Application of Generalized Split Linearized Bregman Iteration algorithm for Alzheimer's disease prediction

In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSp...

Full description

Saved in:
Bibliographic Details
Published inAging (Albany, NY.) Vol. 12; no. 7; pp. 6206 - 6224
Main Authors Zheng, Weimin, Cui, Bin, Sun, Zeyu, Li, Xiuli, Han, Xu, Yang, Yu, Li, Kuncheng, Hu, Lingjing, Wang, Zhiqun
Format Journal Article
LanguageEnglish
Published United States Impact Journals 05.04.2020
Subjects
Online AccessGet full text
ISSN1945-4589
1945-4589
DOI10.18632/aging.103017

Cover

Abstract In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts.
AbstractList In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts.
In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts.In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the generalization of model prediction and the stability of feature selection, we performed a cross-test on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a local cohort with high accuracy but also had good generalization of model prediction and stability of feature selection in different cohorts.
Author Li, Xiuli
Zheng, Weimin
Li, Kuncheng
Yang, Yu
Cui, Bin
Hu, Lingjing
Sun, Zeyu
Wang, Zhiqun
Han, Xu
Author_xml – sequence: 1
  givenname: Weimin
  surname: Zheng
  fullname: Zheng, Weimin
  organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China
– sequence: 2
  givenname: Bin
  surname: Cui
  fullname: Cui, Bin
  organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China
– sequence: 3
  givenname: Zeyu
  surname: Sun
  fullname: Sun, Zeyu
  organization: Deepwise AI lab, Beijing 100080, China
– sequence: 4
  givenname: Xiuli
  surname: Li
  fullname: Li, Xiuli
  organization: Deepwise AI lab, Beijing 100080, China
– sequence: 5
  givenname: Xu
  surname: Han
  fullname: Han, Xu
  organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China
– sequence: 6
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
  organization: Beijing Huading Jialiang Technology Co, Beijing 100000, China
– sequence: 7
  givenname: Kuncheng
  surname: Li
  fullname: Li, Kuncheng
  organization: Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
– sequence: 8
  givenname: Lingjing
  surname: Hu
  fullname: Hu, Lingjing
  organization: Yanjing Medical College, Capital Medical University, Beijing 101300, China
– sequence: 9
  givenname: Zhiqun
  surname: Wang
  fullname: Wang, Zhiqun
  organization: Department of Radiology, Aerospace Center Hospital, Beijing 100049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32248185$$D View this record in MEDLINE/PubMed
BookMark eNp9kctr3DAQxkVJyKs59lp0ay7e6mHZ3kthG5oHLOTQ9ixka-RVkCVX8jYkf30VbxKSQnvSoPm--ZjfHKM9Hzwg9IGSBW0qzj6r3vp-QQkntH6HjuiyFEUpmuXeq_oQHad0S0glRFkdoEPOWNnQRhyh29U4OtupyQaPg8GX4CEqZx9A4--5M-G19aDi_PE1Qj8oj6-nrJkdyvUh2mkzYBMiXrmHDdgB4qeEtU2gEuAxgrbdo_g92jfKJTh9ek_Qz4tvP86vivXN5fX5al10nLC6MEwZ02oDTQOMU6brtoWypELoVtNSPBY1gZrxmhvCaKM7roXWYKhmDDQ_QYvd3K0f1f2dck6O0Q4q3ktK5AxNztDkDlo2fNkZxm07gO7ATxnBiykoK992vN3IPvyWdUZIyTIPOHsaEMOvLaRJDjZ14JzyELZJMt5UJWe0oln68XXWS8jzRbKA7wRdDClFMLKz0ww7R1v3zxWKv1z_X_kPRQayTw
CitedBy_id crossref_primary_10_1016_j_bpsc_2020_12_007
crossref_primary_10_1016_j_jbi_2022_104030
crossref_primary_10_1111_cns_14189
crossref_primary_10_1186_s13195_021_00874_9
crossref_primary_10_1016_j_mri_2021_10_015
Cites_doi 10.1186/alzrt47
10.1016/j.neuroimage.2014.10.002
10.1016/j.nicl.2014.11.001
10.1016/S1053-8119(02)00026-5
10.1007/s11682-015-9480-7
10.1073/pnas.0708803104
10.1016/j.neuroimage.2011.08.013
10.1093/cercor/bhm244
10.1136/jnnp-2014-309105
10.1109/JBHI.2013.2285378
10.1016/j.neurobiolaging.2010.04.022
10.1007/978-3-319-66179-7_13
10.1016/j.neulet.2005.03.038
10.1016/j.compbiomed.2017.10.002
10.1016/j.neuroimage.2005.05.015
10.1016/j.compbiomed.2017.02.011
10.1002/hbm.22741
10.1016/S1474-4422(10)70223-4
10.1038/nrneurol.2009.215
10.2528/PIER13121310
10.1097/01.rmr.0000245457.98029.e1
10.1523/JNEUROSCI.5698-11.2012
10.1007/BF00308809
10.1159/000342118
10.1016/S0197-4580(02)00084-2
10.3233/JAD-141605
10.1006/brcg.1998.0983
10.1016/j.neubiorev.2017.01.002
10.1038/cddis.2010.68
10.1016/j.neuroimage.2009.05.056
10.1101/cshperspect.a006213
10.1016/j.neuron.2013.01.002
10.1159/000106632
10.1016/j.neuroimage.2007.07.007
10.1148/radiol.2015150220
10.1016/j.neuroimage.2011.06.065
10.1016/S1053-8119(03)00041-7
10.1111/j.1750-3639.2010.00469.x
10.3389/fninf.2011.00022
10.1002/hbm.20883
10.1006/nimg.2001.0848
10.1016/j.jpsychires.2007.12.002
10.3174/ajnr.A2232
10.1016/j.nicl.2013.12.012
10.1093/brain/awn278
10.1016/j.neuroimage.2008.10.031
10.1097/NPT.0b013e3182462ea6
10.1016/j.aanat.2008.12.003
10.1007/s12311-015-0649-9
10.1186/1471-2342-14-21
10.1109/TMI.2011.2167628
10.1212/WNL.43.11.2412-a
10.1016/j.neulet.2013.06.042
10.1002/hbm.22759
10.1006/nimg.2001.0978
10.1016/j.neurobiolaging.2006.09.013
10.1016/j.neuroimage.2019.01.031
10.1016/S1474-4422(07)70178-3
10.1006/nimg.2001.0961
10.1016/j.neuroimage.2017.03.057
10.1016/j.clinph.2004.01.001
10.1136/jnnp.73.6.657
10.1093/cercor/bhn052
ContentType Journal Article
Copyright Copyright © 2020 Zheng et al.
Copyright_xml – notice: Copyright © 2020 Zheng et al.
CorporateAuthor Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.18632/aging.103017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1945-4589
EndPage 6224
ExternalDocumentID oai:pubmedcentral.nih.gov:7185109
PMC7185109
32248185
10_18632_aging_103017
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
53G
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CITATION
DIK
E3Z
FRP
GX1
HYE
KQ8
M48
O5R
O5S
OK1
PGMZT
RPM
W2D
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADRAZ
ADTOC
UNPAY
ID FETCH-LOGICAL-c3027-f2affbdfe88e2312d7bbe44155dbd145155d70e72373f0218dc3d5ddef1d22ed3
IEDL.DBID M48
ISSN 1945-4589
IngestDate Sun Oct 26 03:15:36 EDT 2025
Thu Aug 21 14:09:32 EDT 2025
Wed Oct 01 14:46:15 EDT 2025
Thu Jan 02 22:36:32 EST 2025
Thu Apr 24 23:10:06 EDT 2025
Tue Jul 01 00:38:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords generalized split linearized Bregman iteration
voxel-based structural magnetic resonance imaging
machine learning
Alzheimer's disease
feature selection
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3027-f2affbdfe88e2312d7bbe44155dbd145155d70e72373f0218dc3d5ddef1d22ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equal contribution
In this article, when performing the cross-test, we used the Data which were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database http://adni.loni.usc.edu/. As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.18632/aging.103017
PMID 32248185
PQID 2386432161
PQPubID 23479
PageCount 19
ParticipantIDs unpaywall_primary_10_18632_aging_103017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7185109
proquest_miscellaneous_2386432161
pubmed_primary_32248185
crossref_citationtrail_10_18632_aging_103017
crossref_primary_10_18632_aging_103017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200405
PublicationDateYYYYMMDD 2020-04-05
PublicationDate_xml – month: 4
  year: 2020
  text: 20200405
  day: 5
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Aging (Albany, NY.)
PublicationTitleAlternate Aging (Albany NY)
PublicationYear 2020
Publisher Impact Journals
Publisher_xml – name: Impact Journals
References Trollor (15) 2012; 5
Schröder (39) 2008; 4
Morris (59) 1993; 4
Thompson (8) 2010; 6
Friston (35) 2001; 1
Samejima (31) 2005; 38
Ashburner (63) 2007; 3
Nielsen (22) 2014; 1
Joliot (64) 2002; 1
Krueger (37) 2014; 7
Ances (47) 2012; 3
Pasquier (57) 2007; 6
Matsuda (54) 2017; 8
Chiarello (61) 2008; 1
Vrenken (51) 2016; 8
Thompson (16) 2010; 3
Teipel (19) 2015; 3
Johnson (29) 2009; 4
Davatzikos (12) 2009; 4
Shen (27) 2015; 3
Larner (41) 1997; 8
Jicha (58) 2010; 9
Zhang (21) 2016; 1
Toschi (55) 2019; 18
Baron (48) 2005; 2
Strata (44) 2015; 1
Espeland (26) 2011; 5
Tohka (25) 2015; 10
Laakso (6) 2002; 7
Filippi (45) 2010; 3
Sensi (42) 2010; 1
Klunk (32) 2012; 2
Dong (28) 2014; 14
Jeong (38) 2004; 11
Sahin (40) 2009; 19
Jack (34) 2005; 1
Yin (20) 2014; 1
Barkhof (33) 2003; 1
Balthazar (50) 2012; 3
Miller (23) 2015; 4
Castellano (52) 2011; 3
Jagust (36) 2013; 7
Wahlund (24) 2011; 5
and (13) 2013; 55
30
Burns (46) 2012; 3
Baron (10) 2003; 1
Steinmetz (60) 1998; 3
Kim (62) 2008; 1
Eustache (4) 2001; 1
Jack (9) 2010; 2
van der Grond (53) 2008; 13
Davatzikos (2) 2017; 15
Mori (7) 2005; 2
Evans (11) 2008; 2
Glatzel (43) 2011; 2
Barkhof (18) 2016; 27
Bottino (5) 2003; 2
Braak (1) 1991; 8
Mechelli (3) 2017; 7
Álvarez (17) 2012; 3
Thompson (14) 2014; 4
Zaiane (56) 2017; 9
Wohlschläger (49) 2007; 10
References_xml – volume: 2
  start-page: 23
  year: 2010
  ident: 9
  article-title: Role of structural MRI in Alzheimer’s disease.
  publication-title: Alzheimers Res Ther
  doi: 10.1186/alzrt47
– volume: 10
  start-page: 398
  year: 2015
  ident: 25
  article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 7
  start-page: 7
  year: 2014
  ident: 37
  article-title: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease.
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.11.001
– volume: 1
  start-page: 525
  year: 2003
  ident: 10
  article-title: Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(02)00026-5
– volume: 1
  start-page: 1148
  year: 2016
  ident: 21
  article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment.
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-015-9480-7
– volume: 10
  start-page: 18760
  year: 2007
  ident: 49
  article-title: Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0708803104
– volume: 5
  start-page: 1209
  year: 2012
  ident: 15
  article-title: Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.013
– volume: 1
  start-page: 2181
  year: 2008
  ident: 62
  article-title: Brain size and cortical structure in the adult human brain.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhm244
– volume: 8
  start-page: 425
  year: 2016
  ident: 51
  article-title: Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to Alzheimer’s disease.
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2014-309105
– volume: 1
  start-page: 984
  year: 2014
  ident: 20
  article-title: Multiple kernel learning in the primal for multimodal Alzheimer’s disease classification.
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2285378
– volume: 3
  start-page: 1429
  year: 2010
  ident: 16
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers.
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.04.022
– ident: 30
  doi: 10.1007/978-3-319-66179-7_13
– volume: 38
  start-page: 269
  year: 2005
  ident: 31
  article-title: Voxel-based morphometry to discriminate early Alzheimer’s disease from controls.
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2005.03.038
– volume: 9
  start-page: 21
  year: 2017
  ident: 56
  article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures.
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.10.002
– volume: 2
  start-page: 934
  year: 2005
  ident: 48
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.015
– volume: 8
  start-page: 109
  year: 2017
  ident: 54
  article-title: Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm.
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.02.011
– volume: 3
  start-page: 1847
  year: 2015
  ident: 27
  article-title: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22741
– volume: 2
  start-page: 333
  year: 2005
  ident: 7
  article-title: Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images.
  publication-title: AJNR Am J Neuroradiol
– volume: 9
  start-page: 1118
  year: 2010
  ident: 58
  article-title: Revising the definition of Alzheimer’s disease: a new lexicon.
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(10)70223-4
– volume: 6
  start-page: 67
  year: 2010
  ident: 8
  article-title: The clinical use of structural MRI in Alzheimer disease.
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.215
– volume: 14
  start-page: 171
  year: 2014
  ident: 28
  article-title: Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree.
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER13121310
– volume: 1
  start-page: 409
  year: 2005
  ident: 34
  article-title: Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping.
  publication-title: Top Magn Reson Imaging
  doi: 10.1097/01.rmr.0000245457.98029.e1
– volume: 3
  start-page: 8890
  year: 2012
  ident: 47
  article-title: Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5698-11.2012
– volume: 8
  start-page: 239
  year: 1991
  ident: 1
  article-title: Neuropathological stageing of Alzheimer-related changes.
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00308809
– volume: 3
  start-page: 149
  year: 2012
  ident: 50
  article-title: Volumetric brain changes in thalamus, corpus callosum and medial temporal structures: mild Alzheimer’s disease compared with amnestic mild cognitive impairment.
  publication-title: Dement Geriatr Cogn Disord
  doi: 10.1159/000342118
– volume: 2
  start-page: 221
  year: 2003
  ident: 5
  article-title: A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer’s disease.
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(02)00084-2
– volume: 4
  start-page: 599
  year: 2015
  ident: 23
  article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer’s disease.
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-141605
– volume: 3
  start-page: 254
  year: 1998
  ident: 60
  article-title: Unsolved problems in comparing brain sizes in Homo sapiens.
  publication-title: Brain Cogn
  doi: 10.1006/brcg.1998.0983
– volume: 7
  start-page: 58
  year: 2017
  ident: 3
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications.
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2017.01.002
– volume: 1
  start-page: e90
  year: 2010
  ident: 42
  article-title: Alterations of brain and cerebellar proteomes linked to Aβ and tau pathology in a female triple-transgenic murine model of Alzheimer’s disease.
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2010.68
– volume: 4
  start-page: 138
  year: 2009
  ident: 29
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.056
– volume: 2
  start-page: a006213
  year: 2012
  ident: 32
  article-title: Brain imaging in Alzheimer disease.
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a006213
– volume: 7
  start-page: 219
  year: 2013
  ident: 36
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.002
– volume: 8
  start-page: 203
  year: 1997
  ident: 41
  article-title: The cerebellum in Alzheimer’s disease.
  publication-title: Dement Geriatr Cogn Disord
  doi: 10.1159/000106632
– volume: 3
  start-page: 95
  year: 2007
  ident: 63
  article-title: A fast diffeomorphic image registration algorithm.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 27
  start-page: 838
  year: 2016
  ident: 18
  article-title: Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis.
  publication-title: Radiology
  doi: 10.1148/radiol.2015150220
– volume: 5
  start-page: 818
  year: 2011
  ident: 24
  article-title: AddNeuroMed and ADNI: similar patterns of Alzheimer’s atrophy and automated MRI classification accuracy in Europe and North America.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.065
– volume: 1
  start-page: 895
  year: 2003
  ident: 33
  article-title: A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00041-7
– volume: 2
  start-page: 452
  year: 2011
  ident: 43
  article-title: Deposition of hyperphosphorylated tau in cerebellum of PS1 E280A Alzheimer’s disease.
  publication-title: Brain Pathol
  doi: 10.1111/j.1750-3639.2010.00469.x
– volume: 5
  start-page: 22
  year: 2011
  ident: 26
  article-title: High dimensional classification of structural MRI Alzheimer’s disease data based on large scale regularization.
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2011.00022
– volume: 3
  start-page: 515
  year: 2010
  ident: 45
  article-title: Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20883
– volume: 1
  start-page: 298
  year: 2001
  ident: 4
  article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0848
– volume: 4
  start-page: 1198
  year: 2008
  ident: 39
  article-title: The cerebellum in mild cognitive impairment and Alzheimer’s disease - a structural MRI study.
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2007.12.002
– volume: 3
  start-page: 60
  year: 2011
  ident: 52
  article-title: MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease.
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2232
– volume: 4
  start-page: 461
  year: 2014
  ident: 14
  article-title: ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer’s disease.
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2013.12.012
– volume: 13
  start-page: 3277
  year: 2008
  ident: 53
  article-title: Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study.
  publication-title: Brain
  doi: 10.1093/brain/awn278
– volume: 4
  start-page: 1415
  year: 2009
  ident: 12
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.031
– volume: 3
  start-page: 8
  year: 2012
  ident: 46
  article-title: Evidence of altered corticomotor system connectivity in early-stage Alzheimer’s disease.
  publication-title: J Neurol Phys Ther
  doi: 10.1097/NPT.0b013e3182462ea6
– volume: 19
  start-page: 186
  year: 2009
  ident: 40
  article-title: Stereological evaluation of the volume and volume fraction of intracranial structures in magnetic resonance images of patients with Alzheimer’s disease.
  publication-title: Ann Anat
  doi: 10.1016/j.aanat.2008.12.003
– volume: 1
  start-page: 570
  year: 2015
  ident: 44
  article-title: The emotional cerebellum.
  publication-title: Cerebellum
  doi: 10.1007/s12311-015-0649-9
– volume: 1
  start-page: 21
  year: 2014
  ident: 22
  article-title: Brain region’s relative proximity as marker for Alzheimer’s disease based on structural MRI.
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-14-21
– volume: 3
  start-page: 207
  year: 2012
  ident: 17
  article-title: NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease.
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2011.2167628
– volume: 4
  start-page: 2412
  year: 1993
  ident: 59
  article-title: The Clinical Dementia Rating (CDR): current version and scoring rules.
  publication-title: Neurology
  doi: 10.1212/WNL.43.11.2412-a
– volume: 55
  start-page: 17
  year: 2013
  ident: 13
  article-title: Dimensionality reduced cortical features and their use in predicting longitudinal changes in Alzheimer’s disease.
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2013.06.042
– volume: 3
  start-page: 2118
  year: 2015
  ident: 19
  article-title: Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22759
– volume: 1
  start-page: 273
  year: 2002
  ident: 64
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 2
  start-page: 23
  year: 2008
  ident: 11
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls.
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.09.013
– volume: 18
  start-page: 276
  year: 2019
  ident: 55
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.031
– volume: 6
  start-page: 734
  year: 2007
  ident: 57
  article-title: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria.
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 1
  start-page: 1238
  year: 2001
  ident: 35
  article-title: Why voxel-based morphometry should be used.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0961
– volume: 15
  start-page: 530
  year: 2017
  ident: 2
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 11
  start-page: 1490
  year: 2004
  ident: 38
  article-title: EEG dynamics in patients with Alzheimer’s disease.
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.01.001
– volume: 7
  start-page: 657
  year: 2002
  ident: 6
  article-title: Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry.
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.73.6.657
– volume: 1
  start-page: 2920
  year: 2008
  ident: 61
  article-title: Size matters: cerebral volume influences sex differences in neuroanatomy.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn052
SSID ssj0065546
Score 2.2681901
Snippet In this paper, we applied a novel method for the detection of Alzheimer's disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset....
In this paper, we applied a novel method for the detection of Alzheimer’s disease (AD) based on a structural magnetic resonance imaging (sMRI) dataset....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6206
SubjectTerms Aged
Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - pathology
Female
Gray Matter - diagnostic imaging
Gray Matter - pathology
Humans
Machine Learning
Magnetic Resonance Imaging - methods
Male
Middle Aged
Neuroimaging - methods
Organ Size
Predictive Value of Tests
Prognosis
Reproducibility of Results
Research Paper
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTny88DHGFr5kJMReSJs6dp08FsQ0kDYhoNJ4iuKPrIEkrbJUaP3rOSdO2ZhA8BbZl8TRne3f5c6_A3gZhCobCyV8hLepz5jRfqwZ8-WYai241GFgDycfn0yOZuzDKT_dgnF_FqZN2lcyH1ZFOazyeZtbuSzVqM8TG-FiinYU34DtCUf4PYDt2cnH6dc2esy4z3gUOy7NaBLSUVvrxx4tD9qaZJf2nmuA8npe5O1VtUwvfqRFcWnTObwHn_rhdrkm34erRg7V-jcmx__6nvtw10FQMu26HsCWqXbgZleU8mIHbh27cPtD-Db9Fd4mi4w4jup8bTT5jD0NQVcWp0rb8KY2Z2VakfctT7O9Iy3OFnXezEuCyJhMi_Xc5KWpD86JCwuRZW3fZYV3YXb47svbI98VZ_CVDXX6GU2zTOrMRJFBjEi1kNJY54xrqW35X7wQgRE0FGFmgYRWoea4mGZjTanR4SMYVIvK7APhgdJUo-ckUsmUCFONDbGOZBZILuOJB697tSXKMZfbAhpFYj0Yq-Wk1XLSadmDVxvxZUfZ8SfBF70NJDipbKQkrcxidZ4gjkGkRhENe7DX2cTmUbgCMotyPBBXrGUjYAm7r_ag3lvibqdqDw42dvX3ET7-Z8kncIfaPwE2p4g_hUFTr8wzhEuNfO4myE9OVBoy
  priority: 102
  providerName: Unpaywall
Title Application of Generalized Split Linearized Bregman Iteration algorithm for Alzheimer's disease prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/32248185
https://www.proquest.com/docview/2386432161
https://pubmed.ncbi.nlm.nih.gov/PMC7185109
https://www.ncbi.nlm.nih.gov/pmc/articles/7185109
UnpaywallVersion submittedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1945-4589
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065546
  issn: 1945-4589
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1945-4589
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065546
  issn: 1945-4589
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1945-4589
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065546
  issn: 1945-4589
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1945-4589
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065546
  issn: 1945-4589
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1945-4589
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0065546
  issn: 1945-4589
  databaseCode: M48
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xTYy9IBgfCx-VkRB7ISN1krp5QKggxkDqhASVylNk55y1U5qWtBV0fz13SZpRFXjgLbLPSeQ7-36ns38H8Nzzk7StEuUSvNVuEFh0IwwC17QlogoN-h5fTu6fd84GwadhOLymFKoncP7H0I7rSQ2K7OTn99UbWvCvecF3O758Vdbz4evjZF47sEdOKuIqDv2gSSh0-DBWTbG5NeQA9smsA3Zdm95pC3Jun5y8tcxnevVDZ9lvbun0Dtyu8aToVQZwF27Y_BBuVhUmV4ew369z5_fgsnedqxbTVNSE0-Mri-IL9SwExaVk92XD28JeTHQuPpakyzxCZxfTYrwYTQTBXNHLrkZ2PLHF8VzUOR4xK_hbLHwfBqfvv747c-tKC27CeUs3lTpNDaa227UE-CQqYyxHWiEa5Fq-9KA8q6Sv_JRRASY-hrQzpm2U0qL_AHbzaW6PQIReghIpDFLaBInyNVJDhF2TeiY0UceBl-sZjpOahpyrYWQxhyOsm7jUTVzpxoEXjfis4t_4m-CztbpiWiGc9tC5nS7nMYESgl2SoK0DDyv1Na9a690BtaHYRoDZtzd78vGoZOEmp077WeTAcWMC__7DR__9jcdwIDnM5wND4RPYXRRL-5Sw0MK0YOfDsN0qbb0Fe4Pzz71vvwBuWxCJ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTny88DHGFr5kJMReSJs6dp08FsQ0kDYhoNJ4iuKPrIEkrbJUaP3rOSdO2ZhA8BbZl8TRne3f5c6_A3gZhCobCyV8hLepz5jRfqwZ8-WYai241GFgDycfn0yOZuzDKT_dgnF_FqZN2lcyH1ZFOazyeZtbuSzVqM8TG-FiinYU34DtCUf4PYDt2cnH6dc2esy4z3gUOy7NaBLSUVvrxx4tD9qaZJf2nmuA8npe5O1VtUwvfqRFcWnTObwHn_rhdrkm34erRg7V-jcmx__6nvtw10FQMu26HsCWqXbgZleU8mIHbh27cPtD-Db9Fd4mi4w4jup8bTT5jD0NQVcWp0rb8KY2Z2VakfctT7O9Iy3OFnXezEuCyJhMi_Xc5KWpD86JCwuRZW3fZYV3YXb47svbI98VZ_CVDXX6GU2zTOrMRJFBjEi1kNJY54xrqW35X7wQgRE0FGFmgYRWoea4mGZjTanR4SMYVIvK7APhgdJUo-ckUsmUCFONDbGOZBZILuOJB697tSXKMZfbAhpFYj0Yq-Wk1XLSadmDVxvxZUfZ8SfBF70NJDipbKQkrcxidZ4gjkGkRhENe7DX2cTmUbgCMotyPBBXrGUjYAm7r_ag3lvibqdqDw42dvX3ET7-Z8kncIfaPwE2p4g_hUFTr8wzhEuNfO4myE9OVBoy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Generalized+Split+Linearized+Bregman+Iteration+algorithm+for+Alzheimer%27s+disease+prediction&rft.jtitle=Aging+%28Albany%2C+NY.%29&rft.au=Zheng%2C+Weimin&rft.au=Cui%2C+Bin&rft.au=Sun%2C+Zeyu&rft.au=Li%2C+Xiuli&rft.date=2020-04-05&rft.pub=Impact+Journals&rft.eissn=1945-4589&rft.volume=12&rft.issue=7&rft.spage=6206&rft.epage=6224&rft_id=info:doi/10.18632%2Faging.103017&rft_id=info%3Apmid%2F32248185&rft.externalDocID=PMC7185109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-4589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-4589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-4589&client=summon