Spatially varying coefficient models using reduced-rank thin-plate splines

Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This paper proposes a new approach for SVC modeling by representing regression coefficients using a class of multiresolution spline basis functions...

Full description

Saved in:
Bibliographic Details
Published inSpatial statistics Vol. 51; p. 100654
Main Authors Fan, Yu-Ting, Huang, Hsin-Cheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2022
Subjects
Online AccessGet full text
ISSN2211-6753
2211-6753
DOI10.1016/j.spasta.2022.100654

Cover

Abstract Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This paper proposes a new approach for SVC modeling by representing regression coefficients using a class of multiresolution spline basis functions in a generalized-linear model framework. The proposed method provides flexible and parsimonious representations for regression coefficients. It enables commonly used (generalized) linear-regression packages for estimation, testing, and constructing confidence levels. We develop a fast estimation algorithm that simultaneously performs variable selection, detects spatial heterogeneity for each variable, and determines its complexity. We provide numerical examples and an application to a real estate dataset to demonstrate the proposed method’s effectiveness.
AbstractList Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This paper proposes a new approach for SVC modeling by representing regression coefficients using a class of multiresolution spline basis functions in a generalized-linear model framework. The proposed method provides flexible and parsimonious representations for regression coefficients. It enables commonly used (generalized) linear-regression packages for estimation, testing, and constructing confidence levels. We develop a fast estimation algorithm that simultaneously performs variable selection, detects spatial heterogeneity for each variable, and determines its complexity. We provide numerical examples and an application to a real estate dataset to demonstrate the proposed method’s effectiveness.
ArticleNumber 100654
Author Fan, Yu-Ting
Huang, Hsin-Cheng
Author_xml – sequence: 1
  givenname: Yu-Ting
  surname: Fan
  fullname: Fan, Yu-Ting
  organization: Institute of Statistics, National Yang Ming Chiao Tung University, Taiwan, ROC
– sequence: 2
  givenname: Hsin-Cheng
  orcidid: 0000-0002-5613-349X
  surname: Huang
  fullname: Huang, Hsin-Cheng
  email: hchuang@stat.sinica.edu.tw
  organization: Institute of Statistical Science, Academia Sinica, Taiwan, ROC
BookMark eNqFkM1KAzEQgINUsNa-gYd9ga1J9idbD4IUrUrBg3oO2WSiqWl2SdJC394s60E86FxmmOEbZr5zNHGdA4QuCV4QTOqr7SL0IkSxoJjS1MJ1VZ6gKaWE5DWrismP-gzNQ9jiFKzERUWn6OmlF9EIa4_ZQfijce-Z7EBrIw24mO06BTZk-zAMPKi9BJV74T6z-GFc3lsRIQu9NQ7CBTrVwgaYf-cZeru_e1095Jvn9ePqdpPLAtOYl0JQpmvd1ktopGgwbirSFq1SiqmGtVUjl5JK3LQ1ZbKEQlKFayiYJkxQYMUMleNe6bsQPGjee7NLx3OC-aCEb_mohA9K-KgkYde_MGli-r1z0Qtj_4NvRjjZgIMBz8MgKNkwHmTkqjN_L_gCbeuCng
CitedBy_id crossref_primary_10_1111_gean_12393
crossref_primary_10_1080_13658816_2023_2270285
crossref_primary_10_3390_ijgi13120459
crossref_primary_10_1080_01621459_2025_2470481
Cites_doi 10.1175/MWR2904.1
10.1111/j.1467-9868.2005.00532.x
10.1080/10485252.2020.1759596
10.1080/00401706.2017.1345701
10.1016/j.spasta.2016.12.001
10.1111/1467-9868.00374
10.1016/j.spasta.2019.02.003
10.1080/00401706.2017.1317290
10.1016/j.spasta.2020.100470
10.1111/biom.13077
10.1007/s10109-006-0028-7
10.1214/13-AOS1201
10.1214/aos/1176344136
10.1002/env.2485
10.1002/env.599
10.1198/016214503000170
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.spasta.2022.100654
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2211-6753
ExternalDocumentID 10_1016_j_spasta_2022_100654
S2211675322000355
GroupedDBID --M
.~1
0R~
1~.
1~5
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABAOU
ABFYP
ABLST
ABMAC
ABMMH
ABQEM
ABQYD
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ARUGR
ATOGT
AVARZ
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IMUCA
KCYFY
KOM
M41
MHUIS
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
PRBVW
Q38
RIG
ROL
SDF
SPC
SPCBC
SSB
SSD
SSE
SSJ
SSO
SSW
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c302t-4aa27f6fb69e8ca800851b3bddd7d87b58c9c2c08b627c4e3c2d06e37f17a2e73
IEDL.DBID AIKHN
ISSN 2211-6753
IngestDate Thu Apr 24 23:10:51 EDT 2025
Tue Jul 01 00:57:34 EDT 2025
Fri Feb 23 02:40:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiresolution spline basis function
Generalized linear model
Model selection
Log-normal regression
Cross-validation
Geographically weighted regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-4aa27f6fb69e8ca800851b3bddd7d87b58c9c2c08b627c4e3c2d06e37f17a2e73
ORCID 0000-0002-5613-349X
ParticipantIDs crossref_primary_10_1016_j_spasta_2022_100654
crossref_citationtrail_10_1016_j_spasta_2022_100654
elsevier_sciencedirect_doi_10_1016_j_spasta_2022_100654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Spatial statistics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Lee (b10) 2017; 59
Kim, Kwon, Choi (b9) 2012; 13
Gneiting, Raftery, Westveld, Goldman (b8) 2005; 133
Assunção (b2) 2003; 14
Sirmans, Macpherson, Zietz (b19) 2005; 13
Akaike, H.A., 1973. Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory (Edited By B.N. Petrov and F. Csaki). pp. 267–281.
Murakami, Griffith (b15) 2019; 30
Laslett (b11) 1994; 89
Fotheringham, Brunsdon, Charlton (b5) 2002
Bitter, Mulligan, Dall’erba (b3) 2007; 9
Schwarz (b17) 1978; 6
Gelfand, Kim, Sirmans, Banerjee (b7) 2003; 98
Yuan, Lin (b24) 2006; 68
Murakami, Yoshida, Seya, Griffith, Yamagata (b16) 2017; 19
Mu, Wang, Wang (b13) 2018; 29
Tzeng, Huang (b21) 2018; 60
Dambon, Sigrist, Furrer (b4) 2021; 41
Shao (b18) 1997; 7
Wood (b23) 2003; 65
Mu, Wang, Wang (b14) 2020; 32
McCullagh, Nelder (b12) 1989
Fotheringham, Yang, Kang (b6) 2017; 107
Sun, Yan, Zhang, Lu (b20) 2014; 42
Wang, Sun (b22) 2019; 75
Murakami (10.1016/j.spasta.2022.100654_b16) 2017; 19
Murakami (10.1016/j.spasta.2022.100654_b15) 2019; 30
Wood (10.1016/j.spasta.2022.100654_b23) 2003; 65
Wang (10.1016/j.spasta.2022.100654_b22) 2019; 75
Yuan (10.1016/j.spasta.2022.100654_b24) 2006; 68
Mu (10.1016/j.spasta.2022.100654_b13) 2018; 29
Fotheringham (10.1016/j.spasta.2022.100654_b5) 2002
Sirmans (10.1016/j.spasta.2022.100654_b19) 2005; 13
Fotheringham (10.1016/j.spasta.2022.100654_b6) 2017; 107
10.1016/j.spasta.2022.100654_b1
Gelfand (10.1016/j.spasta.2022.100654_b7) 2003; 98
Gneiting (10.1016/j.spasta.2022.100654_b8) 2005; 133
Kim (10.1016/j.spasta.2022.100654_b10) 2017; 59
Mu (10.1016/j.spasta.2022.100654_b14) 2020; 32
Schwarz (10.1016/j.spasta.2022.100654_b17) 1978; 6
Assunção (10.1016/j.spasta.2022.100654_b2) 2003; 14
Sun (10.1016/j.spasta.2022.100654_b20) 2014; 42
Dambon (10.1016/j.spasta.2022.100654_b4) 2021; 41
Tzeng (10.1016/j.spasta.2022.100654_b21) 2018; 60
Kim (10.1016/j.spasta.2022.100654_b9) 2012; 13
Bitter (10.1016/j.spasta.2022.100654_b3) 2007; 9
McCullagh (10.1016/j.spasta.2022.100654_b12) 1989
Shao (10.1016/j.spasta.2022.100654_b18) 1997; 7
Laslett (10.1016/j.spasta.2022.100654_b11) 1994; 89
References_xml – volume: 13
  year: 2012
  ident: b9
  article-title: Consistent model selection criteria on high dimensions
  publication-title: J. Mach. Learn. Res.
– year: 1989
  ident: b12
  article-title: Generalized Linear Models
– year: 2002
  ident: b5
  article-title: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships
– volume: 60
  year: 2018
  ident: b21
  article-title: Resolution adaptive fixed rank kriging
  publication-title: Technometrics
– volume: 32
  year: 2020
  ident: b14
  article-title: Spatial autoregressive partially linear varying coefficient models
  publication-title: J. Nonparametr. Stat.
– volume: 107
  year: 2017
  ident: b6
  article-title: Multiscale geographically weighted regression (MGWR)
  publication-title: Ann. Amer. Assoc. Geogr.
– volume: 7
  start-page: 221
  year: 1997
  end-page: 264
  ident: b18
  article-title: An asymptotic theory for linear model selection
  publication-title: Statist. Sinica
– volume: 19
  year: 2017
  ident: b16
  article-title: A moran coefficient-based mixed effects approach to investigate spatially varying relationships
  publication-title: Spat. Statist.
– volume: 41
  year: 2021
  ident: b4
  article-title: Maximum likelihood estimation of spatially varying coefficient models for large data with an application to real estate price prediction
  publication-title: Spat. Statist.
– volume: 98
  year: 2003
  ident: b7
  article-title: Spatial modeling with spatially varying coefficient processes
  publication-title: J. Amer. Statist. Assoc.
– volume: 75
  year: 2019
  ident: b22
  article-title: Penalized local polynomial regression for spatial data
  publication-title: Biometrics
– volume: 29
  year: 2018
  ident: b13
  article-title: Estimation and inference in spatially varying coefficient models
  publication-title: Environmetrics
– volume: 42
  year: 2014
  ident: b20
  article-title: A semiparametric spatial dynamic model
  publication-title: Ann. Statist.
– volume: 133
  year: 2005
  ident: b8
  article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
  publication-title: Mon. Weather Rev.
– volume: 89
  year: 1994
  ident: b11
  article-title: Kriging and splines: An empirical comparison of their predictive performance in some applications
  publication-title: J. Amer. Statist. Assoc.
– volume: 14
  year: 2003
  ident: b2
  article-title: Space varying coefficient models for small area data
  publication-title: Environmetrics
– volume: 59
  year: 2017
  ident: b10
  article-title: Hierarchical spatially varying coefficient process model
  publication-title: Technometrics
– volume: 30
  year: 2019
  ident: b15
  article-title: Spatially varying coefficient modeling for large datasets: Eliminating n from spatial regressions
  publication-title: Spat. Statist.
– volume: 9
  year: 2007
  ident: b3
  article-title: Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method
  publication-title: J. Geogr. Syst.
– reference: Akaike, H.A., 1973. Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory (Edited By B.N. Petrov and F. Csaki). pp. 267–281.
– volume: 6
  year: 1978
  ident: b17
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– volume: 13
  year: 2005
  ident: b19
  article-title: The composition of hedonic pricing models
  publication-title: J. Real Estate Lit.
– volume: 65
  start-page: 95
  year: 2003
  end-page: 114
  ident: b23
  article-title: Thin plate regression splines
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: b24
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 133
  year: 2005
  ident: 10.1016/j.spasta.2022.100654_b8
  article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR2904.1
– volume: 89
  year: 1994
  ident: 10.1016/j.spasta.2022.100654_b11
  article-title: Kriging and splines: An empirical comparison of their predictive performance in some applications
  publication-title: J. Amer. Statist. Assoc.
– volume: 68
  start-page: 49
  year: 2006
  ident: 10.1016/j.spasta.2022.100654_b24
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 32
  year: 2020
  ident: 10.1016/j.spasta.2022.100654_b14
  article-title: Spatial autoregressive partially linear varying coefficient models
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485252.2020.1759596
– volume: 60
  year: 2018
  ident: 10.1016/j.spasta.2022.100654_b21
  article-title: Resolution adaptive fixed rank kriging
  publication-title: Technometrics
  doi: 10.1080/00401706.2017.1345701
– volume: 19
  year: 2017
  ident: 10.1016/j.spasta.2022.100654_b16
  article-title: A moran coefficient-based mixed effects approach to investigate spatially varying relationships
  publication-title: Spat. Statist.
  doi: 10.1016/j.spasta.2016.12.001
– volume: 65
  start-page: 95
  year: 2003
  ident: 10.1016/j.spasta.2022.100654_b23
  article-title: Thin plate regression splines
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00374
– ident: 10.1016/j.spasta.2022.100654_b1
– volume: 30
  year: 2019
  ident: 10.1016/j.spasta.2022.100654_b15
  article-title: Spatially varying coefficient modeling for large datasets: Eliminating n from spatial regressions
  publication-title: Spat. Statist.
  doi: 10.1016/j.spasta.2019.02.003
– volume: 59
  year: 2017
  ident: 10.1016/j.spasta.2022.100654_b10
  article-title: Hierarchical spatially varying coefficient process model
  publication-title: Technometrics
  doi: 10.1080/00401706.2017.1317290
– volume: 41
  year: 2021
  ident: 10.1016/j.spasta.2022.100654_b4
  article-title: Maximum likelihood estimation of spatially varying coefficient models for large data with an application to real estate price prediction
  publication-title: Spat. Statist.
  doi: 10.1016/j.spasta.2020.100470
– year: 2002
  ident: 10.1016/j.spasta.2022.100654_b5
– volume: 13
  year: 2012
  ident: 10.1016/j.spasta.2022.100654_b9
  article-title: Consistent model selection criteria on high dimensions
  publication-title: J. Mach. Learn. Res.
– year: 1989
  ident: 10.1016/j.spasta.2022.100654_b12
– volume: 75
  year: 2019
  ident: 10.1016/j.spasta.2022.100654_b22
  article-title: Penalized local polynomial regression for spatial data
  publication-title: Biometrics
  doi: 10.1111/biom.13077
– volume: 107
  year: 2017
  ident: 10.1016/j.spasta.2022.100654_b6
  article-title: Multiscale geographically weighted regression (MGWR)
  publication-title: Ann. Amer. Assoc. Geogr.
– volume: 9
  year: 2007
  ident: 10.1016/j.spasta.2022.100654_b3
  article-title: Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method
  publication-title: J. Geogr. Syst.
  doi: 10.1007/s10109-006-0028-7
– volume: 42
  year: 2014
  ident: 10.1016/j.spasta.2022.100654_b20
  article-title: A semiparametric spatial dynamic model
  publication-title: Ann. Statist.
  doi: 10.1214/13-AOS1201
– volume: 7
  start-page: 221
  year: 1997
  ident: 10.1016/j.spasta.2022.100654_b18
  article-title: An asymptotic theory for linear model selection
  publication-title: Statist. Sinica
– volume: 13
  year: 2005
  ident: 10.1016/j.spasta.2022.100654_b19
  article-title: The composition of hedonic pricing models
  publication-title: J. Real Estate Lit.
– volume: 6
  year: 1978
  ident: 10.1016/j.spasta.2022.100654_b17
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 29
  year: 2018
  ident: 10.1016/j.spasta.2022.100654_b13
  article-title: Estimation and inference in spatially varying coefficient models
  publication-title: Environmetrics
  doi: 10.1002/env.2485
– volume: 14
  year: 2003
  ident: 10.1016/j.spasta.2022.100654_b2
  article-title: Space varying coefficient models for small area data
  publication-title: Environmetrics
  doi: 10.1002/env.599
– volume: 98
  year: 2003
  ident: 10.1016/j.spasta.2022.100654_b7
  article-title: Spatial modeling with spatially varying coefficient processes
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214503000170
SSID ssj0000740352
Score 2.2553575
Snippet Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100654
SubjectTerms Cross-validation
Generalized linear model
Geographically weighted regression
Log-normal regression
Model selection
Multiresolution spline basis function
Title Spatially varying coefficient models using reduced-rank thin-plate splines
URI https://dx.doi.org/10.1016/j.spasta.2022.100654
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uPQiPrE-yh68rk12N9ntsRRLrdiLFnoL2ZdWSlvaKHjxt7ubR1EQBY8JGQgfk5kvycz3AVyFlloq4x7WVDLM4jTAMtQchxHXWjp-zHK7t_tJPJqy8Sya1WBQ7cL4scqy9hc1Pa_W5ZluiWZ3PZ93Hwjx_xAil5H5_7CoDk3iur1oQLN_ezea7D61uC7pVT-9zZwLwT6mWqLLJ73co-uYmHtXJMQPDcQR-7lJfWk8w33YKxkj6hc3dQA1szyElieJhcbyEYy9r7DLo8U7eks3fm8JqZXJtSFcS0G52c0W-Qn3J7TxUq1GY-_VjrLn-RKvF45uoq3fzDXbY5gObx4HI1x6JGBFA5JhlqaE29g6uI1QqcgplKRSa8214DISqqeICoSMCVfMUEV0EBvKbchTYjg9gcZytTSngEJNQsscnMz0mLVSUGVsagUXNuWUsTbQCpRElQLi3sdikVSTYi9JAWXioUwKKNuAd1HrQkDjj-t5hXfyLRESV-N_jTz7d-Q5tPxRMaN3AY1s82ouHdfIZAfq1x9hp8yoT6iT1AA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PehFfGJ97sHr0mR3k02PpSj10V600FvIvrRS2tJGwX_vTh5FQRS8JhkIH5OZL8nM9wFchY47ruIONVwJKuIsoCo0koaRNEZ5fiwKu7fBMO6PxN04Gm9Ar96FwbHKqvaXNb2o1tWRdoVmezGZtB8Zw38Ikc_I4n9YtAlNgabWDWh2b-_7w_WnFt8lUfUTbeZ8CMWYeomumPTyj65nYv5dkTEcGogj8XOT-tJ4bnZhp2KMpFve1B5s2Nk-bCNJLDWWD-AOfYV9Hk0_yHu2xL0loue20IbwLYUUZjcrghPuz2SJUq3WUPRqJ_nLZEYXU083yQo3c-3qEEY310-9Pq08EqjmAcupyDImXew83DbRWVJQKMWVMUaaRKoo0R3NdJComEktLNfMBLHl0oUyY1byI2jM5jN7DCQ0LHTCwylsRzinEq6ty1wiE5dJLkQLeA1KqisBcfSxmKb1pNhrWkKZIpRpCWUL6DpqUQpo_HG9rPFOvyVC6mv8r5En_468hK3-0-Ahfbgd3p_CNp4p5_XOoJEv3-y55x25uqjy6hOrztXm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+varying+coefficient+models+using+reduced-rank+thin-plate+splines&rft.jtitle=Spatial+statistics&rft.au=Fan%2C+Yu-Ting&rft.au=Huang%2C+Hsin-Cheng&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=2211-6753&rft.eissn=2211-6753&rft.volume=51&rft_id=info:doi/10.1016%2Fj.spasta.2022.100654&rft.externalDocID=S2211675322000355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-6753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-6753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-6753&client=summon