Intelligent recognition of joints and fissures in tunnel faces using an improved mask region‐based convolutional neural network algorithm

To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition methods, we present a deep learning recognition segmentation algorithm called the mask region convolutional neural network (Mask R‐CNN) that is en...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 39; no. 8; pp. 1123 - 1142
Main Authors Lei, Ming‐Feng, Zhang, Yun‐Bo, Deng, E, Ni, Yi‐Qing, Xiao, Yong‐Zhuo, Zhang, Yang, Zhang, Jun‐Jie
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
DOI10.1111/mice.13097

Cover

Abstract To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition methods, we present a deep learning recognition segmentation algorithm called the mask region convolutional neural network (Mask R‐CNN) that is enhanced by an advanced Transformer attention mechanism and deformable convolution network (Mask R‐CNN‐TD). The Transformer attention mechanism improves the backbone network's ability to extract image features by focusing on important areas. A deformable convolutional network enables the network to more precisely conform to the morphological characteristics of joints and fissures on the tunnel face, thereby enhancing the accuracy of detection. Experimental results demonstrate that Mask R‐CNN‐TD achieves superior performance, compared to Mask R‐CNN series algorithms and other instance segmentation methods in terms of detection accuracy, with mean average precision scores of 70.5%, 70.8%, 53.2%, and 63.3% for detection box and mask segmentation at thresholds of 0.5 and 0.75, respectively. Based on the stable and efficient Mask R‐CNN‐TD model, we developed a mobile application called tunnel face detector to automatically detect tunnel faces on the construction site.
AbstractList To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition methods, we present a deep learning recognition segmentation algorithm called the mask region convolutional neural network (Mask R‐CNN) that is enhanced by an advanced Transformer attention mechanism and deformable convolution network (Mask R‐CNN‐TD). The Transformer attention mechanism improves the backbone network's ability to extract image features by focusing on important areas. A deformable convolutional network enables the network to more precisely conform to the morphological characteristics of joints and fissures on the tunnel face, thereby enhancing the accuracy of detection. Experimental results demonstrate that Mask R‐CNN‐TD achieves superior performance, compared to Mask R‐CNN series algorithms and other instance segmentation methods in terms of detection accuracy, with mean average precision scores of 70.5%, 70.8%, 53.2%, and 63.3% for detection box and mask segmentation at thresholds of 0.5 and 0.75, respectively. Based on the stable and efficient Mask R‐CNN‐TD model, we developed a mobile application called tunnel face detector to automatically detect tunnel faces on the construction site.
Author Xiao, Yong‐Zhuo
Zhang, Yang
Ni, Yi‐Qing
Lei, Ming‐Feng
Deng, E
Zhang, Jun‐Jie
Zhang, Yun‐Bo
Author_xml – sequence: 1
  givenname: Ming‐Feng
  surname: Lei
  fullname: Lei, Ming‐Feng
  organization: Key Laboratory of Engineering Structure of Heavy Haul Railway
– sequence: 2
  givenname: Yun‐Bo
  surname: Zhang
  fullname: Zhang, Yun‐Bo
  organization: Central South University
– sequence: 3
  givenname: E
  surname: Deng
  fullname: Deng, E
  email: early.deng@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Yi‐Qing
  surname: Ni
  fullname: Ni, Yi‐Qing
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Yong‐Zhuo
  surname: Xiao
  fullname: Xiao, Yong‐Zhuo
  organization: Central South University
– sequence: 6
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  organization: The Hong Kong Polytechnic University
– sequence: 7
  givenname: Jun‐Jie
  surname: Zhang
  fullname: Zhang, Jun‐Jie
  organization: Central South University
BookMark eNp9kMFKAzEURYNUsK1u_IKAO2Fq0kwnk6WUqoWKG10PmTQzps0kNcm0dOfejd_ol5hpXYn4CLyXcO7l5Q5Az1gjAbjEaIRj3TRKyBEmiNET0MdpRpM8y2gvzoiRhGU5PQMD71coVpqSPviYmyC1VrU0ATopbG1UUNZAW8GVVSZ4yM0SVsr71kkPlYGhNUZqWHER761Xpo4IVM3G2a1cwob7dXSqo8nX-2fJfXwT1mytbjtjrqGRrTu0sLNuDbmurVPhtTkHpxXXXl789CF4uZs9Tx-SxdP9fHq7SARBmCYCoUzicpJjXmY8xYRVhORsmZbjVNJsjFA5JoIznE9KyjhaMiEJpYRhQTgeczIEV0ffuPFbK30oVrZ1cTNfEETiydN0EqnrIyWc9d7Jqtg41XC3LzAqurCLLuziEHaE0S9YqMC7_wbHlf5bgo-SndJy_4958Tifzo6abxDHl7U
CitedBy_id crossref_primary_10_3390_constrmater4010005
crossref_primary_10_1111_mice_13241
crossref_primary_10_1155_2024_8810092
crossref_primary_10_1016_j_iintel_2024_100111
crossref_primary_10_1038_s41598_024_75723_4
crossref_primary_10_1111_mice_13208
crossref_primary_10_1111_mice_13117
crossref_primary_10_1016_j_engappai_2024_109706
crossref_primary_10_3390_s24010003
crossref_primary_10_1007_s10346_025_02460_8
crossref_primary_10_1111_mice_13421
crossref_primary_10_1007_s11440_024_02493_8
crossref_primary_10_1016_j_engappai_2025_110035
crossref_primary_10_1016_j_autcon_2024_105829
crossref_primary_10_3390_buildings14030838
crossref_primary_10_1016_j_jobe_2025_112012
crossref_primary_10_1177_03611981241236185
crossref_primary_10_3390_rs16122090
crossref_primary_10_1111_mice_13181
crossref_primary_10_1007_s00107_025_02211_5
Cites_doi 10.1111/mice.12731
10.3233/ICA-200629
10.3233/ICA-200643
10.1016/j.tust.2021.103810
10.1080/19475705.2020.1803996
10.1016/j.autcon.2022.104668
10.3233/ICA‐230709
10.1109/CVPR.2016.319
10.1145/357994.358023
10.1016/j.ijrmms.2021.104745
10.1109/JPROC.2010.2050290
10.1111/mice.12387
10.1007/978-3-319-10602-1_48
10.1016/j.autcon.2022.104633
10.1159/000512985
10.1016/j.tust.2020.103724
10.1016/j.gsf.2020.04.003
10.3233/ICA-230702
10.1109/ICCV.2019.00925
10.1109/ACCESS.2020.2964540
10.1111/mice.12793
10.1007/s10706-018-0483-1
10.1111/mice.12625
10.1111/mice.12749
10.1016/j.tust.2019.103156
10.1109/CVPR.2017.106
10.1111/mice.12497
10.1109/ICCV48922.2021.00986
10.1016/j.compag.2022.106864
10.3389/fpls.2022.934450
10.1111/mice.12367
10.1007/s12517-018-3985-5
10.1016/j.scs.2022.104369
10.1111/mice.12914
10.1016/j.tust.2022.104897
10.1155/2023/2506274
10.1016/j.enggeo.2021.106232
10.1016/j.measurement.2021.109316
10.1109/ICCV.2017.322
10.1111/mice.12836
10.1109/CVPR.2019.00657
10.1109/TPAMI.2019.2956516
10.1007/978-3-031-08223-8_14
10.1109/CVPR.2016.90
10.1109/ICCV.2017.89
10.1111/mice.12601
10.1111/mice.12841
10.1109/ICCV.2017.74
ContentType Journal Article
Copyright 2023  .
2024 Computer‐Aided Civil and Infrastructure Engineering.
Copyright_xml – notice: 2023  .
– notice: 2024 Computer‐Aided Civil and Infrastructure Engineering.
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.13097
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 1142
ExternalDocumentID 10_1111_mice_13097
MICE13097
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  funderid: 2021JJ30825
– fundername: Innovation and Technology Commission of the Hong Kong SAR Government
  funderid: K‐BBY1
– fundername: Research Grants Council, University Grants Committee of the Hong Kong Special Administrative Region (SAR), China
  funderid: R‐5020‐18
– fundername: National Natural Science Foundation of China
  funderid: 51978669
– fundername: Hong Kong Polytechnic University's Postdoc Matching Fund Scheme
  funderid: 1‐W21Q
GroupedDBID ..I
.3N
.DC
.GA
05W
0R~
10A
1OC
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAP
EBS
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.4S
1OB
31~
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AHEFC
AI.
AIDQK
AIDYY
AIQQE
ARCSS
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EAD
EDO
EJD
EMK
FEDTE
HF~
HVGLF
I-F
LW6
MK~
PALCI
RJQFR
SAMSI
TUS
VH1
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3017-c006e1b581ab6a4139f3389d4b24e76200b23ca9185b79a0d9ce377391c3a12a3
IEDL.DBID DR2
ISSN 1093-9687
IngestDate Sat Jul 26 00:23:07 EDT 2025
Wed Oct 01 04:16:01 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Wed Jan 22 17:19:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3017-c006e1b581ab6a4139f3389d4b24e76200b23ca9185b79a0d9ce377391c3a12a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3033038445
PQPubID 2045171
PageCount 20
ParticipantIDs proquest_journals_3033038445
crossref_primary_10_1111_mice_13097
crossref_citationtrail_10_1111_mice_13097
wiley_primary_10_1111_mice_13097_MICE13097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021b; 291
2010; 98
2023; 30
2022; 196
1984; 27
2023; 38
2023; 146
2021; 28
2023; 145
2021; 108
2023; 2023
2020; 35
2020; 11
2021; 36
2020; 8
2015; 28
2023; 89
2023
2022
2021; 178
2021
2020; 95
2019; 43
2020
2023; 132
2019
2022; 13
2021c; 142
2022; 37
2017
2016
2014
2021a; 12
2021; 110
2021; 83
2018; 33
2018; 11
2018; 36
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Ren S. (e_1_2_10_34_1) 2015; 28
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 2023
  year: 2023
  article-title: A small object detection algorithm based on modulated deformable convolution and large kernel convolution
  publication-title: Computational Intelligence and Neuroscience
– volume: 132
  year: 2023
  article-title: Study on the geological adaptability of the arch cover method for shallow‐buried large‐span metro stations
  publication-title: Tunnelling and Underground Space Technology
– volume: 37
  start-page: 1387
  issue: 11
  year: 2022
  end-page: 1401
  article-title: A deep learning‐based image captioning method to automatically generate comprehensive explanations of bridge damage
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 33
  start-page: 638
  issue: 8
  year: 2018
  end-page: 654
  article-title: A fast detection method via region‐based fully convolutional neural networks for shield tunnel lining defects
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  end-page: 1498
  article-title: Cascade R‐CNN: High quality object detection and instance segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2017
  article-title: Attention is all you need
– volume: 28
  start-page: 51
  issue: 1
  year: 2021
  end-page: 63
  article-title: A convolution‐based distance measure for fuzzy singletons and its application in a pattern recognition problem
  publication-title: Integrated Computer‐Aided Engineering
– year: 2023
  article-title: Comparative deep learning studies for indirect tunnel monitoring with and without Fourier pre‐processing
  publication-title: Integrated Computer‐Aided Engineering
– start-page: 2117
  year: 2017
  end-page: 2125
  article-title: Feature pyramid networks for object detection
– volume: 13
  year: 2022
  article-title: Fusing attention mechanism with Mask R‐CNN for instance segmentation of grape cluster in the field
  publication-title: Frontiers in Plant Science
– volume: 37
  start-page: 386
  issue: 3
  year: 2022
  end-page: 402
  article-title: An optimization strategy to improve the deep learning‐based recognition model of leakage in shield tunnels
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 27
  start-page: 236
  issue: 3
  year: 1984
  end-page: 239
  article-title: A fast parallel algorithm for thinning digital patterns
  publication-title: Communications of the ACM
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– volume: 8
  start-page: 9325
  year: 2020
  end-page: 9334
  article-title: Attention mask R‐CNN for ship detection and segmentation from remote sensing images
  publication-title: IEEE Access
– volume: 36
  start-page: 1549
  issue: 12
  year: 2021
  end-page: 1567
  article-title: Deep learning‐based object identification with instance segmentation and pseudo‐LiDAR point cloud for work zone safety
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 11
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Structural planes surveying and fractal dimension characteristics of tunnel face based on digital photogrammetry
  publication-title: Arabian Journal of Geosciences
– volume: 98
  start-page: 1467
  issue: 8
  year: 2010
  end-page: 1484
  article-title: LabelMe: Online image annotation and applications
  publication-title: Proceedings of the IEEE
– volume: 35
  start-page: 373
  issue: 4
  year: 2020
  end-page: 388
  article-title: Concrete crack detection with handwriting script interferences using faster region‐based convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 10012
  year: 2021
  end-page: 10022
– start-page: 764
  year: 2017
  end-page: 773
  article-title: Deformable convolutional networks
– volume: 145
  year: 2023
  article-title: Simultaneous tunnel defects and lining thickness identification based on multi‐tasks deep neural network from ground penetrating radar images
  publication-title: Automation in Construction
– start-page: 6409
  year: 2019
  end-page: 6418
  article-title: Mask scoring R‐CNN
– volume: 110
  year: 2021
  article-title: Rock mass trace line identification incorporated with grouping algorithm at tunnel faces
  publication-title: Tunnelling and Underground Space Technology
– volume: 37
  start-page: 762
  issue: 6
  year: 2022
  end-page: 780
  article-title: Automatic detection method of tunnel lining multi‐defects via an enhanced You Only Look Once network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 38
  start-page: 940
  issue: 7
  year: 2023
  end-page: 955
  article-title: Deep learning‐based automatic detection of muck types for earth pressure balance shield tunneling in soft ground
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 36
  start-page: 164
  issue: 2
  year: 2021
  end-page: 179
  article-title: Tunnel condition assessment via cloud model‐based random forests and self‐training approach
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 196
  year: 2022
  article-title: Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background
  publication-title: Computers and Electronics in Agriculture
– volume: 12
  start-page: 395
  issue: 1
  year: 2021a
  end-page: 404
  article-title: Deep learning‐based classification of rock structure of tunnel face
  publication-title: Geoscience Frontiers
– volume: 36
  start-page: 362
  issue: 3
  year: 2021
  end-page: 377
  article-title: Automatic railroad track components inspection using real‐time instance segmentation
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 6105
  year: 2019
  end-page: 6114
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– start-page: 2961
  year: 2017
  end-page: 2969
  article-title: Mask R‐CNN
– volume: 178
  year: 2021
  article-title: Automatic defect detection and segmentation of tunnel surface using modified Mask R‐CNN
  publication-title: Measurement
– start-page: 618
  year: 2017
  end-page: 626
  article-title: Grad‐CAM: Visual explanations from deep networks via gradient‐based localization
– volume: 95
  year: 2020
  article-title: Deep learning–based image instance segmentation for moisture marks of shield tunnel lining
  publication-title: Tunnelling and Underground Space Technology
– volume: 28
  start-page: 97
  issue: 1
  year: 2021
  end-page: 111
  article-title: Real‐time facial expression recognition using smoothed deep neural network ensemble
  publication-title: Integrated Computer‐Aided Engineering
– volume: 146
  year: 2023
  article-title: Semi‐supervised learning‐based point cloud network for segmentation of 3D tunnel scenes
  publication-title: Automation in Construction
– start-page: 165
  year: 2022
  end-page: 176
  article-title: Ground penetrating radar Fourier pre‐processing for deep learning tunnel defects’ automated classification
– start-page: 740
  year: 2014
  end-page: 755
  article-title: Microsoft COCO: Common objects in context
– volume: 28
  start-page: 91
  year: 2015
  end-page: 99
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 9157
  year: 2019
  end-page: 9166
– volume: 108
  year: 2021
  article-title: A novel tunnel‐lining crack recognition system based on digital image technology
  publication-title: Tunnelling and Underground Space Technology
– year: 2020
– volume: 83
  start-page: 602
  issue: 6
  year: 2021
  end-page: 614
  article-title: Detection of epileptic seizure using pretrained deep convolutional neural network and transfer learning
  publication-title: European Neurology
– volume: 38
  start-page: 470
  issue: 4
  year: 2023
  end-page: 488
  article-title: Rock mass fracture maps prediction based on spatiotemporal image sequence modeling
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 89
  year: 2023
  article-title: A U‐shaped spray device on a front boom‐type roadheader for dust suppression in a metro tunnel
  publication-title: Sustainable Cities and Society
– volume: 142
  year: 2021c
  article-title: Automated extraction and evaluation of fracture trace maps from rock tunnel face images via deep learning
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 11
  start-page: 1528
  issue: 1
  year: 2020
  end-page: 1541
  article-title: Reliable stability analysis of surrounding rock for super section tunnel based on digital characteristics of joint information
  publication-title: Geomatics, Natural Hazards and Risk
– volume: 36
  start-page: 2565
  year: 2018
  end-page: 2576
  article-title: Instability mode analysis of surrounding rocks in tunnel blasting construction with thin bedrock roofs
  publication-title: Geotechnical and Geological Engineering
– start-page: 2921
  year: 2016
  end-page: 2929
  article-title: Learning deep features for discriminative localization
– year: 2017
– volume: 291
  year: 2021b
  article-title: Towards semi‐automatic discontinuity characterization in rock tunnel faces using 3D point clouds
  publication-title: Engineering Geology
– volume: 33
  start-page: 1127
  issue: 12
  year: 2018
  end-page: 1141
  article-title: Road damage detection and classification using deep neural networks with smartphone images
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 30
  start-page: 121
  issue: 2
  year: 2023
  end-page: 134
  article-title: An improved deep learning architecture for multi‐object tracking systems
  publication-title: Integrated Computer‐Aided Engineering
– ident: e_1_2_10_47_1
  doi: 10.1111/mice.12731
– ident: e_1_2_10_31_1
  doi: 10.3233/ICA-200629
– ident: e_1_2_10_2_1
  doi: 10.3233/ICA-200643
– ident: e_1_2_10_23_1
  doi: 10.1016/j.tust.2021.103810
– ident: e_1_2_10_13_1
– ident: e_1_2_10_17_1
  doi: 10.1080/19475705.2020.1803996
– ident: e_1_2_10_20_1
  doi: 10.1016/j.autcon.2022.104668
– ident: e_1_2_10_35_1
  doi: 10.3233/ICA‐230709
– volume: 28
  start-page: 91
  year: 2015
  ident: e_1_2_10_34_1
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_53_1
  doi: 10.1109/CVPR.2016.319
– ident: e_1_2_10_43_1
– ident: e_1_2_10_51_1
  doi: 10.1145/357994.358023
– ident: e_1_2_10_7_1
  doi: 10.1016/j.ijrmms.2021.104745
– ident: e_1_2_10_41_1
  doi: 10.1109/JPROC.2010.2050290
– ident: e_1_2_10_29_1
  doi: 10.1111/mice.12387
– ident: e_1_2_10_25_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_10_26_1
  doi: 10.1016/j.autcon.2022.104633
– ident: e_1_2_10_33_1
  doi: 10.1159/000512985
– ident: e_1_2_10_18_1
– ident: e_1_2_10_21_1
  doi: 10.1016/j.tust.2020.103724
– ident: e_1_2_10_6_1
  doi: 10.1016/j.gsf.2020.04.003
– ident: e_1_2_10_12_1
– ident: e_1_2_10_42_1
  doi: 10.3233/ICA-230702
– ident: e_1_2_10_3_1
  doi: 10.1109/ICCV.2019.00925
– ident: e_1_2_10_32_1
  doi: 10.1109/ACCESS.2020.2964540
– ident: e_1_2_10_8_1
  doi: 10.1111/mice.12793
– ident: e_1_2_10_10_1
  doi: 10.1007/s10706-018-0483-1
– ident: e_1_2_10_14_1
  doi: 10.1111/mice.12625
– ident: e_1_2_10_37_1
  doi: 10.1111/mice.12749
– ident: e_1_2_10_52_1
  doi: 10.1016/j.tust.2019.103156
– ident: e_1_2_10_24_1
  doi: 10.1109/CVPR.2017.106
– ident: e_1_2_10_11_1
  doi: 10.1111/mice.12497
– ident: e_1_2_10_28_1
  doi: 10.1109/ICCV48922.2021.00986
– ident: e_1_2_10_44_1
  doi: 10.1016/j.compag.2022.106864
– ident: e_1_2_10_38_1
  doi: 10.3389/fpls.2022.934450
– ident: e_1_2_10_48_1
  doi: 10.1111/mice.12367
– ident: e_1_2_10_39_1
  doi: 10.1007/s12517-018-3985-5
– ident: e_1_2_10_27_1
  doi: 10.1016/j.scs.2022.104369
– ident: e_1_2_10_50_1
  doi: 10.1111/mice.12914
– ident: e_1_2_10_40_1
– ident: e_1_2_10_22_1
  doi: 10.1016/j.tust.2022.104897
– ident: e_1_2_10_49_1
  doi: 10.1155/2023/2506274
– ident: e_1_2_10_5_1
  doi: 10.1016/j.enggeo.2021.106232
– ident: e_1_2_10_45_1
  doi: 10.1016/j.measurement.2021.109316
– ident: e_1_2_10_15_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_2_10_54_1
  doi: 10.1111/mice.12836
– ident: e_1_2_10_19_1
  doi: 10.1109/CVPR.2019.00657
– ident: e_1_2_10_4_1
  doi: 10.1109/TPAMI.2019.2956516
– ident: e_1_2_10_30_1
  doi: 10.1007/978-3-031-08223-8_14
– ident: e_1_2_10_16_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_10_9_1
  doi: 10.1109/ICCV.2017.89
– ident: e_1_2_10_55_1
  doi: 10.1111/mice.12601
– ident: e_1_2_10_46_1
  doi: 10.1111/mice.12841
– ident: e_1_2_10_36_1
  doi: 10.1109/ICCV.2017.74
SSID ssj0000443
Score 2.5231247
Snippet To address the challenges of low recognition accuracy, low robustness, and low detection efficiency in existing tunnel face joint and fissure recognition...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1123
SubjectTerms Accuracy
Algorithms
Applications programs
Artificial neural networks
Computer networks
Construction sites
Deformation
Formability
Instance segmentation
Machine learning
Mobile computing
Neural networks
Transformers
Tunnels
Title Intelligent recognition of joints and fissures in tunnel faces using an improved mask region‐based convolutional neural network algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13097
https://www.proquest.com/docview/3033038445
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8667
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1093-9687
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS91AFL2I3dSFtlbxtVYG6qZCJJnJ10A32vqwhbooCm4kzEwm-nyaFJO36ar7bvob-0t672TyfC2loBBIGCZf3Jzcc8PJuQC7mDO4jZG5pVyFQZyUOlChsUFikzS3GS-Nawf0-SQ9Pos_nSfnS_Bu-Bem94eYf3AjZLj3NQFc6XYB5NStnXoZS_qVPBKpq6e-LHhHxV5dL0Ug0zzz3qQk47nf9c9sdE8xF4mqyzTjNbgYrrEXmEz3Z53eN9_-sm987E08g1VPQdlB_8w8hyVbr8Oap6PMg73FoaHjwzC2DisL9oUv4MfHuZ9nx-ZKpKZmTcWum0ndtUzVJasotljVs0nNuhnpalhFQjBGmvtLnMIm7ssGnvxWtVNGvSKa-tf3n5RhS0a6eI8PvGry33Qrp15n6uayuZt0V7cbcDY-On1_HPjmDoERlBkNwt1GOskjpVOFqVRWWC3LMtY8tviGDkPNhVES-YTOpApLaazIMiEjI1TEldiE5bqp7RYwpCil4qkINdaWVY41dx6FVSq0LiPNq3AEb4cgF8Y7n1MDjptiqIAoDIULwwjezOd-7f0-_jlre3hWCo_5tkAygEsex8kI9lzQ_3OEAkF25LZePmTyK3jKkVX10qFtWO7uZvY1sqJO78CTg8MPh-Mdh4LfnykM0g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9VAFL1oXWgXrVbFV6sO6EYhJZmZfMxSpOVV2y6khe7CzGRSn22T0uRtXLnvpr_RX-K9k8nrU0RQCCSEyRc3J_fc4eRcgDeYM7iTyNwyruNIppWJdGxdlLo0K1zOK-vbAR0cZtNj-fEkPQnaHPoXZvCHWEy4ETL895oAThPSSyindu3UzFjld-GezLBQIU70eck9SgZ9vRKRyoo8uJOSkOf22F_z0S3JXKaqPtfsrg8NVTtvUUgSk7PteW-27bffDBz_-zEewlpgoez98No8gjuu2YD1wEhZwHuHu8amD-O-DVhdcjB8DNd7C0vPni3ESG3D2pp9bWdN3zHdVKym8GJhz2YN6-ckrWE1acEYye5PcQib-ckNvPiF7s4YtYtomx_fbyjJVoyk8QEieNdkwelXXsDO9PlpezXrv1w8gePdnaMP0yj0d4isoORoEfEuMWmRaJNpzKaqxoJZVdJw6fAjHceGC6sVUgqTKx1XyjqR50IlVuiEa_EUVpq2cc-AIUupNM9EbLC8rAssu4skrjNhTJUYXscTeDtGubTB_Jx6cJyXYxFEYSh9GCbwejH2crD8-OOorfFlKQPsuxL5AC6FlOkE3vmo_-UMJeJsx29t_svgV3B_enSwX-7vHX56Dg84kqxBSbQFK_3V3L1AktSblx4KPwHr7A-B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFB60BdGFfah4ba0DulFISWYmj1kW20urtohY6C7MK-21bVKa3I0r9930N_aX9JzJ5PZWRFAIJITJi5Mv5zvDl-8Q8g5yBnMCmFvGVByJ1OpIxcZFqUuzwuXMGt8OaP8g2z0Un47So6DNwX9hen-I2YQbIsN_rxHg7sJWcyjHdu3YzFjmD8miSGWBir7tb3PuUSLo6yWPZFbkwZ0UhTx3x97PR3ckc56q-lwzXuobqrbeohAlJqeb005vmp-_GTj-92Msk6eBhdKt_rVZIQ9cvUqWAiOlAe8t7BqaPgz7VsmTOQfDZ-Rqb2bp2dGZGKmpaVPRH82k7lqqaksrDC8U9nRS026K0hpaoRaMouz-GIbQiZ_cgIufq_aUYruIpr75dY1J1lKUxgeIwF2jBadfeQE7VWfHzeWkOzl_Tg7HO98_7kahv0NkOCZHA4h3iU6LROlMQTaVFRTM0grNhIOPdBxrxo2SQCl0LlVspXE8z7lMDFcJU_wFWaib2r0kFFiKVSzjsYbysiqg7C6SuMq41jbRrIpH5P0Q5dIE83PswXFWDkUQhqH0YRiRt7OxF73lxx9HrQ8vSxlg35bAB2AphEhH5IOP-l_OUALOdvzWq38Z_IY8-ro9Lr_sHXxeI48ZcKxeSLROFrrLqXsNHKnTGx4Jt3-iDwU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+recognition+of+joints+and+fissures+in+tunnel+faces+using+an+improved+mask+region%E2%80%90based+convolutional+neural+network+algorithm&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Lei%2C+Ming%E2%80%90Feng&rft.au=Zhang%2C+Yun%E2%80%90Bo&rft.au=Deng%2C+E&rft.au=Ni%2C+Yi%E2%80%90Qing&rft.date=2024-04-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=39&rft.issue=8&rft.spage=1123&rft.epage=1142&rft_id=info:doi/10.1111%2Fmice.13097&rft.externalDBID=10.1111%252Fmice.13097&rft.externalDocID=MICE13097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon