Research on Optimization Algorithm of auto-encoding neural network applied to rolling bearing fault diagnosis
Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality disasters may arise. In view of the long running time of deep learning in the case of large samples, the gradient descent method and its variant al...
Saved in:
| Published in | Journal of physics. Conference series Vol. 1871; no. 1; p. 12078 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
01.04.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1742-6588 1742-6596 1742-6596 |
| DOI | 10.1088/1742-6596/1871/1/012078 |
Cover
| Abstract | Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality disasters may arise. In view of the long running time of deep learning in the case of large samples, the gradient descent method and its variant algorithms are introduced for the loss function optimization problem, and the approximate optimal solution is solved in an iterative manner. The gradient descent method is used to minimize the loss function, and the research is carried out on the basis of MATLAB program implementation. The gradient descent method and its variant algorithm are applied to the rolling bearing fault diagnosis model for analysis. By comparing the algorithm’s convergence speed, loss value and accuracy of the rolling bearing fault diagnosis model, a relatively good optimization algorithm suitable for the rolling bearing fault diagnosis model is determined. |
|---|---|
| AbstractList | Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality disasters may arise. In view of the long running time of deep learning in the case of large samples, the gradient descent method and its variant algorithms are introduced for the loss function optimization problem, and the approximate optimal solution is solved in an iterative manner. The gradient descent method is used to minimize the loss function, and the research is carried out on the basis of MATLAB program implementation. The gradient descent method and its variant algorithm are applied to the rolling bearing fault diagnosis model for analysis. By comparing the algorithm’s convergence speed, loss value and accuracy of the rolling bearing fault diagnosis model, a relatively good optimization algorithm suitable for the rolling bearing fault diagnosis model is determined. |
| Author | Tong, Qingbin Shi, Shi |
| Author_xml | – sequence: 1 givenname: Shi surname: Shi fullname: Shi, Shi – sequence: 2 givenname: Qingbin surname: Tong fullname: Tong, Qingbin |
| BookMark | eNqNkM1OAyEUhYnRRFt9Bklcj4WZDuDChWn8S5qYGF2TWwZaKoURmJj69M5Y04WrsjkQzrn35BuhYx-8RuiSkmtKhJhQPi0LVt-wCRWcTuiE0JJwcYTO9j_H-7sQp2iU0pqQqj_8DG1eddIQ1QoHj1_abDf2G7LtH3duGaLNqw0OBkOXQ6G9Co31S-x1F8H1kr9C_MDQts7qBueAY3BucCz6mYMa6FzGjYWlD8mmc3RiwCV98adj9P5w_zZ7KuYvj8-zu3mhKlKKQjHRmLrpSzJgSrMaKrpoYAolNVwQI7iCaqobulAaSG2AcSFYTUylOXBdVWMkdnM738L2C5yTbbQbiFtJiRywyQGIHODIAZukcoetj17tom0Mn51OWa5DF33fVpZ1SRklNb_pXbc7l4ohpaiNVDb_cssRrDtgC_-XP7TfD4bdlJQ |
| CitedBy_id | crossref_primary_10_1155_2022_5322677 crossref_primary_10_1155_2022_6213718 |
| Cites_doi | 10.1162/neco.2006.18.7.1527 10.1007/s10107-012-0629-5 10.1007/s002170050457 10.1109/TSC.2015.2497705 10.3901/JME.2018.05.094 |
| ContentType | Journal Article |
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.1088/1742-6596/1871/1/012078 |
| DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1742-6596 |
| ExternalDocumentID | 10.1088/1742-6596/1871/1/012078 10_1088_1742_6596_1871_1_012078 |
| Genre | Conference Proceeding |
| GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP AAYXX ABHWH ACAFW ACHIP AEFHF AEINN AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CITATION CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KQ8 LAP N5L N9A O3W OK1 OVT P2P PHGZM PHGZT PIMPY PJBAE PQGLB PUEGO RIN RNS RO9 ROL SY9 T37 TR2 W28 XSB ~02 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQQKQ PQUKI PRINS 02O 1WK AALHV ACARI ADTOC AERVB AGQPQ AHSEE ARNYC BBWZM C1A EJD FEDTE H13 HVGLF JCGBZ M48 Q02 S3P UNPAY |
| ID | FETCH-LOGICAL-c3028-c68df5d0036a6ce65a31bda4a21f780f87ca34ed1bcea05fa6788650f3e7a7e33 |
| IEDL.DBID | BENPR |
| ISSN | 1742-6588 1742-6596 |
| IngestDate | Sun Sep 07 10:52:51 EDT 2025 Fri Jul 25 04:02:45 EDT 2025 Wed Oct 01 01:15:15 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3028-c68df5d0036a6ce65a31bda4a21f780f87ca34ed1bcea05fa6788650f3e7a7e33 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Scholarly Journals-1 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2521610579?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2521610579 |
| PQPubID | 4998668 |
| ParticipantIDs | unpaywall_primary_10_1088_1742_6596_1871_1_012078 proquest_journals_2521610579 crossref_citationtrail_10_1088_1742_6596_1871_1_012078 crossref_primary_10_1088_1742_6596_1871_1_012078 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 20210401 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of physics. Conference series |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Zhang (JPCS_1871_1_012078bib2) 2016; 9 Ashia (JPCS_1871_1_012078bib8) 2017 Sebastian (JPCS_1871_1_012078bib7) 2017 Rumelhart (JPCS_1871_1_012078bib3) 1988; 323 Nesterov (JPCS_1871_1_012078bib12) 2013; 140 Lei (JPCS_1871_1_012078bib1) 2018; 54 Hinton (JPCS_1871_1_012078bib5) 2006; 18 Rastogi (JPCS_1871_1_012078bib10) 1999; 209 Larochelle (JPCS_1871_1_012078bib6) 2009; 10 Zhou (JPCS_1871_1_012078bib4) 2016 Erhan (JPCS_1871_1_012078bib9) 2010; 11 JPCS_1871_1_012078bib11 |
| References_xml | – year: 2016 ident: JPCS_1871_1_012078bib4 – volume: 18 start-page: 1527 year: 2006 ident: JPCS_1871_1_012078bib5 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 140 start-page: 125 year: 2013 ident: JPCS_1871_1_012078bib12 article-title: Gradient methods for minimizing composite functions publication-title: Mathematical Programming doi: 10.1007/s10107-012-0629-5 – year: 2017 ident: JPCS_1871_1_012078bib7 article-title: An overview of gradient descent optimization algorithms – volume: 209 start-page: 57 year: 1999 ident: JPCS_1871_1_012078bib10 article-title: Optimisation of enzymatic liquefaction of mango pulp by response surface methodology publication-title: European Food Research &. Technology doi: 10.1007/s002170050457 – volume: 323 start-page: 399 year: 1988 ident: JPCS_1871_1_012078bib3 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 11 start-page: 625 year: 2010 ident: JPCS_1871_1_012078bib9 article-title: Why does unsupervised pre-training help deep learning? publication-title: Journal of Machine Learning Research – volume: 9 start-page: 161 year: 2016 ident: JPCS_1871_1_012078bib2 article-title: Deep computation model for unsupervised feature learning on big data publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2015.2497705 – volume: 54 start-page: 94 year: 2018 ident: JPCS_1871_1_012078bib1 article-title: Opportunities and challenges of machinery intelligent fault diagnosis in big data era publication-title: Chinese Journal of Mechanical Engineering doi: 10.3901/JME.2018.05.094 – volume: 10 start-page: 1 year: 2009 ident: JPCS_1871_1_012078bib6 article-title: Exploring strategies for training deep neural networks publication-title: Journal of Machine Learning Research – year: 2017 ident: JPCS_1871_1_012078bib8 – ident: JPCS_1871_1_012078bib11 |
| SSID | ssj0033337 |
| Score | 2.2716508 |
| Snippet | Real time, fast and batch processing of vibration signals has become a future development trend in the field of fault diagnosis, but data dimensionality... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 12078 |
| SubjectTerms | Algorithms Batch processing Fault diagnosis Iterative methods Machine learning Neural networks Optimization Optimization algorithms Physics Roller bearings Run time (computers) Signal processing |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBceCMWCvKBa7p2nDjOcYWoKiRKD6xUTpafUJFNqt1ECH49nnWyUCTE4xQpyYySsZP5En_zDcDLkrqCeWMz6anJipqGzNSaZ9rlVe4Ej8ewGvntmThdFW8uyosDWEy1MNfW7-PHWQTMeSbKWixYhPYLtsBiz0regEPcSWdwuDo7X35IZY945q7T5N5qYnT93tP1fPQDZN4a2iv99Ytump_yzcldOJ-uNNFMPh8PvTm2334RcfyHW7kHd0bsSZZpstyHA98-gJs7DqjdPoT1xMIjXUvexVfJeqzRJMvmY7e57D-tSReIHvouQ_lLzHoE9TCjzzaxyYlOoJb0HdkkuW9iok_cBj00PXGJ2ne5fQSrk9fvX51mYzeGzHL8BWeFdKF0KGCjhfWi1JwZpwuds1BJGmRlNS-8Y8Z6TcugYxqUEf8F7itdec4fw6ztWv8EiJN1ECiL7UUodJEbHigzvvSsorU2cg5iGhNlR6ly7JjRqN2SuZQKY6kwlgpjqZhKsZwD3RteJbWOP5scTYOuxsd3q_IIagR2QK7nwPYT4W9dPv0Pm2dwO0e2zI4TdASzfjP45xHu9ObFOMW_A-mu75U priority: 102 providerName: Unpaywall |
| Title | Research on Optimization Algorithm of auto-encoding neural network applied to rolling bearing fault diagnosis |
| URI | https://www.proquest.com/docview/2521610579 https://doi.org/10.1088/1742-6596/1871/1/012078 |
| UnpaywallVersion | publishedVersion |
| Volume | 1871 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: O3W dateStart: 20040101 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1742-6596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: IOP dateStart: 20040601 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1742-6596 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033337 issn: 1742-6596 databaseCode: BENPR dateStart: 20040801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbJhtJeSp900yTo0KtYy7Jl-VDCNmQbCt2G0oX0JEavtuC1t1kvIf--Gj-SnNr6IrDQgEfyzEj65htC3uWJy7g3limfGJaVSWCmBMHApUXqpIh9mI38eSkvVtmnq_xqjyzHXBiEVY42sTPUrrF4Rj5Lo5-RWJS2PN38Zlg1Cm9XxxIaMJRWcO87irF9cpAiM9aEHHw4X15-HW2ziE_Rp0imLPpeNSK-4jZweFfKGY-biBmfYVopVl976K_ug9DHu3oDtzdQVQ_80eIZeToEknTez_xzsufrF-RRB-i025dkPULqaFPTL9EurIeESzqvfsTvan-uaRMo7NqGIZclujCK5JZRZt1Dwyn0ESptG3rdc3dTE2ViG2BXtdT1OL1f21dktTj_dnbBhtIKzAo8T7NSuZA7ZKMBab3MQXDjIIOUh0IlQRUWROYdN9ZDkgeIPk3FYC4IX0DhhXhNJnVT-zeEOlUGiRzXXoYMstSIkHDjc8-LpASjpkSOCtR24B3H8heV7u6_ldKoeY2a16h5zXWv-SlJ7gZueuqNfw85GmdID__iVt-vnCnhd7P2vyIP_y7yLXmSIsqlw_IckUl7vfPHMUxpzQnZV4uPJ8MKjO1qeTn__gfUruSx |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQqKKXir7ULbT1oT1aGyeO4xwQojy0FNhWFUjcXD9ppWyysFkh_lx_Wz2JA5zaXsglUqLMYTyZh_3NNwh9zBPLqNOGCJdowsrEE12qjCibFqnlWXgH3cinUz45Z18u8osV9HvohQFY5eATO0dtGwN75OM0xBkOQ2nLnfkVgalRcLo6jNBQcbSC3e4oxmJjx7G7vQkl3GL7aD-s96c0PTw425uQOGWAmAy2lgwX1ucWiFkUN47nKqPaKqZS6guReFEYlTFnqTZOJblXwb2LkNf4zBWqcLAhGkLAGstYGYq_tc8H02_fh1iQhavoWzJTEmK9GBBmoeyMz0o-pqFoGdMxtLHCtLeH8fE-6V1f1nN1e6Oq6kH8O9xAz2Liind7S3uOVlz9Aj3pAKRm8RLNBggfbmr8NfihWWzwxLvVZdBj-3OGG4_Vsm0IcGdCyMRAphlk1j0UHas-I8Ztg697rnCsg0y4e7WsWmx7XOCvxSt0_ihKfo1W66Z2bxC2ovQcOLUd90yxVGc-odrljhZJqbQYIT4oUJrIcw7jNirZnbcLIUHzEjQvQfOSyl7zI5TcfTjvqT7-_cnWsEIy_vsLeW-pI0TvVu1_Rb79u8gPaH1ydnoiT46mx5voaQoImw5HtIVW2-ulexdSpFa_j3aI0Y_HNv0_-Ocf1A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrRBceCMWCvKBa7p2nDjOcYWoKiRKD6xUTpafUJFNqt1ECH49nnWyUCTE4xQpyYySsZP5En_zDcDLkrqCeWMz6anJipqGzNSaZ9rlVe4Ej8ewGvntmThdFW8uyosDWEy1MNfW7-PHWQTMeSbKWixYhPYLtsBiz0regEPcSWdwuDo7X35IZY945q7T5N5qYnT93tP1fPQDZN4a2iv99Ytump_yzcldOJ-uNNFMPh8PvTm2334RcfyHW7kHd0bsSZZpstyHA98-gJs7DqjdPoT1xMIjXUvexVfJeqzRJMvmY7e57D-tSReIHvouQ_lLzHoE9TCjzzaxyYlOoJb0HdkkuW9iok_cBj00PXGJ2ne5fQSrk9fvX51mYzeGzHL8BWeFdKF0KGCjhfWi1JwZpwuds1BJGmRlNS-8Y8Z6TcugYxqUEf8F7itdec4fw6ztWv8EiJN1ECiL7UUodJEbHigzvvSsorU2cg5iGhNlR6ly7JjRqN2SuZQKY6kwlgpjqZhKsZwD3RteJbWOP5scTYOuxsd3q_IIagR2QK7nwPYT4W9dPv0Pm2dwO0e2zI4TdASzfjP45xHu9ObFOMW_A-mu75U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Optimization+Algorithm+of+auto-encoding+neural+network+applied+to+rolling+bearing+fault+diagnosis&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Shi%2C+Shi&rft.au=Tong%2C+Qingbin&rft.date=2021-04-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1871&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1871%2F1%2F012078 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |