Intelligent recognition of joints and fissures in tunnel faces using an improved mask region‐based convolutional neural network algorithm
To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition methods, we present a deep learning recognition segmentation algorithm called the mask region convolutional neural network (Mask R‐CNN) that is en...
Saved in:
| Published in | Computer-aided civil and infrastructure engineering Vol. 39; no. 8; pp. 1123 - 1142 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1093-9687 1467-8667 |
| DOI | 10.1111/mice.13097 |
Cover
| Abstract | To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition methods, we present a deep learning recognition segmentation algorithm called the mask region convolutional neural network (Mask R‐CNN) that is enhanced by an advanced Transformer attention mechanism and deformable convolution network (Mask R‐CNN‐TD). The Transformer attention mechanism improves the backbone network's ability to extract image features by focusing on important areas. A deformable convolutional network enables the network to more precisely conform to the morphological characteristics of joints and fissures on the tunnel face, thereby enhancing the accuracy of detection. Experimental results demonstrate that Mask R‐CNN‐TD achieves superior performance, compared to Mask R‐CNN series algorithms and other instance segmentation methods in terms of detection accuracy, with mean average precision scores of 70.5%, 70.8%, 53.2%, and 63.3% for detection box and mask segmentation at thresholds of 0.5 and 0.75, respectively. Based on the stable and efficient Mask R‐CNN‐TD model, we developed a mobile application called tunnel face detector to automatically detect tunnel faces on the construction site. |
|---|---|
| AbstractList | To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition methods, we present a deep learning recognition segmentation algorithm called the mask region convolutional neural network (Mask R‐CNN) that is enhanced by an advanced Transformer attention mechanism and deformable convolution network (Mask R‐CNN‐TD). The Transformer attention mechanism improves the backbone network's ability to extract image features by focusing on important areas. A deformable convolutional network enables the network to more precisely conform to the morphological characteristics of joints and fissures on the tunnel face, thereby enhancing the accuracy of detection. Experimental results demonstrate that Mask R‐CNN‐TD achieves superior performance, compared to Mask R‐CNN series algorithms and other instance segmentation methods in terms of detection accuracy, with mean average precision scores of 70.5%, 70.8%, 53.2%, and 63.3% for detection box and mask segmentation at thresholds of 0.5 and 0.75, respectively. Based on the stable and efficient Mask R‐CNN‐TD model, we developed a mobile application called tunnel face detector to automatically detect tunnel faces on the construction site. |
| Author | Xiao, Yong‐Zhuo Zhang, Yang Ni, Yi‐Qing Lei, Ming‐Feng Deng, E Zhang, Jun‐Jie Zhang, Yun‐Bo |
| Author_xml | – sequence: 1 givenname: Ming‐Feng surname: Lei fullname: Lei, Ming‐Feng organization: Key Laboratory of Engineering Structure of Heavy Haul Railway – sequence: 2 givenname: Yun‐Bo surname: Zhang fullname: Zhang, Yun‐Bo organization: Central South University – sequence: 3 givenname: E surname: Deng fullname: Deng, E email: early.deng@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Yi‐Qing surname: Ni fullname: Ni, Yi‐Qing organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Yong‐Zhuo surname: Xiao fullname: Xiao, Yong‐Zhuo organization: Central South University – sequence: 6 givenname: Yang surname: Zhang fullname: Zhang, Yang organization: The Hong Kong Polytechnic University – sequence: 7 givenname: Jun‐Jie surname: Zhang fullname: Zhang, Jun‐Jie organization: Central South University |
| BookMark | eNp9kMFKAzEURYNUsK1u_IKAO2Fq0kwnk6WUqoWKG10PmTQzps0kNcm0dOfejd_ol5hpXYn4CLyXcO7l5Q5Az1gjAbjEaIRj3TRKyBEmiNET0MdpRpM8y2gvzoiRhGU5PQMD71coVpqSPviYmyC1VrU0ATopbG1UUNZAW8GVVSZ4yM0SVsr71kkPlYGhNUZqWHER761Xpo4IVM3G2a1cwob7dXSqo8nX-2fJfXwT1mytbjtjrqGRrTu0sLNuDbmurVPhtTkHpxXXXl789CF4uZs9Tx-SxdP9fHq7SARBmCYCoUzicpJjXmY8xYRVhORsmZbjVNJsjFA5JoIznE9KyjhaMiEJpYRhQTgeczIEV0ffuPFbK30oVrZ1cTNfEETiydN0EqnrIyWc9d7Jqtg41XC3LzAqurCLLuziEHaE0S9YqMC7_wbHlf5bgo-SndJy_4958Tifzo6abxDHl7U |
| CitedBy_id | crossref_primary_10_3390_constrmater4010005 crossref_primary_10_1111_mice_13241 crossref_primary_10_1155_2024_8810092 crossref_primary_10_1016_j_iintel_2024_100111 crossref_primary_10_1038_s41598_024_75723_4 crossref_primary_10_1111_mice_13208 crossref_primary_10_1111_mice_13117 crossref_primary_10_1016_j_engappai_2024_109706 crossref_primary_10_3390_s24010003 crossref_primary_10_1007_s10346_025_02460_8 crossref_primary_10_1111_mice_13421 crossref_primary_10_1007_s11440_024_02493_8 crossref_primary_10_1016_j_engappai_2025_110035 crossref_primary_10_1016_j_autcon_2024_105829 crossref_primary_10_3390_buildings14030838 crossref_primary_10_1016_j_jobe_2025_112012 crossref_primary_10_1177_03611981241236185 crossref_primary_10_3390_rs16122090 crossref_primary_10_1111_mice_13181 crossref_primary_10_1007_s00107_025_02211_5 |
| Cites_doi | 10.1111/mice.12731 10.3233/ICA-200629 10.3233/ICA-200643 10.1016/j.tust.2021.103810 10.1080/19475705.2020.1803996 10.1016/j.autcon.2022.104668 10.3233/ICA‐230709 10.1109/CVPR.2016.319 10.1145/357994.358023 10.1016/j.ijrmms.2021.104745 10.1109/JPROC.2010.2050290 10.1111/mice.12387 10.1007/978-3-319-10602-1_48 10.1016/j.autcon.2022.104633 10.1159/000512985 10.1016/j.tust.2020.103724 10.1016/j.gsf.2020.04.003 10.3233/ICA-230702 10.1109/ICCV.2019.00925 10.1109/ACCESS.2020.2964540 10.1111/mice.12793 10.1007/s10706-018-0483-1 10.1111/mice.12625 10.1111/mice.12749 10.1016/j.tust.2019.103156 10.1109/CVPR.2017.106 10.1111/mice.12497 10.1109/ICCV48922.2021.00986 10.1016/j.compag.2022.106864 10.3389/fpls.2022.934450 10.1111/mice.12367 10.1007/s12517-018-3985-5 10.1016/j.scs.2022.104369 10.1111/mice.12914 10.1016/j.tust.2022.104897 10.1155/2023/2506274 10.1016/j.enggeo.2021.106232 10.1016/j.measurement.2021.109316 10.1109/ICCV.2017.322 10.1111/mice.12836 10.1109/CVPR.2019.00657 10.1109/TPAMI.2019.2956516 10.1007/978-3-031-08223-8_14 10.1109/CVPR.2016.90 10.1109/ICCV.2017.89 10.1111/mice.12601 10.1111/mice.12841 10.1109/ICCV.2017.74 |
| ContentType | Journal Article |
| Copyright | 2023 . 2024 Computer‐Aided Civil and Infrastructure Engineering. |
| Copyright_xml | – notice: 2023 . – notice: 2024 Computer‐Aided Civil and Infrastructure Engineering. |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.13097 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 1142 |
| ExternalDocumentID | 10_1111_mice_13097 MICE13097 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province funderid: 2021JJ30825 – fundername: Innovation and Technology Commission of the Hong Kong SAR Government funderid: K‐BBY1 – fundername: Research Grants Council, University Grants Committee of the Hong Kong Special Administrative Region (SAR), China funderid: R‐5020‐18 – fundername: National Natural Science Foundation of China funderid: 51978669 – fundername: Hong Kong Polytechnic University's Postdoc Matching Fund Scheme funderid: 1‐W21Q |
| GroupedDBID | ..I .3N .DC .GA 05W 0R~ 10A 1OC 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABFSI ABJNI ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAP EBS EST ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RX1 SUPJJ TN5 UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT .4S 1OB 31~ AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACUHS ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AHEFC AI. AIDQK AIDYY AIQQE ARCSS ASPBG AVWKF AZFZN BDRZF CAG CITATION COF CWDTD E.L EAD EDO EJD EMK FEDTE HF~ HVGLF I-F LW6 MK~ PALCI RJQFR SAMSI TUS VH1 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3017-c006e1b581ab6a4139f3389d4b24e76200b23ca9185b79a0d9ce377391c3a12a3 |
| IEDL.DBID | DR2 |
| ISSN | 1093-9687 |
| IngestDate | Sat Jul 26 00:23:07 EDT 2025 Wed Oct 01 04:16:01 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Wed Jan 22 17:19:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3017-c006e1b581ab6a4139f3389d4b24e76200b23ca9185b79a0d9ce377391c3a12a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3033038445 |
| PQPubID | 2045171 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3033038445 crossref_primary_10_1111_mice_13097 crossref_citationtrail_10_1111_mice_13097 wiley_primary_10_1111_mice_13097_MICE13097 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021b; 291 2010; 98 2023; 30 2022; 196 1984; 27 2023; 38 2023; 146 2021; 28 2023; 145 2021; 108 2023; 2023 2020; 35 2020; 11 2021; 36 2020; 8 2015; 28 2023; 89 2023 2022 2021; 178 2021 2020; 95 2019; 43 2020 2023; 132 2019 2022; 13 2021c; 142 2022; 37 2017 2016 2014 2021a; 12 2021; 110 2021; 83 2018; 33 2018; 11 2018; 36 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Ren S. (e_1_2_10_34_1) 2015; 28 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 2023 year: 2023 article-title: A small object detection algorithm based on modulated deformable convolution and large kernel convolution publication-title: Computational Intelligence and Neuroscience – volume: 132 year: 2023 article-title: Study on the geological adaptability of the arch cover method for shallow‐buried large‐span metro stations publication-title: Tunnelling and Underground Space Technology – volume: 37 start-page: 1387 issue: 11 year: 2022 end-page: 1401 article-title: A deep learning‐based image captioning method to automatically generate comprehensive explanations of bridge damage publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 33 start-page: 638 issue: 8 year: 2018 end-page: 654 article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 43 start-page: 1483 issue: 5 year: 2019 end-page: 1498 article-title: Cascade R‐CNN: High quality object detection and instance segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2017 article-title: Attention is all you need – volume: 28 start-page: 51 issue: 1 year: 2021 end-page: 63 article-title: A convolution‐based distance measure for fuzzy singletons and its application in a pattern recognition problem publication-title: Integrated Computer‐Aided Engineering – year: 2023 article-title: Comparative deep learning studies for indirect tunnel monitoring with and without Fourier pre‐processing publication-title: Integrated Computer‐Aided Engineering – start-page: 2117 year: 2017 end-page: 2125 article-title: Feature pyramid networks for object detection – volume: 13 year: 2022 article-title: Fusing attention mechanism with Mask R‐CNN for instance segmentation of grape cluster in the field publication-title: Frontiers in Plant Science – volume: 37 start-page: 386 issue: 3 year: 2022 end-page: 402 article-title: An optimization strategy to improve the deep learning‐based recognition model of leakage in shield tunnels publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 27 start-page: 236 issue: 3 year: 1984 end-page: 239 article-title: A fast parallel algorithm for thinning digital patterns publication-title: Communications of the ACM – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – volume: 8 start-page: 9325 year: 2020 end-page: 9334 article-title: Attention mask R‐CNN for ship detection and segmentation from remote sensing images publication-title: IEEE Access – volume: 36 start-page: 1549 issue: 12 year: 2021 end-page: 1567 article-title: Deep learning‐based object identification with instance segmentation and pseudo‐LiDAR point cloud for work zone safety publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 11 start-page: 1 year: 2018 end-page: 14 article-title: Structural planes surveying and fractal dimension characteristics of tunnel face based on digital photogrammetry publication-title: Arabian Journal of Geosciences – volume: 98 start-page: 1467 issue: 8 year: 2010 end-page: 1484 article-title: LabelMe: Online image annotation and applications publication-title: Proceedings of the IEEE – volume: 35 start-page: 373 issue: 4 year: 2020 end-page: 388 article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 10012 year: 2021 end-page: 10022 – start-page: 764 year: 2017 end-page: 773 article-title: Deformable convolutional networks – volume: 145 year: 2023 article-title: Simultaneous tunnel defects and lining thickness identification based on multi‐tasks deep neural network from ground penetrating radar images publication-title: Automation in Construction – start-page: 6409 year: 2019 end-page: 6418 article-title: Mask scoring R‐CNN – volume: 110 year: 2021 article-title: Rock mass trace line identification incorporated with grouping algorithm at tunnel faces publication-title: Tunnelling and Underground Space Technology – volume: 37 start-page: 762 issue: 6 year: 2022 end-page: 780 article-title: Automatic detection method of tunnel lining multi‐defects via an enhanced You Only Look Once network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 38 start-page: 940 issue: 7 year: 2023 end-page: 955 article-title: Deep learning‐based automatic detection of muck types for earth pressure balance shield tunneling in soft ground publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 36 start-page: 164 issue: 2 year: 2021 end-page: 179 article-title: Tunnel condition assessment via cloud model‐based random forests and self‐training approach publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 196 year: 2022 article-title: Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background publication-title: Computers and Electronics in Agriculture – volume: 12 start-page: 395 issue: 1 year: 2021a end-page: 404 article-title: Deep learning‐based classification of rock structure of tunnel face publication-title: Geoscience Frontiers – volume: 36 start-page: 362 issue: 3 year: 2021 end-page: 377 article-title: Automatic railroad track components inspection using real‐time instance segmentation publication-title: Computer‐Aided Civil and Infrastructure Engineering – start-page: 6105 year: 2019 end-page: 6114 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – start-page: 2961 year: 2017 end-page: 2969 article-title: Mask R‐CNN – volume: 178 year: 2021 article-title: Automatic defect detection and segmentation of tunnel surface using modified Mask R‐CNN publication-title: Measurement – start-page: 618 year: 2017 end-page: 626 article-title: Grad‐CAM: Visual explanations from deep networks via gradient‐based localization – volume: 95 year: 2020 article-title: Deep learning–based image instance segmentation for moisture marks of shield tunnel lining publication-title: Tunnelling and Underground Space Technology – volume: 28 start-page: 97 issue: 1 year: 2021 end-page: 111 article-title: Real‐time facial expression recognition using smoothed deep neural network ensemble publication-title: Integrated Computer‐Aided Engineering – volume: 146 year: 2023 article-title: Semi‐supervised learning‐based point cloud network for segmentation of 3D tunnel scenes publication-title: Automation in Construction – start-page: 165 year: 2022 end-page: 176 article-title: Ground penetrating radar Fourier pre‐processing for deep learning tunnel defects’ automated classification – start-page: 740 year: 2014 end-page: 755 article-title: Microsoft COCO: Common objects in context – volume: 28 start-page: 91 year: 2015 end-page: 99 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – start-page: 9157 year: 2019 end-page: 9166 – volume: 108 year: 2021 article-title: A novel tunnel‐lining crack recognition system based on digital image technology publication-title: Tunnelling and Underground Space Technology – year: 2020 – volume: 83 start-page: 602 issue: 6 year: 2021 end-page: 614 article-title: Detection of epileptic seizure using pretrained deep convolutional neural network and transfer learning publication-title: European Neurology – volume: 38 start-page: 470 issue: 4 year: 2023 end-page: 488 article-title: Rock mass fracture maps prediction based on spatiotemporal image sequence modeling publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 89 year: 2023 article-title: A U‐shaped spray device on a front boom‐type roadheader for dust suppression in a metro tunnel publication-title: Sustainable Cities and Society – volume: 142 year: 2021c article-title: Automated extraction and evaluation of fracture trace maps from rock tunnel face images via deep learning publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 11 start-page: 1528 issue: 1 year: 2020 end-page: 1541 article-title: Reliable stability analysis of surrounding rock for super section tunnel based on digital characteristics of joint information publication-title: Geomatics, Natural Hazards and Risk – volume: 36 start-page: 2565 year: 2018 end-page: 2576 article-title: Instability mode analysis of surrounding rocks in tunnel blasting construction with thin bedrock roofs publication-title: Geotechnical and Geological Engineering – start-page: 2921 year: 2016 end-page: 2929 article-title: Learning deep features for discriminative localization – year: 2017 – volume: 291 year: 2021b article-title: Towards semi‐automatic discontinuity characterization in rock tunnel faces using 3D point clouds publication-title: Engineering Geology – volume: 33 start-page: 1127 issue: 12 year: 2018 end-page: 1141 article-title: Road damage detection and classification using deep neural networks with smartphone images publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 30 start-page: 121 issue: 2 year: 2023 end-page: 134 article-title: An improved deep learning architecture for multi‐object tracking systems publication-title: Integrated Computer‐Aided Engineering – ident: e_1_2_10_47_1 doi: 10.1111/mice.12731 – ident: e_1_2_10_31_1 doi: 10.3233/ICA-200629 – ident: e_1_2_10_2_1 doi: 10.3233/ICA-200643 – ident: e_1_2_10_23_1 doi: 10.1016/j.tust.2021.103810 – ident: e_1_2_10_13_1 – ident: e_1_2_10_17_1 doi: 10.1080/19475705.2020.1803996 – ident: e_1_2_10_20_1 doi: 10.1016/j.autcon.2022.104668 – ident: e_1_2_10_35_1 doi: 10.3233/ICA‐230709 – volume: 28 start-page: 91 year: 2015 ident: e_1_2_10_34_1 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_53_1 doi: 10.1109/CVPR.2016.319 – ident: e_1_2_10_43_1 – ident: e_1_2_10_51_1 doi: 10.1145/357994.358023 – ident: e_1_2_10_7_1 doi: 10.1016/j.ijrmms.2021.104745 – ident: e_1_2_10_41_1 doi: 10.1109/JPROC.2010.2050290 – ident: e_1_2_10_29_1 doi: 10.1111/mice.12387 – ident: e_1_2_10_25_1 doi: 10.1007/978-3-319-10602-1_48 – ident: e_1_2_10_26_1 doi: 10.1016/j.autcon.2022.104633 – ident: e_1_2_10_33_1 doi: 10.1159/000512985 – ident: e_1_2_10_18_1 – ident: e_1_2_10_21_1 doi: 10.1016/j.tust.2020.103724 – ident: e_1_2_10_6_1 doi: 10.1016/j.gsf.2020.04.003 – ident: e_1_2_10_12_1 – ident: e_1_2_10_42_1 doi: 10.3233/ICA-230702 – ident: e_1_2_10_3_1 doi: 10.1109/ICCV.2019.00925 – ident: e_1_2_10_32_1 doi: 10.1109/ACCESS.2020.2964540 – ident: e_1_2_10_8_1 doi: 10.1111/mice.12793 – ident: e_1_2_10_10_1 doi: 10.1007/s10706-018-0483-1 – ident: e_1_2_10_14_1 doi: 10.1111/mice.12625 – ident: e_1_2_10_37_1 doi: 10.1111/mice.12749 – ident: e_1_2_10_52_1 doi: 10.1016/j.tust.2019.103156 – ident: e_1_2_10_24_1 doi: 10.1109/CVPR.2017.106 – ident: e_1_2_10_11_1 doi: 10.1111/mice.12497 – ident: e_1_2_10_28_1 doi: 10.1109/ICCV48922.2021.00986 – ident: e_1_2_10_44_1 doi: 10.1016/j.compag.2022.106864 – ident: e_1_2_10_38_1 doi: 10.3389/fpls.2022.934450 – ident: e_1_2_10_48_1 doi: 10.1111/mice.12367 – ident: e_1_2_10_39_1 doi: 10.1007/s12517-018-3985-5 – ident: e_1_2_10_27_1 doi: 10.1016/j.scs.2022.104369 – ident: e_1_2_10_50_1 doi: 10.1111/mice.12914 – ident: e_1_2_10_40_1 – ident: e_1_2_10_22_1 doi: 10.1016/j.tust.2022.104897 – ident: e_1_2_10_49_1 doi: 10.1155/2023/2506274 – ident: e_1_2_10_5_1 doi: 10.1016/j.enggeo.2021.106232 – ident: e_1_2_10_45_1 doi: 10.1016/j.measurement.2021.109316 – ident: e_1_2_10_15_1 doi: 10.1109/ICCV.2017.322 – ident: e_1_2_10_54_1 doi: 10.1111/mice.12836 – ident: e_1_2_10_19_1 doi: 10.1109/CVPR.2019.00657 – ident: e_1_2_10_4_1 doi: 10.1109/TPAMI.2019.2956516 – ident: e_1_2_10_30_1 doi: 10.1007/978-3-031-08223-8_14 – ident: e_1_2_10_16_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_10_9_1 doi: 10.1109/ICCV.2017.89 – ident: e_1_2_10_55_1 doi: 10.1111/mice.12601 – ident: e_1_2_10_46_1 doi: 10.1111/mice.12841 – ident: e_1_2_10_36_1 doi: 10.1109/ICCV.2017.74 |
| SSID | ssj0000443 |
| Score | 2.5231247 |
| Snippet | To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1123 |
| SubjectTerms | Accuracy Algorithms Applications programs Artificial neural networks Computer networks Construction sites Deformation Formability Instance segmentation Machine learning Mobile computing Neural networks Transformers Tunnels |
| Title | Intelligent recognition of joints and fissures in tunnel faces using an improved mask region‐based convolutional neural network algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13097 https://www.proquest.com/docview/3033038445 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8667 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8667 dateEnd: 20241028 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1093-9687 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS91AFL2I3dSFtlbxtVYG6qZCJJnJ10A32vqwhbooCm4kzEwm-nyaFJO36ar7bvob-0t672TyfC2loBBIGCZf3Jzcc8PJuQC7mDO4jZG5pVyFQZyUOlChsUFikzS3GS-Nawf0-SQ9Pos_nSfnS_Bu-Bem94eYf3AjZLj3NQFc6XYB5NStnXoZS_qVPBKpq6e-LHhHxV5dL0Ug0zzz3qQk47nf9c9sdE8xF4mqyzTjNbgYrrEXmEz3Z53eN9_-sm987E08g1VPQdlB_8w8hyVbr8Oap6PMg73FoaHjwzC2DisL9oUv4MfHuZ9nx-ZKpKZmTcWum0ndtUzVJasotljVs0nNuhnpalhFQjBGmvtLnMIm7ssGnvxWtVNGvSKa-tf3n5RhS0a6eI8PvGry33Qrp15n6uayuZt0V7cbcDY-On1_HPjmDoERlBkNwt1GOskjpVOFqVRWWC3LMtY8tviGDkPNhVES-YTOpApLaazIMiEjI1TEldiE5bqp7RYwpCil4qkINdaWVY41dx6FVSq0LiPNq3AEb4cgF8Y7n1MDjptiqIAoDIULwwjezOd-7f0-_jlre3hWCo_5tkAygEsex8kI9lzQ_3OEAkF25LZePmTyK3jKkVX10qFtWO7uZvY1sqJO78CTg8MPh-Mdh4LfnykM0g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9VAFL1oXWgXrVbFV6sO6EYhJZmZfMxSpOVV2y6khe7CzGRSn22T0uRtXLnvpr_RX-K9k8nrU0RQCCSEyRc3J_fc4eRcgDeYM7iTyNwyruNIppWJdGxdlLo0K1zOK-vbAR0cZtNj-fEkPQnaHPoXZvCHWEy4ETL895oAThPSSyindu3UzFjld-GezLBQIU70eck9SgZ9vRKRyoo8uJOSkOf22F_z0S3JXKaqPtfsrg8NVTtvUUgSk7PteW-27bffDBz_-zEewlpgoez98No8gjuu2YD1wEhZwHuHu8amD-O-DVhdcjB8DNd7C0vPni3ESG3D2pp9bWdN3zHdVKym8GJhz2YN6-ckrWE1acEYye5PcQib-ckNvPiF7s4YtYtomx_fbyjJVoyk8QEieNdkwelXXsDO9PlpezXrv1w8gePdnaMP0yj0d4isoORoEfEuMWmRaJNpzKaqxoJZVdJw6fAjHceGC6sVUgqTKx1XyjqR50IlVuiEa_EUVpq2cc-AIUupNM9EbLC8rAssu4skrjNhTJUYXscTeDtGubTB_Jx6cJyXYxFEYSh9GCbwejH2crD8-OOorfFlKQPsuxL5AC6FlOkE3vmo_-UMJeJsx29t_svgV3B_enSwX-7vHX56Dg84kqxBSbQFK_3V3L1AktSblx4KPwHr7A-B |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFB60BdGFfah4ba0DulFISWYmj1kW20urtohY6C7MK-21bVKa3I0r9930N_aX9JzJ5PZWRFAIJITJi5Mv5zvDl-8Q8g5yBnMCmFvGVByJ1OpIxcZFqUuzwuXMGt8OaP8g2z0Un47So6DNwX9hen-I2YQbIsN_rxHg7sJWcyjHdu3YzFjmD8miSGWBir7tb3PuUSLo6yWPZFbkwZ0UhTx3x97PR3ckc56q-lwzXuobqrbeohAlJqeb005vmp-_GTj-92Msk6eBhdKt_rVZIQ9cvUqWAiOlAe8t7BqaPgz7VsmTOQfDZ-Rqb2bp2dGZGKmpaVPRH82k7lqqaksrDC8U9nRS026K0hpaoRaMouz-GIbQiZ_cgIufq_aUYruIpr75dY1J1lKUxgeIwF2jBadfeQE7VWfHzeWkOzl_Tg7HO98_7kahv0NkOCZHA4h3iU6LROlMQTaVFRTM0grNhIOPdBxrxo2SQCl0LlVspXE8z7lMDFcJU_wFWaib2r0kFFiKVSzjsYbysiqg7C6SuMq41jbRrIpH5P0Q5dIE83PswXFWDkUQhqH0YRiRt7OxF73lxx9HrQ8vSxlg35bAB2AphEhH5IOP-l_OUALOdvzWq38Z_IY8-ro9Lr_sHXxeI48ZcKxeSLROFrrLqXsNHKnTGx4Jt3-iDwU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+recognition+of+joints+and+fissures+in+tunnel+faces+using+an+improved+mask+region%E2%80%90based+convolutional+neural+network+algorithm&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Lei%2C+Ming%E2%80%90Feng&rft.au=Zhang%2C+Yun%E2%80%90Bo&rft.au=Deng%2C+E&rft.au=Ni%2C+Yi%E2%80%90Qing&rft.date=2024-04-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=8&rft.spage=1123&rft.epage=1142&rft_id=info:doi/10.1111%2Fmice.13097&rft.externalDBID=10.1111%252Fmice.13097&rft.externalDocID=MICE13097 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |