Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT
Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can ai...
Saved in:
| Published in | Radiology Vol. 302; no. 1; pp. 187 - 197 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0033-8419 1527-1315 1527-1315 |
| DOI | 10.1148/radiol.2021204164 |
Cover
| Abstract | Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3];
< .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively;
< .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively;
< .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively;
= .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021
See also the editorial by Wielpütz in this issue. |
|---|---|
| AbstractList | Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; P < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; P < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; P < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; P = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; P < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; P < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; P < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; P = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue. Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader variability. Purpose To investigate whether a proposed content-based image retrieval (CBIR) of similar chest CT images by using deep learning can aid in the diagnosis of ILD by readers with different levels of experience. Materials and Methods This retrospective study included patients with confirmed ILD after multidisciplinary discussion and available CT images identified between January 2000 and December 2015. Database was composed of four disease classes: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. Eighty patients were selected as queries from the database. The proposed CBIR retrieved the top three similar CT images with diagnosis from the database by comparing the extent and distribution of different regional disease patterns quantified by a deep learning algorithm. Eight readers with varying experience interpreted the query CT images and provided their most probable diagnosis in two reading sessions 2 weeks apart, before and after applying CBIR. Diagnostic accuracy was analyzed by using McNemar test and generalized estimating equation, and interreader agreement was analyzed by using Fleiss κ. Results A total of 288 patients were included (mean age, 58 years ± 11 [standard deviation]; 145 women). After applying CBIR, the overall diagnostic accuracy improved in all readers (before CBIR, 46.1% [95% CI: 37.1, 55.3]; after CBIR, 60.9% [95% CI: 51.8, 69.3]; < .001). In terms of disease category, the diagnostic accuracy improved after applying CBIR in UIP (before vs after CBIR, 52.4% vs 72.8%, respectively; < .001) and NSIP cases (before vs after CBIR, 42.9% vs 61.6%, respectively; < .001). Interreader agreement improved after CBIR (before vs after CBIR Fleiss κ, 0.32 vs 0.47, respectively; = .005). Conclusion The proposed content-based image retrieval system for chest CT images with deep learning improved the diagnostic accuracy of interstitial lung disease and interreader agreement in readers with different levels of experience. © RSNA, 2021 See also the editorial by Wielpütz in this issue. |
| Author | Kim, Namkug Hwang, Hye Jeon Jeong, Jewon Jeon, Howook Park, Rohee Lee, Sang Min Yun, Jihye Yu, Donghoon Jin, Kiok Kim, Min-Ju Kim, Jihoon Choe, Jooae Yi, Jaeyoun Lee, Youngsoo Kim, Byeongsoo Seo, Joon Beom |
| Author_xml | – sequence: 1 givenname: Jooae orcidid: 0000-0003-0486-4626 surname: Choe fullname: Choe, Jooae – sequence: 2 givenname: Hye Jeon orcidid: 0000-0003-3508-2870 surname: Hwang fullname: Hwang, Hye Jeon – sequence: 3 givenname: Joon Beom orcidid: 0000-0003-0271-7884 surname: Seo fullname: Seo, Joon Beom – sequence: 4 givenname: Sang Min orcidid: 0000-0002-2173-2193 surname: Lee fullname: Lee, Sang Min – sequence: 5 givenname: Jihye orcidid: 0000-0002-5233-6687 surname: Yun fullname: Yun, Jihye – sequence: 6 givenname: Min-Ju orcidid: 0000-0003-4600-5352 surname: Kim fullname: Kim, Min-Ju – sequence: 7 givenname: Jewon surname: Jeong fullname: Jeong, Jewon – sequence: 8 givenname: Youngsoo surname: Lee fullname: Lee, Youngsoo – sequence: 9 givenname: Kiok surname: Jin fullname: Jin, Kiok – sequence: 10 givenname: Rohee surname: Park fullname: Park, Rohee – sequence: 11 givenname: Jihoon orcidid: 0000-0002-9280-414X surname: Kim fullname: Kim, Jihoon – sequence: 12 givenname: Howook surname: Jeon fullname: Jeon, Howook – sequence: 13 givenname: Namkug orcidid: 0000-0002-3438-2217 surname: Kim fullname: Kim, Namkug – sequence: 14 givenname: Jaeyoun orcidid: 0000-0002-7664-9493 surname: Yi fullname: Yi, Jaeyoun – sequence: 15 givenname: Donghoon orcidid: 0000-0001-7438-7349 surname: Yu fullname: Yu, Donghoon – sequence: 16 givenname: Byeongsoo orcidid: 0000-0001-5465-2950 surname: Kim fullname: Kim, Byeongsoo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34636634$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUlrwzAQhUVJaZb2B_RSdOzFqWR5kY_F3QKGQknOQpbHiYKXVJJb8u-rkIRCoadh4HtvmPemaNT1HSB0S8mc0og_GFnpvpmHJKQhiWgSXaAJjcM0oIzGIzQhhLGARzQbo6m1W0JoFPP0Co1ZlLAkYdEEbfO-c9C5oJQWKrxo5RrwBzij4Us2uNzjldXdGj8B7HAB0nSHre4NXnidsU477bliODDagnfxU6673mqLv7Xb4HwD1uF8eY0ua9lYuDnNGVq9PC_zt6B4f13kj0WgGKEuUCrlmSQZSdKYKQVQS56ULFEkVFXMaxUxHic1oyRmWVZympa151jtX4OqKtkM3R99d6b_HPxt0WqroGlkB_1gRRhzGvKUefsZujuhQ9lCJXZGt9LsxTkfD6RHQJneWgO1UNpJp31oRupGUCIOTYhjE-K3Ca-kf5Rn8_81P6epjQo |
| CitedBy_id | crossref_primary_10_1007_s00330_023_09833_4 crossref_primary_10_1097_RTI_0000000000000705 crossref_primary_10_1093_rheumatology_keac234 crossref_primary_10_1186_s41747_024_00539_w crossref_primary_10_1055_s_0042_1755571 crossref_primary_10_1016_j_jrras_2024_100932 crossref_primary_10_3390_diagnostics12041002 crossref_primary_10_1007_s44196_023_00330_6 crossref_primary_10_1002_ima_23188 crossref_primary_10_1007_s10278_024_01245_0 crossref_primary_10_1016_j_jrras_2024_101022 crossref_primary_10_1038_s41598_022_24721_5 crossref_primary_10_3390_jimaging9120277 crossref_primary_10_3390_jimaging8090238 crossref_primary_10_3390_diagnostics13132303 crossref_primary_10_6009_jjrt_2024_1446 crossref_primary_10_1016_j_eij_2024_100499 crossref_primary_10_1007_s00521_024_09777_w crossref_primary_10_1016_j_vrih_2023_08_005 crossref_primary_10_1093_rheumatology_keae491 crossref_primary_10_1007_s11042_023_17469_1 crossref_primary_10_3348_kjr_2023_0088 crossref_primary_10_2139_ssrn_4058016 crossref_primary_10_2174_0115734056248176230923143105 crossref_primary_10_1016_j_mlwa_2023_100492 crossref_primary_10_1148_radiol_220182 crossref_primary_10_3389_fmed_2024_1446936 crossref_primary_10_1097_RLI_0000000000001103 crossref_primary_10_1038_s41467_023_37720_5 crossref_primary_10_3390_diagnostics15030278 crossref_primary_10_1109_ACCESS_2024_3350430 crossref_primary_10_15212_RADSCI_2023_0011 crossref_primary_10_1109_ACCESS_2024_3401074 crossref_primary_10_1007_s00259_025_07101_9 crossref_primary_10_1016_j_compeleceng_2022_108450 crossref_primary_10_3348_jksr_2024_0032 crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1277 crossref_primary_10_3389_fimmu_2023_1249511 crossref_primary_10_4046_trd_2024_0062 crossref_primary_10_1186_s12890_024_03092_9 crossref_primary_10_1016_j_esmoop_2023_102043 crossref_primary_10_3233_XST_230218 crossref_primary_10_3390_diagnostics13142333 crossref_primary_10_1080_10447318_2023_2254618 crossref_primary_10_1038_s41598_024_54954_5 crossref_primary_10_1097_RCT_0000000000001693 crossref_primary_10_1111_resp_14511 crossref_primary_10_4103_japt_japt_13_23 crossref_primary_10_1186_s12890_024_03344_8 crossref_primary_10_1016_j_clinimag_2022_12_010 crossref_primary_10_1016_j_imavis_2024_104918 crossref_primary_10_1016_j_eswa_2023_120209 crossref_primary_10_31185_wjcms_147 crossref_primary_10_1016_j_compbiomed_2023_106574 crossref_primary_10_1007_s00330_022_08973_3 crossref_primary_10_1007_s10278_023_00832_x crossref_primary_10_3390_diagnostics12123038 crossref_primary_10_1097_RCT_0000000000001484 crossref_primary_10_3348_kjr_2023_1281 crossref_primary_10_3390_diagnostics13081387 crossref_primary_10_1016_j_resinv_2023_08_006 crossref_primary_10_1109_ACCESS_2024_3367430 crossref_primary_10_1136_bmjresp_2023_002226 crossref_primary_10_1148_ryct_230287 crossref_primary_10_1007_s11831_023_10006_1 crossref_primary_10_1007_s11517_024_03055_6 crossref_primary_10_1016_S2589_7500_22_00230_8 crossref_primary_10_1371_journal_pone_0304915 crossref_primary_10_35711_aimi_v3_i1_1 |
| Cites_doi | 10.1097/RLI.0000000000000574 10.1038/s41591-020-0942-0 10.1007/s10278-010-9290-9 10.1016/S2213-2600(18)30286-8 10.1155/2019/9658350 10.1007/s11548-011-0618-9 10.1016/j.ijmedinf.2003.11.024 10.1016/S2213-2600(16)30033-9 10.1148/radiol.12112516 10.1148/radiol.2281020126 10.3348/kjr.2020.0603 10.1007/s10278-017-0028-9 10.1186/s12890-017-0418-2 10.1136/thoraxjnl-2015-207252 10.1007/s10278-019-00254-8 10.1097/RTI.0b013e3182a21969 10.1513/AnnalsATS.201701-035OC 10.1164/rccm.201104-0668OC 10.1007/s10278-013-9619-2 10.1164/rccm.201807-1255ST 10.1164/rccm.201308-1483ST 10.1037/h0031619 10.1164/rccm.2009-040GL |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1148/radiol.2021204164 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1527-1315 |
| EndPage | 197 |
| ExternalDocumentID | 34636634 10_1148_radiol_2021204164 |
| Genre | Journal Article |
| GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP ACRZS AFOSN CGR CUY CVF ECM EIF NPM VXZ ZKG 7X8 |
| ID | FETCH-LOGICAL-c301t-cc789a0906753cceefa86b36c02cd58fc43856f3105399b817bf3cc3f587eddb3 |
| ISSN | 0033-8419 1527-1315 |
| IngestDate | Thu Oct 02 12:07:36 EDT 2025 Wed Feb 19 02:26:45 EST 2025 Wed Oct 01 01:19:12 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c301t-cc789a0906753cceefa86b36c02cd58fc43856f3105399b817bf3cc3f587eddb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5233-6687 0000-0003-3508-2870 0000-0001-7438-7349 0000-0002-7664-9493 0000-0002-9280-414X 0000-0003-4600-5352 0000-0003-0271-7884 0000-0002-3438-2217 0000-0001-5465-2950 0000-0002-2173-2193 0000-0003-0486-4626 |
| PMID | 34636634 |
| PQID | 2581287375 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2581287375 pubmed_primary_34636634 crossref_citationtrail_10_1148_radiol_2021204164 crossref_primary_10_1148_radiol_2021204164 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Radiology |
| PublicationTitleAlternate | Radiology |
| PublicationYear | 2022 |
| References | r2 r3 r4 r5 r6 r7 r8 r9 r10 r21 r20 r12 r23 r11 r22 r14 r13 r24 r16 r15 r18 r17 r1 34636638 - Radiology. 2021 Oct 12;:210731 |
| References_xml | – ident: r21 doi: 10.1097/RLI.0000000000000574 – ident: r20 doi: 10.1038/s41591-020-0942-0 – ident: r15 doi: 10.1007/s10278-010-9290-9 – ident: r6 doi: 10.1016/S2213-2600(18)30286-8 – ident: r8 doi: 10.1155/2019/9658350 – ident: r9 doi: 10.1007/s11548-011-0618-9 – ident: r17 doi: 10.1016/j.ijmedinf.2003.11.024 – ident: r4 doi: 10.1016/S2213-2600(16)30033-9 – ident: r3 doi: 10.1148/radiol.12112516 – ident: r18 doi: 10.1148/radiol.2281020126 – ident: r10 doi: 10.3348/kjr.2020.0603 – ident: r7 doi: 10.1007/s10278-017-0028-9 – ident: r23 doi: 10.1186/s12890-017-0418-2 – ident: r2 doi: 10.1136/thoraxjnl-2015-207252 – ident: r13 doi: 10.1007/s10278-019-00254-8 – ident: r22 doi: 10.1097/RTI.0b013e3182a21969 – ident: r24 doi: 10.1513/AnnalsATS.201701-035OC – ident: r5 doi: 10.1164/rccm.201104-0668OC – ident: r16 doi: 10.1007/s10278-013-9619-2 – ident: r1 doi: 10.1164/rccm.201807-1255ST – ident: r11 doi: 10.1164/rccm.201308-1483ST – ident: r14 doi: 10.1037/h0031619 – ident: r12 doi: 10.1164/rccm.2009-040GL – reference: 34636638 - Radiology. 2021 Oct 12;:210731 |
| SSID | ssj0014587 |
| Score | 2.6237786 |
| Snippet | Background Evaluation of interstitial lung disease (ILD) at CT is a challenging task that requires experience and is subject to substantial interreader... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 187 |
| SubjectTerms | Deep Learning Diagnosis, Differential Female Humans Lung - diagnostic imaging Lung Diseases, Interstitial - diagnostic imaging Male Middle Aged Radiographic Image Interpretation, Computer-Assisted - methods Reproducibility of Results Retrospective Studies Tomography, X-Ray Computed - methods |
| Title | Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34636634 https://www.proquest.com/docview/2581287375 |
| Volume | 302 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1527-1315 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0014587 issn: 0033-8419 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1527-1315 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0014587 issn: 0033-8419 databaseCode: GX1 dateStart: 20210101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflJSNxIgoksZO4RwigsqIcdrtSb5HtONpFkK6WVGj5DfxoZmznUcoilkvaRs6k8XyZl2fGhDxX6azSUuowZpKHXNdVqECrwM9K8iQHsawwNLD4lM2P-P4qXU0mP0dZS5tWvdQ__lhX8j9chXPAV6ySvQRne6JwAr4Df-EIHIbjP_HYtpZq2hBVURV8-Ir5Nwd2iyy4CxqWLiHgrTGnXSNVlzZp44CYJYDx8o8bHOMWauDTpt6d-Kq3ArfTCorl2IY9kNXJVjC-OF77SPxaDjj57iPR83MT7Jthtf_QRWdhcBO8MW5WRilBh3BZsPD9wH04IklG4QgvYhkLBfdy0HipmuTAfVe32YldFiU7-HJCNPYq2Onj2OXv7op6juULZ_aRwc8HFRyBcckHvdat5f-m7vokRFeSLUpHohxIXCFXE9ARdiOQVZ8wFPNUuA6s_gH9GjmQeLXzL7atnAtcF2vCLG-SG973oK8dkG6RiWluk2sLn11xh3zewhO1eKI9nqg6pxZPFPFEOzxRwBMd44kinqjHE-3xRBFP1OKJFsu75Oj9u2UxD_1eHKEGFdCGWudiJqMZOphMwytcS5Epluko0VUqas2ZSLManAVsdaxEnKsaxrEaJs1UlWL3yF6zbswDQvMaewCi4YsapBbKgBcvJLiqqYkqrack6uau1L5RPe6X8qW8kGNT8qK_5NR1afnb4GcdQ0qQpbhAJhuz3nwrkxTMXZGzPJ2S-45TPTmGnfUyxh9e5laPyPXhHXlM9tqzjXkCRmyrnlps_QIBBJqU |
| linkProvider | Geneva Foundation for Medical Education and Research |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-based+Image+Retrieval+by+Using+Deep+Learning+for+Interstitial+Lung+Disease+Diagnosis+with+Chest+CT&rft.jtitle=Radiology&rft.au=Choe%2C+Jooae&rft.au=Hwang%2C+Hye+Jeon&rft.au=Seo%2C+Joon+Beom&rft.au=Lee%2C+Sang+Min&rft.date=2022-01-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=302&rft.issue=1&rft.spage=187&rft.epage=197&rft_id=info:doi/10.1148%2Fradiol.2021204164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2021204164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |