An intelligent approach for anomaly detection in credit card data using bat optimization algorithm

As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of eff...

Full description

Saved in:
Bibliographic Details
Published inInteligencia artificial Vol. 26; no. 72; pp. 202 - 222
Main Authors Sikkandar, Haseena, S, Saroja, N, Suseandhiran, B, Manikandan
Format Journal Article
LanguageEnglish
Published Asociación Española para la Inteligencia Artificial 01.12.2023
Subjects
Online AccessGet full text
ISSN1137-3601
1988-3064
1988-3064
DOI10.4114/intartif.vol26iss72pp202-222

Cover

Abstract As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of efficient fraud detection techniques is critical in reducing these deficits, but it is difficult due to the extremely unbalanced nature of most credit card datasets. As compared to conventional fraud detection methods, the proposed method will help in automatically detecting the fraud, identifying hidden correlations in data and reduced time for verification process. This is achieved by selecting relevant and unique features by using Bat Optimization Algorithm (BOA). Next, balancing is performed in the highly imbalanced credit card fraud dataset using Synthetic Minority over-sampling technique (SMOTE). Then finally the CNN model for anomaly detection in credit card data is built using full center loss function to improve fraud detection performance and stability. The proposed model is tested with Kaggle dataset and yields around 99% accuracy.
AbstractList As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of efficient fraud detection techniques is critical in reducing these deficits, but it is difficult due to the extremely unbalanced nature of most credit card datasets. As compared to conventional fraud detection methods, the proposed method will help in automatically detecting the fraud, identifying hidden correlations in data and reduced time for verification process. This is achieved by selecting relevant and unique features by using Bat Optimization Algorithm (BOA). Next, balancing is performed in the highly imbalanced credit card fraud dataset using Synthetic Minority over-sampling technique (SMOTE). Then finally the CNN model for anomaly detection in credit card data is built using full center loss function to improve fraud detection performance and stability. The proposed model is tested with Kaggle dataset and yields around 99% accuracy.
Author S, Saroja
Sikkandar, Haseena
N, Suseandhiran
B, Manikandan
Author_xml – sequence: 1
  givenname: Haseena
  surname: Sikkandar
  fullname: Sikkandar, Haseena
– sequence: 2
  givenname: Saroja
  orcidid: 0000-0002-7418-7301
  surname: S
  fullname: S, Saroja
– sequence: 3
  givenname: Suseandhiran
  surname: N
  fullname: N, Suseandhiran
– sequence: 4
  givenname: Manikandan
  surname: B
  fullname: B, Manikandan
BookMark eNqVkE1PGzEQhq0KJMLHf_Ch16Xjj-x6JTikqIVISL2UszXrj2DkrFdeUxR-fTcJcMgJTjMavfNo5jklR33qHSHfGVxKxuSP0BfMJfjLfynyOoxjw4eBA68459_IjLVKVQJqeTT1TDSVqIGdkNNxfALgCpiYkW7R0wnjYgwr1xeKw5ATmkfqU6bYpzXGDbWuOFNC2kapyc6GQg1mSy0WpM9j6Fe0w0LTUMI6vOIuinGVciiP63Ny7DGO7uKtnpGH37_-3txV939ulzeL-8oI4LxqoJsuai2YzkgPc9-aedtMbxowtWuEYgbrTsimdh54I8HxujPOCmnbOXolzshyz7UJn_SQwxrzRicMejdIeaW3tkx0WoqWK2VrN3dScqY6aRz3oKCVrGstn1jXe9ZzP-DmBWP8ADLQW_n6Xb4-kK8n-dP-z_2-yWkcs_PahLLzUjKG-FnI1QHkSzf8BzVprT4
CitedBy_id crossref_primary_10_1016_j_procs_2024_09_014
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.4114/intartif.vol26iss72pp202-222
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1988-3064
EndPage 222
ExternalDocumentID oai_doaj_org_article_439288d6e5e44218b4ce2f080941b9d2
10.4114/intartif.vol26iss72pp202-222
10_4114_intartif_vol26iss72pp202_222
GroupedDBID 29J
2WC
5GY
AAYXX
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FAEIB
GROUPED_DOAJ
IPNFZ
KWQ
OK1
OVT
RDY
RNS
XSB
635
ADTOC
C1A
RIG
UNPAY
ID FETCH-LOGICAL-c3022-70b0139d0cbc4f05f9c597114c0c6e7381ca6b3476ef02740e26bced34d95af83
IEDL.DBID UNPAY
ISSN 1137-3601
1988-3064
IngestDate Fri Oct 03 12:50:48 EDT 2025
Tue Aug 19 20:00:23 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Tue Jul 01 01:59:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 72
Language English
License http://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3022-70b0139d0cbc4f05f9c597114c0c6e7381ca6b3476ef02740e26bced34d95af83
ORCID 0000-0002-7418-7301
OpenAccessLink https://proxy.k.utb.cz/login?url=http://journal.iberamia.org/index.php/intartif/article/download/940/199
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_439288d6e5e44218b4ce2f080941b9d2
unpaywall_primary_10_4114_intartif_vol26iss72pp202_222
crossref_citationtrail_10_4114_intartif_vol26iss72pp202_222
crossref_primary_10_4114_intartif_vol26iss72pp202_222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Inteligencia artificial
PublicationYear 2023
Publisher Asociación Española para la Inteligencia Artificial
Publisher_xml – name: Asociación Española para la Inteligencia Artificial
SSID ssj0028013
ssib044740012
Score 2.272876
Snippet As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously....
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 202
SubjectTerms Credit card anomaly detection, imbalanced data, feature selection, optimization, neural network, loss function
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iwcdBFBXXFzl4LXbTNGnwpKKIoCcFbyWThy50u4tUxH_vTNtdVi8qeG2bpplOZ-YrX75h7KQIOmZWZ8mw0DqREH0C4CCRRcgAM2pUQHuH7-7VzaO8fcqfFlp9ESeskwfuDHeKCVMUhVchD1JiPgLpgohY5xg5BOPb6JsWZgFMoSdJqWWXyHvohXG4pdoPM_ykEIOssBMMFxLBwOmobmiuSOFAKFytFtOpoE3LQnxJVq2m_zpbfaun9uPdVtVCIrreZBt9BcnPuyffYkuh3mZwXvPRXF2z4TOpcI41Kbf1ZGyrD-5D0xKv6FJOSqGjhjv0EE40UU4M-GcOtuETDCPjfn8mt9Xz5HXUvIx32OP11cPlTdK3T0hcRhx93f7jND514GRM82gcogdcskudChpTtbMKMqlViARO0yAUuOAz6U1uY5HtsuV6Uoc9xsEIwNOIpkBI751JjTNBe0I7Ae88YGczO5Wu1xanFhdViRiDrFzOrFx-s3KJVh6wfD562mls_HLcBb2S-RhSym4PoP-Uvf-UP_nPgKn5C_3T7Pv_MfsBW6P-9R0_5pAtN69v4QirnAaOW4f-BImG-pc
  priority: 102
  providerName: Directory of Open Access Journals
Title An intelligent approach for anomaly detection in credit card data using bat optimization algorithm
URI http://journal.iberamia.org/index.php/intartif/article/download/940/199
https://doaj.org/article/439288d6e5e44218b4ce2f080941b9d2
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1988-3064
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0028013
  issn: 1988-3064
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1988-3064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028013
  issn: 1988-3064
  databaseCode: ABDBF
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1988-3064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044740012
  issn: 1137-3601
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVuJxKCBAlJbKh16zm7UdJxanLaKqkKg4sFI5RX62K7LJqvIKlV_PjDeJeFx43KzEduQZP75xZr4h5LTyZeC65Nm8KstMmOAyY6zJROW5gRM1SIOxwx8u5cVSvL8qrvbIkIyzF-AUvSXAwNfpX37iDUSyCChFFGiY9WKdOWSU77SbKZHP5krdI_uyAFA-IfvLy4-Lzym1CodlJFMiZLCwqwwx931yCtuFAGNg7BO3AyZhtCXbbBgGLTP202GVOP0fkQfbdqPvvuqm-eEgOn9MboZwnp3_yZfpNpqp_fY7u-P_jvEJOejBKl3sqjwle759RsyipauRyDPSgZWcAvyluu3Wurmjzsfk44VVKZKSriK1MBkpeqRSdLa_pkZH2sGOte5DQalurrvbVbxZPyfL83ef3l5kfaaGzHIMByjTdapyuTVWhLwIyoKhAtK1uZW-BFRgtTRclNIHtINzz6Sx3nHhVKFDxV-QSdu1_iWhRjEDr8FwM0w4Z1WurPKlQ8PKQ8-H5M2gktr2NOaYTaOpwZxBhdaDAOtfFFqDQg9JMbbe7Og8_rDdGWp_bIOk3OkB6K7uFVUDtmNV5aQvvBAAnYywngWA5ErMjXLQiRznzl99_dW_NjwiD6HEd-43x2QSb7f-NYCoaE7S5cNJv0y-A0nlJLk
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVuJxKCBAlALyodfsZm3HjsVpqagqJCoOrFROkZ_tqtlkVXmFyq9nJptEPC4UblHiceQZP75JZr4h5LgMKnKjeDYvlcqEjT6z1tlMlIFbOFGjtJg7_Olcni3Fx4viYo8MxTh7BU4xWgIcfNP9y-94A5EsAq4SKjTOerXOPDLKt8bPtMhnc63vkX1ZACifkP3l-efF1660CodlJLtCyOBhlxli7vvkGLYLAc7A2CduB0zCaBXbbBgmLTP2y2HVcfo_Ig-2zcbcfjN1_dNBdPqYXA3pPLv4k-vpNtmp-_4nu-P_jvEJOejBKl3smjwle6F5RuyioauRyDPRgZWcAvylpmnXpr6lPqQuxgubUiQlXSXqYDJSjEilGGx_Sa1JtIUda92nglJTX7Y3q3S1fk6Wpx--nJxlfaWGzHFMB1Dd51Ttc2ediHkRtQNHBbTrcieDAlTgjLRcKBki-sF5YNK64LnwujCx5C_IpGmb8JJQq5mFx-C4WSa8dzrXTgfl0bEK0PMheTeYpHI9jTlW06grcGfQoNWgwOo3g1Zg0ENSjNKbHZ3HX8q9R-uPMkjK3d0A21W9oSrAdqwsvQxFEAKgkxUusAiQXIu51R46kePcudPbX_2r4BF5CFd8F37zmkzSzTa8ARCV7Nt-gfwAc0sjxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+approach+for+anomaly+detection+in+credit+card+data+using+bat+optimization+algorithm&rft.jtitle=Inteligencia+artificial&rft.au=Sikkandar%2C+Haseena&rft.au=S%2C+Saroja&rft.au=N%2C+Suseandhiran&rft.au=B%2C+Manikandan&rft.date=2023-12-01&rft.issn=1137-3601&rft.eissn=1988-3064&rft.volume=26&rft.issue=72&rft.spage=202&rft.epage=222&rft_id=info:doi/10.4114%2Fintartif.vol26iss72pp202-222&rft.externalDBID=n%2Fa&rft.externalDocID=10_4114_intartif_vol26iss72pp202_222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1137-3601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1137-3601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1137-3601&client=summon