Research on Optimization Algorithm of auto-encoding neural network applied to rolling bearing fault diagnosis

Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality disasters may arise. In view of the long running time of deep learning in the case of large samples, the gradient descent method and its variant al...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1871; no. 1; p. 12078
Main Authors Shi, Shi, Tong, Qingbin
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.04.2021
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
1742-6596
DOI10.1088/1742-6596/1871/1/012078

Cover

Abstract Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality disasters may arise. In view of the long running time of deep learning in the case of large samples, the gradient descent method and its variant algorithms are introduced for the loss function optimization problem, and the approximate optimal solution is solved in an iterative manner. The gradient descent method is used to minimize the loss function, and the research is carried out on the basis of MATLAB program implementation. The gradient descent method and its variant algorithm are applied to the rolling bearing fault diagnosis model for analysis. By comparing the algorithm’s convergence speed, loss value and accuracy of the rolling bearing fault diagnosis model, a relatively good optimization algorithm suitable for the rolling bearing fault diagnosis model is determined.
AbstractList Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality disasters may arise. In view of the long running time of deep learning in the case of large samples, the gradient descent method and its variant algorithms are introduced for the loss function optimization problem, and the approximate optimal solution is solved in an iterative manner. The gradient descent method is used to minimize the loss function, and the research is carried out on the basis of MATLAB program implementation. The gradient descent method and its variant algorithm are applied to the rolling bearing fault diagnosis model for analysis. By comparing the algorithm’s convergence speed, loss value and accuracy of the rolling bearing fault diagnosis model, a relatively good optimization algorithm suitable for the rolling bearing fault diagnosis model is determined.
Author Tong, Qingbin
Shi, Shi
Author_xml – sequence: 1
  givenname: Shi
  surname: Shi
  fullname: Shi, Shi
– sequence: 2
  givenname: Qingbin
  surname: Tong
  fullname: Tong, Qingbin
BookMark eNqNkM1OAyEUhYnRRFt9Bklcj4WZDuDChWn8S5qYGF2TWwZaKoURmJj69M5Y04WrsjkQzrn35BuhYx-8RuiSkmtKhJhQPi0LVt-wCRWcTuiE0JJwcYTO9j_H-7sQp2iU0pqQqj_8DG1eddIQ1QoHj1_abDf2G7LtH3duGaLNqw0OBkOXQ6G9Co31S-x1F8H1kr9C_MDQts7qBueAY3BucCz6mYMa6FzGjYWlD8mmc3RiwCV98adj9P5w_zZ7KuYvj8-zu3mhKlKKQjHRmLrpSzJgSrMaKrpoYAolNVwQI7iCaqobulAaSG2AcSFYTUylOXBdVWMkdnM738L2C5yTbbQbiFtJiRywyQGIHODIAZukcoetj17tom0Mn51OWa5DF33fVpZ1SRklNb_pXbc7l4ohpaiNVDb_cssRrDtgC_-XP7TfD4bdlJQ
CitedBy_id crossref_primary_10_1155_2022_5322677
crossref_primary_10_1155_2022_6213718
Cites_doi 10.1162/neco.2006.18.7.1527
10.1007/s10107-012-0629-5
10.1007/s002170050457
10.1109/TSC.2015.2497705
10.3901/JME.2018.05.094
ContentType Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1088/1742-6596/1871/1/012078
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10.1088/1742-6596/1871/1/012078
10_1088_1742_6596_1871_1_012078
Genre Conference Proceeding
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
AAYXX
ABHWH
ACAFW
ACHIP
AEFHF
AEINN
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
PUEGO
RIN
RNS
RO9
ROL
SY9
T37
TR2
W28
XSB
~02
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
EJD
FEDTE
H13
HVGLF
JCGBZ
M48
Q02
S3P
UNPAY
ID FETCH-LOGICAL-c3028-c68df5d0036a6ce65a31bda4a21f780f87ca34ed1bcea05fa6788650f3e7a7e33
IEDL.DBID BENPR
ISSN 1742-6588
1742-6596
IngestDate Sun Sep 07 10:52:51 EDT 2025
Fri Jul 25 04:02:45 EDT 2025
Wed Oct 01 01:15:15 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3028-c68df5d0036a6ce65a31bda4a21f780f87ca34ed1bcea05fa6788650f3e7a7e33
Notes ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
OpenAccessLink https://www.proquest.com/docview/2521610579?pq-origsite=%requestingapplication%&accountid=15518
PQID 2521610579
PQPubID 4998668
ParticipantIDs unpaywall_primary_10_1088_1742_6596_1871_1_012078
proquest_journals_2521610579
crossref_citationtrail_10_1088_1742_6596_1871_1_012078
crossref_primary_10_1088_1742_6596_1871_1_012078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 20210401
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Zhang (JPCS_1871_1_012078bib2) 2016; 9
Ashia (JPCS_1871_1_012078bib8) 2017
Sebastian (JPCS_1871_1_012078bib7) 2017
Rumelhart (JPCS_1871_1_012078bib3) 1988; 323
Nesterov (JPCS_1871_1_012078bib12) 2013; 140
Lei (JPCS_1871_1_012078bib1) 2018; 54
Hinton (JPCS_1871_1_012078bib5) 2006; 18
Rastogi (JPCS_1871_1_012078bib10) 1999; 209
Larochelle (JPCS_1871_1_012078bib6) 2009; 10
Zhou (JPCS_1871_1_012078bib4) 2016
Erhan (JPCS_1871_1_012078bib9) 2010; 11
JPCS_1871_1_012078bib11
References_xml – year: 2016
  ident: JPCS_1871_1_012078bib4
– volume: 18
  start-page: 1527
  year: 2006
  ident: JPCS_1871_1_012078bib5
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 140
  start-page: 125
  year: 2013
  ident: JPCS_1871_1_012078bib12
  article-title: Gradient methods for minimizing composite functions
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-012-0629-5
– year: 2017
  ident: JPCS_1871_1_012078bib7
  article-title: An overview of gradient descent optimization algorithms
– volume: 209
  start-page: 57
  year: 1999
  ident: JPCS_1871_1_012078bib10
  article-title: Optimisation of enzymatic liquefaction of mango pulp by response surface methodology
  publication-title: European Food Research &. Technology
  doi: 10.1007/s002170050457
– volume: 323
  start-page: 399
  year: 1988
  ident: JPCS_1871_1_012078bib3
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 11
  start-page: 625
  year: 2010
  ident: JPCS_1871_1_012078bib9
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: Journal of Machine Learning Research
– volume: 9
  start-page: 161
  year: 2016
  ident: JPCS_1871_1_012078bib2
  article-title: Deep computation model for unsupervised feature learning on big data
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2015.2497705
– volume: 54
  start-page: 94
  year: 2018
  ident: JPCS_1871_1_012078bib1
  article-title: Opportunities and challenges of machinery intelligent fault diagnosis in big data era
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/JME.2018.05.094
– volume: 10
  start-page: 1
  year: 2009
  ident: JPCS_1871_1_012078bib6
  article-title: Exploring strategies for training deep neural networks
  publication-title: Journal of Machine Learning Research
– year: 2017
  ident: JPCS_1871_1_012078bib8
– ident: JPCS_1871_1_012078bib11
SSID ssj0033337
Score 2.2716508
Snippet Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 12078
SubjectTerms Algorithms
Batch processing
Fault diagnosis
Iterative methods
Machine learning
Neural networks
Optimization
Optimization algorithms
Physics
Roller bearings
Run time (computers)
Signal processing
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBceCMWCvKBa7p2nDjOcYWoKiRKD6xUTpafUJFNqt1ECH49nnWyUCTE4xQpyYySsZP5En_zDcDLkrqCeWMz6anJipqGzNSaZ9rlVe4Ej8ewGvntmThdFW8uyosDWEy1MNfW7-PHWQTMeSbKWixYhPYLtsBiz0regEPcSWdwuDo7X35IZY945q7T5N5qYnT93tP1fPQDZN4a2iv99Ytump_yzcldOJ-uNNFMPh8PvTm2334RcfyHW7kHd0bsSZZpstyHA98-gJs7DqjdPoT1xMIjXUvexVfJeqzRJMvmY7e57D-tSReIHvouQ_lLzHoE9TCjzzaxyYlOoJb0HdkkuW9iok_cBj00PXGJ2ne5fQSrk9fvX51mYzeGzHL8BWeFdKF0KGCjhfWi1JwZpwuds1BJGmRlNS-8Y8Z6TcugYxqUEf8F7itdec4fw6ztWv8EiJN1ECiL7UUodJEbHigzvvSsorU2cg5iGhNlR6ly7JjRqN2SuZQKY6kwlgpjqZhKsZwD3RteJbWOP5scTYOuxsd3q_IIagR2QK7nwPYT4W9dPv0Pm2dwO0e2zI4TdASzfjP45xHu9ObFOMW_A-mu75U
  priority: 102
  providerName: Unpaywall
Title Research on Optimization Algorithm of auto-encoding neural network applied to rolling bearing fault diagnosis
URI https://www.proquest.com/docview/2521610579
https://doi.org/10.1088/1742-6596/1871/1/012078
UnpaywallVersion publishedVersion
Volume 1871
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: IOP
  dateStart: 20040601
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033337
  issn: 1742-6596
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbJhtJeSp900yTo0KtYy7Jl-VDCNmQbCt2G0oX0JEavtuC1t1kvIf--Gj-SnNr6IrDQgEfyzEj65htC3uWJy7g3limfGJaVSWCmBMHApUXqpIh9mI38eSkvVtmnq_xqjyzHXBiEVY42sTPUrrF4Rj5Lo5-RWJS2PN38Zlg1Cm9XxxIaMJRWcO87irF9cpAiM9aEHHw4X15-HW2ziE_Rp0imLPpeNSK-4jZweFfKGY-biBmfYVopVl976K_ug9DHu3oDtzdQVQ_80eIZeToEknTez_xzsufrF-RRB-i025dkPULqaFPTL9EurIeESzqvfsTvan-uaRMo7NqGIZclujCK5JZRZt1Dwyn0ESptG3rdc3dTE2ViG2BXtdT1OL1f21dktTj_dnbBhtIKzAo8T7NSuZA7ZKMBab3MQXDjIIOUh0IlQRUWROYdN9ZDkgeIPk3FYC4IX0DhhXhNJnVT-zeEOlUGiRzXXoYMstSIkHDjc8-LpASjpkSOCtR24B3H8heV7u6_ldKoeY2a16h5zXWv-SlJ7gZueuqNfw85GmdID__iVt-vnCnhd7P2vyIP_y7yLXmSIsqlw_IckUl7vfPHMUxpzQnZV4uPJ8MKjO1qeTn__gfUruSx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQqKKXir7ULbT1oT1aGyeO4xwQojy0FNhWFUjcXD9ppWyysFkh_lx_Wz2JA5zaXsglUqLMYTyZh_3NNwh9zBPLqNOGCJdowsrEE12qjCibFqnlWXgH3cinUz45Z18u8osV9HvohQFY5eATO0dtGwN75OM0xBkOQ2nLnfkVgalRcLo6jNBQcbSC3e4oxmJjx7G7vQkl3GL7aD-s96c0PTw425uQOGWAmAy2lgwX1ucWiFkUN47nKqPaKqZS6guReFEYlTFnqTZOJblXwb2LkNf4zBWqcLAhGkLAGstYGYq_tc8H02_fh1iQhavoWzJTEmK9GBBmoeyMz0o-pqFoGdMxtLHCtLeH8fE-6V1f1nN1e6Oq6kH8O9xAz2Liind7S3uOVlz9Aj3pAKRm8RLNBggfbmr8NfihWWzwxLvVZdBj-3OGG4_Vsm0IcGdCyMRAphlk1j0UHas-I8Ztg697rnCsg0y4e7WsWmx7XOCvxSt0_ihKfo1W66Z2bxC2ovQcOLUd90yxVGc-odrljhZJqbQYIT4oUJrIcw7jNirZnbcLIUHzEjQvQfOSyl7zI5TcfTjvqT7-_cnWsEIy_vsLeW-pI0TvVu1_Rb79u8gPaH1ydnoiT46mx5voaQoImw5HtIVW2-ulexdSpFa_j3aI0Y_HNv0_-Ocf1A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBceCMWCvKBa7p2nDjOcYWoKiRKD6xUTpafUJFNqt1ECH49nnWyUCTE4xQpyYySsZP5En_zDcDLkrqCeWMz6anJipqGzNSaZ9rlVe4Ej8ewGvntmThdFW8uyosDWEy1MNfW7-PHWQTMeSbKWixYhPYLtsBiz0regEPcSWdwuDo7X35IZY945q7T5N5qYnT93tP1fPQDZN4a2iv99Ytump_yzcldOJ-uNNFMPh8PvTm2334RcfyHW7kHd0bsSZZpstyHA98-gJs7DqjdPoT1xMIjXUvexVfJeqzRJMvmY7e57D-tSReIHvouQ_lLzHoE9TCjzzaxyYlOoJb0HdkkuW9iok_cBj00PXGJ2ne5fQSrk9fvX51mYzeGzHL8BWeFdKF0KGCjhfWi1JwZpwuds1BJGmRlNS-8Y8Z6TcugYxqUEf8F7itdec4fw6ztWv8EiJN1ECiL7UUodJEbHigzvvSsorU2cg5iGhNlR6ly7JjRqN2SuZQKY6kwlgpjqZhKsZwD3RteJbWOP5scTYOuxsd3q_IIagR2QK7nwPYT4W9dPv0Pm2dwO0e2zI4TdASzfjP45xHu9ObFOMW_A-mu75U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Optimization+Algorithm+of+auto-encoding+neural+network+applied+to+rolling+bearing+fault+diagnosis&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Shi%2C+Shi&rft.au=Tong%2C+Qingbin&rft.date=2021-04-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1871&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1871%2F1%2F012078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon