An intelligent approach for anomaly detection in credit card data using bat optimization algorithm
As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of eff...
Saved in:
| Published in | Inteligencia artificial Vol. 26; no. 72; pp. 202 - 222 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Asociación Española para la Inteligencia Artificial
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1137-3601 1988-3064 1988-3064 |
| DOI | 10.4114/intartif.vol26iss72pp202-222 |
Cover
| Abstract | As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of efficient fraud detection techniques is critical in reducing these deficits, but it is difficult due to the extremely unbalanced nature of most credit card datasets. As compared to conventional fraud detection methods, the proposed method will help in automatically detecting the fraud, identifying hidden correlations in data and reduced time for verification process. This is achieved by selecting relevant and unique features by using Bat Optimization Algorithm (BOA). Next, balancing is performed in the highly imbalanced credit card fraud dataset using Synthetic Minority over-sampling technique (SMOTE). Then finally the CNN model for anomaly detection in credit card data is built using full center loss function to improve fraud detection performance and stability. The proposed model is tested with Kaggle dataset and yields around 99% accuracy. |
|---|---|
| AbstractList | As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously. However, illegal card transactions have been on the rise, costing financial institutions millions of dollars each year. The development of efficient fraud detection techniques is critical in reducing these deficits, but it is difficult due to the extremely unbalanced nature of most credit card datasets. As compared to conventional fraud detection methods, the proposed method will help in automatically detecting the fraud, identifying hidden correlations in data and reduced time for verification process. This is achieved by selecting relevant and unique features by using Bat Optimization Algorithm (BOA). Next, balancing is performed in the highly imbalanced credit card fraud dataset using Synthetic Minority over-sampling technique (SMOTE). Then finally the CNN model for anomaly detection in credit card data is built using full center loss function to improve fraud detection performance and stability. The proposed model is tested with Kaggle dataset and yields around 99% accuracy. |
| Author | S, Saroja Sikkandar, Haseena N, Suseandhiran B, Manikandan |
| Author_xml | – sequence: 1 givenname: Haseena surname: Sikkandar fullname: Sikkandar, Haseena – sequence: 2 givenname: Saroja orcidid: 0000-0002-7418-7301 surname: S fullname: S, Saroja – sequence: 3 givenname: Suseandhiran surname: N fullname: N, Suseandhiran – sequence: 4 givenname: Manikandan surname: B fullname: B, Manikandan |
| BookMark | eNqVkE1PGzEQhq0KJMLHf_Ch16Xjj-x6JTikqIVISL2UszXrj2DkrFdeUxR-fTcJcMgJTjMavfNo5jklR33qHSHfGVxKxuSP0BfMJfjLfynyOoxjw4eBA68459_IjLVKVQJqeTT1TDSVqIGdkNNxfALgCpiYkW7R0wnjYgwr1xeKw5ATmkfqU6bYpzXGDbWuOFNC2kapyc6GQg1mSy0WpM9j6Fe0w0LTUMI6vOIuinGVciiP63Ny7DGO7uKtnpGH37_-3txV939ulzeL-8oI4LxqoJsuai2YzkgPc9-aedtMbxowtWuEYgbrTsimdh54I8HxujPOCmnbOXolzshyz7UJn_SQwxrzRicMejdIeaW3tkx0WoqWK2VrN3dScqY6aRz3oKCVrGstn1jXe9ZzP-DmBWP8ADLQW_n6Xb4-kK8n-dP-z_2-yWkcs_PahLLzUjKG-FnI1QHkSzf8BzVprT4 |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_09_014 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.4114/intartif.vol26iss72pp202-222 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1988-3064 |
| EndPage | 222 |
| ExternalDocumentID | oai_doaj_org_article_439288d6e5e44218b4ce2f080941b9d2 10.4114/intartif.vol26iss72pp202-222 10_4114_intartif_vol26iss72pp202_222 |
| GroupedDBID | 29J 2WC 5GY AAYXX ABDBF ACUHS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD FAEIB GROUPED_DOAJ IPNFZ KWQ OK1 OVT RDY RNS XSB 635 ADTOC C1A RIG UNPAY |
| ID | FETCH-LOGICAL-c3022-70b0139d0cbc4f05f9c597114c0c6e7381ca6b3476ef02740e26bced34d95af83 |
| IEDL.DBID | UNPAY |
| ISSN | 1137-3601 1988-3064 |
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Tue Aug 19 20:00:23 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Jul 01 01:59:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 72 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/4.0 cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3022-70b0139d0cbc4f05f9c597114c0c6e7381ca6b3476ef02740e26bced34d95af83 |
| ORCID | 0000-0002-7418-7301 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://journal.iberamia.org/index.php/intartif/article/download/940/199 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_439288d6e5e44218b4ce2f080941b9d2 unpaywall_primary_10_4114_intartif_vol26iss72pp202_222 crossref_citationtrail_10_4114_intartif_vol26iss72pp202_222 crossref_primary_10_4114_intartif_vol26iss72pp202_222 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Inteligencia artificial |
| PublicationYear | 2023 |
| Publisher | Asociación Española para la Inteligencia Artificial |
| Publisher_xml | – name: Asociación Española para la Inteligencia Artificial |
| SSID | ssj0028013 ssib044740012 |
| Score | 2.272876 |
| Snippet | As technology advances, many people are utilising credit cards to purchase their necessities, and the number of credit card scams is increasing tremendously.... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 202 |
| SubjectTerms | Credit card anomaly detection, imbalanced data, feature selection, optimization, neural network, loss function |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iwcdBFBXXFzl4LXbTNGnwpKKIoCcFbyWThy50u4tUxH_vTNtdVi8qeG2bpplOZ-YrX75h7KQIOmZWZ8mw0DqREH0C4CCRRcgAM2pUQHuH7-7VzaO8fcqfFlp9ESeskwfuDHeKCVMUhVchD1JiPgLpgohY5xg5BOPb6JsWZgFMoSdJqWWXyHvohXG4pdoPM_ykEIOssBMMFxLBwOmobmiuSOFAKFytFtOpoE3LQnxJVq2m_zpbfaun9uPdVtVCIrreZBt9BcnPuyffYkuh3mZwXvPRXF2z4TOpcI41Kbf1ZGyrD-5D0xKv6FJOSqGjhjv0EE40UU4M-GcOtuETDCPjfn8mt9Xz5HXUvIx32OP11cPlTdK3T0hcRhx93f7jND514GRM82gcogdcskudChpTtbMKMqlViARO0yAUuOAz6U1uY5HtsuV6Uoc9xsEIwNOIpkBI751JjTNBe0I7Ae88YGczO5Wu1xanFhdViRiDrFzOrFx-s3KJVh6wfD562mls_HLcBb2S-RhSym4PoP-Uvf-UP_nPgKn5C_3T7Pv_MfsBW6P-9R0_5pAtN69v4QirnAaOW4f-BImG-pc priority: 102 providerName: Directory of Open Access Journals |
| Title | An intelligent approach for anomaly detection in credit card data using bat optimization algorithm |
| URI | http://journal.iberamia.org/index.php/intartif/article/download/940/199 https://doaj.org/article/439288d6e5e44218b4ce2f080941b9d2 |
| UnpaywallVersion | publishedVersion |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1988-3064 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0028013 issn: 1988-3064 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1988-3064 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028013 issn: 1988-3064 databaseCode: ABDBF dateStart: 20171201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1988-3064 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044740012 issn: 1137-3601 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVuJxKCBAlJbKh16zm7UdJxanLaKqkKg4sFI5RX62K7LJqvIKlV_PjDeJeFx43KzEduQZP75xZr4h5LTyZeC65Nm8KstMmOAyY6zJROW5gRM1SIOxwx8u5cVSvL8qrvbIkIyzF-AUvSXAwNfpX37iDUSyCChFFGiY9WKdOWSU77SbKZHP5krdI_uyAFA-IfvLy4-Lzym1CodlJFMiZLCwqwwx931yCtuFAGNg7BO3AyZhtCXbbBgGLTP202GVOP0fkQfbdqPvvuqm-eEgOn9MboZwnp3_yZfpNpqp_fY7u-P_jvEJOejBKl3sqjwle759RsyipauRyDPSgZWcAvyluu3Wurmjzsfk44VVKZKSriK1MBkpeqRSdLa_pkZH2sGOte5DQalurrvbVbxZPyfL83ef3l5kfaaGzHIMByjTdapyuTVWhLwIyoKhAtK1uZW-BFRgtTRclNIHtINzz6Sx3nHhVKFDxV-QSdu1_iWhRjEDr8FwM0w4Z1WurPKlQ8PKQ8-H5M2gktr2NOaYTaOpwZxBhdaDAOtfFFqDQg9JMbbe7Og8_rDdGWp_bIOk3OkB6K7uFVUDtmNV5aQvvBAAnYywngWA5ErMjXLQiRznzl99_dW_NjwiD6HEd-43x2QSb7f-NYCoaE7S5cNJv0y-A0nlJLk |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVuJxKCBAlALyodfsZm3HjsVpqagqJCoOrFROkZ_tqtlkVXmFyq9nJptEPC4UblHiceQZP75JZr4h5LgMKnKjeDYvlcqEjT6z1tlMlIFbOFGjtJg7_Olcni3Fx4viYo8MxTh7BU4xWgIcfNP9y-94A5EsAq4SKjTOerXOPDLKt8bPtMhnc63vkX1ZACifkP3l-efF1660CodlJLtCyOBhlxli7vvkGLYLAc7A2CduB0zCaBXbbBgmLTP2y2HVcfo_Ig-2zcbcfjN1_dNBdPqYXA3pPLv4k-vpNtmp-_4nu-P_jvEJOejBKl3smjwle6F5RuyioauRyDPRgZWcAvylpmnXpr6lPqQuxgubUiQlXSXqYDJSjEilGGx_Sa1JtIUda92nglJTX7Y3q3S1fk6Wpx--nJxlfaWGzHFMB1Dd51Ttc2ediHkRtQNHBbTrcieDAlTgjLRcKBki-sF5YNK64LnwujCx5C_IpGmb8JJQq5mFx-C4WSa8dzrXTgfl0bEK0PMheTeYpHI9jTlW06grcGfQoNWgwOo3g1Zg0ENSjNKbHZ3HX8q9R-uPMkjK3d0A21W9oSrAdqwsvQxFEAKgkxUusAiQXIu51R46kePcudPbX_2r4BF5CFd8F37zmkzSzTa8ARCV7Nt-gfwAc0sjxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+approach+for+anomaly+detection+in+credit+card+data+using+bat+optimization+algorithm&rft.jtitle=Inteligencia+artificial&rft.au=Sikkandar%2C+Haseena&rft.au=S%2C+Saroja&rft.au=N%2C+Suseandhiran&rft.au=B%2C+Manikandan&rft.date=2023-12-01&rft.issn=1137-3601&rft.eissn=1988-3064&rft.volume=26&rft.issue=72&rft.spage=202&rft.epage=222&rft_id=info:doi/10.4114%2Fintartif.vol26iss72pp202-222&rft.externalDBID=n%2Fa&rft.externalDocID=10_4114_intartif_vol26iss72pp202_222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1137-3601&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1137-3601&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1137-3601&client=summon |