Effectiveness of deep learning in early‐stage oral cancer detections and classification using histogram of oriented gradients
Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a primary global health concern, accounting for 177,384 deaths in 2018; most cases occur in low‐ and middle‐income countries. Automated disease i...
        Saved in:
      
    
          | Published in | Expert systems Vol. 41; no. 6 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Blackwell Publishing Ltd
    
        01.06.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0266-4720 1468-0394  | 
| DOI | 10.1111/exsy.13439 | 
Cover
| Abstract | Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a primary global health concern, accounting for 177,384 deaths in 2018; most cases occur in low‐ and middle‐income countries. Automated disease identification in the oral cavity may be facilitated by the ability to identify both possibly and definite malignant lesions. This study aimed to examine the evidence currently available on the effectiveness of AI in diagnosing OC. They highlighted the ability of AI to analyse and identify the early stages of OC. Furthermore, radial basis function networks (RBFN) were employed to develop automated systems to generate intricate patterns for this challenging operation. The stochastic gradient descent algorithm (SGDA) selected the model parameters that best matched the predicted and observed results. It can be used. The initial data was collected for this study to evaluate. Two deep learning‐based computer vision algorithms have been developed to recognize and categorize oral lesions, which is necessary for the early detection of oral cancer. Several examples of HoG include the Canny edge detector, SIFT (scale invariant and feature transform), and SIFT (scale invariant and feature transform). In computer vision and image processing, it is used to find objects. We investigated the potential uses of deep learning‐based computer vision techniques in oral cancer and the viability of an automated system for OC recognition based on photographic images. That made calculations to determine the accuracy, sensitivity, specificity, and receiver operating characteristic curve areas across all validation datasets, including internal, external, and clinical validation (AUC). The RBFN‐SDC model outperformed all others. For 1000 data points, the accuracy of the RBFN‐SDC model is 99.99%, while the accuracy of the R‐CNN, CNN, DCNN, and SVM models is 91.54%, 90.14%, 93.89%, and 94.87%, respectively. | 
    
|---|---|
| AbstractList | Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a primary global health concern, accounting for 177,384 deaths in 2018; most cases occur in low‐ and middle‐income countries. Automated disease identification in the oral cavity may be facilitated by the ability to identify both possibly and definite malignant lesions. This study aimed to examine the evidence currently available on the effectiveness of AI in diagnosing OC. They highlighted the ability of AI to analyse and identify the early stages of OC. Furthermore, radial basis function networks (RBFN) were employed to develop automated systems to generate intricate patterns for this challenging operation. The stochastic gradient descent algorithm (SGDA) selected the model parameters that best matched the predicted and observed results. It can be used. The initial data was collected for this study to evaluate. Two deep learning‐based computer vision algorithms have been developed to recognize and categorize oral lesions, which is necessary for the early detection of oral cancer. Several examples of HoG include the Canny edge detector, SIFT (scale invariant and feature transform), and SIFT (scale invariant and feature transform). In computer vision and image processing, it is used to find objects. We investigated the potential uses of deep learning‐based computer vision techniques in oral cancer and the viability of an automated system for OC recognition based on photographic images. That made calculations to determine the accuracy, sensitivity, specificity, and receiver operating characteristic curve areas across all validation datasets, including internal, external, and clinical validation (AUC). The RBFN‐SDC model outperformed all others. For 1000 data points, the accuracy of the RBFN‐SDC model is 99.99%, while the accuracy of the R‐CNN, CNN, DCNN, and SVM models is 91.54%, 90.14%, 93.89%, and 94.87%, respectively. | 
    
| Author | Madhubabu, Kotakonda Sandhya, Prasad Rajalakshmi, Ramanathan Dutta, Chiranjit Ramya, Devasahayam Vidhya, Kandasamy  | 
    
| Author_xml | – sequence: 1 givenname: Chiranjit orcidid: 0009-0002-5805-9315 surname: Dutta fullname: Dutta, Chiranjit email: chiranjd@srmist.edu.in organization: SRM Institute of Science and Technology, NCR Campus – sequence: 2 givenname: Prasad surname: Sandhya fullname: Sandhya, Prasad email: sandhya.p@vit.ac.in organization: Vellore Institute of Technology – sequence: 3 givenname: Kandasamy surname: Vidhya fullname: Vidhya, Kandasamy email: vidhyak@karunya.edu organization: Karunya Institute of Technology and Sciences – sequence: 4 givenname: Ramanathan surname: Rajalakshmi fullname: Rajalakshmi, Ramanathan organization: Panimalar Engineering College – sequence: 5 givenname: Devasahayam surname: Ramya fullname: Ramya, Devasahayam email: ramya.eee@sathyabama.ac.in organization: Sathyabama Institute of Science and Technology – sequence: 6 givenname: Kotakonda surname: Madhubabu fullname: Madhubabu, Kotakonda organization: Mahatma Gandhi Institute of Technology  | 
    
| BookMark | eNp9kM9KAzEQxoNUsK1efIKAN2Frskmzm6OU-gcKHlTQ05ImszVlm9Rkq_akj-Az-iTudj2JOJcZht_3DfMNUM95BwgdUzKiTZ3BW9yOKONM7qE-5SJPCJO8h_okFSLhWUoO0CDGJSGEZpnoo_dpWYKu7Qs4iBH7EhuANa5ABWfdAluHm7Hafn18xlotAPugKqyV0xAatG613kWsnMG6UjHa0mrV7vAmtgZPNtZ-EdSq9fbBgqvB4GZh2jEeov1SVRGOfvoQ3V9M7yZXyezm8npyPks0I1Qmc86NkEzwMk-JMEalkmVyzIySQqcypYRncj4GKgWZc0M51bkpZZaO6TxjmrEhOul818E_byDWxdJvgmtOFoxwmTd2GW0o0lE6-BgDlIW29e6bOihbFZQUbcxFG3Oxi7mRnP6SrINdqbD9G6Yd_Gor2P5DFtOH28dO8w1lcZMM | 
    
| CitedBy_id | crossref_primary_10_1016_j_mex_2024_103034 crossref_primary_10_1038_s41598_025_89971_5  | 
    
| Cites_doi | 10.1016/j.ctrv.2021.102263 10.1093/jnci/djy225 10.3322/caac.21492 10.3389/froh.2021.794248 10.31557/APJCP.2019.20.2.411 10.1117/1.JBO.26.6.065003 10.1016/j.eclinm.2020.100558 10.3390/diagnostics12081899 10.1016/j.canep.2016.03.012 10.3390/jcm10225326 10.1111/cdoe.12639 10.1136/bmjopen-2018-027661 10.3390/cancers13194751 10.1016/j.jksuci.2020.11.003 10.1007/s00498-021-00309-8 10.1177/0022034519894963 10.1259/dmfr.20160107 10.1109/TBCAS.2019.2918244 10.1007/978-3-030-50450-2_2 10.1117/1.JBO.22.6.060503 10.1038/s41598-019-44839-3 10.1111/jcpe.13574 10.33851/JMIS.2019.6.2.81 10.4038/cmj.v61i2.8289 10.1016/j.tice.2019.101322 10.1111/odi.13825 10.1002/cnr2.1293 10.3390/electronics10243158 10.3390/app10228285 10.1109/ACCESS.2019.2956751 10.4103/jomfp.JOMFP_215_19 10.3389/fonc.2021.626602 10.1117/1.JBO.26.8.086007 10.1016/j.pdpdt.2019.05.008 10.3390/cancers13061291 10.1007/978-3-030-50516-5_22 10.1109/ACCESS.2020.3010180 10.3390/cancers11091367 10.1016/j.jdent.2019.103226 10.1001/jamainternmed.2018.7117 10.1038/s41598-017-12320-8 10.1016/j.compmedimag.2018.07.001 10.1093/bioinformatics/btx724 10.1038/s41598-020-64509-z 10.1016/j.oraloncology.2021.105254 10.3390/electronics11244178 10.1371/journal.pone.0200721  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd.  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| DOI | 10.1111/exsy.13439 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Public Health  | 
    
| EISSN | 1468-0394 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1111_exsy_13439 EXSY13439  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT 77I AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c3019-b44d69364f8206dda2937953da96c29210479b5e1960b4d141c8df97251b73c33 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0266-4720 | 
    
| IngestDate | Fri Jul 25 23:37:34 EDT 2025 Wed Oct 01 02:56:06 EDT 2025 Thu Apr 24 23:01:17 EDT 2025 Wed Jan 22 17:19:15 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3019-b44d69364f8206dda2937953da96c29210479b5e1960b4d141c8df97251b73c33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0002-5805-9315 | 
    
| PQID | 3049893771 | 
    
| PQPubID | 32130 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | proquest_journals_3049893771 crossref_citationtrail_10_1111_exsy_13439 crossref_primary_10_1111_exsy_13439 wiley_primary_10_1111_exsy_13439_EXSY13439  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2024 2024-06-00 20240601  | 
    
| PublicationDateYYYYMMDD | 2024-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Expert systems | 
    
| PublicationYear | 2024 | 
    
| Publisher | Blackwell Publishing Ltd | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd | 
    
| References | 2019; 7 2017; 7 2019; 91 2019; 9 2021; 26 2019; 6 2020; 63 2019; 11 2019; 13 2017; 22 2017; 46 2020; 34 2020; 99 2020; 10 2021; 50 2022; 49 2022; 28 2018; 68 2020; 8 2021; 13 2021; 10 2020; 3 2021; 99 2021; 11 2019; 20 2020 2021; 116 2019; 26 2022; 12 2022; 34 2020; 27 2019; 179 2016; 61 2020; 24 2022; 2 2022; 11 2018; 34 2019; 111 2018; 13 2016; 44 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 World Health Organization (e_1_2_8_48_1) 2020 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Amin I. (e_1_2_8_6_1) 2021; 10 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1  | 
    
| References_xml | – volume: 91 year: 2019 article-title: Convolutional neural networks for dental image diagnostics: A scoping review publication-title: Journal of Dentistry – volume: 10 start-page: 3158 year: 2021 article-title: Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases publication-title: Electronics – volume: 7 start-page: 176782 year: 2019 end-page: 176789 article-title: Health big data classification using improved radial basis function neural network and nearest neighbor propagation algorithm publication-title: IEEE Access – volume: 11 start-page: 4178 issue: 24 year: 2022 article-title: Handcrafted deep‐feature‐based brain tumor detection and classification using mri images publication-title: Electronics – volume: 34 start-page: 1215 issue: 7 year: 2018 end-page: 1223 article-title: Deep learning for tumor classification in imaging mass spectrometry publication-title: Bioinformatics – volume: 50 start-page: 124 issue: 2 year: 2021 end-page: 129 article-title: Economic cost of managing patients with oral potentially malignant disorders in Sri Lanka publication-title: Community Dentistry and Oral Epidemiology – volume: 7 start-page: 11979 issue: 1 year: 2017 article-title: Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep learning publication-title: Scientific Reports – volume: 13 issue: 7 year: 2018 article-title: Computer‐aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning publication-title: PLoS One – volume: 13 start-page: 766 year: 2019 end-page: 780 article-title: Texture‐map‐based branch‐collaborative network for oral cancer detection publication-title: IEEE Transactions on Biomedical Circuits and Systems – volume: 63 year: 2020 article-title: Automated oral squamous cell carcinoma identification using shape, texture and color features of whole image strips publication-title: Tissue Cell – volume: 13 start-page: 1291 year: 2021 article-title: Convolutional neural network‐based clinical predictors of oral dysplasia: Class activation map analysis of deep learning results publication-title: Cancers – volume: 10 start-page: 7531 year: 2020 article-title: Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis publication-title: Scientific Reports – volume: 34 start-page: 4546 year: 2020 end-page: 4553 article-title: Capsule network based analysis of histopathological images of oral squamous cell carcinoma publication-title: Journal of King Saud University‐Computer and Information Sciences – volume: 99 year: 2021 article-title: Radiomics and radiogenomics in head and neck squamous cell carcinoma: Potential contribution to patient management and challenges publication-title: Cancer Treatment Reviews – volume: 9 start-page: 8495 year: 2019 article-title: Deep learning for the radiographic detection of periodontal bone loss publication-title: Scientific Reports – volume: 26 start-page: 430 year: 2019 end-page: 435 article-title: Deep convolutional neural networks for tongue squamous cell carcinoma classification using Raman spectroscopy publication-title: Photodiagnosis and Photodynamic Therapy – volume: 13 start-page: 4751 year: 2021 article-title: Machine‐learning assisted discrimination of precancerous and cancerous from healthy oral tissue based on multispectral autofluorescence lifetime imaging endoscopy publication-title: Cancers (Basel) – volume: 111 start-page: 923 year: 2019 end-page: 932 article-title: An observational study of deep learning and automated evaluation of cervical images for cancer screening publication-title: Journal of the National Cancer Institute – volume: 8 start-page: 132677 year: 2020 end-page: 132693 article-title: Automated detection and classification of oral lesions using deep learning for early detection of oral cancer publication-title: IEEE Access – volume: 24 start-page: 152 year: 2020 end-page: 156 article-title: Role of artificial intelligence in diagnostic oral pathology—A modern approach publication-title: Journal of Oral and Maxillofacial Pathology – volume: 49 start-page: 260 year: 2022 end-page: 269 article-title: Use of the deep learning approach to measure alveolar bone level publication-title: Journal of Clinical Periodontology – volume: 10 year: 2021 article-title: Deep learning on oral squamous cell carcinoma ex vivo fluorescent confocal microscopy data: A feasibility study publication-title: Journal of Clinical Medicine – volume: 9 issue: 7 year: 2019 article-title: Economic burden of managing oral cancer patients in Sri Lanka: A cross‐sectional hospital‐based costing study publication-title: BMJ Open – volume: 26 year: 2021 article-title: Automatic detection of oral cancer in smartphone‐based images using deep learning for early diagnosis publication-title: Journal of Biomedical Optics – volume: 3 year: 2020 article-title: Study of morphological and textural features for classification of oral squamous cell carcinoma by traditional machine learning techniques publication-title: Cancer Reports – volume: 2 start-page: 1 year: 2022 end-page: 11 article-title: Deep machine learning for oral cancer: From precise diagnosis to precision medicine publication-title: Frontiers in Oral Health – volume: 99 start-page: 143 year: 2020 end-page: 151 article-title: Incidence trends of lip, oral cavity, and pharyngeal cancers: Global burden of disease 1990–2017 publication-title: Journal of Dental Research – volume: 6 start-page: 81 year: 2019 end-page: 86 article-title: Tissue level based deep learning framework for early detection of dysplasia in oral squamous epithelium publication-title: Journal of Multimedia Information System – volume: 12 start-page: 1899 issue: 8 year: 2022 article-title: Early diagnosis of oral squamous cell carcinoma based on histopathological images using deep and hybrid learning approaches publication-title: Diagnostics – volume: 44 start-page: S43 year: 2016 end-page: S52 article-title: Head and neck cancer burden and preventive measures in Central and South America publication-title: Cancer Epidemiology – volume: 68 start-page: 61 year: 2018 end-page: 70 article-title: An effective teeth recognition method using label tree with cascade network structure publication-title: Computerized Medical Imaging and Graphics – volume: 11 year: 2021 article-title: Deep learning for automatic segmentation of oral and oropharyngeal cancer using narrow band imaging: Preliminary experience in a clinical perspective publication-title: Frontiers in Oncology – volume: 34 start-page: 185 issue: 1 year: 2022 end-page: 214 article-title: Parameter calibration with stochastic gradient descent for interacting particle systems driven by neural networks publication-title: Mathematics of Control, Signals, and Systems – year: 2020 – volume: 28 start-page: 1123 issue: 4 year: 2022 end-page: 1130 article-title: A novel lightweight deep convolutional neural network for early detection of oral cancer publication-title: Oral Diseases – volume: 26 year: 2021 article-title: Mobile‐based oral cancer classification for point‐of‐care screening publication-title: Journal of Biomedical Optics – volume: 61 start-page: 77 issue: 2 year: 2016 end-page: 79 article-title: Level of awareness of oral cancer and oral potentially malignant disorders among medical and dental undergraduates publication-title: The Ceylon Medical Journal – volume: 46 year: 2017 article-title: Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: An ex vivo study publication-title: Dento Maxillo Facial Radiology – volume: 10 start-page: 254 year: 2021 article-title: Histopathological image analysis for oral squamous cell carcinoma classification using concatenated deep learning models publication-title: medRxiv – volume: 11 start-page: 1367 issue: 9 year: 2019 article-title: Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin detection in surgical specimens from 102 patients using deep learning publication-title: Cancers – volume: 20 start-page: 411 issue: 2 year: 2019 end-page: 415 article-title: Risk assessment of smokeless tobacco among oral precancer and cancer patients in eastern developmental region of Nepal publication-title: Asian Pacific Journal of Cancer Prevention – volume: 68 start-page: 394 issue: 6 year: 2018 end-page: 424 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA: A Cancer Journal for Clinicians – volume: 22 start-page: 60503 issue: 6 year: 2017 article-title: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging publication-title: Journal of Biomedical Optics – volume: 179 start-page: 293 year: 2019 end-page: 294 article-title: Deep learning in medicine—Promise, progress, and challenges publication-title: JAMA Internal Medicine – volume: 10 start-page: 8285 issue: 22 year: 2020 article-title: Deep learning‐based pixel‐wise lesion segmentation on oral squamous cell carcinoma images publication-title: Applied Sciences – volume: 27 year: 2020 article-title: A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study publication-title: EClinicalMedicine – volume: 116 year: 2021 article-title: The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer publication-title: Oral Oncology – start-page: 11 year: 2020 end-page: 32 – ident: e_1_2_8_10_1 doi: 10.1016/j.ctrv.2021.102263 – ident: e_1_2_8_23_1 doi: 10.1093/jnci/djy225 – ident: e_1_2_8_9_1 doi: 10.3322/caac.21492 – ident: e_1_2_8_3_1 doi: 10.3389/froh.2021.794248 – ident: e_1_2_8_41_1 doi: 10.31557/APJCP.2019.20.2.411 – ident: e_1_2_8_44_1 doi: 10.1117/1.JBO.26.6.065003 – ident: e_1_2_8_17_1 doi: 10.1016/j.eclinm.2020.100558 – ident: e_1_2_8_16_1 doi: 10.3390/diagnostics12081899 – volume-title: WHO report on cancer: Setting priorities, investing wisely and providing care for all year: 2020 ident: e_1_2_8_48_1 – ident: e_1_2_8_38_1 doi: 10.1016/j.canep.2016.03.012 – ident: e_1_2_8_43_1 doi: 10.3390/jcm10225326 – ident: e_1_2_8_5_1 doi: 10.1111/cdoe.12639 – ident: e_1_2_8_4_1 doi: 10.1136/bmjopen-2018-027661 – ident: e_1_2_8_15_1 doi: 10.3390/cancers13194751 – ident: e_1_2_8_37_1 doi: 10.1016/j.jksuci.2020.11.003 – ident: e_1_2_8_19_1 doi: 10.1007/s00498-021-00309-8 – ident: e_1_2_8_14_1 doi: 10.1177/0022034519894963 – ident: e_1_2_8_27_1 doi: 10.1259/dmfr.20160107 – ident: e_1_2_8_12_1 doi: 10.1109/TBCAS.2019.2918244 – ident: e_1_2_8_18_1 doi: 10.1007/978-3-030-50450-2_2 – ident: e_1_2_8_21_1 doi: 10.1117/1.JBO.22.6.060503 – ident: e_1_2_8_30_1 doi: 10.1038/s41598-019-44839-3 – ident: e_1_2_8_31_1 doi: 10.1111/jcpe.13574 – ident: e_1_2_8_20_1 doi: 10.33851/JMIS.2019.6.2.81 – ident: e_1_2_8_25_1 doi: 10.4038/cmj.v61i2.8289 – ident: e_1_2_8_40_1 doi: 10.1016/j.tice.2019.101322 – ident: e_1_2_8_28_1 doi: 10.1111/odi.13825 – ident: e_1_2_8_39_1 doi: 10.1002/cnr2.1293 – ident: e_1_2_8_2_1 doi: 10.3390/electronics10243158 – ident: e_1_2_8_34_1 doi: 10.3390/app10228285 – ident: e_1_2_8_26_1 doi: 10.1109/ACCESS.2019.2956751 – volume: 10 start-page: 254 year: 2021 ident: e_1_2_8_6_1 article-title: Histopathological image analysis for oral squamous cell carcinoma classification using concatenated deep learning models publication-title: medRxiv – ident: e_1_2_8_29_1 doi: 10.4103/jomfp.JOMFP_215_19 – ident: e_1_2_8_36_1 doi: 10.3389/fonc.2021.626602 – ident: e_1_2_8_32_1 doi: 10.1117/1.JBO.26.8.086007 – ident: e_1_2_8_49_1 doi: 10.1016/j.pdpdt.2019.05.008 – ident: e_1_2_8_11_1 doi: 10.3390/cancers13061291 – ident: e_1_2_8_33_1 doi: 10.1007/978-3-030-50516-5_22 – ident: e_1_2_8_47_1 doi: 10.1109/ACCESS.2020.3010180 – ident: e_1_2_8_22_1 doi: 10.3390/cancers11091367 – ident: e_1_2_8_42_1 doi: 10.1016/j.jdent.2019.103226 – ident: e_1_2_8_46_1 doi: 10.1001/jamainternmed.2018.7117 – ident: e_1_2_8_7_1 doi: 10.1038/s41598-017-12320-8 – ident: e_1_2_8_50_1 doi: 10.1016/j.compmedimag.2018.07.001 – ident: e_1_2_8_8_1 doi: 10.1093/bioinformatics/btx724 – ident: e_1_2_8_13_1 doi: 10.1038/s41598-020-64509-z – ident: e_1_2_8_24_1 doi: 10.1016/j.oraloncology.2021.105254 – ident: e_1_2_8_45_1 doi: 10.3390/electronics11244178 – ident: e_1_2_8_35_1 doi: 10.1371/journal.pone.0200721  | 
    
| SSID | ssj0001776 | 
    
| Score | 2.351171 | 
    
| Snippet | Early detection of oral cancer (OC) improves survival prospects. Artificial intelligence (AI) is gaining popularity in diagnostic medicine. Oral cancer is a... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence artificial intelligence (AI) Automation Cancer Computer vision Data points Deep learning Effectiveness histogram of oriented gradients (HoG) Histograms Image processing Invariants Lesions Medical imaging Oral cancer oral cancer (OC) Public health Radial basis function radial basis function networks (RBFN) stochastic gradient descent algorithm (SGDA)  | 
    
| Title | Effectiveness of deep learning in early‐stage oral cancer detections and classification using histogram of oriented gradients | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13439 https://www.proquest.com/docview/3049893771  | 
    
| Volume | 41 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1468-0394 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1468-0394 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0266-4720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-0394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001776 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LattAFB1MVt3UTdMQN24ZaDctyHg0o5EGuiklwRTSRVuDuwhiXjIhRTaWDEk2ySf0G_slvXck2U4IhXYnxEhIM_dxrnTmXELeWshxXhQ6guzgI-FZFmmhoFiJfRK7jMskqOuffZGTqfg8S2Y98qHbC9PoQ2w-uKFnhHiNDq5NtePk_qq6HjEOCRUCMOMy1FNft9pRLA2d5aDGkJFI43GrTYo0nu2l97PRFmLuAtWQaU775Lx7xoZgcjla12Zkbx7IN_7vSzwjT1sISj82NrNPer58TvpdewfaevsBuW2UjdtwSBcFdd4vadtnYk4vSupRHvn33S-AmHNPcbM_tWhGKxhaB5JXWVFdOmoRpCMrKRgCRbb9nAatY2SH4b0XKLgM8JfCCWSh1dULMj09-f5pErX9GiILYUJFRggnFZeiQFF45zRAiVQl3GklbaxiVIVQJvHg9GMjHBPMZq5QKUAsk3LL-SHZKxelPyKUjx1zUM1kLIXJMdokJpZF6rzUSksuB-Rdt265bcXMsafGz7wranBm8zCzA_JmM3bZSHg8OmrYLX_eunGV4z9IBHQpG5D3YR3_cof8ZPbtRzh6-S-Dj8mTGIBSQz8bkr16tfavAOjU5nUw6D_V3fyd | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5S99Be4vRFnDrJQntpQcbSrlbeYwgJTmL70DrgnoT2IRMSZGPJkOTS_oT-xv6SzqzWj5ZSaG9CjBa0O7PzjfTtN4S815DjLM-zALKDDbgNe0HGJRQrkY0j02Midur6w5HoX_PLSTzx3Bw8C1PrQ6w_uGFkuP0aAxw_SG9Fub0vHzohg4z6hDzlAgoVxESfNupRYeJ6y0GVIQKeRF2vTopEns2zv-ajDcjchqou15w364aqpZMoRIrJbWdZqY5-_E3A8b9fY4_sehRKT2q3eUF2bPGSNFcdHqgP-Ffkay1u7HdEOsupsXZOfauJKb0pqEWF5B_fvgPKnFqK5_2pRk9agGnleF5FSbPCUI04HYlJzhcoEu6n1MkdI0EMx56h5jIgYAo3kIhWla_J9fnZ-LQf-JYNgYadQgaKcyMkEzxHXXhjMkATiYyZyaTQkYxQGEKq2ELcdxU3IQ91z-QyAZSlEqYZe0Maxayw-4SyrgkNFDS9MIHJUZmKVSTyxFiRyUww0SIfVguXaq9njm017tJVXYMzm7qZbZF3a9t5reLxR6v2av1TH8llir8hEdMlYYt8dAv5lxHSs8nnL-7q4F-Mj8mz_ng4SAcXo6u35HkEuKlmo7VJo1os7SHgnkodOe_-CZxQAM0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEBXpBkpfcumFbLtJBO1LC15WlixbjyG7S5K2obQNbJ-MdfFSGrxL7ECbl-QT8o35kszI2mxaSiF9M2YssDSjOWMfnSHkjYEc50RZRJAdXCQcy6JCKChWYpfENuMy8er6H4_lwYk4miSTwM3BszCtPsTdBzeMDL9fY4C7uS3vRbn7Wf_qMw4Z9RFZFYnKkNE3_LxUj2Kp7y0HVYaMRBoPgjopEnmWz_6ej5Yg8z5U9blmvN42VK29RCFSTH70zxvdNxd_CDj-92tskLWAQule6zabZMVVT8n6osMDDQH_jFy24sZhR6Szklrn5jS0mpjS7xV1qJB8c3UNKHPqKJ73pwY96QxMG8_zqmpaVJYaxOlITPK-QJFwP6Ve7hgJYjj2DDWXAQFTuIFEtKZ-Tk7Go6_7B1Fo2RAZ2ClUpIWwUnEpStSFt7YANJGqhNtCSROrGIUhlE4cxP1AC8sEM5ktVQooS6fccP6CdKpZ5bYI5QPLLBQ0GUthcnShEx3LMrVOFqqQXHbJ28XC5SbomWNbjdN8UdfgzOZ-Zrvk9Z3tvFXx-KtVb7H-eYjkOsffkIjpUtYl7_xC_mOEfDT58s1fvXyI8S55_Gk4zj8cHr9_RZ7EAJtaMlqPdJqzc7cNsKfRO965bwFEXABR | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectiveness+of+deep+learning+in+early%E2%80%90stage+oral+cancer+detections+and+classification+using+histogram+of+oriented+gradients&rft.jtitle=Expert+systems&rft.au=Dutta%2C+Chiranjit&rft.au=Sandhya%2C+Prasad&rft.au=Vidhya%2C+Kandasamy&rft.au=Rajalakshmi%2C+Ramanathan&rft.date=2024-06-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=41&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.13439&rft.externalDBID=10.1111%252Fexsy.13439&rft.externalDocID=EXSY13439 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |