Modified nodal cubic spline collocation for three-dimensional variable coefficient second order partial differential equations

We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit cube subject to nonzero Dirichlet boundary conditions. The approximate solution satisfies a perturbed partial differential equation at the inter...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 64; no. 2; pp. 349 - 383
Main Authors Bialecki, Bernard, Karageorghis, Andreas
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.10.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1017-1398
1572-9265
DOI10.1007/s11075-012-9669-4

Cover

Abstract We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit cube subject to nonzero Dirichlet boundary conditions. The approximate solution satisfies a perturbed partial differential equation at the interior nodes of a uniform partition of the cube and the partial differential equation at the boundary nodes. In the special case of Poisson’s equation, the resulting linear system is solved by a matrix decomposition algorithm with fast Fourier transforms at a cost . For the general variable coefficient diffusion-dominated case, the system is solved using the preconditioned biconjugate gradient stabilized method.
AbstractList We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit cube subject to nonzero Dirichlet boundary conditions. The approximate solution satisfies a perturbed partial differential equation at the interior nodes of a uniform partition of the cube and the partial differential equation at the boundary nodes. In the special case of Poisson’s equation, the resulting linear system is solved by a matrix decomposition algorithm with fast Fourier transforms at a cost . For the general variable coefficient diffusion-dominated case, the system is solved using the preconditioned biconjugate gradient stabilized method.
We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit cube subject to nonzero Dirichlet boundary conditions. The approximate solution satisfies a perturbed partial differential equation at the interior nodes of a uniform $N\times N\times N$ partition of the cube and the partial differential equation at the boundary nodes. In the special case of Poisson's equation, the resulting linear system is solved by a matrix decomposition algorithm with fast Fourier transforms at a cost $O(N reversible reaction \log N)$ . For the general variable coefficient diffusion-dominated case, the system is solved using the preconditioned biconjugate gradient stabilized method.
We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit cube subject to nonzero Dirichlet boundary conditions. The approximate solution satisfies a perturbed partial differential equation at the interior nodes of a uniform partition of the cube and the partial differential equation at the boundary nodes. In the special case of Poisson’s equation, the resulting linear system is solved by a matrix decomposition algorithm with fast Fourier transforms at a cost . For the general variable coefficient diffusion-dominated case, the system is solved using the preconditioned biconjugate gradient stabilized method.
Author Karageorghis, Andreas
Bialecki, Bernard
Author_xml – sequence: 1
  givenname: Bernard
  surname: Bialecki
  fullname: Bialecki, Bernard
  organization: Department of Applied Mathematics and Statistics, Colorado School of Mines
– sequence: 2
  givenname: Andreas
  surname: Karageorghis
  fullname: Karageorghis, Andreas
  email: andreask@ucy.ac.cy
  organization: Department of Mathematics and Statistics, University of Cyprus
BookMark eNp1kU9PxCAQxYlZE3fVD-CNxIuXKrQU2qPZ-C9Z42XvhIVB2XShC62JFz-7rDUxMfEEw_zeIzNvgWY-eEDogpJrSoi4SZQSUReElkXLeVuwIzSntchVyetZvhMqClq1zQlapLQlJKtKMUefz8E468BgH4zqsB43TuPUd84D1qHrglaDCx7bEPHwFgEK43bgU37L-LuKTm26AwrWOu3ADziBDt7gEA1E3Ks4uEzmXyzE3D4UsB-_XdMZOraqS3D-c56i9f3devlYrF4enpa3q0JXhA6FrSvDGg7aMKGgMRtWcdYyy0RLDGkqSxkAyyPVnCu-gVqzRiljQAtmlKlO0dVk28ewHyENcueShq5THsKYJBUib4M2bZvRyz_oNowxz5pk2dKGlw2r60zRidIxpBTByj66nYofkhJ5CEROgcgciDwEIlnWlJMmZda_Qvx1_l_0BeCZkqI
Cites_doi 10.1016/S0377-0427(01)00504-0
10.1137/040609793
10.1007/s11075-010-9384-y
10.1016/S0096-3003(99)00085-5
10.1007/s10915-008-9246-0
10.1137/050622833
10.1145/29380.214342
10.1137/S1064827595281794
10.1137/S0895479896309827
10.1002/num.20704
10.1137/0913035
10.1145/29380.29863
10.1137/0914045
10.1137/S106482750139964X
10.1007/978-3-0348-9142-4
ContentType Journal Article
Copyright Springer Science+Business Media New York 2012
Springer Science+Business Media New York 2012.
Copyright_xml – notice: Springer Science+Business Media New York 2012
– notice: Springer Science+Business Media New York 2012.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
7TB
8FD
FR3
KR7
L7M
L~C
L~D
DOI 10.1007/s11075-012-9669-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database - Proquest
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 383
ExternalDocumentID 10_1007_s11075_012_9669_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7TB
8FD
FR3
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c301t-f53d486ecd47ae8db436494f4790d083f14ee4100566a6be5c48aaddec74dad3
IEDL.DBID BENPR
ISSN 1017-1398
IngestDate Wed Oct 01 14:26:08 EDT 2025
Fri Jul 25 09:01:42 EDT 2025
Wed Oct 01 00:38:39 EDT 2025
Fri Feb 21 02:32:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nodal spline collocation
Fast Fourier transforms
65N35
65N22
Matrix decomposition algorithm
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-f53d486ecd47ae8db436494f4790d083f14ee4100566a6be5c48aaddec74dad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918628455
PQPubID 2043837
PageCount 35
ParticipantIDs proquest_miscellaneous_1770271899
proquest_journals_2918628455
crossref_primary_10_1007_s11075_012_9669_4
springer_journals_10_1007_s11075_012_9669_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131000
2013-10-00
20131001
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 20131000
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2013
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Boisvert (CR9) 1987; 13
Pozo, Remington, Joubert (CR14) 1994
Bialecki, Fairweather, Karageorghis (CR4) 2011; 56
Boisvert (CR8) 1987; 13
Berikelashvili, Gupta, Mirianashvili (CR1) 2007; 45
CR17
CR15
Bjontegaard, Maday, Ronquist (CR7) 2009; 39
Bialecki, Fairweather, Karageorghis (CR3) 2005; 27
Bialecki, Wang (CR5) 2012; 28
van der Vorst (CR18) 1992; 13
de Boor (CR6) 2001
Bialecki, Fairweather, Karageorghis (CR2) 2003; 24
Hadjidimos, Houstis, Rice, Vavalis (CR13) 1999; 21
Tsompanopoulou, Vavalis (CR16) 1998; 19
Ge, Zhang (CR10) 2002; 143
Gupta, Zhang (CR11) 2000; 113
Hadjidimos, Houstis, Rice, Vavalis (CR12) 1993; 14
B Bialecki (9669_CR5) 2012; 28
P Tsompanopoulou (9669_CR16) 1998; 19
T Bjontegaard (9669_CR7) 2009; 39
C de Boor (9669_CR6) 2001
A Hadjidimos (9669_CR12) 1993; 14
L Ge (9669_CR10) 2002; 143
A Hadjidimos (9669_CR13) 1999; 21
MM Gupta (9669_CR11) 2000; 113
G Berikelashvili (9669_CR1) 2007; 45
RF Boisvert (9669_CR9) 1987; 13
HA van der Vorst (9669_CR18) 1992; 13
RF Boisvert (9669_CR8) 1987; 13
R Pozo (9669_CR14) 1994
B Bialecki (9669_CR3) 2005; 27
9669_CR15
B Bialecki (9669_CR2) 2003; 24
B Bialecki (9669_CR4) 2011; 56
9669_CR17
References_xml – volume: 143
  start-page: 9
  year: 2002
  end-page: 27
  ident: CR10
  article-title: Symbolic computation of high order compact difference schemes for three dimensional linear elliptic partial differential equations with variable coefficients
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(01)00504-0
– volume: 27
  start-page: 575
  year: 2005
  end-page: 598
  ident: CR3
  article-title: Optimal superconvergent one step nodal cubic spline collocation methods
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040609793
– year: 2001
  ident: CR6
  publication-title: A Practical Guide to Splines, Revised Edition, Applied Mathematical Sciences, vol. 27
– volume: 56
  start-page: 253
  year: 2011
  end-page: 295
  ident: CR4
  article-title: Matrix decomposition algorithms for elliptic boundary value problems: a survey
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-010-9384-y
– volume: 113
  start-page: 249
  year: 2000
  end-page: 274
  ident: CR11
  article-title: High accuracy multigrid solution of the 3D convection-diffusion equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(99)00085-5
– volume: 39
  start-page: 28
  year: 2009
  end-page: 48
  ident: CR7
  article-title: Fast tensor-product solvers: partially deformed three-dimensional domains
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9246-0
– ident: CR15
– volume: 45
  start-page: 443
  year: 2007
  end-page: 455
  ident: CR1
  article-title: Convergence of fourth order compact difference scheme for three-dimensional convection-diffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050622833
– ident: CR17
– volume: 13
  start-page: 235
  year: 1987
  end-page: 249
  ident: CR9
  article-title: Algorithm 651: algorithm HFFT–high-order fast-direct solution of the Helmholtz equation
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/29380.214342
– volume: 19
  start-page: 341
  year: 1998
  end-page: 363
  ident: CR16
  article-title: ADI methods for cubic spline collocation discretizations of elliptic PDEs
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595281794
– volume: 21
  start-page: 508
  year: 1999
  end-page: 521
  ident: CR13
  article-title: Analysis of iterative line spline collocation methods for elliptic partial differential equations
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896309827
– volume: 28
  start-page: 1817
  year: 2012
  end-page: 1839
  ident: CR5
  article-title: Modified nodal cubic spline collocation for elliptic equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20704
– volume: 13
  start-page: 631
  year: 1992
  end-page: 644
  ident: CR18
  article-title: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0913035
– volume: 13
  start-page: 221
  year: 1987
  end-page: 234
  ident: CR8
  article-title: A fourth-order-accurate Fourier method for the Helmholtz equation in three dimensions
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/29380.29863
– volume: 14
  start-page: 715
  year: 1993
  end-page: 734
  ident: CR12
  article-title: Iterative line cubic spline collocation methods for elliptic partial differential equations in several dimensions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0914045
– start-page: 201
  year: 1994
  end-page: 208
  ident: CR14
  article-title: Fast three-dimensional elliptic solvers on distributed network cluster
  publication-title: Parallel Computing: Trends and Applications
– volume: 24
  start-page: 1733
  year: 2003
  end-page: 1753
  ident: CR2
  article-title: Matrix decomposition algorithm for modified spline collocation for Helmholtz problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S106482750139964X
– volume: 39
  start-page: 28
  year: 2009
  ident: 9669_CR7
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9246-0
– volume-title: A Practical Guide to Splines, Revised Edition, Applied Mathematical Sciences, vol. 27
  year: 2001
  ident: 9669_CR6
– volume: 13
  start-page: 221
  year: 1987
  ident: 9669_CR8
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/29380.29863
– volume: 19
  start-page: 341
  year: 1998
  ident: 9669_CR16
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595281794
– volume: 13
  start-page: 235
  year: 1987
  ident: 9669_CR9
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/29380.214342
– volume: 13
  start-page: 631
  year: 1992
  ident: 9669_CR18
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0913035
– start-page: 201
  volume-title: Parallel Computing: Trends and Applications
  year: 1994
  ident: 9669_CR14
– ident: 9669_CR15
  doi: 10.1007/978-3-0348-9142-4
– volume: 45
  start-page: 443
  year: 2007
  ident: 9669_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050622833
– volume: 14
  start-page: 715
  year: 1993
  ident: 9669_CR12
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0914045
– ident: 9669_CR17
– volume: 24
  start-page: 1733
  year: 2003
  ident: 9669_CR2
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S106482750139964X
– volume: 113
  start-page: 249
  year: 2000
  ident: 9669_CR11
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(99)00085-5
– volume: 28
  start-page: 1817
  year: 2012
  ident: 9669_CR5
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20704
– volume: 143
  start-page: 9
  year: 2002
  ident: 9669_CR10
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(01)00504-0
– volume: 56
  start-page: 253
  year: 2011
  ident: 9669_CR4
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-010-9384-y
– volume: 21
  start-page: 508
  year: 1999
  ident: 9669_CR13
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896309827
– volume: 27
  start-page: 575
  year: 2005
  ident: 9669_CR3
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040609793
SSID ssj0010027
Score 1.9577997
Snippet We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 349
SubjectTerms Algebra
Algorithms
Boundary conditions
Coefficients
Collocation
Computer Science
Cubes
Diffusion rate
Dirichlet problem
Fast Fourier transformations
Mathematical analysis
Mathematical models
Nodes
Numeric Computing
Numerical Analysis
Original Paper
Partial differential equations
Poisson equation
Splines
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54XODAGzFeChInUKSlS_o4Tgg0IY3TJu1WpYkr7dIC3Tjy27HTZhMIDhybpqlU2_Hn2vnM2K02MJAmc8KAtEIZCcLozArQsUV_VUDmq93HL_Foqp5netad425CtXtISfqden3YDSMVKjSLiFEyE2qTbWti80IlnkbDVeqAAi2f4sTtF-FNGlKZvy3x3RmtEeaPpKj3NU8HbK8DiXzYSvWQbUB1xPY7wMg7c2xwKPRkCGNHbHe84mFtjtnnuHbzkh6qaocr2mUxt7yhU7jASQXq9o8dR-jKFyhWEI7o_luqDv6BgTQdrcKp4Kkm0EPxhkJoxz1nJ38lzcOZoc-Kv4C3lj-8OWGTp8fJw0h0HReERUNfiFIPnEpjsE4lBlJXqEGsMlWqJOs7BGulVABKEn9obOICtFWpoR3SJsoZNzhlW1VdwRnj2jldQJmCMYh5nCz6NuqnWVqUGKEgSOuxu_Dl89eWVyNfMyiTmHIUU05iynHyZZBN3plYk0eZxGgsVVr32M3qNhoHZTxMBfWyyWWSoDZIjCl77D7IdL3Eny88_9fsC7YTUZMMX-J3ybYW70u4QqiyKK69an4BOc_kEQ
  priority: 102
  providerName: Springer Nature
Title Modified nodal cubic spline collocation for three-dimensional variable coefficient second order partial differential equations
URI https://link.springer.com/article/10.1007/s11075-012-9669-4
https://www.proquest.com/docview/2918628455
https://www.proquest.com/docview/1770271899
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AFBBN
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEB0S-9Ie-pG21E1qttBTy1JL3pVWh1LsYie02JSSQHoSq90R5CI5ld1jf3tmVpJNC8lJiB1JoLcfb3Z23gC81xankc28tBg5qWyE0urMSdSJo_WqwCycdl-tk4sr9e1aXx_Bus-F4WOV_ZwYJmpfO94j_xRnEZFvo7T-srmVXDWKo6t9CQ3blVbwn4PE2DEMY1bGGsBwvlj_-LmPK7AXFuKfNDcT9zF9nDMk05EnxAfZYlaszKT6d6U60M__IqZhIVo-gycdgxSzFvLncITVCTzt2KToxmpzAo9Xe0XW5gX8XdX-pmSLqvb0uNsVN040nI-LgjtD3e7dCSKxYksAo_Qs_N-Kdog_5FJzkhWZYhCdoLVKNOxMexHUO8WG-yBZ9hVXwg3etkrizUu4XC4uv17IrvaCdDTkt7LUU69Mgs6r1KLxhZomKlOlSrOJJ9pWRgpRRawkmtikQO2UsTxXulR566evYFDVFb4Gob3XBZYGrSX246Ni4uKJyUxRkq9CdG0EH_rfnG9ahY38oKXMmOSESc6Y5GR81gORd4OtyQ9dYwTv9s00TDj2YSusd00epSlBH5F3OYKPPYCHV9z7wTcPf_AUHsVcHyOc7juDwfb3Dt8SS9kWYzg2y_MxDGfL-XzN1_Nf3xfjrkNS61U8uwMbLOym
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAceBQQWwoYCS4gq5vEzuNQIR6ttrS7QmiRerMceyL1kmzJbhEX_hn_jRkn2RVIcOsximNLmbHnG8_MNwAvtcUksoWXFiMnlY1QWl04iTp1ZK9KLEK2-3SWTr6qT-f6fAt-DbUwnFY5nInhoPaN4zvyg7iICHznSuu3i0vJXaM4ujq00LB9awV_GCjG-sKOU_zxnVy49vDkI8n7VRwfH80_TGTfZUA6Uu6lrHTiVZ6i8yqzmPtSJakqVKWyYuwJoFSRQlQRc2amNi1RO5VbPhVcprz1CU17A3ZUogry_XbeH80-f1mHMdjpC-FWMgUEtfIhrBpq98jx4ry5mAkyC6n-NIwbtPtXgDbYveN7cKcHrOJdp2H3YQvrXbjbg1fRHw3tLtyerglg2wfwc9r4i4pH1I2nz92qvHCi5fJfFKx7TXdVKAgziyXpE0rPfQY6jhBxRR4813TRUAwcF2QaRcu-uxeBLFQsWOVp5NDgJTzgZUdc3j6E-XUI4RFs102Nj0Fo73WJVY7WEtjyUTl28Tgv8rIi14jQ4QheD7_ZLDpCD7OhbmaZGJKJYZkYGrw_CML0e7s1G00cwYv1a9qVHGqxNTar1kRZRqKPyJkdwZtBgJsp_rng3v8XfA43J_PpmTk7mZ0-gVsxt-YIiYX7sL38tsKnBJCW5bNeDQWYa1b836b5JUo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkJwKKVQsfSBkTiBrK6zdh7HCli1wFYcWqk3y7EnUi_JQrI99rczk8S7KioHjnEmjuSZib_JeL4B-GAczpQrgnSovNROoXSm8BJN6mm_KrHoT7svLtPza_3txtyMfU7beNo9piSHmgZmaaq702WoTjeFbxS18KGzhNklC6mfwI5mngQy6OvkbJ1G4KCrT3fSp5igTh7Tmo9N8XBj2qDNvxKk_b4z34PdETCKs0HDL2EL6314MYJHMbpmS0OxP0Mc24fnizUna_sK7hdNuK34oboJNKNflbdetFyRi4LNoRn-3gmCsaIjFaMMTP0_0HaIOwqqucyKRLGnnaDVEi2H00H0_J1iyVZIkrHnSn-BvwYu8fY1XM2_Xn0-l2P3BenJ6TtZmVnQeYo-6MxhHko9S3WhK50V00DArVIaUSvmEk1dWqLxOnf8tfSZDi7MDmC7bmp8A8KEYEqscnSO8E9Q5dQn07zIy4qiFQJsE_gYV94uB44Nu2FTZjVZUpNlNVkSPoq6saO7tTYpFEVmuTZmAu_Xt8lROPvhamxWrVVZRtagKL6cwKeo080U_3zh2_-SfgdPf36Z2x8Xl98P4VnCvTP6k39HsN39XuExIZiuPOmt9A85Z-s5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+nodal+cubic+spline+collocation+for+three-dimensional+variable+coefficient+second+order+partial+differential+equations&rft.jtitle=Numerical+algorithms&rft.au=Bialecki%2C+Bernard&rft.au=Karageorghis%2C+Andreas&rft.date=2013-10-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=64&rft.issue=2&rft.spage=349&rft.epage=383&rft_id=info:doi/10.1007%2Fs11075-012-9669-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_012_9669_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon