A Unified Representation of Control Logic in Human-Ultrasound Machine Interaction

Advances in human-computer interaction (HCI) technologies have granted sonographers and radiologists a much improved user experience when operating different ultrasound (US) machines. Continued HCI improvements in US would benefit from a systematic study of the HCI control logic used in this domain....

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 7; pp. 3007 - 3014
Main Authors Zhu, Hongzhi, Halwani, Yasmin, Rohling, Robert, Fels, Sidney, Salcudean, Septimiu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3150242

Cover

More Information
Summary:Advances in human-computer interaction (HCI) technologies have granted sonographers and radiologists a much improved user experience when operating different ultrasound (US) machines. Continued HCI improvements in US would benefit from a systematic study of the HCI control logic used in this domain. Such a study has not been presented previously and is the subject of this paper. We surveyed sonographers to determine the most frequently used controls in US machines. We standardized the representation of the US machine HCI control logic by using the unified modelling language (UML). We used UML diagrams to analyze the HCI control logic of 10 different cart-based US machines from several major manufacturers, and we discovered that the control logic for the most frequently used functions are identical. While this control logic does not follow an established standard, it has been commonly adopted. Using the UML for the visualization and formulation of control logic, we can target logically optimal interactions (whose operation steps cannot be further reduced), e.g., adjustment of B-mode gain, frequency and depth, and can derive methods to simplify logically sub-optimal interactions, e.g., the pointing and selecting operation, as well as image measurements.Our study provides insights into existing HCI approaches used in US machines and establishes a rigorous UML-based framework for future US machine design to improve interoperability, efficiency and ease-of-use.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2022.3150242