Intelligent IoT framework with GAN‐synthesized images for enhanced defect detection in manufacturing
The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique of deep learning is the strategy that will be used to handle the issues presented. However, the challenge of using AI in this domain is the s...
Saved in:
| Published in | Computational intelligence Vol. 40; no. 2 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Blackwell Publishing Ltd
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0824-7935 1467-8640 |
| DOI | 10.1111/coin.12619 |
Cover
| Abstract | The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique of deep learning is the strategy that will be used to handle the issues presented. However, the challenge of using AI in this domain is the small and imbalanced dataset for training affected by the severe shortage of defective data. Moreover, data acquisition requires significant labor, time, and resources. In response to these demands, this research presents an intelligent internet of things (IoT) framework enriched by generative adversarial network (GAN). This framework was developed in response to the needs outlined above. The framework applies the IoT for real‐time data collection and communication, while GAN are utilized to synthesize high‐fidelity images of manufacturing defects. The quality of the GAN‐synthesized image is quantified by the average FID score of 8.312 for non‐defective images and 7.459 for defective images. As evidenced by the similarity between the distributions of synthetic and real images, the proposed generative model can generate visually authentic and high‐fidelity images. As demonstrated by the results of the defect detection experiments, the accuracy can be enhanced to the maximum of 96.5% by integrating the GAN‐synthesized images with the real images. Concurrently, this integration reduces the occurrence of false alarms. |
|---|---|
| AbstractList | The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique of deep learning is the strategy that will be used to handle the issues presented. However, the challenge of using AI in this domain is the small and imbalanced dataset for training affected by the severe shortage of defective data. Moreover, data acquisition requires significant labor, time, and resources. In response to these demands, this research presents an intelligent internet of things (IoT) framework enriched by generative adversarial network (GAN). This framework was developed in response to the needs outlined above. The framework applies the IoT for real‐time data collection and communication, while GAN are utilized to synthesize high‐fidelity images of manufacturing defects. The quality of the GAN‐synthesized image is quantified by the average FID score of 8.312 for non‐defective images and 7.459 for defective images. As evidenced by the similarity between the distributions of synthetic and real images, the proposed generative model can generate visually authentic and high‐fidelity images. As demonstrated by the results of the defect detection experiments, the accuracy can be enhanced to the maximum of 96.5% by integrating the GAN‐synthesized images with the real images. Concurrently, this integration reduces the occurrence of false alarms. |
| Author | Aramkul, Somrawee Sugunnasil, Prompong |
| Author_xml | – sequence: 1 givenname: Somrawee orcidid: 0000-0003-1936-9054 surname: Aramkul fullname: Aramkul, Somrawee organization: Chiang Mai University – sequence: 2 givenname: Prompong surname: Sugunnasil fullname: Sugunnasil, Prompong email: prompong.sugunnasil@cmu.ac.th organization: Chiang Mai University |
| BookMark | eNp9kM1KAzEUhYMo2FY3PkHAnTA1mUkyM8tStBZKu6nrIZOfNnWa1CRDqSsfwWf0SZxaVyLezYHLd-7lnD44t84qAG4wGuJu7oUzdohThssz0MOE5UnBCDoHPVSkJMnLjF6CfggbhBDOSNEDemqjahqzUjbCqVtC7flW7Z1_gXsT13Aymn--f4SDjWsVzJuS0Gz5SgWonYfKrrkV3U4qrUTsJHZinIXGwi23reYitt7Y1RW40LwJ6vpHB-D58WE5fkpmi8l0PJolIkO4TDAtGBOI1hlKc01LLWRKa60znRNWl0ziIlNEpmlONEOoRkoSLgQpJKFpIWU2ALenuzvvXlsVYrVxrbfdyypDhDCaU8o66u5ECe9C8EpXO9_F8ocKo-rYY3XssfrusYPRL1iYyI8po-em-duCT5a9adThn-PVeDGdnzxfFiyJrw |
| CitedBy_id | crossref_primary_10_1007_s00170_024_14738_7 crossref_primary_10_37394_23202_2024_23_54 |
| Cites_doi | 10.1117/1.JRS.16.046504 10.1007/978-3-030-39074-7_21 10.1109/TII.2019.2945403 10.1109/ACCESS.2022.3217227 10.1109/ICSESS.2017.8342870 10.1145/3422622 10.1109/WACV48630.2021.00257 10.1016/j.measen.2022.100661 10.1109/ICCV.2017.244 10.1109/IISA52424.2021.9555499 10.1016/j.compag.2021.106064 10.1016/j.patcog.2023.109347 10.23919/IConAC.2019.8895110 10.1145/3426826.3426832 10.1145/3485130 10.3390/s20051459 10.1109/INFOMAN.2018.8392817 10.1109/CNN53494.2021.9580274 10.3390/app11167657 10.1155/2022/1070405 10.1016/j.inffus.2021.02.014 10.1109/TMECH.2021.3058147 10.1109/ICMERR56497.2022.10097812 10.1109/ICTC.2017.8190856 10.1016/j.jafr.2023.100590 10.3390/s19030644 10.1117/12.2575765 10.1016/j.compind.2023.103911 10.1111/1754-9485.13261 10.3390/drones7010031 10.3390/jsan10010007 10.3390/app13095507 10.1007/978-3-319-97310-4_54 10.3390/su14052697 10.1109/ACCESS.2023.3271748 10.1109/ICECCME55909.2022.9987772 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley Periodicals LLC. 2024 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2023 Wiley Periodicals LLC. – notice: 2024 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/coin.12619 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1467-8640 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_coin_12619 COIN12619 |
| Genre | article |
| GrantInformation_xml | – fundername: Data Analytics and Knowledge Synthesis for Healthcare (DAKSH) Research Group, Chiang Mai University, Chiang Mai, Thailand. |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 UCJ VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3019-15866c05b3027f59fcd25bff3f746b96d183e4d2274f600b0ed4acc48d4528dd3 |
| IEDL.DBID | DR2 |
| ISSN | 0824-7935 |
| IngestDate | Tue Jul 15 16:11:05 EDT 2025 Wed Oct 01 05:57:16 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Wed Jan 22 17:21:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3019-15866c05b3027f59fcd25bff3f746b96d183e4d2274f600b0ed4acc48d4528dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1936-9054 |
| PQID | 3044657556 |
| PQPubID | 34323 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3044657556 crossref_primary_10_1111_coin_12619 crossref_citationtrail_10_1111_coin_12619 wiley_primary_10_1111_coin_12619_COIN12619 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 20240401 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computational intelligence |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2021; 27 2021; 65 2023; 13 2023; 11 2023; 12 2020; 20 2020; 63 2023; 7 2020; 17 2019; 16 2023; 148 2019; 19 2021; 183 2021; 72 2022; 29 2021; 10 2023; 25 2022; 2022 2021; 55 2021; 11 2023 2022 2021 2020 2020; 11533 2019 2023; 137 2018 2022; 14 2017 2015 2022; 10 2022; 1–14 2016; 29 2022; 16 e_1_2_9_30_1 e_1_2_9_31_1 Zhai G (e_1_2_9_37_1) 2022; 29 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Jain S (e_1_2_9_28_1) 2022; 1 Chen X (e_1_2_9_42_1) 2016; 29 Niu S (e_1_2_9_9_1) 2020; 17 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 2022 year: 2022 article-title: Circuit manufacturing defect detection using VGG16 convolutional neural networks publication-title: Wirel Commun Mob Comput – volume: 11533 start-page: 122 year: 2020 end-page: 133 – volume: 16 start-page: 1343 issue: 2 year: 2019 end-page: 1351 article-title: Deep‐learning‐based small surface defect detection via an exaggerated local variation‐based generative adversarial network publication-title: IEEE Trans Industr Inform – volume: 148 year: 2023 article-title: Deep CNN‐based visual defect detection: survey of current literature publication-title: Comput Ind – volume: 13 start-page: 5507 issue: 9 year: 2023 article-title: Deep convolutional generative adversarial networks‐based data augmentation method for classifying class‐imbalanced defect patterns in wafer bin map publication-title: Appl Sci – volume: 72 start-page: 126 year: 2021 end-page: 146 article-title: Image synthesis with adversarial networks: a comprehensive survey and case studies publication-title: Inf Fusion – year: 2021 – volume: 11 year: 2023 article-title: Deep learning for automatic vision‐based recognition of industrial surface defects: a survey publication-title: IEEE Access – volume: 11 start-page: 7657 issue: 16 year: 2021 article-title: Surface defect detection methods for industrial products: a review publication-title: Appl Sci – volume: 20 start-page: 1459 issue: 5 year: 2020 article-title: Visual‐based defect detection and classification approaches for industrial applications—a survey publication-title: Sensors – year: 2018 – volume: 65 start-page: 545 issue: 5 year: 2021 end-page: 563 article-title: A review of medical image data augmentation techniques for deep learning applications publication-title: J Med Imaging Radiat Oncol – volume: 12 year: 2023 article-title: Artificial intelligence‐based techniques for adulteration and defect detections in food and agricultural industry: a review publication-title: J Agric Food Res – volume: 19 start-page: 644 issue: 3 year: 2019 article-title: An automatic surface defect inspection system for automobiles using machine vision methods publication-title: Sensors. – volume: 14 start-page: 2697 issue: 5 year: 2022 article-title: Deep learning‐based defect detection for sustainable smart manufacturing publication-title: Sustainability – volume: 25 year: 2023 article-title: Digital twin and IOT technology for secure manufacturing systems publication-title: Meas: Sensors – volume: 183 year: 2021 article-title: Detecting soybean leaf disease from synthetic image using multi‐feature fusion faster R‐CNN publication-title: Comput Electron Agric – volume: 7 start-page: 31 issue: 1 year: 2023 article-title: Deep learning‐based real time defect detection for optimization of aircraft manufacturing and control performance publication-title: Drones – volume: 10 start-page: 113493 year: 2022 end-page: 113512 article-title: A survey of defect detection applications based on generative adversarial networks publication-title: IEEE Access – volume: 17 start-page: 1611 issue: 3 year: 2020 end-page: 1622 article-title: Defect image sample generation with GAN for improving defect recognition publication-title: IEEE Trans Autom Sci Eng – volume: 29 start-page: 237 issue: 1 year: 2022 end-page: 250 article-title: Synthetic data augmentation for pixel‐wise steel fatigue crack identification using fully convolutional networks publication-title: Smart Struct Syst – year: 2022 – volume: 55 start-page: 1 issue: 1 year: 2021 end-page: 35 article-title: A comprehensive survey on interoperability for IIoT: taxonomy, standards, and future directions publication-title: ACM Comput Surv – year: 2020 – volume: 27 start-page: 46 issue: 1 year: 2021 end-page: 57 article-title: Positive‐sample‐based surface defect detection using memory‐augmented adversarial autoencoders publication-title: IEEE/ASME Trans Mechatron – year: 2023 – volume: 29 year: 2016 article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets publication-title: Adv Neural Inf Process Syst – volume: 137 year: 2023 article-title: A comprehensive survey of image augmentation techniques for deep learning publication-title: Pattern Recognit – volume: 63 start-page: 139 issue: 11 year: 2020 end-page: 144 article-title: Generative adversarial networks publication-title: Commun ACM – year: 2017 – volume: 10 start-page: 7 issue: 1 year: 2021 article-title: Intelligent machine vision model for defective product inspection based on machine learning publication-title: J Sens Actuator Netw – year: 2019 – volume: 16 issue: 4 year: 2022 article-title: Manipulation and generation of synthetic satellite images using deep learning models publication-title: J Appl Remote Sensing – year: 2015 – volume: 1–14 year: 2022 article-title: Synthetic data augmentation for surface defect detection and classification using deep learning publication-title: J Intell Manuf – ident: e_1_2_9_32_1 doi: 10.1117/1.JRS.16.046504 – ident: e_1_2_9_33_1 doi: 10.1007/978-3-030-39074-7_21 – ident: e_1_2_9_31_1 – ident: e_1_2_9_18_1 doi: 10.1109/TII.2019.2945403 – ident: e_1_2_9_3_1 doi: 10.1109/ACCESS.2022.3217227 – ident: e_1_2_9_5_1 doi: 10.1109/ICSESS.2017.8342870 – ident: e_1_2_9_8_1 doi: 10.1145/3422622 – ident: e_1_2_9_11_1 doi: 10.1109/WACV48630.2021.00257 – ident: e_1_2_9_21_1 doi: 10.1016/j.measen.2022.100661 – ident: e_1_2_9_40_1 doi: 10.1109/ICCV.2017.244 – ident: e_1_2_9_22_1 doi: 10.1109/IISA52424.2021.9555499 – ident: e_1_2_9_43_1 – ident: e_1_2_9_34_1 doi: 10.1016/j.compag.2021.106064 – ident: e_1_2_9_7_1 doi: 10.1016/j.patcog.2023.109347 – ident: e_1_2_9_19_1 doi: 10.23919/IConAC.2019.8895110 – ident: e_1_2_9_16_1 doi: 10.1145/3426826.3426832 – volume: 29 year: 2016 ident: e_1_2_9_42_1 article-title: Infogan: interpretable representation learning by information maximizing generative adversarial nets publication-title: Adv Neural Inf Process Syst – ident: e_1_2_9_2_1 doi: 10.1145/3485130 – ident: e_1_2_9_12_1 doi: 10.3390/s20051459 – volume: 1 year: 2022 ident: e_1_2_9_28_1 article-title: Synthetic data augmentation for surface defect detection and classification using deep learning publication-title: J Intell Manuf – ident: e_1_2_9_23_1 doi: 10.1109/INFOMAN.2018.8392817 – ident: e_1_2_9_35_1 doi: 10.1109/CNN53494.2021.9580274 – ident: e_1_2_9_17_1 doi: 10.3390/app11167657 – ident: e_1_2_9_24_1 doi: 10.1155/2022/1070405 – ident: e_1_2_9_10_1 doi: 10.1016/j.inffus.2021.02.014 – ident: e_1_2_9_29_1 doi: 10.1109/TMECH.2021.3058147 – volume: 29 start-page: 237 issue: 1 year: 2022 ident: e_1_2_9_37_1 article-title: Synthetic data augmentation for pixel‐wise steel fatigue crack identification using fully convolutional networks publication-title: Smart Struct Syst – ident: e_1_2_9_39_1 doi: 10.1109/ICMERR56497.2022.10097812 – ident: e_1_2_9_44_1 – ident: e_1_2_9_6_1 doi: 10.1109/ICTC.2017.8190856 – ident: e_1_2_9_15_1 doi: 10.1016/j.jafr.2023.100590 – ident: e_1_2_9_20_1 doi: 10.3390/s19030644 – ident: e_1_2_9_41_1 doi: 10.1117/12.2575765 – ident: e_1_2_9_4_1 doi: 10.1016/j.compind.2023.103911 – ident: e_1_2_9_30_1 doi: 10.1111/1754-9485.13261 – ident: e_1_2_9_26_1 doi: 10.3390/drones7010031 – volume: 17 start-page: 1611 issue: 3 year: 2020 ident: e_1_2_9_9_1 article-title: Defect image sample generation with GAN for improving defect recognition publication-title: IEEE Trans Autom Sci Eng – ident: e_1_2_9_13_1 doi: 10.3390/jsan10010007 – ident: e_1_2_9_38_1 doi: 10.3390/app13095507 – ident: e_1_2_9_14_1 doi: 10.1007/978-3-319-97310-4_54 – ident: e_1_2_9_25_1 doi: 10.3390/su14052697 – ident: e_1_2_9_27_1 doi: 10.1109/ACCESS.2023.3271748 – ident: e_1_2_9_36_1 doi: 10.1109/ICECCME55909.2022.9987772 |
| SSID | ssj0001348 |
| Score | 2.3616407 |
| Snippet | The manufacturing industry is always exploring techniques to optimize processes, increase product quality, and more accurately identify defects. The technique... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Data acquisition Data collection Data communication defect detection False alarms Generative adversarial networks generative adversary network Image enhancement Image quality Internet of Things Machine learning Manufacturing Manufacturing defects Synthesis synthetic image generation |
| Title | Intelligent IoT framework with GAN‐synthesized images for enhanced defect detection in manufacturing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12619 https://www.proquest.com/docview/3044657556 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8640 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001348 issn: 0824-7935 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8640 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001348 issn: 0824-7935 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0824-7935 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001348 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT16sT6xWWdCLQkrS7OYBXkqxtoIVpIVeJGQfwaLdikkP9uRP8Df6S5zdJK2KCHpKDpuQ7Dz2m91vZhA6EZIIQlhgBR63LQJe2AqJCCyfcTvmoWQ01PnO1wOvNyJXYzquoPMyFyavD7HccNOWYfy1NvCYpZ-MnM8mqunoAAAcsON6Jp66XdWOclzTOguWOGKBEtKiNqmm8awe_boarSDmZ6BqVppuDd2V35gTTB6a84w1-eJb-cb__sQGWi8gKG7nOrOJKlJtoVrZ3gEX1r6Nkv6yXGeG-7MhTkoiF9a7t_iyPXh_fUtfFGDIdLKQAk-m4J1SDDgYS3VvuAVYSE0YgUtmSF8KTxSexmquMypMiuQOGnUvhp2eVbRlsDh4g9ByaOCBYCnTR54JDRMuWpQliZv4xGOhJ8BLgAa0IN5NAE4xWwoSc04CQWgrEMLdRVU1U3IP4YAx6sch-Fh9YMtYEFNBOBW-7oFs-3EdnZbiiXhRs1y3zniMythFT2BkJrCOjpdjn_JKHT-OapRSjgprTSNXn2oDbqVeHZ0Zcf3yhqhz0x-Yu_2_DD5Aay3AQznpp4Gq2fNcHgKeydiR0dsPUhb0cQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60HvTiLtZ1QC8KKV1mshxF1NalgrTQW8gswaKdikkP9uRP8Df6S3xvkrQqIugpOUwCyVvmezPffI-QQ6WZYkz4ju_KqsMgCzsBU77jCVmNZKAFD_C8803bbXbZZY_3cm4OnoXJ9CEmC24YGTZfY4DjgvSnKJfDvqnUsAKYJXPMhUIFMdHdVD2q1rDNs2CSYw64Ic_VSZHIM33263w0BZmfoaqda86XsoaqiZUoRIrJQ2WUioocfxNw_PdnLJPFHIXSk8xtVsiMNqtkqejwQPOAXyNxa6LYmdLWsEPjgstFcQGXXpy031_fkhcDMDLpj7Wi_QEkqIQCFKba3Ft6AVUaOSNwSS3vy9C-oYPIjPBQhT0luU6652ed06aTd2ZwJCSEwKlx3wXbcoG7njEPYqnqXMRxI_aYKwJXQaIAJ6hDyRsDohJVrVgkJfMV43VfqcYGKZmh0ZuE-kJwLwogzeKerRB-xBWTXHnYBrnqRWVyVNgnlLlsOXbPeAyL8gV_YGh_YJkcTMY-ZWIdP47aKcwc5gGbhA3c2Aboyt0yObb2-uUN4eltq23vtv4yeJ_MNzs31-F1q321TRbqAI8yDtAOKaXPI70L8CYVe9aJPwCbtviS |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTttAFB0VkCo2UFoQKY-OVDZFcpTHjD1eRklDwiOtEEjsLM9LRMAEYWdRVnwC38iXcO_YTmiFKsHKXowt2fcxZ2bOPZeQPW2YZkyKQISqETDIwkHMtAgiqRqpio3kMdY7n4zCwTk7vOAXJTcHa2EKfYjZhhtGhs_XGODmVtsXUa4mY1dv4gpggSwxHgtk9PVO5-pRzbZvngWTHAvADXmpTopEnvmzf89Hc5D5Eqr6uaa_WjRUzbxEIVJMrurTXNbV_T8Cju_-jE9kpUShtFO4zRr5YNxnslp1eKBlwH8hdjhT7MzpcHJGbcXloriBSw86o6eHx-yPAxiZje-NpuMbSFAZBShMjbv09AKqDXJG4JJ73pejY0dvUjfFogpfJblOzvs_z7qDoOzMEChICHHQ5CIE23KJp56Wx1bpFpfWtm3EQhmHGhIFOEELlrwWEJVsGM1SpZjQjLeE1u0NsugmzmwSKqTkURpDmsUzWylFyjVTXEfYBrkRpTXyo7JPokrZcuyecZ1Uyxf8gYn_gTXyfTb2thDreHXUdmXmpAzYLGnjwTZAVx7WyL6313_ekHR_DUf-7utbBn8jH3_3-snxcHS0RZZbgI4KCtA2WczvpmYH0E0ud70PPwNPDPgW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+IoT+framework+with+GAN%E2%80%90synthesized+images+for+enhanced+defect+detection+in+manufacturing&rft.jtitle=Computational+intelligence&rft.au=Aramkul%2C+Somrawee&rft.au=Sugunnasil%2C+Prompong&rft.date=2024-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=40&rft.issue=2&rft_id=info:doi/10.1111%2Fcoin.12619&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon |