Effectiveness of deep learning in early‐stage oral cancer detections and classification using histogram of oriented gradients

Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a primary global health concern, accounting for 177,384 deaths in 2018; most cases occur in low‐ and middle‐income countries. Automated disease i...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 41; no. 6
Main Authors Dutta, Chiranjit, Sandhya, Prasad, Vidhya, Kandasamy, Rajalakshmi, Ramanathan, Ramya, Devasahayam, Madhubabu, Kotakonda
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2024
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
DOI10.1111/exsy.13439

Cover

Abstract Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a primary global health concern, accounting for 177,384 deaths in 2018; most cases occur in low‐ and middle‐income countries. Automated disease identification in the oral cavity may be facilitated by the ability to identify both possibly and definite malignant lesions. This study aimed to examine the evidence currently available on the effectiveness of AI in diagnosing OC. They highlighted the ability of AI to analyse and identify the early stages of OC. Furthermore, radial basis function networks (RBFN) were employed to develop automated systems to generate intricate patterns for this challenging operation. The stochastic gradient descent algorithm (SGDA) selected the model parameters that best matched the predicted and observed results. It can be used. The initial data was collected for this study to evaluate. Two deep learning‐based computer vision algorithms have been developed to recognize and categorize oral lesions, which is necessary for the early detection of oral cancer. Several examples of HoG include the Canny edge detector, SIFT (scale invariant and feature transform), and SIFT (scale invariant and feature transform). In computer vision and image processing, it is used to find objects. We investigated the potential uses of deep learning‐based computer vision techniques in oral cancer and the viability of an automated system for OC recognition based on photographic images. That made calculations to determine the accuracy, sensitivity, specificity, and receiver operating characteristic curve areas across all validation datasets, including internal, external, and clinical validation (AUC). The RBFN‐SDC model outperformed all others. For 1000 data points, the accuracy of the RBFN‐SDC model is 99.99%, while the accuracy of the R‐CNN, CNN, DCNN, and SVM models is 91.54%, 90.14%, 93.89%, and 94.87%, respectively.
AbstractList Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a primary global health concern, accounting for 177,384 deaths in 2018; most cases occur in low‐ and middle‐income countries. Automated disease identification in the oral cavity may be facilitated by the ability to identify both possibly and definite malignant lesions. This study aimed to examine the evidence currently available on the effectiveness of AI in diagnosing OC. They highlighted the ability of AI to analyse and identify the early stages of OC. Furthermore, radial basis function networks (RBFN) were employed to develop automated systems to generate intricate patterns for this challenging operation. The stochastic gradient descent algorithm (SGDA) selected the model parameters that best matched the predicted and observed results. It can be used. The initial data was collected for this study to evaluate. Two deep learning‐based computer vision algorithms have been developed to recognize and categorize oral lesions, which is necessary for the early detection of oral cancer. Several examples of HoG include the Canny edge detector, SIFT (scale invariant and feature transform), and SIFT (scale invariant and feature transform). In computer vision and image processing, it is used to find objects. We investigated the potential uses of deep learning‐based computer vision techniques in oral cancer and the viability of an automated system for OC recognition based on photographic images. That made calculations to determine the accuracy, sensitivity, specificity, and receiver operating characteristic curve areas across all validation datasets, including internal, external, and clinical validation (AUC). The RBFN‐SDC model outperformed all others. For 1000 data points, the accuracy of the RBFN‐SDC model is 99.99%, while the accuracy of the R‐CNN, CNN, DCNN, and SVM models is 91.54%, 90.14%, 93.89%, and 94.87%, respectively.
Author Madhubabu, Kotakonda
Sandhya, Prasad
Rajalakshmi, Ramanathan
Dutta, Chiranjit
Ramya, Devasahayam
Vidhya, Kandasamy
Author_xml – sequence: 1
  givenname: Chiranjit
  orcidid: 0009-0002-5805-9315
  surname: Dutta
  fullname: Dutta, Chiranjit
  email: chiranjd@srmist.edu.in
  organization: SRM Institute of Science and Technology, NCR Campus
– sequence: 2
  givenname: Prasad
  surname: Sandhya
  fullname: Sandhya, Prasad
  email: sandhya.p@vit.ac.in
  organization: Vellore Institute of Technology
– sequence: 3
  givenname: Kandasamy
  surname: Vidhya
  fullname: Vidhya, Kandasamy
  email: vidhyak@karunya.edu
  organization: Karunya Institute of Technology and Sciences
– sequence: 4
  givenname: Ramanathan
  surname: Rajalakshmi
  fullname: Rajalakshmi, Ramanathan
  organization: Panimalar Engineering College
– sequence: 5
  givenname: Devasahayam
  surname: Ramya
  fullname: Ramya, Devasahayam
  email: ramya.eee@sathyabama.ac.in
  organization: Sathyabama Institute of Science and Technology
– sequence: 6
  givenname: Kotakonda
  surname: Madhubabu
  fullname: Madhubabu, Kotakonda
  organization: Mahatma Gandhi Institute of Technology
BookMark eNp9kM9KAzEQxoNUsK1efIKAN2Frskmzm6OU-gcKHlTQ05ImszVlm9Rkq_akj-Az-iTudj2JOJcZht_3DfMNUM95BwgdUzKiTZ3BW9yOKONM7qE-5SJPCJO8h_okFSLhWUoO0CDGJSGEZpnoo_dpWYKu7Qs4iBH7EhuANa5ABWfdAluHm7Hafn18xlotAPugKqyV0xAatG613kWsnMG6UjHa0mrV7vAmtgZPNtZ-EdSq9fbBgqvB4GZh2jEeov1SVRGOfvoQ3V9M7yZXyezm8npyPks0I1Qmc86NkEzwMk-JMEalkmVyzIySQqcypYRncj4GKgWZc0M51bkpZZaO6TxjmrEhOul818E_byDWxdJvgmtOFoxwmTd2GW0o0lE6-BgDlIW29e6bOihbFZQUbcxFG3Oxi7mRnP6SrINdqbD9G6Yd_Gor2P5DFtOH28dO8w1lcZMM
CitedBy_id crossref_primary_10_1016_j_mex_2024_103034
crossref_primary_10_1038_s41598_025_89971_5
Cites_doi 10.1016/j.ctrv.2021.102263
10.1093/jnci/djy225
10.3322/caac.21492
10.3389/froh.2021.794248
10.31557/APJCP.2019.20.2.411
10.1117/1.JBO.26.6.065003
10.1016/j.eclinm.2020.100558
10.3390/diagnostics12081899
10.1016/j.canep.2016.03.012
10.3390/jcm10225326
10.1111/cdoe.12639
10.1136/bmjopen-2018-027661
10.3390/cancers13194751
10.1016/j.jksuci.2020.11.003
10.1007/s00498-021-00309-8
10.1177/0022034519894963
10.1259/dmfr.20160107
10.1109/TBCAS.2019.2918244
10.1007/978-3-030-50450-2_2
10.1117/1.JBO.22.6.060503
10.1038/s41598-019-44839-3
10.1111/jcpe.13574
10.33851/JMIS.2019.6.2.81
10.4038/cmj.v61i2.8289
10.1016/j.tice.2019.101322
10.1111/odi.13825
10.1002/cnr2.1293
10.3390/electronics10243158
10.3390/app10228285
10.1109/ACCESS.2019.2956751
10.4103/jomfp.JOMFP_215_19
10.3389/fonc.2021.626602
10.1117/1.JBO.26.8.086007
10.1016/j.pdpdt.2019.05.008
10.3390/cancers13061291
10.1007/978-3-030-50516-5_22
10.1109/ACCESS.2020.3010180
10.3390/cancers11091367
10.1016/j.jdent.2019.103226
10.1001/jamainternmed.2018.7117
10.1038/s41598-017-12320-8
10.1016/j.compmedimag.2018.07.001
10.1093/bioinformatics/btx724
10.1038/s41598-020-64509-z
10.1016/j.oraloncology.2021.105254
10.3390/electronics11244178
10.1371/journal.pone.0200721
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.13439
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Public Health
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_13439
EXSY13439
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3019-b44d69364f8206dda2937953da96c29210479b5e1960b4d141c8df97251b73c33
IEDL.DBID DR2
ISSN 0266-4720
IngestDate Fri Jul 25 23:37:34 EDT 2025
Wed Oct 01 02:56:06 EDT 2025
Thu Apr 24 23:01:17 EDT 2025
Wed Jan 22 17:19:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3019-b44d69364f8206dda2937953da96c29210479b5e1960b4d141c8df97251b73c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-5805-9315
PQID 3049893771
PQPubID 32130
PageCount 20
ParticipantIDs proquest_journals_3049893771
crossref_citationtrail_10_1111_exsy_13439
crossref_primary_10_1111_exsy_13439
wiley_primary_10_1111_exsy_13439_EXSY13439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 7
2017; 7
2019; 91
2019; 9
2021; 26
2019; 6
2020; 63
2019; 11
2019; 13
2017; 22
2017; 46
2020; 34
2020; 99
2020; 10
2021; 50
2022; 49
2022; 28
2018; 68
2020; 8
2021; 13
2021; 10
2020; 3
2021; 99
2021; 11
2019; 20
2020
2021; 116
2019; 26
2022; 12
2022; 34
2020; 27
2019; 179
2016; 61
2020; 24
2022; 2
2022; 11
2018; 34
2019; 111
2018; 13
2016; 44
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
World Health Organization (e_1_2_8_48_1) 2020
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Amin I. (e_1_2_8_6_1) 2021; 10
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 91
  year: 2019
  article-title: Convolutional neural networks for dental image diagnostics: A scoping review
  publication-title: Journal of Dentistry
– volume: 10
  start-page: 3158
  year: 2021
  article-title: Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases
  publication-title: Electronics
– volume: 7
  start-page: 176782
  year: 2019
  end-page: 176789
  article-title: Health big data classification using improved radial basis function neural network and nearest neighbor propagation algorithm
  publication-title: IEEE Access
– volume: 11
  start-page: 4178
  issue: 24
  year: 2022
  article-title: Handcrafted deep‐feature‐based brain tumor detection and classification using mri images
  publication-title: Electronics
– volume: 34
  start-page: 1215
  issue: 7
  year: 2018
  end-page: 1223
  article-title: Deep learning for tumor classification in imaging mass spectrometry
  publication-title: Bioinformatics
– volume: 50
  start-page: 124
  issue: 2
  year: 2021
  end-page: 129
  article-title: Economic cost of managing patients with oral potentially malignant disorders in Sri Lanka
  publication-title: Community Dentistry and Oral Epidemiology
– volume: 7
  start-page: 11979
  issue: 1
  year: 2017
  article-title: Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep learning
  publication-title: Scientific Reports
– volume: 13
  issue: 7
  year: 2018
  article-title: Computer‐aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning
  publication-title: PLoS One
– volume: 13
  start-page: 766
  year: 2019
  end-page: 780
  article-title: Texture‐map‐based branch‐collaborative network for oral cancer detection
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
– volume: 63
  year: 2020
  article-title: Automated oral squamous cell carcinoma identification using shape, texture and color features of whole image strips
  publication-title: Tissue Cell
– volume: 13
  start-page: 1291
  year: 2021
  article-title: Convolutional neural network‐based clinical predictors of oral dysplasia: Class activation map analysis of deep learning results
  publication-title: Cancers
– volume: 10
  start-page: 7531
  year: 2020
  article-title: Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis
  publication-title: Scientific Reports
– volume: 34
  start-page: 4546
  year: 2020
  end-page: 4553
  article-title: Capsule network based analysis of histopathological images of oral squamous cell carcinoma
  publication-title: Journal of King Saud University‐Computer and Information Sciences
– volume: 99
  year: 2021
  article-title: Radiomics and radiogenomics in head and neck squamous cell carcinoma: Potential contribution to patient management and challenges
  publication-title: Cancer Treatment Reviews
– volume: 9
  start-page: 8495
  year: 2019
  article-title: Deep learning for the radiographic detection of periodontal bone loss
  publication-title: Scientific Reports
– volume: 26
  start-page: 430
  year: 2019
  end-page: 435
  article-title: Deep convolutional neural networks for tongue squamous cell carcinoma classification using Raman spectroscopy
  publication-title: Photodiagnosis and Photodynamic Therapy
– volume: 13
  start-page: 4751
  year: 2021
  article-title: Machine‐learning assisted discrimination of precancerous and cancerous from healthy oral tissue based on multispectral autofluorescence lifetime imaging endoscopy
  publication-title: Cancers (Basel)
– volume: 111
  start-page: 923
  year: 2019
  end-page: 932
  article-title: An observational study of deep learning and automated evaluation of cervical images for cancer screening
  publication-title: Journal of the National Cancer Institute
– volume: 8
  start-page: 132677
  year: 2020
  end-page: 132693
  article-title: Automated detection and classification of oral lesions using deep learning for early detection of oral cancer
  publication-title: IEEE Access
– volume: 24
  start-page: 152
  year: 2020
  end-page: 156
  article-title: Role of artificial intelligence in diagnostic oral pathology—A modern approach
  publication-title: Journal of Oral and Maxillofacial Pathology
– volume: 49
  start-page: 260
  year: 2022
  end-page: 269
  article-title: Use of the deep learning approach to measure alveolar bone level
  publication-title: Journal of Clinical Periodontology
– volume: 10
  year: 2021
  article-title: Deep learning on oral squamous cell carcinoma ex vivo fluorescent confocal microscopy data: A feasibility study
  publication-title: Journal of Clinical Medicine
– volume: 9
  issue: 7
  year: 2019
  article-title: Economic burden of managing oral cancer patients in Sri Lanka: A cross‐sectional hospital‐based costing study
  publication-title: BMJ Open
– volume: 26
  year: 2021
  article-title: Automatic detection of oral cancer in smartphone‐based images using deep learning for early diagnosis
  publication-title: Journal of Biomedical Optics
– volume: 3
  year: 2020
  article-title: Study of morphological and textural features for classification of oral squamous cell carcinoma by traditional machine learning techniques
  publication-title: Cancer Reports
– volume: 2
  start-page: 1
  year: 2022
  end-page: 11
  article-title: Deep machine learning for oral cancer: From precise diagnosis to precision medicine
  publication-title: Frontiers in Oral Health
– volume: 99
  start-page: 143
  year: 2020
  end-page: 151
  article-title: Incidence trends of lip, oral cavity, and pharyngeal cancers: Global burden of disease 1990–2017
  publication-title: Journal of Dental Research
– volume: 6
  start-page: 81
  year: 2019
  end-page: 86
  article-title: Tissue level based deep learning framework for early detection of dysplasia in oral squamous epithelium
  publication-title: Journal of Multimedia Information System
– volume: 12
  start-page: 1899
  issue: 8
  year: 2022
  article-title: Early diagnosis of oral squamous cell carcinoma based on histopathological images using deep and hybrid learning approaches
  publication-title: Diagnostics
– volume: 44
  start-page: S43
  year: 2016
  end-page: S52
  article-title: Head and neck cancer burden and preventive measures in Central and South America
  publication-title: Cancer Epidemiology
– volume: 68
  start-page: 61
  year: 2018
  end-page: 70
  article-title: An effective teeth recognition method using label tree with cascade network structure
  publication-title: Computerized Medical Imaging and Graphics
– volume: 11
  year: 2021
  article-title: Deep learning for automatic segmentation of oral and oropharyngeal cancer using narrow band imaging: Preliminary experience in a clinical perspective
  publication-title: Frontiers in Oncology
– volume: 34
  start-page: 185
  issue: 1
  year: 2022
  end-page: 214
  article-title: Parameter calibration with stochastic gradient descent for interacting particle systems driven by neural networks
  publication-title: Mathematics of Control, Signals, and Systems
– year: 2020
– volume: 28
  start-page: 1123
  issue: 4
  year: 2022
  end-page: 1130
  article-title: A novel lightweight deep convolutional neural network for early detection of oral cancer
  publication-title: Oral Diseases
– volume: 26
  year: 2021
  article-title: Mobile‐based oral cancer classification for point‐of‐care screening
  publication-title: Journal of Biomedical Optics
– volume: 61
  start-page: 77
  issue: 2
  year: 2016
  end-page: 79
  article-title: Level of awareness of oral cancer and oral potentially malignant disorders among medical and dental undergraduates
  publication-title: The Ceylon Medical Journal
– volume: 46
  year: 2017
  article-title: Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: An ex vivo study
  publication-title: Dento Maxillo Facial Radiology
– volume: 10
  start-page: 254
  year: 2021
  article-title: Histopathological image analysis for oral squamous cell carcinoma classification using concatenated deep learning models
  publication-title: medRxiv
– volume: 11
  start-page: 1367
  issue: 9
  year: 2019
  article-title: Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin detection in surgical specimens from 102 patients using deep learning
  publication-title: Cancers
– volume: 20
  start-page: 411
  issue: 2
  year: 2019
  end-page: 415
  article-title: Risk assessment of smokeless tobacco among oral precancer and cancer patients in eastern developmental region of Nepal
  publication-title: Asian Pacific Journal of Cancer Prevention
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  end-page: 424
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 22
  start-page: 60503
  issue: 6
  year: 2017
  article-title: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging
  publication-title: Journal of Biomedical Optics
– volume: 179
  start-page: 293
  year: 2019
  end-page: 294
  article-title: Deep learning in medicine—Promise, progress, and challenges
  publication-title: JAMA Internal Medicine
– volume: 10
  start-page: 8285
  issue: 22
  year: 2020
  article-title: Deep learning‐based pixel‐wise lesion segmentation on oral squamous cell carcinoma images
  publication-title: Applied Sciences
– volume: 27
  year: 2020
  article-title: A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study
  publication-title: EClinicalMedicine
– volume: 116
  year: 2021
  article-title: The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer
  publication-title: Oral Oncology
– start-page: 11
  year: 2020
  end-page: 32
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ctrv.2021.102263
– ident: e_1_2_8_23_1
  doi: 10.1093/jnci/djy225
– ident: e_1_2_8_9_1
  doi: 10.3322/caac.21492
– ident: e_1_2_8_3_1
  doi: 10.3389/froh.2021.794248
– ident: e_1_2_8_41_1
  doi: 10.31557/APJCP.2019.20.2.411
– ident: e_1_2_8_44_1
  doi: 10.1117/1.JBO.26.6.065003
– ident: e_1_2_8_17_1
  doi: 10.1016/j.eclinm.2020.100558
– ident: e_1_2_8_16_1
  doi: 10.3390/diagnostics12081899
– volume-title: WHO report on cancer: Setting priorities, investing wisely and providing care for all
  year: 2020
  ident: e_1_2_8_48_1
– ident: e_1_2_8_38_1
  doi: 10.1016/j.canep.2016.03.012
– ident: e_1_2_8_43_1
  doi: 10.3390/jcm10225326
– ident: e_1_2_8_5_1
  doi: 10.1111/cdoe.12639
– ident: e_1_2_8_4_1
  doi: 10.1136/bmjopen-2018-027661
– ident: e_1_2_8_15_1
  doi: 10.3390/cancers13194751
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jksuci.2020.11.003
– ident: e_1_2_8_19_1
  doi: 10.1007/s00498-021-00309-8
– ident: e_1_2_8_14_1
  doi: 10.1177/0022034519894963
– ident: e_1_2_8_27_1
  doi: 10.1259/dmfr.20160107
– ident: e_1_2_8_12_1
  doi: 10.1109/TBCAS.2019.2918244
– ident: e_1_2_8_18_1
  doi: 10.1007/978-3-030-50450-2_2
– ident: e_1_2_8_21_1
  doi: 10.1117/1.JBO.22.6.060503
– ident: e_1_2_8_30_1
  doi: 10.1038/s41598-019-44839-3
– ident: e_1_2_8_31_1
  doi: 10.1111/jcpe.13574
– ident: e_1_2_8_20_1
  doi: 10.33851/JMIS.2019.6.2.81
– ident: e_1_2_8_25_1
  doi: 10.4038/cmj.v61i2.8289
– ident: e_1_2_8_40_1
  doi: 10.1016/j.tice.2019.101322
– ident: e_1_2_8_28_1
  doi: 10.1111/odi.13825
– ident: e_1_2_8_39_1
  doi: 10.1002/cnr2.1293
– ident: e_1_2_8_2_1
  doi: 10.3390/electronics10243158
– ident: e_1_2_8_34_1
  doi: 10.3390/app10228285
– ident: e_1_2_8_26_1
  doi: 10.1109/ACCESS.2019.2956751
– volume: 10
  start-page: 254
  year: 2021
  ident: e_1_2_8_6_1
  article-title: Histopathological image analysis for oral squamous cell carcinoma classification using concatenated deep learning models
  publication-title: medRxiv
– ident: e_1_2_8_29_1
  doi: 10.4103/jomfp.JOMFP_215_19
– ident: e_1_2_8_36_1
  doi: 10.3389/fonc.2021.626602
– ident: e_1_2_8_32_1
  doi: 10.1117/1.JBO.26.8.086007
– ident: e_1_2_8_49_1
  doi: 10.1016/j.pdpdt.2019.05.008
– ident: e_1_2_8_11_1
  doi: 10.3390/cancers13061291
– ident: e_1_2_8_33_1
  doi: 10.1007/978-3-030-50516-5_22
– ident: e_1_2_8_47_1
  doi: 10.1109/ACCESS.2020.3010180
– ident: e_1_2_8_22_1
  doi: 10.3390/cancers11091367
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jdent.2019.103226
– ident: e_1_2_8_46_1
  doi: 10.1001/jamainternmed.2018.7117
– ident: e_1_2_8_7_1
  doi: 10.1038/s41598-017-12320-8
– ident: e_1_2_8_50_1
  doi: 10.1016/j.compmedimag.2018.07.001
– ident: e_1_2_8_8_1
  doi: 10.1093/bioinformatics/btx724
– ident: e_1_2_8_13_1
  doi: 10.1038/s41598-020-64509-z
– ident: e_1_2_8_24_1
  doi: 10.1016/j.oraloncology.2021.105254
– ident: e_1_2_8_45_1
  doi: 10.3390/electronics11244178
– ident: e_1_2_8_35_1
  doi: 10.1371/journal.pone.0200721
SSID ssj0001776
Score 2.351171
Snippet Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial intelligence
artificial intelligence (AI)
Automation
Cancer
Computer vision
Data points
Deep learning
Effectiveness
histogram of oriented gradients (HoG)
Histograms
Image processing
Invariants
Lesions
Medical imaging
Oral cancer
oral cancer (OC)
Public health
Radial basis function
radial basis function networks (RBFN)
stochastic gradient descent algorithm (SGDA)
Title Effectiveness of deep learning in early‐stage oral cancer detections and classification using histogram of oriented gradients
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13439
https://www.proquest.com/docview/3049893771
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1468-0394
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-4720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LattAFB1MVt3UTdMQN24ZaDctyHg0o5EGuiklwRTSRVuDuwhiXjIhRTaWDEk2ySf0G_slvXck2U4IhXYnxEhIM_dxrnTmXELeWshxXhQ6guzgI-FZFmmhoFiJfRK7jMskqOuffZGTqfg8S2Y98qHbC9PoQ2w-uKFnhHiNDq5NtePk_qq6HjEOCRUCMOMy1FNft9pRLA2d5aDGkJFI43GrTYo0nu2l97PRFmLuAtWQaU775Lx7xoZgcjla12Zkbx7IN_7vSzwjT1sISj82NrNPer58TvpdewfaevsBuW2UjdtwSBcFdd4vadtnYk4vSupRHvn33S-AmHNPcbM_tWhGKxhaB5JXWVFdOmoRpCMrKRgCRbb9nAatY2SH4b0XKLgM8JfCCWSh1dULMj09-f5pErX9GiILYUJFRggnFZeiQFF45zRAiVQl3GklbaxiVIVQJvHg9GMjHBPMZq5QKUAsk3LL-SHZKxelPyKUjx1zUM1kLIXJMdokJpZF6rzUSksuB-Rdt265bcXMsafGz7wranBm8zCzA_JmM3bZSHg8OmrYLX_eunGV4z9IBHQpG5D3YR3_cof8ZPbtRzh6-S-Dj8mTGIBSQz8bkr16tfavAOjU5nUw6D_V3fyd
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5S99Be4vRFnDrJQntpQcbSrlbeYwgJTmL70DrgnoT2IRMSZGPJkOTS_oT-xv6SzqzWj5ZSaG9CjBa0O7PzjfTtN4S815DjLM-zALKDDbgNe0HGJRQrkY0j02Midur6w5HoX_PLSTzx3Bw8C1PrQ6w_uGFkuP0aAxw_SG9Fub0vHzohg4z6hDzlAgoVxESfNupRYeJ6y0GVIQKeRF2vTopEns2zv-ajDcjchqou15w364aqpZMoRIrJbWdZqY5-_E3A8b9fY4_sehRKT2q3eUF2bPGSNFcdHqgP-Ffkay1u7HdEOsupsXZOfauJKb0pqEWF5B_fvgPKnFqK5_2pRk9agGnleF5FSbPCUI04HYlJzhcoEu6n1MkdI0EMx56h5jIgYAo3kIhWla_J9fnZ-LQf-JYNgYadQgaKcyMkEzxHXXhjMkATiYyZyaTQkYxQGEKq2ELcdxU3IQ91z-QyAZSlEqYZe0Maxayw-4SyrgkNFDS9MIHJUZmKVSTyxFiRyUww0SIfVguXaq9njm017tJVXYMzm7qZbZF3a9t5reLxR6v2av1TH8llir8hEdMlYYt8dAv5lxHSs8nnL-7q4F-Mj8mz_ng4SAcXo6u35HkEuKlmo7VJo1os7SHgnkodOe_-CZxQAM0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEBXpBkpfcumFbLtJBO1LC15WlixbjyG7S5K2obQNbJ-MdfFSGrxL7ECbl-QT8o35kszI2mxaSiF9M2YssDSjOWMfnSHkjYEc50RZRJAdXCQcy6JCKChWYpfENuMy8er6H4_lwYk4miSTwM3BszCtPsTdBzeMDL9fY4C7uS3vRbn7Wf_qMw4Z9RFZFYnKkNE3_LxUj2Kp7y0HVYaMRBoPgjopEnmWz_6ej5Yg8z5U9blmvN42VK29RCFSTH70zxvdNxd_CDj-92tskLWAQule6zabZMVVT8n6osMDDQH_jFy24sZhR6Szklrn5jS0mpjS7xV1qJB8c3UNKHPqKJ73pwY96QxMG8_zqmpaVJYaxOlITPK-QJFwP6Ve7hgJYjj2DDWXAQFTuIFEtKZ-Tk7Go6_7B1Fo2RAZ2ClUpIWwUnEpStSFt7YANJGqhNtCSROrGIUhlE4cxP1AC8sEM5ktVQooS6fccP6CdKpZ5bYI5QPLLBQ0GUthcnShEx3LMrVOFqqQXHbJ28XC5SbomWNbjdN8UdfgzOZ-Zrvk9Z3tvFXx-KtVb7H-eYjkOsffkIjpUtYl7_xC_mOEfDT58s1fvXyI8S55_Gk4zj8cHr9_RZ7EAJtaMlqPdJqzc7cNsKfRO965bwFEXABR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+deep+learning+in+early%E2%80%90stage+oral+cancer+detections+and+classification+using+histogram+of+oriented+gradients&rft.jtitle=Expert+systems&rft.au=Dutta%2C+Chiranjit&rft.au=Sandhya%2C+Prasad&rft.au=Vidhya%2C+Kandasamy&rft.au=Rajalakshmi%2C+Ramanathan&rft.date=2024-06-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=41&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.13439&rft.externalDBID=10.1111%252Fexsy.13439&rft.externalDocID=EXSY13439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon