Application of Generalized Split Linearized Bregman Iteration algorithm for Alzheimer's disease prediction
In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSp...
Saved in:
| Published in | Aging (Albany, NY.) Vol. 12; no. 7; pp. 6206 - 6224 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Impact Journals
05.04.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1945-4589 1945-4589 |
| DOI | 10.18632/aging.103017 |
Cover
| Abstract | In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts. |
|---|---|
| AbstractList | In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts. In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts.In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts. |
| Author | Li, Xiuli Zheng, Weimin Li, Kuncheng Yang, Yu Cui, Bin Hu, Lingjing Sun, Zeyu Wang, Zhiqun Han, Xu |
| Author_xml | – sequence: 1 givenname: Weimin surname: Zheng fullname: Zheng, Weimin organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China – sequence: 2 givenname: Bin surname: Cui fullname: Cui, Bin organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China – sequence: 3 givenname: Zeyu surname: Sun fullname: Sun, Zeyu organization: Deepwise AI lab, Beijing 100080, China – sequence: 4 givenname: Xiuli surname: Li fullname: Li, Xiuli organization: Deepwise AI lab, Beijing 100080, China – sequence: 5 givenname: Xu surname: Han fullname: Han, Xu organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China – sequence: 6 givenname: Yu surname: Yang fullname: Yang, Yu organization: Beijing Huading Jialiang Technology Co, Beijing 100000, China – sequence: 7 givenname: Kuncheng surname: Li fullname: Li, Kuncheng organization: Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China – sequence: 8 givenname: Lingjing surname: Hu fullname: Hu, Lingjing organization: Yanjing Medical College, Capital Medical University, Beijing 101300, China – sequence: 9 givenname: Zhiqun surname: Wang fullname: Wang, Zhiqun organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32248185$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctr3DAQxkVJyKs59lp0ay7e6mHZ3kthG5oHLOTQ9ixka-RVkCVX8jYkf30VbxKSQnvSoPm--ZjfHKM9Hzwg9IGSBW0qzj6r3vp-QQkntH6HjuiyFEUpmuXeq_oQHad0S0glRFkdoEPOWNnQRhyh29U4OtupyQaPg8GX4CEqZx9A4--5M-G19aDi_PE1Qj8oj6-nrJkdyvUh2mkzYBMiXrmHDdgB4qeEtU2gEuAxgrbdo_g92jfKJTh9ek_Qz4tvP86vivXN5fX5al10nLC6MEwZ02oDTQOMU6brtoWypELoVtNSPBY1gZrxmhvCaKM7roXWYKhmDDQ_QYvd3K0f1f2dck6O0Q4q3ktK5AxNztDkDlo2fNkZxm07gO7ATxnBiykoK992vN3IPvyWdUZIyTIPOHsaEMOvLaRJDjZ14JzyELZJMt5UJWe0oln68XXWS8jzRbKA7wRdDClFMLKz0ww7R1v3zxWKv1z_X_kPRQayTw |
| CitedBy_id | crossref_primary_10_1016_j_bpsc_2020_12_007 crossref_primary_10_1016_j_jbi_2022_104030 crossref_primary_10_1111_cns_14189 crossref_primary_10_1186_s13195_021_00874_9 crossref_primary_10_1016_j_mri_2021_10_015 |
| Cites_doi | 10.1186/alzrt47 10.1016/j.neuroimage.2014.10.002 10.1016/j.nicl.2014.11.001 10.1016/S1053-8119(02)00026-5 10.1007/s11682-015-9480-7 10.1073/pnas.0708803104 10.1016/j.neuroimage.2011.08.013 10.1093/cercor/bhm244 10.1136/jnnp-2014-309105 10.1109/JBHI.2013.2285378 10.1016/j.neurobiolaging.2010.04.022 10.1007/978-3-319-66179-7_13 10.1016/j.neulet.2005.03.038 10.1016/j.compbiomed.2017.10.002 10.1016/j.neuroimage.2005.05.015 10.1016/j.compbiomed.2017.02.011 10.1002/hbm.22741 10.1016/S1474-4422(10)70223-4 10.1038/nrneurol.2009.215 10.2528/PIER13121310 10.1097/01.rmr.0000245457.98029.e1 10.1523/JNEUROSCI.5698-11.2012 10.1007/BF00308809 10.1159/000342118 10.1016/S0197-4580(02)00084-2 10.3233/JAD-141605 10.1006/brcg.1998.0983 10.1016/j.neubiorev.2017.01.002 10.1038/cddis.2010.68 10.1016/j.neuroimage.2009.05.056 10.1101/cshperspect.a006213 10.1016/j.neuron.2013.01.002 10.1159/000106632 10.1016/j.neuroimage.2007.07.007 10.1148/radiol.2015150220 10.1016/j.neuroimage.2011.06.065 10.1016/S1053-8119(03)00041-7 10.1111/j.1750-3639.2010.00469.x 10.3389/fninf.2011.00022 10.1002/hbm.20883 10.1006/nimg.2001.0848 10.1016/j.jpsychires.2007.12.002 10.3174/ajnr.A2232 10.1016/j.nicl.2013.12.012 10.1093/brain/awn278 10.1016/j.neuroimage.2008.10.031 10.1097/NPT.0b013e3182462ea6 10.1016/j.aanat.2008.12.003 10.1007/s12311-015-0649-9 10.1186/1471-2342-14-21 10.1109/TMI.2011.2167628 10.1212/WNL.43.11.2412-a 10.1016/j.neulet.2013.06.042 10.1002/hbm.22759 10.1006/nimg.2001.0978 10.1016/j.neurobiolaging.2006.09.013 10.1016/j.neuroimage.2019.01.031 10.1016/S1474-4422(07)70178-3 10.1006/nimg.2001.0961 10.1016/j.neuroimage.2017.03.057 10.1016/j.clinph.2004.01.001 10.1136/jnnp.73.6.657 10.1093/cercor/bhn052 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Zheng et al. |
| Copyright_xml | – notice: Copyright © 2020 Zheng et al. |
| CorporateAuthor | Alzheimer's Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: Alzheimer's Disease Neuroimaging Initiative |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.18632/aging.103017 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1945-4589 |
| EndPage | 6224 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7185109 PMC7185109 32248185 10_18632_aging_103017 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: U01 AG024904 |
| GroupedDBID | --- 53G AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION DIK E3Z FRP GX1 HYE KQ8 M48 O5R O5S OK1 PGMZT RPM W2D CGR CUY CVF ECM EIF NPM 7X8 5PM ADRAZ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3027-f2affbdfe88e2312d7bbe44155dbd145155d70e72373f0218dc3d5ddef1d22ed3 |
| IEDL.DBID | M48 |
| ISSN | 1945-4589 |
| IngestDate | Sun Oct 26 03:15:36 EDT 2025 Thu Aug 21 14:09:32 EDT 2025 Wed Oct 01 14:46:15 EDT 2025 Thu Jan 02 22:36:32 EST 2025 Thu Apr 24 23:10:06 EDT 2025 Tue Jul 01 00:38:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Keywords | generalized split linearized Bregman iteration voxel-based structural magnetic resonance imaging machine learning Alzheimer's disease feature selection |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3027-f2affbdfe88e2312d7bbe44155dbd145155d70e72373f0218dc3d5ddef1d22ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Equal contribution In this article, when performing the cross-test, we used the Data which were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database http://adni.loni.usc.edu/. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.18632/aging.103017 |
| PMID | 32248185 |
| PQID | 2386432161 |
| PQPubID | 23479 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_18632_aging_103017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7185109 proquest_miscellaneous_2386432161 pubmed_primary_32248185 crossref_citationtrail_10_18632_aging_103017 crossref_primary_10_18632_aging_103017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200405 |
| PublicationDateYYYYMMDD | 2020-04-05 |
| PublicationDate_xml | – month: 4 year: 2020 text: 20200405 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Aging (Albany, NY.) |
| PublicationTitleAlternate | Aging (Albany NY) |
| PublicationYear | 2020 |
| Publisher | Impact Journals |
| Publisher_xml | – name: Impact Journals |
| References | Trollor (15) 2012; 5 Schröder (39) 2008; 4 Morris (59) 1993; 4 Thompson (8) 2010; 6 Friston (35) 2001; 1 Samejima (31) 2005; 38 Ashburner (63) 2007; 3 Nielsen (22) 2014; 1 Joliot (64) 2002; 1 Krueger (37) 2014; 7 Ances (47) 2012; 3 Pasquier (57) 2007; 6 Matsuda (54) 2017; 8 Chiarello (61) 2008; 1 Vrenken (51) 2016; 8 Thompson (16) 2010; 3 Teipel (19) 2015; 3 Johnson (29) 2009; 4 Davatzikos (12) 2009; 4 Shen (27) 2015; 3 Larner (41) 1997; 8 Jicha (58) 2010; 9 Zhang (21) 2016; 1 Toschi (55) 2019; 18 Baron (48) 2005; 2 Strata (44) 2015; 1 Espeland (26) 2011; 5 Tohka (25) 2015; 10 Laakso (6) 2002; 7 Filippi (45) 2010; 3 Sensi (42) 2010; 1 Klunk (32) 2012; 2 Dong (28) 2014; 14 Jeong (38) 2004; 11 Sahin (40) 2009; 19 Jack (34) 2005; 1 Yin (20) 2014; 1 Barkhof (33) 2003; 1 Balthazar (50) 2012; 3 Miller (23) 2015; 4 Castellano (52) 2011; 3 Jagust (36) 2013; 7 Wahlund (24) 2011; 5 and (13) 2013; 55 30 Burns (46) 2012; 3 Baron (10) 2003; 1 Steinmetz (60) 1998; 3 Kim (62) 2008; 1 Eustache (4) 2001; 1 Jack (9) 2010; 2 van der Grond (53) 2008; 13 Davatzikos (2) 2017; 15 Mori (7) 2005; 2 Evans (11) 2008; 2 Glatzel (43) 2011; 2 Barkhof (18) 2016; 27 Bottino (5) 2003; 2 Braak (1) 1991; 8 Mechelli (3) 2017; 7 Álvarez (17) 2012; 3 Thompson (14) 2014; 4 Zaiane (56) 2017; 9 Wohlschläger (49) 2007; 10 |
| References_xml | – volume: 2 start-page: 23 year: 2010 ident: 9 article-title: Role of structural MRI in Alzheimer’s disease. publication-title: Alzheimers Res Ther doi: 10.1186/alzrt47 – volume: 10 start-page: 398 year: 2015 ident: 25 article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 7 start-page: 7 year: 2014 ident: 37 article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.11.001 – volume: 1 start-page: 525 year: 2003 ident: 10 article-title: Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. publication-title: Neuroimage doi: 10.1016/S1053-8119(02)00026-5 – volume: 1 start-page: 1148 year: 2016 ident: 21 article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment. publication-title: Brain Imaging Behav doi: 10.1007/s11682-015-9480-7 – volume: 10 start-page: 18760 year: 2007 ident: 49 article-title: Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0708803104 – volume: 5 start-page: 1209 year: 2012 ident: 15 article-title: Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.013 – volume: 1 start-page: 2181 year: 2008 ident: 62 article-title: Brain size and cortical structure in the adult human brain. publication-title: Cereb Cortex doi: 10.1093/cercor/bhm244 – volume: 8 start-page: 425 year: 2016 ident: 51 article-title: Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to Alzheimer’s disease. publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2014-309105 – volume: 1 start-page: 984 year: 2014 ident: 20 article-title: Multiple kernel learning in the primal for multimodal Alzheimer’s disease classification. publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2285378 – volume: 3 start-page: 1429 year: 2010 ident: 16 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers. publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.04.022 – ident: 30 doi: 10.1007/978-3-319-66179-7_13 – volume: 38 start-page: 269 year: 2005 ident: 31 article-title: Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. publication-title: Neurosci Lett doi: 10.1016/j.neulet.2005.03.038 – volume: 9 start-page: 21 year: 2017 ident: 56 article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures. publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.10.002 – volume: 2 start-page: 934 year: 2005 ident: 48 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.015 – volume: 8 start-page: 109 year: 2017 ident: 54 article-title: Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.02.011 – volume: 3 start-page: 1847 year: 2015 ident: 27 article-title: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. publication-title: Hum Brain Mapp doi: 10.1002/hbm.22741 – volume: 2 start-page: 333 year: 2005 ident: 7 article-title: Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. publication-title: AJNR Am J Neuroradiol – volume: 9 start-page: 1118 year: 2010 ident: 58 article-title: Revising the definition of Alzheimer’s disease: a new lexicon. publication-title: Lancet Neurol doi: 10.1016/S1474-4422(10)70223-4 – volume: 6 start-page: 67 year: 2010 ident: 8 article-title: The clinical use of structural MRI in Alzheimer disease. publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.215 – volume: 14 start-page: 171 year: 2014 ident: 28 article-title: Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. publication-title: Prog Electromagn Res doi: 10.2528/PIER13121310 – volume: 1 start-page: 409 year: 2005 ident: 34 article-title: Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. publication-title: Top Magn Reson Imaging doi: 10.1097/01.rmr.0000245457.98029.e1 – volume: 3 start-page: 8890 year: 2012 ident: 47 article-title: Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5698-11.2012 – volume: 8 start-page: 239 year: 1991 ident: 1 article-title: Neuropathological stageing of Alzheimer-related changes. publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 3 start-page: 149 year: 2012 ident: 50 article-title: Volumetric brain changes in thalamus, corpus callosum and medial temporal structures: mild Alzheimer’s disease compared with amnestic mild cognitive impairment. publication-title: Dement Geriatr Cogn Disord doi: 10.1159/000342118 – volume: 2 start-page: 221 year: 2003 ident: 5 article-title: A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer’s disease. publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(02)00084-2 – volume: 4 start-page: 599 year: 2015 ident: 23 article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer’s disease. publication-title: J Alzheimers Dis doi: 10.3233/JAD-141605 – volume: 3 start-page: 254 year: 1998 ident: 60 article-title: Unsolved problems in comparing brain sizes in Homo sapiens. publication-title: Brain Cogn doi: 10.1006/brcg.1998.0983 – volume: 7 start-page: 58 year: 2017 ident: 3 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2017.01.002 – volume: 1 start-page: e90 year: 2010 ident: 42 article-title: Alterations of brain and cerebellar proteomes linked to Aβ and tau pathology in a female triple-transgenic murine model of Alzheimer’s disease. publication-title: Cell Death Dis doi: 10.1038/cddis.2010.68 – volume: 4 start-page: 138 year: 2009 ident: 29 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.056 – volume: 2 start-page: a006213 year: 2012 ident: 32 article-title: Brain imaging in Alzheimer disease. publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a006213 – volume: 7 start-page: 219 year: 2013 ident: 36 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration. publication-title: Neuron doi: 10.1016/j.neuron.2013.01.002 – volume: 8 start-page: 203 year: 1997 ident: 41 article-title: The cerebellum in Alzheimer’s disease. publication-title: Dement Geriatr Cogn Disord doi: 10.1159/000106632 – volume: 3 start-page: 95 year: 2007 ident: 63 article-title: A fast diffeomorphic image registration algorithm. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 27 start-page: 838 year: 2016 ident: 18 article-title: Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis. publication-title: Radiology doi: 10.1148/radiol.2015150220 – volume: 5 start-page: 818 year: 2011 ident: 24 article-title: AddNeuroMed and ADNI: similar patterns of Alzheimer’s atrophy and automated MRI classification accuracy in Europe and North America. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.065 – volume: 1 start-page: 895 year: 2003 ident: 33 article-title: A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00041-7 – volume: 2 start-page: 452 year: 2011 ident: 43 article-title: Deposition of hyperphosphorylated tau in cerebellum of PS1 E280A Alzheimer’s disease. publication-title: Brain Pathol doi: 10.1111/j.1750-3639.2010.00469.x – volume: 5 start-page: 22 year: 2011 ident: 26 article-title: High dimensional classification of structural MRI Alzheimer’s disease data based on large scale regularization. publication-title: Front Neuroinform doi: 10.3389/fninf.2011.00022 – volume: 3 start-page: 515 year: 2010 ident: 45 article-title: Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease. publication-title: Hum Brain Mapp doi: 10.1002/hbm.20883 – volume: 1 start-page: 298 year: 2001 ident: 4 article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. publication-title: Neuroimage doi: 10.1006/nimg.2001.0848 – volume: 4 start-page: 1198 year: 2008 ident: 39 article-title: The cerebellum in mild cognitive impairment and Alzheimer’s disease - a structural MRI study. publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2007.12.002 – volume: 3 start-page: 60 year: 2011 ident: 52 article-title: MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2232 – volume: 4 start-page: 461 year: 2014 ident: 14 article-title: ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer’s disease. publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2013.12.012 – volume: 13 start-page: 3277 year: 2008 ident: 53 article-title: Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. publication-title: Brain doi: 10.1093/brain/awn278 – volume: 4 start-page: 1415 year: 2009 ident: 12 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.031 – volume: 3 start-page: 8 year: 2012 ident: 46 article-title: Evidence of altered corticomotor system connectivity in early-stage Alzheimer’s disease. publication-title: J Neurol Phys Ther doi: 10.1097/NPT.0b013e3182462ea6 – volume: 19 start-page: 186 year: 2009 ident: 40 article-title: Stereological evaluation of the volume and volume fraction of intracranial structures in magnetic resonance images of patients with Alzheimer’s disease. publication-title: Ann Anat doi: 10.1016/j.aanat.2008.12.003 – volume: 1 start-page: 570 year: 2015 ident: 44 article-title: The emotional cerebellum. publication-title: Cerebellum doi: 10.1007/s12311-015-0649-9 – volume: 1 start-page: 21 year: 2014 ident: 22 article-title: Brain region’s relative proximity as marker for Alzheimer’s disease based on structural MRI. publication-title: BMC Med Imaging doi: 10.1186/1471-2342-14-21 – volume: 3 start-page: 207 year: 2012 ident: 17 article-title: NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2011.2167628 – volume: 4 start-page: 2412 year: 1993 ident: 59 article-title: The Clinical Dementia Rating (CDR): current version and scoring rules. publication-title: Neurology doi: 10.1212/WNL.43.11.2412-a – volume: 55 start-page: 17 year: 2013 ident: 13 article-title: Dimensionality reduced cortical features and their use in predicting longitudinal changes in Alzheimer’s disease. publication-title: Neurosci Lett doi: 10.1016/j.neulet.2013.06.042 – volume: 3 start-page: 2118 year: 2015 ident: 19 article-title: Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM. publication-title: Hum Brain Mapp doi: 10.1002/hbm.22759 – volume: 1 start-page: 273 year: 2002 ident: 64 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 2 start-page: 23 year: 2008 ident: 11 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.09.013 – volume: 18 start-page: 276 year: 2019 ident: 55 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.031 – volume: 6 start-page: 734 year: 2007 ident: 57 article-title: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70178-3 – volume: 1 start-page: 1238 year: 2001 ident: 35 article-title: Why voxel-based morphometry should be used. publication-title: Neuroimage doi: 10.1006/nimg.2001.0961 – volume: 15 start-page: 530 year: 2017 ident: 2 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 11 start-page: 1490 year: 2004 ident: 38 article-title: EEG dynamics in patients with Alzheimer’s disease. publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.01.001 – volume: 7 start-page: 657 year: 2002 ident: 6 article-title: Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.73.6.657 – volume: 1 start-page: 2920 year: 2008 ident: 61 article-title: Size matters: cerebral volume influences sex differences in neuroanatomy. publication-title: Cereb Cortex doi: 10.1093/cercor/bhn052 |
| SSID | ssj0065546 |
| Score | 2.2681901 |
| Snippet | In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset.... In this paper, we applied a novel method for the detection of Alzheimer’s disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset.... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6206 |
| SubjectTerms | Aged Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - pathology Female Gray Matter - diagnostic imaging Gray Matter - pathology Humans Machine Learning Magnetic Resonance Imaging - methods Male Middle Aged Neuroimaging - methods Organ Size Predictive Value of Tests Prognosis Reproducibility of Results Research Paper |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTny88DHGFr5kJMReSJs6dp08FsQ0kDYhoNJ4iuKPrIEkrbJUaP3rOSdO2ZhA8BbZl8TRne3f5c6_A3gZhCobCyV8hLepz5jRfqwZ8-WYai241GFgDycfn0yOZuzDKT_dgnF_FqZN2lcyH1ZFOazyeZtbuSzVqM8TG-FiinYU34DtCUf4PYDt2cnH6dc2esy4z3gUOy7NaBLSUVvrxx4tD9qaZJf2nmuA8npe5O1VtUwvfqRFcWnTObwHn_rhdrkm34erRg7V-jcmx__6nvtw10FQMu26HsCWqXbgZleU8mIHbh27cPtD-Db9Fd4mi4w4jup8bTT5jD0NQVcWp0rb8KY2Z2VakfctT7O9Iy3OFnXezEuCyJhMi_Xc5KWpD86JCwuRZW3fZYV3YXb47svbI98VZ_CVDXX6GU2zTOrMRJFBjEi1kNJY54xrqW35X7wQgRE0FGFmgYRWoea4mGZjTanR4SMYVIvK7APhgdJUo-ckUsmUCFONDbGOZBZILuOJB697tSXKMZfbAhpFYj0Yq-Wk1XLSadmDVxvxZUfZ8SfBF70NJDipbKQkrcxidZ4gjkGkRhENe7DX2cTmUbgCMotyPBBXrGUjYAm7r_ag3lvibqdqDw42dvX3ET7-Z8kncIfaPwE2p4g_hUFTr8wzhEuNfO4myE9OVBoy priority: 102 providerName: Unpaywall |
| Title | Application of Generalized Split Linearized Bregman Iteration algorithm for Alzheimer's disease prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32248185 https://www.proquest.com/docview/2386432161 https://pubmed.ncbi.nlm.nih.gov/PMC7185109 https://www.ncbi.nlm.nih.gov/pmc/articles/7185109 |
| UnpaywallVersion | submittedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1945-4589 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065546 issn: 1945-4589 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1945-4589 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065546 issn: 1945-4589 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1945-4589 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065546 issn: 1945-4589 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1945-4589 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065546 issn: 1945-4589 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1945-4589 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0065546 issn: 1945-4589 databaseCode: M48 dateStart: 20090101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xTYy9IBgfCx-VkRB7ISN1krp5QKggxkDqhASVylNk55y1U5qWtBV0fz13SZpRFXjgLbLPSeQ7-36ns38H8Nzzk7StEuUSvNVuEFh0IwwC17QlogoN-h5fTu6fd84GwadhOLymFKoncP7H0I7rSQ2K7OTn99UbWvCvecF3O758Vdbz4evjZF47sEdOKuIqDv2gSSh0-DBWTbG5NeQA9smsA3Zdm95pC3Jun5y8tcxnevVDZ9lvbun0Dtyu8aToVQZwF27Y_BBuVhUmV4ew369z5_fgsnedqxbTVNSE0-Mri-IL9SwExaVk92XD28JeTHQuPpakyzxCZxfTYrwYTQTBXNHLrkZ2PLHF8VzUOR4xK_hbLHwfBqfvv747c-tKC27CeUs3lTpNDaa227UE-CQqYyxHWiEa5Fq-9KA8q6Sv_JRRASY-hrQzpm2U0qL_AHbzaW6PQIReghIpDFLaBInyNVJDhF2TeiY0UceBl-sZjpOahpyrYWQxhyOsm7jUTVzpxoEXjfis4t_4m-CztbpiWiGc9tC5nS7nMYESgl2SoK0DDyv1Na9a690BtaHYRoDZtzd78vGoZOEmp077WeTAcWMC__7DR__9jcdwIDnM5wND4RPYXRRL-5Sw0MK0YOfDsN0qbb0Fe4Pzz71vvwBuWxCJ |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTny88DHGFr5kJMReSJs6dp08FsQ0kDYhoNJ4iuKPrIEkrbJUaP3rOSdO2ZhA8BbZl8TRne3f5c6_A3gZhCobCyV8hLepz5jRfqwZ8-WYai241GFgDycfn0yOZuzDKT_dgnF_FqZN2lcyH1ZFOazyeZtbuSzVqM8TG-FiinYU34DtCUf4PYDt2cnH6dc2esy4z3gUOy7NaBLSUVvrxx4tD9qaZJf2nmuA8npe5O1VtUwvfqRFcWnTObwHn_rhdrkm34erRg7V-jcmx__6nvtw10FQMu26HsCWqXbgZleU8mIHbh27cPtD-Db9Fd4mi4w4jup8bTT5jD0NQVcWp0rb8KY2Z2VakfctT7O9Iy3OFnXezEuCyJhMi_Xc5KWpD86JCwuRZW3fZYV3YXb47svbI98VZ_CVDXX6GU2zTOrMRJFBjEi1kNJY54xrqW35X7wQgRE0FGFmgYRWoea4mGZjTanR4SMYVIvK7APhgdJUo-ckUsmUCFONDbGOZBZILuOJB697tSXKMZfbAhpFYj0Yq-Wk1XLSadmDVxvxZUfZ8SfBF70NJDipbKQkrcxidZ4gjkGkRhENe7DX2cTmUbgCMotyPBBXrGUjYAm7r_ag3lvibqdqDw42dvX3ET7-Z8kncIfaPwE2p4g_hUFTr8wzhEuNfO4myE9OVBoy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Generalized+Split+Linearized+Bregman+Iteration+algorithm+for+Alzheimer%27s+disease+prediction&rft.jtitle=Aging+%28Albany%2C+NY.%29&rft.au=Zheng%2C+Weimin&rft.au=Cui%2C+Bin&rft.au=Sun%2C+Zeyu&rft.au=Li%2C+Xiuli&rft.date=2020-04-05&rft.pub=Impact+Journals&rft.eissn=1945-4589&rft.volume=12&rft.issue=7&rft.spage=6206&rft.epage=6224&rft_id=info:doi/10.18632%2Faging.103017&rft_id=info%3Apmid%2F32248185&rft.externalDocID=PMC7185109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-4589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-4589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-4589&client=summon |