Spatially varying coefficient models using reduced-rank thin-plate splines
Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This paper proposes a new approach for SVC modeling by representing regression coefficients using a class of multiresolution spline basis functions...
Saved in:
Published in | Spatial statistics Vol. 51; p. 100654 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-6753 2211-6753 |
DOI | 10.1016/j.spasta.2022.100654 |
Cover
Abstract | Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This paper proposes a new approach for SVC modeling by representing regression coefficients using a class of multiresolution spline basis functions in a generalized-linear model framework. The proposed method provides flexible and parsimonious representations for regression coefficients. It enables commonly used (generalized) linear-regression packages for estimation, testing, and constructing confidence levels. We develop a fast estimation algorithm that simultaneously performs variable selection, detects spatial heterogeneity for each variable, and determines its complexity. We provide numerical examples and an application to a real estate dataset to demonstrate the proposed method’s effectiveness. |
---|---|
AbstractList | Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This paper proposes a new approach for SVC modeling by representing regression coefficients using a class of multiresolution spline basis functions in a generalized-linear model framework. The proposed method provides flexible and parsimonious representations for regression coefficients. It enables commonly used (generalized) linear-regression packages for estimation, testing, and constructing confidence levels. We develop a fast estimation algorithm that simultaneously performs variable selection, detects spatial heterogeneity for each variable, and determines its complexity. We provide numerical examples and an application to a real estate dataset to demonstrate the proposed method’s effectiveness. |
ArticleNumber | 100654 |
Author | Fan, Yu-Ting Huang, Hsin-Cheng |
Author_xml | – sequence: 1 givenname: Yu-Ting surname: Fan fullname: Fan, Yu-Ting organization: Institute of Statistics, National Yang Ming Chiao Tung University, Taiwan, ROC – sequence: 2 givenname: Hsin-Cheng orcidid: 0000-0002-5613-349X surname: Huang fullname: Huang, Hsin-Cheng email: hchuang@stat.sinica.edu.tw organization: Institute of Statistical Science, Academia Sinica, Taiwan, ROC |
BookMark | eNqFkM1KAzEQgINUsNa-gYd9ga1J9idbD4IUrUrBg3oO2WSiqWl2SdJC394s60E86FxmmOEbZr5zNHGdA4QuCV4QTOqr7SL0IkSxoJjS1MJ1VZ6gKaWE5DWrismP-gzNQ9jiFKzERUWn6OmlF9EIa4_ZQfijce-Z7EBrIw24mO06BTZk-zAMPKi9BJV74T6z-GFc3lsRIQu9NQ7CBTrVwgaYf-cZeru_e1095Jvn9ePqdpPLAtOYl0JQpmvd1ktopGgwbirSFq1SiqmGtVUjl5JK3LQ1ZbKEQlKFayiYJkxQYMUMleNe6bsQPGjee7NLx3OC-aCEb_mohA9K-KgkYde_MGli-r1z0Qtj_4NvRjjZgIMBz8MgKNkwHmTkqjN_L_gCbeuCng |
CitedBy_id | crossref_primary_10_1111_gean_12393 crossref_primary_10_1080_13658816_2023_2270285 crossref_primary_10_3390_ijgi13120459 crossref_primary_10_1080_01621459_2025_2470481 |
Cites_doi | 10.1175/MWR2904.1 10.1111/j.1467-9868.2005.00532.x 10.1080/10485252.2020.1759596 10.1080/00401706.2017.1345701 10.1016/j.spasta.2016.12.001 10.1111/1467-9868.00374 10.1016/j.spasta.2019.02.003 10.1080/00401706.2017.1317290 10.1016/j.spasta.2020.100470 10.1111/biom.13077 10.1007/s10109-006-0028-7 10.1214/13-AOS1201 10.1214/aos/1176344136 10.1002/env.2485 10.1002/env.599 10.1198/016214503000170 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spasta.2022.100654 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2211-6753 |
ExternalDocumentID | 10_1016_j_spasta_2022_100654 S2211675322000355 |
GroupedDBID | --M .~1 0R~ 1~. 1~5 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AARIN AAXUO ABAOU ABFYP ABLST ABMAC ABMMH ABQEM ABQYD ABXDB ABYKQ ACAZW ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ARUGR ATOGT AVARZ AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IMUCA KCYFY KOM M41 MHUIS MO0 O-L O9- OAUVE P-8 P-9 PC. PRBVW Q38 RIG ROL SDF SPC SPCBC SSB SSD SSE SSJ SSO SSW SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c302t-4aa27f6fb69e8ca800851b3bddd7d87b58c9c2c08b627c4e3c2d06e37f17a2e73 |
IEDL.DBID | AIKHN |
ISSN | 2211-6753 |
IngestDate | Thu Apr 24 23:10:51 EDT 2025 Tue Jul 01 00:57:34 EDT 2025 Fri Feb 23 02:40:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiresolution spline basis function Generalized linear model Model selection Log-normal regression Cross-validation Geographically weighted regression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-4aa27f6fb69e8ca800851b3bddd7d87b58c9c2c08b627c4e3c2d06e37f17a2e73 |
ORCID | 0000-0002-5613-349X |
ParticipantIDs | crossref_primary_10_1016_j_spasta_2022_100654 crossref_citationtrail_10_1016_j_spasta_2022_100654 elsevier_sciencedirect_doi_10_1016_j_spasta_2022_100654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Spatial statistics |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kim, Lee (b10) 2017; 59 Kim, Kwon, Choi (b9) 2012; 13 Gneiting, Raftery, Westveld, Goldman (b8) 2005; 133 Assunção (b2) 2003; 14 Sirmans, Macpherson, Zietz (b19) 2005; 13 Akaike, H.A., 1973. Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory (Edited By B.N. Petrov and F. Csaki). pp. 267–281. Murakami, Griffith (b15) 2019; 30 Laslett (b11) 1994; 89 Fotheringham, Brunsdon, Charlton (b5) 2002 Bitter, Mulligan, Dall’erba (b3) 2007; 9 Schwarz (b17) 1978; 6 Gelfand, Kim, Sirmans, Banerjee (b7) 2003; 98 Yuan, Lin (b24) 2006; 68 Murakami, Yoshida, Seya, Griffith, Yamagata (b16) 2017; 19 Mu, Wang, Wang (b13) 2018; 29 Tzeng, Huang (b21) 2018; 60 Dambon, Sigrist, Furrer (b4) 2021; 41 Shao (b18) 1997; 7 Wood (b23) 2003; 65 Mu, Wang, Wang (b14) 2020; 32 McCullagh, Nelder (b12) 1989 Fotheringham, Yang, Kang (b6) 2017; 107 Sun, Yan, Zhang, Lu (b20) 2014; 42 Wang, Sun (b22) 2019; 75 Murakami (10.1016/j.spasta.2022.100654_b16) 2017; 19 Murakami (10.1016/j.spasta.2022.100654_b15) 2019; 30 Wood (10.1016/j.spasta.2022.100654_b23) 2003; 65 Wang (10.1016/j.spasta.2022.100654_b22) 2019; 75 Yuan (10.1016/j.spasta.2022.100654_b24) 2006; 68 Mu (10.1016/j.spasta.2022.100654_b13) 2018; 29 Fotheringham (10.1016/j.spasta.2022.100654_b5) 2002 Sirmans (10.1016/j.spasta.2022.100654_b19) 2005; 13 Fotheringham (10.1016/j.spasta.2022.100654_b6) 2017; 107 10.1016/j.spasta.2022.100654_b1 Gelfand (10.1016/j.spasta.2022.100654_b7) 2003; 98 Gneiting (10.1016/j.spasta.2022.100654_b8) 2005; 133 Kim (10.1016/j.spasta.2022.100654_b10) 2017; 59 Mu (10.1016/j.spasta.2022.100654_b14) 2020; 32 Schwarz (10.1016/j.spasta.2022.100654_b17) 1978; 6 Assunção (10.1016/j.spasta.2022.100654_b2) 2003; 14 Sun (10.1016/j.spasta.2022.100654_b20) 2014; 42 Dambon (10.1016/j.spasta.2022.100654_b4) 2021; 41 Tzeng (10.1016/j.spasta.2022.100654_b21) 2018; 60 Kim (10.1016/j.spasta.2022.100654_b9) 2012; 13 Bitter (10.1016/j.spasta.2022.100654_b3) 2007; 9 McCullagh (10.1016/j.spasta.2022.100654_b12) 1989 Shao (10.1016/j.spasta.2022.100654_b18) 1997; 7 Laslett (10.1016/j.spasta.2022.100654_b11) 1994; 89 |
References_xml | – volume: 13 year: 2012 ident: b9 article-title: Consistent model selection criteria on high dimensions publication-title: J. Mach. Learn. Res. – year: 1989 ident: b12 article-title: Generalized Linear Models – year: 2002 ident: b5 article-title: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships – volume: 60 year: 2018 ident: b21 article-title: Resolution adaptive fixed rank kriging publication-title: Technometrics – volume: 32 year: 2020 ident: b14 article-title: Spatial autoregressive partially linear varying coefficient models publication-title: J. Nonparametr. Stat. – volume: 107 year: 2017 ident: b6 article-title: Multiscale geographically weighted regression (MGWR) publication-title: Ann. Amer. Assoc. Geogr. – volume: 7 start-page: 221 year: 1997 end-page: 264 ident: b18 article-title: An asymptotic theory for linear model selection publication-title: Statist. Sinica – volume: 19 year: 2017 ident: b16 article-title: A moran coefficient-based mixed effects approach to investigate spatially varying relationships publication-title: Spat. Statist. – volume: 41 year: 2021 ident: b4 article-title: Maximum likelihood estimation of spatially varying coefficient models for large data with an application to real estate price prediction publication-title: Spat. Statist. – volume: 98 year: 2003 ident: b7 article-title: Spatial modeling with spatially varying coefficient processes publication-title: J. Amer. Statist. Assoc. – volume: 75 year: 2019 ident: b22 article-title: Penalized local polynomial regression for spatial data publication-title: Biometrics – volume: 29 year: 2018 ident: b13 article-title: Estimation and inference in spatially varying coefficient models publication-title: Environmetrics – volume: 42 year: 2014 ident: b20 article-title: A semiparametric spatial dynamic model publication-title: Ann. Statist. – volume: 133 year: 2005 ident: b8 article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation publication-title: Mon. Weather Rev. – volume: 89 year: 1994 ident: b11 article-title: Kriging and splines: An empirical comparison of their predictive performance in some applications publication-title: J. Amer. Statist. Assoc. – volume: 14 year: 2003 ident: b2 article-title: Space varying coefficient models for small area data publication-title: Environmetrics – volume: 59 year: 2017 ident: b10 article-title: Hierarchical spatially varying coefficient process model publication-title: Technometrics – volume: 30 year: 2019 ident: b15 article-title: Spatially varying coefficient modeling for large datasets: Eliminating n from spatial regressions publication-title: Spat. Statist. – volume: 9 year: 2007 ident: b3 article-title: Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method publication-title: J. Geogr. Syst. – reference: Akaike, H.A., 1973. Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory (Edited By B.N. Petrov and F. Csaki). pp. 267–281. – volume: 6 year: 1978 ident: b17 article-title: Estimating the dimension of a model publication-title: Ann. Statist. – volume: 13 year: 2005 ident: b19 article-title: The composition of hedonic pricing models publication-title: J. Real Estate Lit. – volume: 65 start-page: 95 year: 2003 end-page: 114 ident: b23 article-title: Thin plate regression splines publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: b24 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 133 year: 2005 ident: 10.1016/j.spasta.2022.100654_b8 article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation publication-title: Mon. Weather Rev. doi: 10.1175/MWR2904.1 – volume: 89 year: 1994 ident: 10.1016/j.spasta.2022.100654_b11 article-title: Kriging and splines: An empirical comparison of their predictive performance in some applications publication-title: J. Amer. Statist. Assoc. – volume: 68 start-page: 49 year: 2006 ident: 10.1016/j.spasta.2022.100654_b24 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00532.x – volume: 32 year: 2020 ident: 10.1016/j.spasta.2022.100654_b14 article-title: Spatial autoregressive partially linear varying coefficient models publication-title: J. Nonparametr. Stat. doi: 10.1080/10485252.2020.1759596 – volume: 60 year: 2018 ident: 10.1016/j.spasta.2022.100654_b21 article-title: Resolution adaptive fixed rank kriging publication-title: Technometrics doi: 10.1080/00401706.2017.1345701 – volume: 19 year: 2017 ident: 10.1016/j.spasta.2022.100654_b16 article-title: A moran coefficient-based mixed effects approach to investigate spatially varying relationships publication-title: Spat. Statist. doi: 10.1016/j.spasta.2016.12.001 – volume: 65 start-page: 95 year: 2003 ident: 10.1016/j.spasta.2022.100654_b23 article-title: Thin plate regression splines publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00374 – ident: 10.1016/j.spasta.2022.100654_b1 – volume: 30 year: 2019 ident: 10.1016/j.spasta.2022.100654_b15 article-title: Spatially varying coefficient modeling for large datasets: Eliminating n from spatial regressions publication-title: Spat. Statist. doi: 10.1016/j.spasta.2019.02.003 – volume: 59 year: 2017 ident: 10.1016/j.spasta.2022.100654_b10 article-title: Hierarchical spatially varying coefficient process model publication-title: Technometrics doi: 10.1080/00401706.2017.1317290 – volume: 41 year: 2021 ident: 10.1016/j.spasta.2022.100654_b4 article-title: Maximum likelihood estimation of spatially varying coefficient models for large data with an application to real estate price prediction publication-title: Spat. Statist. doi: 10.1016/j.spasta.2020.100470 – year: 2002 ident: 10.1016/j.spasta.2022.100654_b5 – volume: 13 year: 2012 ident: 10.1016/j.spasta.2022.100654_b9 article-title: Consistent model selection criteria on high dimensions publication-title: J. Mach. Learn. Res. – year: 1989 ident: 10.1016/j.spasta.2022.100654_b12 – volume: 75 year: 2019 ident: 10.1016/j.spasta.2022.100654_b22 article-title: Penalized local polynomial regression for spatial data publication-title: Biometrics doi: 10.1111/biom.13077 – volume: 107 year: 2017 ident: 10.1016/j.spasta.2022.100654_b6 article-title: Multiscale geographically weighted regression (MGWR) publication-title: Ann. Amer. Assoc. Geogr. – volume: 9 year: 2007 ident: 10.1016/j.spasta.2022.100654_b3 article-title: Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method publication-title: J. Geogr. Syst. doi: 10.1007/s10109-006-0028-7 – volume: 42 year: 2014 ident: 10.1016/j.spasta.2022.100654_b20 article-title: A semiparametric spatial dynamic model publication-title: Ann. Statist. doi: 10.1214/13-AOS1201 – volume: 7 start-page: 221 year: 1997 ident: 10.1016/j.spasta.2022.100654_b18 article-title: An asymptotic theory for linear model selection publication-title: Statist. Sinica – volume: 13 year: 2005 ident: 10.1016/j.spasta.2022.100654_b19 article-title: The composition of hedonic pricing models publication-title: J. Real Estate Lit. – volume: 6 year: 1978 ident: 10.1016/j.spasta.2022.100654_b17 article-title: Estimating the dimension of a model publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume: 29 year: 2018 ident: 10.1016/j.spasta.2022.100654_b13 article-title: Estimation and inference in spatially varying coefficient models publication-title: Environmetrics doi: 10.1002/env.2485 – volume: 14 year: 2003 ident: 10.1016/j.spasta.2022.100654_b2 article-title: Space varying coefficient models for small area data publication-title: Environmetrics doi: 10.1002/env.599 – volume: 98 year: 2003 ident: 10.1016/j.spasta.2022.100654_b7 article-title: Spatial modeling with spatially varying coefficient processes publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214503000170 |
SSID | ssj0000740352 |
Score | 2.2553575 |
Snippet | Spatially varying coefficient (SVC) regression models are concerned about regression for spatial data, where regression coefficients may vary in space. This... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100654 |
SubjectTerms | Cross-validation Generalized linear model Geographically weighted regression Log-normal regression Model selection Multiresolution spline basis function |
Title | Spatially varying coefficient models using reduced-rank thin-plate splines |
URI | https://dx.doi.org/10.1016/j.spasta.2022.100654 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uPQiPrE-yh68rk12N9ntsRRLrdiLFnoL2ZdWSlvaKHjxt7ubR1EQBY8JGQgfk5kvycz3AVyFlloq4x7WVDLM4jTAMtQchxHXWjp-zHK7t_tJPJqy8Sya1WBQ7cL4scqy9hc1Pa_W5ZluiWZ3PZ93Hwjx_xAil5H5_7CoDk3iur1oQLN_ezea7D61uC7pVT-9zZwLwT6mWqLLJ73co-uYmHtXJMQPDcQR-7lJfWk8w33YKxkj6hc3dQA1szyElieJhcbyEYy9r7DLo8U7eks3fm8JqZXJtSFcS0G52c0W-Qn3J7TxUq1GY-_VjrLn-RKvF45uoq3fzDXbY5gObx4HI1x6JGBFA5JhlqaE29g6uI1QqcgplKRSa8214DISqqeICoSMCVfMUEV0EBvKbchTYjg9gcZytTSngEJNQsscnMz0mLVSUGVsagUXNuWUsTbQCpRElQLi3sdikVSTYi9JAWXioUwKKNuAd1HrQkDjj-t5hXfyLRESV-N_jTz7d-Q5tPxRMaN3AY1s82ouHdfIZAfq1x9hp8yoT6iT1AA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PehFfGJ97sHr0mR3k02PpSj10V600FvIvrRS2tJGwX_vTh5FQRS8JhkIH5OZL8nM9wFchY47ruIONVwJKuIsoCo0koaRNEZ5fiwKu7fBMO6PxN04Gm9Ar96FwbHKqvaXNb2o1tWRdoVmezGZtB8Zw38Ikc_I4n9YtAlNgabWDWh2b-_7w_WnFt8lUfUTbeZ8CMWYeomumPTyj65nYv5dkTEcGogj8XOT-tJ4bnZhp2KMpFve1B5s2Nk-bCNJLDWWD-AOfYV9Hk0_yHu2xL0loue20IbwLYUUZjcrghPuz2SJUq3WUPRqJ_nLZEYXU083yQo3c-3qEEY310-9Pq08EqjmAcupyDImXew83DbRWVJQKMWVMUaaRKoo0R3NdJComEktLNfMBLHl0oUyY1byI2jM5jN7DCQ0LHTCwylsRzinEq6ty1wiE5dJLkQLeA1KqisBcfSxmKb1pNhrWkKZIpRpCWUL6DpqUQpo_HG9rPFOvyVC6mv8r5En_468hK3-0-Ahfbgd3p_CNp4p5_XOoJEv3-y55x25uqjy6hOrztXm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+varying+coefficient+models+using+reduced-rank+thin-plate+splines&rft.jtitle=Spatial+statistics&rft.au=Fan%2C+Yu-Ting&rft.au=Huang%2C+Hsin-Cheng&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=2211-6753&rft.eissn=2211-6753&rft.volume=51&rft_id=info:doi/10.1016%2Fj.spasta.2022.100654&rft.externalDocID=S2211675322000355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-6753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-6753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-6753&client=summon |