Intelligent IoT framework with GAN‐synthesized images for enhanced defect detection in manufacturing

The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique of deep learning is the strategy that will be used to handle the issues presented. However, the challenge of using AI in this domain is the s...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence Vol. 40; no. 2
Main Authors Aramkul, Somrawee, Sugunnasil, Prompong
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.04.2024
Subjects
Online AccessGet full text
ISSN0824-7935
1467-8640
DOI10.1111/coin.12619

Cover

Abstract The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique of deep learning is the strategy that will be used to handle the issues presented. However, the challenge of using AI in this domain is the small and imbalanced dataset for training affected by the severe shortage of defective data. Moreover, data acquisition requires significant labor, time, and resources. In response to these demands, this research presents an intelligent internet of things (IoT) framework enriched by generative adversarial network (GAN). This framework was developed in response to the needs outlined above. The framework applies the IoT for real‐time data collection and communication, while GAN are utilized to synthesize high‐fidelity images of manufacturing defects. The quality of the GAN‐synthesized image is quantified by the average FID score of 8.312 for non‐defective images and 7.459 for defective images. As evidenced by the similarity between the distributions of synthetic and real images, the proposed generative model can generate visually authentic and high‐fidelity images. As demonstrated by the results of the defect detection experiments, the accuracy can be enhanced to the maximum of 96.5% by integrating the GAN‐synthesized images with the real images. Concurrently, this integration reduces the occurrence of false alarms.
AbstractList The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique of deep learning is the strategy that will be used to handle the issues presented. However, the challenge of using AI in this domain is the small and imbalanced dataset for training affected by the severe shortage of defective data. Moreover, data acquisition requires significant labor, time, and resources. In response to these demands, this research presents an intelligent internet of things (IoT) framework enriched by generative adversarial network (GAN). This framework was developed in response to the needs outlined above. The framework applies the IoT for real‐time data collection and communication, while GAN are utilized to synthesize high‐fidelity images of manufacturing defects. The quality of the GAN‐synthesized image is quantified by the average FID score of 8.312 for non‐defective images and 7.459 for defective images. As evidenced by the similarity between the distributions of synthetic and real images, the proposed generative model can generate visually authentic and high‐fidelity images. As demonstrated by the results of the defect detection experiments, the accuracy can be enhanced to the maximum of 96.5% by integrating the GAN‐synthesized images with the real images. Concurrently, this integration reduces the occurrence of false alarms.
Author Aramkul, Somrawee
Sugunnasil, Prompong
Author_xml – sequence: 1
  givenname: Somrawee
  orcidid: 0000-0003-1936-9054
  surname: Aramkul
  fullname: Aramkul, Somrawee
  organization: Chiang Mai University
– sequence: 2
  givenname: Prompong
  surname: Sugunnasil
  fullname: Sugunnasil, Prompong
  email: prompong.sugunnasil@cmu.ac.th
  organization: Chiang Mai University
BookMark eNp9kM1KAzEUhYMo2FY3PkHAnTA1mUkyM8tStBZKu6nrIZOfNnWa1CRDqSsfwWf0SZxaVyLezYHLd-7lnD44t84qAG4wGuJu7oUzdohThssz0MOE5UnBCDoHPVSkJMnLjF6CfggbhBDOSNEDemqjahqzUjbCqVtC7flW7Z1_gXsT13Aymn--f4SDjWsVzJuS0Gz5SgWonYfKrrkV3U4qrUTsJHZinIXGwi23reYitt7Y1RW40LwJ6vpHB-D58WE5fkpmi8l0PJolIkO4TDAtGBOI1hlKc01LLWRKa60znRNWl0ziIlNEpmlONEOoRkoSLgQpJKFpIWU2ALenuzvvXlsVYrVxrbfdyypDhDCaU8o66u5ECe9C8EpXO9_F8ocKo-rYY3XssfrusYPRL1iYyI8po-em-duCT5a9adThn-PVeDGdnzxfFiyJrw
CitedBy_id crossref_primary_10_1007_s00170_024_14738_7
crossref_primary_10_37394_23202_2024_23_54
Cites_doi 10.1117/1.JRS.16.046504
10.1007/978-3-030-39074-7_21
10.1109/TII.2019.2945403
10.1109/ACCESS.2022.3217227
10.1109/ICSESS.2017.8342870
10.1145/3422622
10.1109/WACV48630.2021.00257
10.1016/j.measen.2022.100661
10.1109/ICCV.2017.244
10.1109/IISA52424.2021.9555499
10.1016/j.compag.2021.106064
10.1016/j.patcog.2023.109347
10.23919/IConAC.2019.8895110
10.1145/3426826.3426832
10.1145/3485130
10.3390/s20051459
10.1109/INFOMAN.2018.8392817
10.1109/CNN53494.2021.9580274
10.3390/app11167657
10.1155/2022/1070405
10.1016/j.inffus.2021.02.014
10.1109/TMECH.2021.3058147
10.1109/ICMERR56497.2022.10097812
10.1109/ICTC.2017.8190856
10.1016/j.jafr.2023.100590
10.3390/s19030644
10.1117/12.2575765
10.1016/j.compind.2023.103911
10.1111/1754-9485.13261
10.3390/drones7010031
10.3390/jsan10010007
10.3390/app13095507
10.1007/978-3-319-97310-4_54
10.3390/su14052697
10.1109/ACCESS.2023.3271748
10.1109/ICECCME55909.2022.9987772
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/coin.12619
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1467-8640
EndPage n/a
ExternalDocumentID 10_1111_coin_12619
COIN12619
Genre article
GrantInformation_xml – fundername: Data Analytics and Knowledge Synthesis for Healthcare (DAKSH) Research Group, Chiang Mai University, Chiang Mai, Thailand.
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
UCJ
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3019-15866c05b3027f59fcd25bff3f746b96d183e4d2274f600b0ed4acc48d4528dd3
IEDL.DBID DR2
ISSN 0824-7935
IngestDate Tue Jul 15 16:11:05 EDT 2025
Wed Oct 01 05:57:16 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Wed Jan 22 17:21:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3019-15866c05b3027f59fcd25bff3f746b96d183e4d2274f600b0ed4acc48d4528dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1936-9054
PQID 3044657556
PQPubID 34323
PageCount 20
ParticipantIDs proquest_journals_3044657556
crossref_primary_10_1111_coin_12619
crossref_citationtrail_10_1111_coin_12619
wiley_primary_10_1111_coin_12619_COIN12619
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computational intelligence
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 27
2021; 65
2023; 13
2023; 11
2023; 12
2020; 20
2020; 63
2023; 7
2020; 17
2019; 16
2023; 148
2019; 19
2021; 183
2021; 72
2022; 29
2021; 10
2023; 25
2022; 2022
2021; 55
2021; 11
2023
2022
2021
2020
2020; 11533
2019
2023; 137
2018
2022; 14
2017
2015
2022; 10
2022; 1–14
2016; 29
2022; 16
e_1_2_9_30_1
e_1_2_9_31_1
Zhai G (e_1_2_9_37_1) 2022; 29
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Jain S (e_1_2_9_28_1) 2022; 1
Chen X (e_1_2_9_42_1) 2016; 29
Niu S (e_1_2_9_9_1) 2020; 17
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 2022
  year: 2022
  article-title: Circuit manufacturing defect detection using VGG16 convolutional neural networks
  publication-title: Wirel Commun Mob Comput
– volume: 11533
  start-page: 122
  year: 2020
  end-page: 133
– volume: 16
  start-page: 1343
  issue: 2
  year: 2019
  end-page: 1351
  article-title: Deep‐learning‐based small surface defect detection via an exaggerated local variation‐based generative adversarial network
  publication-title: IEEE Trans Industr Inform
– volume: 148
  year: 2023
  article-title: Deep CNN‐based visual defect detection: survey of current literature
  publication-title: Comput Ind
– volume: 13
  start-page: 5507
  issue: 9
  year: 2023
  article-title: Deep convolutional generative adversarial networks‐based data augmentation method for classifying class‐imbalanced defect patterns in wafer bin map
  publication-title: Appl Sci
– volume: 72
  start-page: 126
  year: 2021
  end-page: 146
  article-title: Image synthesis with adversarial networks: a comprehensive survey and case studies
  publication-title: Inf Fusion
– year: 2021
– volume: 11
  year: 2023
  article-title: Deep learning for automatic vision‐based recognition of industrial surface defects: a survey
  publication-title: IEEE Access
– volume: 11
  start-page: 7657
  issue: 16
  year: 2021
  article-title: Surface defect detection methods for industrial products: a review
  publication-title: Appl Sci
– volume: 20
  start-page: 1459
  issue: 5
  year: 2020
  article-title: Visual‐based defect detection and classification approaches for industrial applications—a survey
  publication-title: Sensors
– year: 2018
– volume: 65
  start-page: 545
  issue: 5
  year: 2021
  end-page: 563
  article-title: A review of medical image data augmentation techniques for deep learning applications
  publication-title: J Med Imaging Radiat Oncol
– volume: 12
  year: 2023
  article-title: Artificial intelligence‐based techniques for adulteration and defect detections in food and agricultural industry: a review
  publication-title: J Agric Food Res
– volume: 19
  start-page: 644
  issue: 3
  year: 2019
  article-title: An automatic surface defect inspection system for automobiles using machine vision methods
  publication-title: Sensors.
– volume: 14
  start-page: 2697
  issue: 5
  year: 2022
  article-title: Deep learning‐based defect detection for sustainable smart manufacturing
  publication-title: Sustainability
– volume: 25
  year: 2023
  article-title: Digital twin and IOT technology for secure manufacturing systems
  publication-title: Meas: Sensors
– volume: 183
  year: 2021
  article-title: Detecting soybean leaf disease from synthetic image using multi‐feature fusion faster R‐CNN
  publication-title: Comput Electron Agric
– volume: 7
  start-page: 31
  issue: 1
  year: 2023
  article-title: Deep learning‐based real time defect detection for optimization of aircraft manufacturing and control performance
  publication-title: Drones
– volume: 10
  start-page: 113493
  year: 2022
  end-page: 113512
  article-title: A survey of defect detection applications based on generative adversarial networks
  publication-title: IEEE Access
– volume: 17
  start-page: 1611
  issue: 3
  year: 2020
  end-page: 1622
  article-title: Defect image sample generation with GAN for improving defect recognition
  publication-title: IEEE Trans Autom Sci Eng
– volume: 29
  start-page: 237
  issue: 1
  year: 2022
  end-page: 250
  article-title: Synthetic data augmentation for pixel‐wise steel fatigue crack identification using fully convolutional networks
  publication-title: Smart Struct Syst
– year: 2022
– volume: 55
  start-page: 1
  issue: 1
  year: 2021
  end-page: 35
  article-title: A comprehensive survey on interoperability for IIoT: taxonomy, standards, and future directions
  publication-title: ACM Comput Surv
– year: 2020
– volume: 27
  start-page: 46
  issue: 1
  year: 2021
  end-page: 57
  article-title: Positive‐sample‐based surface defect detection using memory‐augmented adversarial autoencoders
  publication-title: IEEE/ASME Trans Mechatron
– year: 2023
– volume: 29
  year: 2016
  article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– volume: 137
  year: 2023
  article-title: A comprehensive survey of image augmentation techniques for deep learning
  publication-title: Pattern Recognit
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Commun ACM
– year: 2017
– volume: 10
  start-page: 7
  issue: 1
  year: 2021
  article-title: Intelligent machine vision model for defective product inspection based on machine learning
  publication-title: J Sens Actuator Netw
– year: 2019
– volume: 16
  issue: 4
  year: 2022
  article-title: Manipulation and generation of synthetic satellite images using deep learning models
  publication-title: J Appl Remote Sensing
– year: 2015
– volume: 1–14
  year: 2022
  article-title: Synthetic data augmentation for surface defect detection and classification using deep learning
  publication-title: J Intell Manuf
– ident: e_1_2_9_32_1
  doi: 10.1117/1.JRS.16.046504
– ident: e_1_2_9_33_1
  doi: 10.1007/978-3-030-39074-7_21
– ident: e_1_2_9_31_1
– ident: e_1_2_9_18_1
  doi: 10.1109/TII.2019.2945403
– ident: e_1_2_9_3_1
  doi: 10.1109/ACCESS.2022.3217227
– ident: e_1_2_9_5_1
  doi: 10.1109/ICSESS.2017.8342870
– ident: e_1_2_9_8_1
  doi: 10.1145/3422622
– ident: e_1_2_9_11_1
  doi: 10.1109/WACV48630.2021.00257
– ident: e_1_2_9_21_1
  doi: 10.1016/j.measen.2022.100661
– ident: e_1_2_9_40_1
  doi: 10.1109/ICCV.2017.244
– ident: e_1_2_9_22_1
  doi: 10.1109/IISA52424.2021.9555499
– ident: e_1_2_9_43_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.compag.2021.106064
– ident: e_1_2_9_7_1
  doi: 10.1016/j.patcog.2023.109347
– ident: e_1_2_9_19_1
  doi: 10.23919/IConAC.2019.8895110
– ident: e_1_2_9_16_1
  doi: 10.1145/3426826.3426832
– volume: 29
  year: 2016
  ident: e_1_2_9_42_1
  article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_9_2_1
  doi: 10.1145/3485130
– ident: e_1_2_9_12_1
  doi: 10.3390/s20051459
– volume: 1
  year: 2022
  ident: e_1_2_9_28_1
  article-title: Synthetic data augmentation for surface defect detection and classification using deep learning
  publication-title: J Intell Manuf
– ident: e_1_2_9_23_1
  doi: 10.1109/INFOMAN.2018.8392817
– ident: e_1_2_9_35_1
  doi: 10.1109/CNN53494.2021.9580274
– ident: e_1_2_9_17_1
  doi: 10.3390/app11167657
– ident: e_1_2_9_24_1
  doi: 10.1155/2022/1070405
– ident: e_1_2_9_10_1
  doi: 10.1016/j.inffus.2021.02.014
– ident: e_1_2_9_29_1
  doi: 10.1109/TMECH.2021.3058147
– volume: 29
  start-page: 237
  issue: 1
  year: 2022
  ident: e_1_2_9_37_1
  article-title: Synthetic data augmentation for pixel‐wise steel fatigue crack identification using fully convolutional networks
  publication-title: Smart Struct Syst
– ident: e_1_2_9_39_1
  doi: 10.1109/ICMERR56497.2022.10097812
– ident: e_1_2_9_44_1
– ident: e_1_2_9_6_1
  doi: 10.1109/ICTC.2017.8190856
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jafr.2023.100590
– ident: e_1_2_9_20_1
  doi: 10.3390/s19030644
– ident: e_1_2_9_41_1
  doi: 10.1117/12.2575765
– ident: e_1_2_9_4_1
  doi: 10.1016/j.compind.2023.103911
– ident: e_1_2_9_30_1
  doi: 10.1111/1754-9485.13261
– ident: e_1_2_9_26_1
  doi: 10.3390/drones7010031
– volume: 17
  start-page: 1611
  issue: 3
  year: 2020
  ident: e_1_2_9_9_1
  article-title: Defect image sample generation with GAN for improving defect recognition
  publication-title: IEEE Trans Autom Sci Eng
– ident: e_1_2_9_13_1
  doi: 10.3390/jsan10010007
– ident: e_1_2_9_38_1
  doi: 10.3390/app13095507
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-319-97310-4_54
– ident: e_1_2_9_25_1
  doi: 10.3390/su14052697
– ident: e_1_2_9_27_1
  doi: 10.1109/ACCESS.2023.3271748
– ident: e_1_2_9_36_1
  doi: 10.1109/ICECCME55909.2022.9987772
SSID ssj0001348
Score 2.3616407
Snippet The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Data acquisition
Data collection
Data communication
defect detection
False alarms
Generative adversarial networks
generative adversary network
Image enhancement
Image quality
Internet of Things
Machine learning
Manufacturing
Manufacturing defects
Synthesis
synthetic image generation
Title Intelligent IoT framework with GAN‐synthesized images for enhanced defect detection in manufacturing
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12619
https://www.proquest.com/docview/3044657556
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8640
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001348
  issn: 0824-7935
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8640
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001348
  issn: 0824-7935
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0824-7935
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001348
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT16sT6xWWdCLQkrS7OYBXkqxtoIVpIVeJGQfwaLdikkP9uRP8Df6S5zdJK2KCHpKDpuQ7Dz2m91vZhA6EZIIQlhgBR63LQJe2AqJCCyfcTvmoWQ01PnO1wOvNyJXYzquoPMyFyavD7HccNOWYfy1NvCYpZ-MnM8mqunoAAAcsON6Jp66XdWOclzTOguWOGKBEtKiNqmm8awe_boarSDmZ6BqVppuDd2V35gTTB6a84w1-eJb-cb__sQGWi8gKG7nOrOJKlJtoVrZ3gEX1r6Nkv6yXGeG-7MhTkoiF9a7t_iyPXh_fUtfFGDIdLKQAk-m4J1SDDgYS3VvuAVYSE0YgUtmSF8KTxSexmquMypMiuQOGnUvhp2eVbRlsDh4g9ByaOCBYCnTR54JDRMuWpQliZv4xGOhJ8BLgAa0IN5NAE4xWwoSc04CQWgrEMLdRVU1U3IP4YAx6sch-Fh9YMtYEFNBOBW-7oFs-3EdnZbiiXhRs1y3zniMythFT2BkJrCOjpdjn_JKHT-OapRSjgprTSNXn2oDbqVeHZ0Zcf3yhqhz0x-Yu_2_DD5Aay3AQznpp4Gq2fNcHgKeydiR0dsPUhb0cQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60HvTiLtZ1QC8KKV1mshxF1NalgrTQW8gswaKdikkP9uRP8Df6S3xvkrQqIugpOUwCyVvmezPffI-QQ6WZYkz4ju_KqsMgCzsBU77jCVmNZKAFD_C8803bbXbZZY_3cm4OnoXJ9CEmC24YGTZfY4DjgvSnKJfDvqnUsAKYJXPMhUIFMdHdVD2q1rDNs2CSYw64Ic_VSZHIM33263w0BZmfoaqda86XsoaqiZUoRIrJQ2WUioocfxNw_PdnLJPFHIXSk8xtVsiMNqtkqejwQPOAXyNxa6LYmdLWsEPjgstFcQGXXpy031_fkhcDMDLpj7Wi_QEkqIQCFKba3Ft6AVUaOSNwSS3vy9C-oYPIjPBQhT0luU6652ed06aTd2ZwJCSEwKlx3wXbcoG7njEPYqnqXMRxI_aYKwJXQaIAJ6hDyRsDohJVrVgkJfMV43VfqcYGKZmh0ZuE-kJwLwogzeKerRB-xBWTXHnYBrnqRWVyVNgnlLlsOXbPeAyL8gV_YGh_YJkcTMY-ZWIdP47aKcwc5gGbhA3c2Aboyt0yObb2-uUN4eltq23vtv4yeJ_MNzs31-F1q321TRbqAI8yDtAOKaXPI70L8CYVe9aJPwCbtviS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTttAFB0VkCo2UFoQKY-OVDZFcpTHjD1eRklDwiOtEEjsLM9LRMAEYWdRVnwC38iXcO_YTmiFKsHKXowt2fcxZ2bOPZeQPW2YZkyKQISqETDIwkHMtAgiqRqpio3kMdY7n4zCwTk7vOAXJTcHa2EKfYjZhhtGhs_XGODmVtsXUa4mY1dv4gpggSwxHgtk9PVO5-pRzbZvngWTHAvADXmpTopEnvmzf89Hc5D5Eqr6uaa_WjRUzbxEIVJMrurTXNbV_T8Cju_-jE9kpUShtFO4zRr5YNxnslp1eKBlwH8hdjhT7MzpcHJGbcXloriBSw86o6eHx-yPAxiZje-NpuMbSFAZBShMjbv09AKqDXJG4JJ73pejY0dvUjfFogpfJblOzvs_z7qDoOzMEChICHHQ5CIE23KJp56Wx1bpFpfWtm3EQhmHGhIFOEELlrwWEJVsGM1SpZjQjLeE1u0NsugmzmwSKqTkURpDmsUzWylFyjVTXEfYBrkRpTXyo7JPokrZcuyecZ1Uyxf8gYn_gTXyfTb2thDreHXUdmXmpAzYLGnjwTZAVx7WyL6313_ekHR_DUf-7utbBn8jH3_3-snxcHS0RZZbgI4KCtA2WczvpmYH0E0ud70PPwNPDPgW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+IoT+framework+with+GAN%E2%80%90synthesized+images+for+enhanced+defect+detection+in+manufacturing&rft.jtitle=Computational+intelligence&rft.au=Aramkul%2C+Somrawee&rft.au=Sugunnasil%2C+Prompong&rft.date=2024-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=40&rft.issue=2&rft_id=info:doi/10.1111%2Fcoin.12619&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon