Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT

Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can ai...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 302; no. 1; pp. 187 - 197
Main Authors Choe, Jooae, Hwang, Hye Jeon, Seo, Joon Beom, Lee, Sang Min, Yun, Jihye, Kim, Min-Ju, Jeong, Jewon, Lee, Youngsoo, Jin, Kiok, Park, Rohee, Kim, Jihoon, Jeon, Howook, Kim, Namkug, Yi, Jaeyoun, Yu, Donghoon, Kim, Byeongsoo
Format Journal Article
LanguageEnglish
Published United States 01.01.2022
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.2021204164

Cover

Abstract Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 See also the editorial by Wielpütz in this issue.
AbstractList Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; P < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; P < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; P < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; P = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; P < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; P < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; P < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; P = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.
Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 See also the editorial by Wielpütz in this issue.
Author Kim, Namkug
Hwang, Hye Jeon
Jeong, Jewon
Jeon, Howook
Park, Rohee
Lee, Sang Min
Yun, Jihye
Yu, Donghoon
Jin, Kiok
Kim, Min-Ju
Kim, Jihoon
Choe, Jooae
Yi, Jaeyoun
Lee, Youngsoo
Kim, Byeongsoo
Seo, Joon Beom
Author_xml – sequence: 1
  givenname: Jooae
  orcidid: 0000-0003-0486-4626
  surname: Choe
  fullname: Choe, Jooae
– sequence: 2
  givenname: Hye Jeon
  orcidid: 0000-0003-3508-2870
  surname: Hwang
  fullname: Hwang, Hye Jeon
– sequence: 3
  givenname: Joon Beom
  orcidid: 0000-0003-0271-7884
  surname: Seo
  fullname: Seo, Joon Beom
– sequence: 4
  givenname: Sang Min
  orcidid: 0000-0002-2173-2193
  surname: Lee
  fullname: Lee, Sang Min
– sequence: 5
  givenname: Jihye
  orcidid: 0000-0002-5233-6687
  surname: Yun
  fullname: Yun, Jihye
– sequence: 6
  givenname: Min-Ju
  orcidid: 0000-0003-4600-5352
  surname: Kim
  fullname: Kim, Min-Ju
– sequence: 7
  givenname: Jewon
  surname: Jeong
  fullname: Jeong, Jewon
– sequence: 8
  givenname: Youngsoo
  surname: Lee
  fullname: Lee, Youngsoo
– sequence: 9
  givenname: Kiok
  surname: Jin
  fullname: Jin, Kiok
– sequence: 10
  givenname: Rohee
  surname: Park
  fullname: Park, Rohee
– sequence: 11
  givenname: Jihoon
  orcidid: 0000-0002-9280-414X
  surname: Kim
  fullname: Kim, Jihoon
– sequence: 12
  givenname: Howook
  surname: Jeon
  fullname: Jeon, Howook
– sequence: 13
  givenname: Namkug
  orcidid: 0000-0002-3438-2217
  surname: Kim
  fullname: Kim, Namkug
– sequence: 14
  givenname: Jaeyoun
  orcidid: 0000-0002-7664-9493
  surname: Yi
  fullname: Yi, Jaeyoun
– sequence: 15
  givenname: Donghoon
  orcidid: 0000-0001-7438-7349
  surname: Yu
  fullname: Yu, Donghoon
– sequence: 16
  givenname: Byeongsoo
  orcidid: 0000-0001-5465-2950
  surname: Kim
  fullname: Kim, Byeongsoo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34636634$$D View this record in MEDLINE/PubMed
BookMark eNp1kUlrwzAQhUVJaZb2B_RSdOzFqWR5kY_F3QKGQknOQpbHiYKXVJJb8u-rkIRCoadh4HtvmPemaNT1HSB0S8mc0og_GFnpvpmHJKQhiWgSXaAJjcM0oIzGIzQhhLGARzQbo6m1W0JoFPP0Co1ZlLAkYdEEbfO-c9C5oJQWKrxo5RrwBzij4Us2uNzjldXdGj8B7HAB0nSHre4NXnidsU477bliODDagnfxU6673mqLv7Xb4HwD1uF8eY0ua9lYuDnNGVq9PC_zt6B4f13kj0WgGKEuUCrlmSQZSdKYKQVQS56ULFEkVFXMaxUxHic1oyRmWVZympa151jtX4OqKtkM3R99d6b_HPxt0WqroGlkB_1gRRhzGvKUefsZujuhQ9lCJXZGt9LsxTkfD6RHQJneWgO1UNpJp31oRupGUCIOTYhjE-K3Ca-kf5Rn8_81P6epjQo
CitedBy_id crossref_primary_10_1007_s00330_023_09833_4
crossref_primary_10_1097_RTI_0000000000000705
crossref_primary_10_1093_rheumatology_keac234
crossref_primary_10_1186_s41747_024_00539_w
crossref_primary_10_1055_s_0042_1755571
crossref_primary_10_1016_j_jrras_2024_100932
crossref_primary_10_3390_diagnostics12041002
crossref_primary_10_1007_s44196_023_00330_6
crossref_primary_10_1002_ima_23188
crossref_primary_10_1007_s10278_024_01245_0
crossref_primary_10_1016_j_jrras_2024_101022
crossref_primary_10_1038_s41598_022_24721_5
crossref_primary_10_3390_jimaging9120277
crossref_primary_10_3390_jimaging8090238
crossref_primary_10_3390_diagnostics13132303
crossref_primary_10_6009_jjrt_2024_1446
crossref_primary_10_1016_j_eij_2024_100499
crossref_primary_10_1007_s00521_024_09777_w
crossref_primary_10_1016_j_vrih_2023_08_005
crossref_primary_10_1093_rheumatology_keae491
crossref_primary_10_1007_s11042_023_17469_1
crossref_primary_10_3348_kjr_2023_0088
crossref_primary_10_2139_ssrn_4058016
crossref_primary_10_2174_0115734056248176230923143105
crossref_primary_10_1016_j_mlwa_2023_100492
crossref_primary_10_1148_radiol_220182
crossref_primary_10_3389_fmed_2024_1446936
crossref_primary_10_1097_RLI_0000000000001103
crossref_primary_10_1038_s41467_023_37720_5
crossref_primary_10_3390_diagnostics15030278
crossref_primary_10_1109_ACCESS_2024_3350430
crossref_primary_10_15212_RADSCI_2023_0011
crossref_primary_10_1109_ACCESS_2024_3401074
crossref_primary_10_1007_s00259_025_07101_9
crossref_primary_10_1016_j_compeleceng_2022_108450
crossref_primary_10_3348_jksr_2024_0032
crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1277
crossref_primary_10_3389_fimmu_2023_1249511
crossref_primary_10_4046_trd_2024_0062
crossref_primary_10_1186_s12890_024_03092_9
crossref_primary_10_1016_j_esmoop_2023_102043
crossref_primary_10_3233_XST_230218
crossref_primary_10_3390_diagnostics13142333
crossref_primary_10_1080_10447318_2023_2254618
crossref_primary_10_1038_s41598_024_54954_5
crossref_primary_10_1097_RCT_0000000000001693
crossref_primary_10_1111_resp_14511
crossref_primary_10_4103_japt_japt_13_23
crossref_primary_10_1186_s12890_024_03344_8
crossref_primary_10_1016_j_clinimag_2022_12_010
crossref_primary_10_1016_j_imavis_2024_104918
crossref_primary_10_1016_j_eswa_2023_120209
crossref_primary_10_31185_wjcms_147
crossref_primary_10_1016_j_compbiomed_2023_106574
crossref_primary_10_1007_s00330_022_08973_3
crossref_primary_10_1007_s10278_023_00832_x
crossref_primary_10_3390_diagnostics12123038
crossref_primary_10_1097_RCT_0000000000001484
crossref_primary_10_3348_kjr_2023_1281
crossref_primary_10_3390_diagnostics13081387
crossref_primary_10_1016_j_resinv_2023_08_006
crossref_primary_10_1109_ACCESS_2024_3367430
crossref_primary_10_1136_bmjresp_2023_002226
crossref_primary_10_1148_ryct_230287
crossref_primary_10_1007_s11831_023_10006_1
crossref_primary_10_1007_s11517_024_03055_6
crossref_primary_10_1016_S2589_7500_22_00230_8
crossref_primary_10_1371_journal_pone_0304915
crossref_primary_10_35711_aimi_v3_i1_1
Cites_doi 10.1097/RLI.0000000000000574
10.1038/s41591-020-0942-0
10.1007/s10278-010-9290-9
10.1016/S2213-2600(18)30286-8
10.1155/2019/9658350
10.1007/s11548-011-0618-9
10.1016/j.ijmedinf.2003.11.024
10.1016/S2213-2600(16)30033-9
10.1148/radiol.12112516
10.1148/radiol.2281020126
10.3348/kjr.2020.0603
10.1007/s10278-017-0028-9
10.1186/s12890-017-0418-2
10.1136/thoraxjnl-2015-207252
10.1007/s10278-019-00254-8
10.1097/RTI.0b013e3182a21969
10.1513/AnnalsATS.201701-035OC
10.1164/rccm.201104-0668OC
10.1007/s10278-013-9619-2
10.1164/rccm.201807-1255ST
10.1164/rccm.201308-1483ST
10.1037/h0031619
10.1164/rccm.2009-040GL
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.2021204164
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 197
ExternalDocumentID 34636634
10_1148_radiol_2021204164
Genre Journal Article
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
ACRZS
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
ZKG
7X8
ID FETCH-LOGICAL-c301t-cc789a0906753cceefa86b36c02cd58fc43856f3105399b817bf3cc3f587eddb3
ISSN 0033-8419
1527-1315
IngestDate Thu Oct 02 12:07:36 EDT 2025
Wed Feb 19 02:26:45 EST 2025
Wed Oct 01 01:19:12 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c301t-cc789a0906753cceefa86b36c02cd58fc43856f3105399b817bf3cc3f587eddb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5233-6687
0000-0003-3508-2870
0000-0001-7438-7349
0000-0002-7664-9493
0000-0002-9280-414X
0000-0003-4600-5352
0000-0003-0271-7884
0000-0002-3438-2217
0000-0001-5465-2950
0000-0002-2173-2193
0000-0003-0486-4626
PMID 34636634
PQID 2581287375
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2581287375
pubmed_primary_34636634
crossref_citationtrail_10_1148_radiol_2021204164
crossref_primary_10_1148_radiol_2021204164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2022
References r2
r3
r4
r5
r6
r7
r8
r9
r10
r21
r20
r12
r23
r11
r22
r14
r13
r24
r16
r15
r18
r17
r1
34636638 - Radiology. 2021 Oct 12;:210731
References_xml – ident: r21
  doi: 10.1097/RLI.0000000000000574
– ident: r20
  doi: 10.1038/s41591-020-0942-0
– ident: r15
  doi: 10.1007/s10278-010-9290-9
– ident: r6
  doi: 10.1016/S2213-2600(18)30286-8
– ident: r8
  doi: 10.1155/2019/9658350
– ident: r9
  doi: 10.1007/s11548-011-0618-9
– ident: r17
  doi: 10.1016/j.ijmedinf.2003.11.024
– ident: r4
  doi: 10.1016/S2213-2600(16)30033-9
– ident: r3
  doi: 10.1148/radiol.12112516
– ident: r18
  doi: 10.1148/radiol.2281020126
– ident: r10
  doi: 10.3348/kjr.2020.0603
– ident: r7
  doi: 10.1007/s10278-017-0028-9
– ident: r23
  doi: 10.1186/s12890-017-0418-2
– ident: r2
  doi: 10.1136/thoraxjnl-2015-207252
– ident: r13
  doi: 10.1007/s10278-019-00254-8
– ident: r22
  doi: 10.1097/RTI.0b013e3182a21969
– ident: r24
  doi: 10.1513/AnnalsATS.201701-035OC
– ident: r5
  doi: 10.1164/rccm.201104-0668OC
– ident: r16
  doi: 10.1007/s10278-013-9619-2
– ident: r1
  doi: 10.1164/rccm.201807-1255ST
– ident: r11
  doi: 10.1164/rccm.201308-1483ST
– ident: r14
  doi: 10.1037/h0031619
– ident: r12
  doi: 10.1164/rccm.2009-040GL
– reference: 34636638 - Radiology. 2021 Oct 12;:210731
SSID ssj0014587
Score 2.6237786
Snippet Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 187
SubjectTerms Deep Learning
Diagnosis, Differential
Female
Humans
Lung - diagnostic imaging
Lung Diseases, Interstitial - diagnostic imaging
Male
Middle Aged
Radiographic Image Interpretation, Computer-Assisted - methods
Reproducibility of Results
Retrospective Studies
Tomography, X-Ray Computed - methods
Title Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT
URI https://www.ncbi.nlm.nih.gov/pubmed/34636634
https://www.proquest.com/docview/2581287375
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1527-1315
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014587
  issn: 0033-8419
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1527-1315
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014587
  issn: 0033-8419
  databaseCode: GX1
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflJSNxIgoksZO4RwigsqIcdrtSb5HtONpFkK6WVGj5DfxoZmznUcoilkvaRs6k8XyZl2fGhDxX6azSUuowZpKHXNdVqECrwM9K8iQHsawwNLD4lM2P-P4qXU0mP0dZS5tWvdQ__lhX8j9chXPAV6ySvQRne6JwAr4Df-EIHIbjP_HYtpZq2hBVURV8-Ir5Nwd2iyy4CxqWLiHgrTGnXSNVlzZp44CYJYDx8o8bHOMWauDTpt6d-Kq3ArfTCorl2IY9kNXJVjC-OF77SPxaDjj57iPR83MT7Jthtf_QRWdhcBO8MW5WRilBh3BZsPD9wH04IklG4QgvYhkLBfdy0HipmuTAfVe32YldFiU7-HJCNPYq2Onj2OXv7op6juULZ_aRwc8HFRyBcckHvdat5f-m7vokRFeSLUpHohxIXCFXE9ARdiOQVZ8wFPNUuA6s_gH9GjmQeLXzL7atnAtcF2vCLG-SG973oK8dkG6RiWluk2sLn11xh3zewhO1eKI9nqg6pxZPFPFEOzxRwBMd44kinqjHE-3xRBFP1OKJFsu75Oj9u2UxD_1eHKEGFdCGWudiJqMZOphMwytcS5Epluko0VUqas2ZSLManAVsdaxEnKsaxrEaJs1UlWL3yF6zbswDQvMaewCi4YsapBbKgBcvJLiqqYkqrack6uau1L5RPe6X8qW8kGNT8qK_5NR1afnb4GcdQ0qQpbhAJhuz3nwrkxTMXZGzPJ2S-45TPTmGnfUyxh9e5laPyPXhHXlM9tqzjXkCRmyrnlps_QIBBJqU
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-based+Image+Retrieval+by+Using+Deep+Learning+for+Interstitial+Lung+Disease+Diagnosis+with+Chest+CT&rft.jtitle=Radiology&rft.au=Choe%2C+Jooae&rft.au=Hwang%2C+Hye+Jeon&rft.au=Seo%2C+Joon+Beom&rft.au=Lee%2C+Sang+Min&rft.date=2022-01-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=302&rft.issue=1&rft.spage=187&rft.epage=197&rft_id=info:doi/10.1148%2Fradiol.2021204164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2021204164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon