learning-Based Tract Classification of Preoperative DWI Tractography Advances the Prediction of Short-Term Postoperative Language Improvement in Children With Drug-Resistant Epilepsy
URI https://ieeexplore.ieee.org/document/10683963
https://www.ncbi.nlm.nih.gov/pubmed/39292577
https://www.proquest.com/docview/3158198687
https://www.proquest.com/docview/3106732548
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VDogeSkspDYXKlXqq5G0SJ05yBHYRrbqoahfBLfI6NqwqJdFucih_jT_X8SNbqITUW6TYk1iex2fPC-CjjAtVxFFFEcsKivifUTQKBdVFmOisiufCBtFML_j5ZfL1Or32yeo2F0YpZYPP1Mg8Wl9-1cjeXJWhhHO055xtwEaWc5estXYZJLnLygkjlOC4SLwLMwqLz7OT6QSPgnEyYgk3mafbsGVwAbJr9sge2QYrT2NNa3POduBi-FsXavJr1Hfzkbz7p5Djfy_nJbzw6JMcO3Z5Bc9UvQvPH9Qk3IWtqfe2v4b7sVIt8RVYb-gJGryKzExaFbG9NE2Ukd1Y0mjyfamaVrk64mR89cUN9AWxybELNVgRxJtmaLWQw8Sft3gCoDO0EMR0Dv5L5Ju_SiXu4sPeY5JFTU59_jm5WnS3ZLzsb-gPtTI4GN9PWlRz7er3HlyeTWan59Q3e6CShXFHRczmjEvTBiQTUa4zIaOo0KlCRJmKisXCVI4XKVch0wg7ExmmIuNao1LiFaqSN7BZN7V6CyRHHSNSLaoM8agMkRwXikmcJ5GIVgF8Gra8bF1Nj9KehcKiNKxSGlYpPasEsGd27sFAt2kBHA5cUnqxX5UsShFh5biEAD6sX6PAGi-MqFXTmzGmNxCey_MA9h13rYkPTHnwxEffwXZs-g_bqPFD2OyWvTpCUNTN31th-ANLtwgD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CIY3xwGUMCAwwEk9ILkmc6-O2duqgrRBk2t4i17G3CimJ2uQB_hp_juNLykCaxFuk2CexfC6ffW4A70WYyzwMKopYllPE_4yiUcipyv1IpVW45CaIZr5IpufRp8v40iWrm1wYKaUJPpMj_Wh8-VUjen1VhhKeoD1P2F24F0dRFNt0ra3TIMpsXo4foAyHeeScmIGffyyO5xM8DIbRiEWJzj3dg12NDJBh078skmmxcjvaNFbn9BEshv-1wSbfR323HImf_5Ry_O8FPYaHDn-SI8swT-COrPfhwY2qhPuwO3f-9qfwayxlS1wN1it6jCavIoVOrCKmm6aOMzJbSxpFvqxl00pbSZyML87sQFcSmxzZYIMNQcSph1YrMUz8do1nAFqgjSC6d_AfIjN3mUrs1Ye5ySSrmpy4DHRysequyXjdX9GvcqORML6ftKjo2s2PAzg_nRQnU-raPVDB_LCjPGRLlgjdCCTlQaZSLoIgV7FETBnzioVc147ncSJ9phB4RsKPeZoohWopqVCZPIOduqnlCyAZahkeK16liEiFj-QSLpnAeQKJKOnBh2HLy9ZW9SjNacjPS80qpWaV0rGKBwd6524MtJvmweHAJaUT_E3JghgxVoZL8ODd9jWKrPbD8Fo2vR6juwPhyTzz4Lnlri3xgSlf3vLRt3B_Wsxn5exs8fkV7IW6G7GJIT-EnW7dy9cIkbrlGyMYvwE7LwtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Tract+Classification+of+Preoperative+DWI+Tractography+Advances+the+Prediction+of+Short-Term+Postoperative+Language+Improvement+in+Children+With+Drug-Resistant+Epilepsy&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Lee%2C+Min-Hee&rft.au=Banerjee%2C+Soumyanil&rft.au=Uda%2C+Hiroshi&rft.au=Carlson%2C+Alanna&rft.date=2025-02-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=72&rft.issue=2&rft.spage=565&rft_id=info:doi/10.1109%2FTBME.2024.3463481&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon