Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease
Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD can help to understand the disease better and assist in its treatment. Recently, modern computer‐aided approaches have been used for the predi...
Saved in:
| Published in | Expert systems Vol. 38; no. 1 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Blackwell Publishing Ltd
01.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0266-4720 1468-0394 |
| DOI | 10.1111/exsy.12485 |
Cover
| Abstract | Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD can help to understand the disease better and assist in its treatment. Recently, modern computer‐aided approaches have been used for the prediction and diagnosis of diseases. Swarm intelligence algorithms like particle swarm optimization (PSO) have demonstrated great performance in solving different optimization problems. As rule discovery can be modelled as an optimization problem, it can be mapped to an optimization problem and solved by means of an evolutionary algorithm like PSO. An approach for discovering classification rules of CAD is proposed. The work is based on the real‐world CAD data set and aims at the detection of this disease by producing the accurate and effective rules. The proposed algorithm is a hybrid binary‐real PSO, which includes the combination of categorical and numerical encoding of a particle and a different approach for calculating the velocity of particles. The rules were developed from randomly generated particles, which take random values in the range of each attribute in the rule. Two different feature selection methods based on multi‐objective evolutionary search and PSO were applied on the data set, and the most relevant features were selected by the algorithms. The accuracy of two different rule sets were evaluated. The rule set with 11 features obtained more accurate results than the rule set with 13 features. Our results show that the proposed approach has the ability to produce effective rules with highest accuracy for the detection of CAD. |
|---|---|
| AbstractList | Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD can help to understand the disease better and assist in its treatment. Recently, modern computer‐aided approaches have been used for the prediction and diagnosis of diseases. Swarm intelligence algorithms like particle swarm optimization (PSO) have demonstrated great performance in solving different optimization problems. As rule discovery can be modelled as an optimization problem, it can be mapped to an optimization problem and solved by means of an evolutionary algorithm like PSO. An approach for discovering classification rules of CAD is proposed. The work is based on the real‐world CAD data set and aims at the detection of this disease by producing the accurate and effective rules. The proposed algorithm is a hybrid binary‐real PSO, which includes the combination of categorical and numerical encoding of a particle and a different approach for calculating the velocity of particles. The rules were developed from randomly generated particles, which take random values in the range of each attribute in the rule. Two different feature selection methods based on multi‐objective evolutionary search and PSO were applied on the data set, and the most relevant features were selected by the algorithms. The accuracy of two different rule sets were evaluated. The rule set with 11 features obtained more accurate results than the rule set with 13 features. Our results show that the proposed approach has the ability to produce effective rules with highest accuracy for the detection of CAD. |
| Author | Acharya, U.Rajendra Abdar, Moloud Davarzani, Zohreh Zhou, Xujuan Pławiak, Pawel Zomorodi‐moghadam, Mariam |
| Author_xml | – sequence: 1 givenname: Mariam orcidid: 0000-0002-1308-3453 surname: Zomorodi‐moghadam fullname: Zomorodi‐moghadam, Mariam email: m_zomorodi@um.ac.ir organization: Ferdowsi University of Mashhad – sequence: 2 givenname: Moloud surname: Abdar fullname: Abdar, Moloud organization: Université du Québec à Montré al – sequence: 3 givenname: Zohreh surname: Davarzani fullname: Davarzani, Zohreh organization: PNU University – sequence: 4 givenname: Xujuan surname: Zhou fullname: Zhou, Xujuan email: xujuan.zhou@usq.edu.au organization: University of Southern Queensland – sequence: 5 givenname: Pawel orcidid: 0000-0002-4317-2801 surname: Pławiak fullname: Pławiak, Pawel organization: Cracow University of Technology – sequence: 6 givenname: U.Rajendra surname: Acharya fullname: Acharya, U.Rajendra organization: Ngee Ann Polytechnic |
| BookMark | eNp9kMFLwzAUxoNMcJte_AsC3oTOpEmb9ChjOmHgQQU9hTRNNKNrZtI5619vunoS8V0evO_3vcf7JmDUuEYDcI7RDMe60p-hm-GU8uwIjDHNeYJIQUdgjNI8TyhL0QmYhLBGCGHG8jGQy670toJb6Vurag3DXvoNdNvWbuyXbK1roHEe-l3UKhuU-9C-g7aB7Vs_kK-NCzZAZ6By3jUyinFVz0Ray6BPwbGRddBnP30Knm4Wj_Nlsrq_vZtfrxJFEM4SxgtEmDQyk1jmKJeYlIhmnFKeVshgmmqqaZUplRFmDFUlqUxZcmJkQZRkZAouhr1b7953OrRi7Xa-iSdFShnmuOAYRQoNlPIuBK-NULY9vNl6aWuBkeiDFH2Q4hBktFz-smy93cRH_4bxAO9trbt_SLF4fngZPN_rRog9 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2022_05_055 crossref_primary_10_1515_bams_2021_0063 crossref_primary_10_1016_j_advengsoft_2022_103283 crossref_primary_10_1002_cpe_6675 crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_1016_j_engappai_2023_106662 crossref_primary_10_35940_ijeat_A3132_0411422 crossref_primary_10_1007_s11042_020_09439_8 crossref_primary_10_1111_exsy_13799 crossref_primary_10_1142_S0219622021500176 crossref_primary_10_1007_s13369_022_07198_2 crossref_primary_10_32890_jict2021_20_4_1 crossref_primary_10_4018_IJITSA_290001 crossref_primary_10_1007_s40883_022_00273_y crossref_primary_10_1016_j_inffus_2023_101813 crossref_primary_10_1016_j_medengphy_2022_103937 crossref_primary_10_1007_s10586_023_04062_2 crossref_primary_10_1080_0954898X_2023_2238070 crossref_primary_10_1016_j_ins_2023_119164 crossref_primary_10_1016_j_engappai_2025_110209 crossref_primary_10_1186_s12859_020_03626_y crossref_primary_10_1111_exsy_12918 crossref_primary_10_3389_fdata_2022_1021518 crossref_primary_10_1016_j_asoc_2021_107856 crossref_primary_10_1111_exsy_13409 crossref_primary_10_1155_2022_9660746 crossref_primary_10_1111_exsy_12653 crossref_primary_10_3233_JIFS_213257 crossref_primary_10_1007_s40815_021_01191_x crossref_primary_10_1002_ima_22963 crossref_primary_10_2139_ssrn_4123849 crossref_primary_10_3390_s21124090 crossref_primary_10_1111_exsy_13069 crossref_primary_10_1111_exsy_13300 crossref_primary_10_1111_exsy_12573 crossref_primary_10_1016_j_procs_2024_09_285 crossref_primary_10_1108_DTA_08_2023_0437 crossref_primary_10_1007_s11042_024_18425_3 crossref_primary_10_1007_s13369_021_05347_7 crossref_primary_10_1007_s10462_022_10214_4 crossref_primary_10_1007_s13369_020_05115_z crossref_primary_10_1109_ACCESS_2022_3168980 crossref_primary_10_1109_ACCESS_2024_3470537 crossref_primary_10_3390_e23010014 crossref_primary_10_1016_j_bbe_2021_07_003 crossref_primary_10_3390_electronics11060909 crossref_primary_10_3390_s20113032 |
| Cites_doi | 10.1016/j.cogsys.2018.07.004 10.5812/cardiovascmed.10888 10.1016/j.knosys.2016.07.004 10.1109/CEC.2003.1299577 10.1016/j.cmpb.2017.02.001 10.1016/j.neunet.2007.12.031 10.1007/978-3-540-30483-8_35 10.1016/j.eswa.2010.10.086 10.1016/j.asoc.2018.10.054 10.1016/j.ress.2017.10.019 10.1016/S0034-4257(97)00049-7 10.1109/TFUZZ.2007.900904 10.1007/s11042-018-5749-3 10.1109/COMAPP.2017.8079784 10.15439/2017F219 10.1155/2018/2520706 10.1162/neco.1990.2.4.480 10.1214/aos/1176347963 10.1109/TEVC.2013.2290086 10.1007/978-1-4615-5725-8_8 10.1016/S0933-3657(01)00077-X 10.1109/JBHI.2018.2808281 10.1007/978-3-642-18965-4_33 10.5539/cis.v3n1p180 10.3390/ijerph16040599 10.1109/AICCSA.2008.4493524 10.1109/IPDPS.2003.1213275 10.1007/978-3-540-74205-0_42 10.1016/S0031-3203(02)00063-8 10.1016/j.cell.2018.12.015 10.1109/ICSMC.1997.637339 10.1016/j.eswa.2017.09.022 10.1007/978-981-10-1837-4_2 10.1016/j.neucom.2018.12.066 10.1016/S0167-739X(97)00021-6 10.1109/MCI.2011.942584 10.1007/978-3-7908-1840-6_3 10.1109/TII.2019.2900295 10.1016/j.patrec.2018.11.004 10.1109/21.97458 10.12720/jomb.1.1.26-29 10.1109/COMST.2019.2904897 10.1016/j.cmpb.2017.01.004 10.1118/1.4725759 10.1016/S0933-3657(98)00062-1 10.1016/S0933-3657(02)00049-0 10.1016/j.cmpb.2018.04.005 10.1109/CEC.2001.934377 10.1109/ICETETS.2016.7603000 10.1109/COMAPP.2017.8079783 10.1016/j.parco.2003.12.015 10.1016/j.swevo.2017.10.002 10.1016/j.cogsys.2018.12.001 10.1038/nature14539 10.1145/2330163.2330175 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1111/exsy.12485 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1468-0394 |
| EndPage | n/a |
| ExternalDocumentID | 10_1111_exsy_12485 EXSY12485 |
| Genre | article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT 77I AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3015-789037afa5a1a606a13b04584482d0f142e4e4d5cc537ff4cb3dfbb83fa93ca73 |
| IEDL.DBID | DR2 |
| ISSN | 0266-4720 |
| IngestDate | Fri Jul 25 07:16:04 EDT 2025 Wed Oct 01 02:56:00 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Wed Jan 22 16:31:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3015-789037afa5a1a606a13b04584482d0f142e4e4d5cc537ff4cb3dfbb83fa93ca73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1308-3453 0000-0002-4317-2801 |
| PQID | 2471819810 |
| PQPubID | 32130 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2471819810 crossref_citationtrail_10_1111_exsy_12485 crossref_primary_10_1111_exsy_12485 wiley_primary_10_1111_exsy_12485_EXSY12485 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Expert systems |
| PublicationYear | 2021 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 1991; 19 2013; 2 2018; 161 2016; 109 2019; 54 2018b; 92 2019; 16 1997; 5 2018; 6 2004; 30 2018; 170 2000 1999; 16 2019; 23 1997; 13 2018a; 39 2008; 21 2014; 18 2003; 1 2010; 3 2010; 2 2015; 5 1997; 61 2019; 75 2012 2011 2015; 521 2019; 78 1998 2003; 36 2008 2007 1996 1995 2012; 39 2004 2003 2011; 38 2001; 23 2015; 8 2011; 6 2007; 15 1990; 2 2002; 26 2018; 2018 2012; 1 1991; 21 2002; 24 2019 2018 2019; 333 2003; 26 2017 2016 2018; 52 2017; 141 2016; 137 2001; 1 2013 2019; 176 e_1_2_8_28_1 Liu J. (e_1_2_8_44_1) 2003; 26 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Abdar M. (e_1_2_8_4_1) 2018; 6 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 Abdar M. (e_1_2_8_2_1) 2015; 8 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Zhang N. (e_1_2_8_70_1) 2018 Abdar M. (e_1_2_8_3_1) 2015; 5 Bigus J. P. (e_1_2_8_20_1) 1996 Han J. (e_1_2_8_32_1) 2011 Berry M. J. A. (e_1_2_8_19_1) 2004 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 Eberhart R. C. (e_1_2_8_25_1) 1995 Freitas A. A (e_1_2_8_29_1) 2013 Mishra A. K. (e_1_2_8_48_1) 2016; 137 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_65_1 e_1_2_8_63_1 Chye K. H. (e_1_2_8_23_1) 2002; 24 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 Srinivas K. (e_1_2_8_59_1) 2010; 2 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – year: 2011 – volume: 21 start-page: 660 issue: 3 year: 1991 end-page: 674 article-title: A survey of decision tree classifier methodology publication-title: IEEE transactions on systems, man, and cybernetics – volume: 92 start-page: 334 year: 2018b end-page: 349 article-title: Novel methodology of cardiac health recognition based on ecg signals and evolutionary‐neural system publication-title: Expert Systems with Applications – volume: 26 start-page: 446 issue: 4 year: 2003 end-page: 453 article-title: Classification based on organizational coevolutionary algorithm publication-title: CHINESE JOURNAL OF COMPUTERS‐CHINESE EDITION‐ – start-page: 291 year: 2004 end-page: 296 – volume: 2 start-page: 133 issue: 3 year: 2013 article-title: Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features publication-title: Research in cardiovascular medicine – start-page: 819 year: 2003 end-page: 845 – volume: 109 start-page: 187 year: 2016 end-page: 197 article-title: Coronary artery disease detection using computational intelligence methods publication-title: Knowledge‐Based Systems – volume: 26 start-page: 1 issue: 1‐2 year: 2002 end-page: 24 article-title: Uniqueness of medical data mining publication-title: Artificial intelligence in medicine – start-page: 306 year: 2017 end-page: 311 – volume: 13 start-page: 197 issue: 2‐3 year: 1997 end-page: 210 article-title: Data mining with decision trees and decision rules publication-title: Future generation computer systems – volume: 8 issue: 2 year: 2015 article-title: Using decision trees in data mining for predicting factors influencing of heart disease publication-title: Carpathian Journal of Electronic & Computer Engineering – volume: 24 start-page: 1 issue: 2 year: 2002 end-page: 28 article-title: Data mining and customer relationship marketing in the banking industry publication-title: Singapore Management Review – volume: 39 start-page: 192 year: 2018a end-page: 208 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ecg signals publication-title: Swarm and evolutionary computation – volume: 1 issue: 1 year: 2012 article-title: Diagnosis of coronary artery disease using data mining based on lab data and echo features publication-title: Journal of Medical and Bioengineering – start-page: 1 year: 2016 end-page: 5 – volume: 2018 year: 2018 article-title: Integrating correlation‐based feature selection and clustering for improved cardiovascular disease diagnosis publication-title: Complexity – volume: 39 start-page: 4255 issue: 7Part1 year: 2012 end-page: 4264 article-title: Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm publication-title: Medical physics – volume: 21 start-page: 427 issue: 2‐3 year: 2008 end-page: 436 article-title: Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance publication-title: Neural networks – start-page: 805 year: 2000 end-page: 810 – volume: 36 start-page: 61 issue: 1 year: 2003 end-page: 68 article-title: Classification of heart rate data using artificial neural network and fuzzy equivalence relation publication-title: Pattern recognition – start-page: 6 year: 2003 end-page: pp – volume: 1 start-page: 215 year: 2003 end-page: 220 – volume: 16 start-page: 3 issue: 1 year: 1999 end-page: 23 article-title: Selected techniques for data mining in medicine publication-title: Artificial intelligence in medicine – start-page: 155 year: 2017 end-page: 163 – volume: 15 start-page: 536 issue: 4 year: 2007 end-page: 550 article-title: Fuzzy‐xcs: A michigan genetic fuzzy system publication-title: IEEE Transactions on Fuzzy Systems – volume: 521 start-page: 436 issue: 7553 year: 2015 article-title: Deep learning publication-title: nature – volume: 5 start-page: 2088 issue: 6 year: 2015 end-page: 8708 article-title: Comparing performance of data mining algorithms in prediction heart diseases publication-title: International Journal of Electrical & Computer Engineering – volume: 61 start-page: 399 issue: 3 year: 1997 end-page: 409 article-title: Decision tree classification of land cover from remotely sensed data publication-title: Remote sensing of environment – year: 2004 – year: 1995 article-title: A new optimizer using particle swarm theory, paper presented at sixth international symposium on micromachine and human science, inst. of electr. and electron publication-title: English Nagoya Japan – start-page: 377 year: 2007 end-page: 384 – year: 2019 article-title: Deep learning in mobile and wireless networking: A survey publication-title: IEEE Communications Surveys & Tutorials – year: 2018 article-title: A new nested ensemble technique for automated diagnosis of breast cancer publication-title: Pattern Recognition Letters – volume: 161 start-page: 1 year: 2018 end-page: 13 article-title: Deep learning for healthcare applications based on physiological signals: A review publication-title: Computer methods and programs in biomedicine – volume: 16 start-page: 599 issue: 4 year: 2019 article-title: A deep learning model for automated sleep stages classification using PSG signals publication-title: International journal of environmental research and public health – volume: 23 start-page: 89 issue: 1 year: 2001 end-page: 109 article-title: Machine learning for medical diagnosis: History, state of the art and perspective publication-title: Artificial Intelligence in medicine – volume: 141 start-page: 105 year: 2017 end-page: 109 article-title: Hs‐crp is strongly associated with coronary heart disease (chd): A data mining approach using decision tree algorithm publication-title: Computer methods and programs in biomedicine – volume: 6 start-page: 68 issue: 4 year: 2011 end-page: 75 article-title: Evolutionary computation meets machine learning: A survey publication-title: IEEE Computational Intelligence Magazine – volume: 23 start-page: 314 issue: 1 year: 2019 end-page: 323 article-title: Deep learning for fall detection: Three‐dimensional cnn combined with lstm on video kinematic data publication-title: IEEE journal of biomedical and health informatics – volume: 78 start-page: 857 issue: 1 year: 2019 end-page: 875 article-title: Abstractive text summarization using lstm‐cnn based deep learning publication-title: Multimedia Tools and Applications – start-page: 108 year: 2008 end-page: 115 – start-page: 117 year: 1998 end-page: 136 – volume: 30 start-page: 767 issue: 5‐6 year: 2004 end-page: 783 article-title: Particle swarm based data mining algorithms for classification tasks publication-title: Parallel Computing – year: 2007 – year: 1996 – volume: 19 start-page: 1 issue: 1 year: 1991 end-page: 67 article-title: Multivariate adaptive regression splines publication-title: The annals of statistics – volume: 3 start-page: 180 issue: 1 year: 2010 article-title: Analysis of particle swarm optimization algorithm publication-title: Computer and information science – volume: 2 start-page: 250 issue: 02 year: 2010 end-page: 255 article-title: Applications of data mining techniques in healthcare and prediction of heart attacks publication-title: International Journal on Computer Science and Engineering (IJCSE) – start-page: 49 year: 2000 end-page: 88 – volume: 54 start-page: 116 year: 2019 end-page: 127 article-title: A novel machine learning approach for early detection of hepatocellular carcinoma patients publication-title: Cognitive Systems Research – volume: 38 start-page: 5507 issue: 5 year: 2011 end-page: 5513 article-title: Using data mining techniques for multi‐diseases prediction modeling of hypertension and hyperlipidemia by common risk factors publication-title: Expert systems with applications – volume: 6 start-page: 277 issue: 2 year: 2018 end-page: 285 article-title: Impact of patients'gender on parkinson's disease using classification algorithms publication-title: Journal of AI and Data Mining – year: 2012 – volume: 1 start-page: 81 year: 2001 end-page: 86 – start-page: 69 year: 1998 end-page: 73 – volume: 176 start-page: 535 issue: 3 year: 2019 end-page: 548 article-title: Predicting splicing from primary sequence with deep learning publication-title: Cell – start-page: 1 year: 2018 end-page: 12 article-title: Multimodal correlation deep belief networks for multi‐view classification publication-title: Applied Intelligence – volume: 170 start-page: 73 year: 2018 end-page: 82 article-title: Software reliability prediction using a deep learning model based on the rnn encoder–decoder publication-title: Reliability Engineering & System Safety – volume: 2 start-page: 480 issue: 4 year: 1990 end-page: 489 article-title: Use of an artificial neural network for data analysis in clinical decision‐making: The diagnosis of acute coronary occlusion publication-title: Neural computation – start-page: 13 year: 2017 end-page: 23 – volume: 52 start-page: 198 year: 2018 end-page: 211 article-title: An efficient compression of ecg signals using deep convolutional autoencoders publication-title: Cognitive Systems Research – volume: 333 start-page: 110 year: 2019 end-page: 123 article-title: A novel statistical approach for clustering positive data based on finite inverted beta‐Liouville mixture models publication-title: Neurocomputing – volume: 18 start-page: 4 issue: 1 year: 2014 end-page: 19 article-title: A survey of multiobjective evolutionary algorithms for data mining: Part i publication-title: IEEE Transactions on Evolutionary Computation – start-page: 299 year: 2017 end-page: 305 – volume: 75 start-page: 21 year: 2019 end-page: 28 article-title: Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour images publication-title: Applied Soft Computing – year: 2019 article-title: Joint learning of degradation assessment and rule prediction for aero‐engines via dual‐task deep lstm networks publication-title: IEEE Transactions on Industrial Informatics – volume: 137 issue: 2 year: 2016 article-title: PSO‐ based swarm intelligence technique for multi‐objective classification rule mining publication-title: International Journal of Computer Applications – volume: 5 start-page: 4104 year: 1997 end-page: 4108 – volume: 141 start-page: 19 year: 2017 end-page: 26 article-title: Computer aided decision making for heart disease detection using hybrid neural network‐genetic algorithm publication-title: Computer methods and programs in biomedicine – year: 2013 – volume: 6 start-page: 277 issue: 2 year: 2018 ident: e_1_2_8_4_1 article-title: Impact of patients'gender on parkinson's disease using classification algorithms publication-title: Journal of AI and Data Mining – ident: e_1_2_8_69_1 doi: 10.1016/j.cogsys.2018.07.004 – ident: e_1_2_8_8_1 doi: 10.5812/cardiovascmed.10888 – ident: e_1_2_8_10_1 doi: 10.1016/j.knosys.2016.07.004 – ident: e_1_2_8_62_1 doi: 10.1109/CEC.2003.1299577 – ident: e_1_2_8_61_1 doi: 10.1016/j.cmpb.2017.02.001 – start-page: 1 year: 2018 ident: e_1_2_8_70_1 article-title: Multimodal correlation deep belief networks for multi‐view classification publication-title: Applied Intelligence – volume: 5 start-page: 2088 issue: 6 year: 2015 ident: e_1_2_8_3_1 article-title: Comparing performance of data mining algorithms in prediction heart diseases publication-title: International Journal of Electrical & Computer Engineering – ident: e_1_2_8_14_1 – ident: e_1_2_8_46_1 doi: 10.1016/j.neunet.2007.12.031 – ident: e_1_2_8_43_1 doi: 10.1007/978-3-540-30483-8_35 – ident: e_1_2_8_22_1 doi: 10.1016/j.eswa.2010.10.086 – ident: e_1_2_8_34_1 doi: 10.1016/j.asoc.2018.10.054 – ident: e_1_2_8_64_1 doi: 10.1016/j.ress.2017.10.019 – ident: e_1_2_8_30_1 doi: 10.1016/S0034-4257(97)00049-7 – ident: e_1_2_8_21_1 doi: 10.1109/TFUZZ.2007.900904 – ident: e_1_2_8_56_1 doi: 10.1007/s11042-018-5749-3 – ident: e_1_2_8_11_1 doi: 10.1109/COMAPP.2017.8079784 – ident: e_1_2_8_15_1 doi: 10.15439/2017F219 – ident: e_1_2_8_65_1 doi: 10.1155/2018/2520706 – ident: e_1_2_8_17_1 doi: 10.1162/neco.1990.2.4.480 – volume-title: Data mining: Concepts and techniques year: 2011 ident: e_1_2_8_32_1 – volume: 26 start-page: 446 issue: 4 year: 2003 ident: e_1_2_8_44_1 article-title: Classification based on organizational coevolutionary algorithm publication-title: CHINESE JOURNAL OF COMPUTERS‐CHINESE EDITION‐ – ident: e_1_2_8_31_1 doi: 10.1214/aos/1176347963 – ident: e_1_2_8_49_1 doi: 10.1109/TEVC.2013.2290086 – ident: e_1_2_8_67_1 doi: 10.1007/978-1-4615-5725-8_8 – ident: e_1_2_8_39_1 doi: 10.1016/S0933-3657(01)00077-X – ident: e_1_2_8_45_1 doi: 10.1109/JBHI.2018.2808281 – volume-title: Data mining with neural networks: Solving business problems from application development to decision support year: 1996 ident: e_1_2_8_20_1 – ident: e_1_2_8_28_1 doi: 10.1007/978-3-642-18965-4_33 – ident: e_1_2_8_16_1 doi: 10.5539/cis.v3n1p180 – ident: e_1_2_8_68_1 doi: 10.3390/ijerph16040599 – ident: e_1_2_8_50_1 doi: 10.1109/AICCSA.2008.4493524 – ident: e_1_2_8_57_1 doi: 10.1109/IPDPS.2003.1213275 – ident: e_1_2_8_63_1 doi: 10.1007/978-3-540-74205-0_42 – volume: 2 start-page: 250 issue: 02 year: 2010 ident: e_1_2_8_59_1 article-title: Applications of data mining techniques in healthcare and prediction of heart attacks publication-title: International Journal on Computer Science and Engineering (IJCSE) – volume: 8 issue: 2 year: 2015 ident: e_1_2_8_2_1 article-title: Using decision trees in data mining for predicting factors influencing of heart disease publication-title: Carpathian Journal of Electronic & Computer Engineering – ident: e_1_2_8_6_1 doi: 10.1016/S0031-3203(02)00063-8 – ident: e_1_2_8_36_1 doi: 10.1016/j.cell.2018.12.015 – ident: e_1_2_8_38_1 doi: 10.1109/ICSMC.1997.637339 – ident: e_1_2_8_52_1 doi: 10.1016/j.eswa.2017.09.022 – volume: 24 start-page: 1 issue: 2 year: 2002 ident: e_1_2_8_23_1 article-title: Data mining and customer relationship marketing in the banking industry publication-title: Singapore Management Review – ident: e_1_2_8_60_1 doi: 10.1007/978-981-10-1837-4_2 – ident: e_1_2_8_35_1 doi: 10.1016/j.neucom.2018.12.066 – ident: e_1_2_8_12_1 doi: 10.1016/S0167-739X(97)00021-6 – year: 1995 ident: e_1_2_8_25_1 article-title: A new optimizer using particle swarm theory, paper presented at sixth international symposium on micromachine and human science, inst. of electr. and electron publication-title: English Nagoya Japan – ident: e_1_2_8_72_1 doi: 10.1109/MCI.2011.942584 – ident: e_1_2_8_18_1 doi: 10.1007/978-3-7908-1840-6_3 – ident: e_1_2_8_55_1 – ident: e_1_2_8_47_1 doi: 10.1109/TII.2019.2900295 – ident: e_1_2_8_5_1 doi: 10.1016/j.patrec.2018.11.004 – ident: e_1_2_8_53_1 doi: 10.1109/21.97458 – ident: e_1_2_8_9_1 doi: 10.12720/jomb.1.1.26-29 – ident: e_1_2_8_27_1 – ident: e_1_2_8_71_1 doi: 10.1109/COMST.2019.2904897 – ident: e_1_2_8_13_1 doi: 10.1016/j.cmpb.2017.01.004 – ident: e_1_2_8_7_1 doi: 10.1118/1.4725759 – volume: 137 issue: 2 year: 2016 ident: e_1_2_8_48_1 article-title: PSO‐ based swarm intelligence technique for multi‐objective classification rule mining publication-title: International Journal of Computer Applications – volume-title: Data mining and knowledge discovery with evolutionary algorithms year: 2013 ident: e_1_2_8_29_1 – ident: e_1_2_8_41_1 doi: 10.1016/S0933-3657(98)00062-1 – ident: e_1_2_8_24_1 doi: 10.1016/S0933-3657(02)00049-0 – ident: e_1_2_8_26_1 doi: 10.1016/j.cmpb.2018.04.005 – ident: e_1_2_8_54_1 doi: 10.1109/CEC.2001.934377 – ident: e_1_2_8_37_1 doi: 10.1109/ICETETS.2016.7603000 – ident: e_1_2_8_33_1 doi: 10.1109/COMAPP.2017.8079783 – ident: e_1_2_8_58_1 doi: 10.1016/j.parco.2003.12.015 – ident: e_1_2_8_51_1 doi: 10.1016/j.swevo.2017.10.002 – volume-title: Data mining techniques: For marketing, sales, and customer relationship management year: 2004 ident: e_1_2_8_19_1 – ident: e_1_2_8_40_1 doi: 10.1016/j.cogsys.2018.12.001 – ident: e_1_2_8_42_1 doi: 10.1038/nature14539 – ident: e_1_2_8_66_1 doi: 10.1145/2330163.2330175 |
| SSID | ssj0001776 |
| Score | 2.489412 |
| Snippet | Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Algorithms Cardiovascular disease classification Coronary artery disease coronary artery disease (CAD) Coronary vessels Datasets Diagnosis Evolutionary algorithms hybrid particle swarm optimization Optimization Particle swarm optimization Risk analysis rule discovery Swarm intelligence Vein & artery diseases |
| Title | Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12485 https://www.proquest.com/docview/2471819810 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1468-0394 dateEnd: 20241031 omitProxy: true ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Business Source Ultimate customDbUrl: eissn: 1468-0394 dateEnd: 20241031 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: AKVCP dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1468-0394 dateEnd: 20241031 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0266-4720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-0394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001776 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MefHi_MTpHAG9KHQ0bdq04GXoxhD14BzMg5QkbWHoPlg3dP71Jmm6TRFBb6VNSpL3kfeS934P4CyMA5pKclqSG5ilShRaPBTYCvWdWUhswjXa573f6ZGbvtcvwWWRC5PjQywP3JRkaH2tBJzxbE3Ik_ds0cAKkUsqYOz62p96WGFHYaory0kfw7cIdWyDTarCeFZdv-5GKxNz3VDVO027As_FGPMAk5fGfMYb4uMbfON_J7ENW8YERc2cZ3aglIx2oVKUd0BG2veAdRYqnQtNDHeh7I1Nh2gslczQZG8iafKi6Vx-U9m9Khp0gQYjJI1K-ULH8A0yNE6RUDgJcpRIR5AukLkW2odeu_V41bFMRQZLSEXgWSpr1qUsZR7DTLo-DLtc37SSwIntFBMnIQmJPSE8l6YpEdyNU84DN2WhKxh1D6A8Go-SQ0CSRzD1ucdjOyGBoDymoapjFBMsVNcqnBeUiYSBK1dVM16jwm1RaxfptavC6bLtJAfp-LFVrSBwZAQ1ixy1OeMwwHYVLjSlfvlD1Op3n_TT0V8aH8OmoyJh9MFNDcqz6Tw5kabMjNdho3l9d9uta9b9BFDE86A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46H_TF-ROnUwP6otDRtOnSPopsVJ170AnzqSRpC0PXjXVD519vLku3KSLoW2mT0ubukrvku-8QOg9in6VKnJbSBm5BiUJLBJJYgT4zC6hNhWb7bNfDJ3rb9boGmwO5MDN-iPmGG1iGnq_BwGFDesnKk_d8WiNAybWK1mhdBSrgEz0s2KMI07XlVJRRtyhzbMNOCkCeRd-v69HCyVx2VfVa0yzPCqrmmqIQICYvtclY1OTHNwLHf__GFto0Xii-mqnNNlpJsh1ULio8YGPwu4iHU8jowkOjYDh_46M-Hqh5pm8SOLHyevFoop5Bgi8AQqe4l2HlV6obGsbXy_EgxRKoEtRnYg0inWJzMrSHnpqNznVomaIMllRzgWdB4qzLeMo9TriKfjhxhT5spb4T2ymhTkITGntSei5LUyqFG6dC-G7KA1dy5u6jUjbIkgOElZoQVheeiO2E-pKJmAVQyiimRELXCrooRBNJw1gOhTNeoyJygbGL9NhV0Nm87XDG0_Fjq2oh4cjYah45sD6TwCd2BV1qUf3yhqjRfXzWV4d_aXyK1sPOfStq3bTvjtCGA8AYvY9TRaXxaJIcK89mLE60_n4C2v_2LQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86QXxxfuJ0akBfFDqaNl3aR3Eb84MhfsB8KknawNB1Y93Q-deby7IPRQR9K21S2txdcpf87ncInUZJyJQWp6O1gTtQotARkSROZM7MIupSYdg-W9XmE71uB22LzYFcmAk_xGzDDSzDzNdg4Gk_UQtWnr7n4woBSq5ltEKDKAREX-1-zh5FmKktp6OMqkOZ51p2UgDyzPt-XY_mTuaiq2rWmkZxUlA1NxSFADF5qYyGoiI_vhE4_vs3NtC69ULxxURtNtFSmm2h4rTCA7YGv414cwwZXbhvFQznb3zQxT09z3RtAifWXi8ejPQzSPAFQOgYdzKs_Up9w8D4OjnuKSyBKkF_JjYg0jG2J0M76KlRf7xsOrYogyP1XBA4kDjrM654wAnX0Q8nvjCHrTT0ElcR6qU0pUkgZeAzpagUfqKECH3FI19y5u-iQtbL0j2EtZoQVhWBSNyUhpKJhEVQyiihRELXEjqbiiaWlrEcCme8xtPIBcYuNmNXQieztv0JT8ePrcpTCcfWVvPYg_WZRCFxS-jciOqXN8T19sOzudr_S-NjtHpXa8S3V62bA7TmAS7GbOOUUWE4GKWH2rEZiiOjvp-RVPWx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+particle+swarm+optimization+for+rule+discovery+in+the+diagnosis+of+coronary+artery+disease&rft.jtitle=Expert+systems&rft.au=Zomorodi%E2%80%90moghadam%2C+Mariam&rft.au=Abdar%2C+Moloud&rft.au=Davarzani%2C+Zohreh&rft.au=Zhou%2C+Xujuan&rft.date=2021-01-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=38&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.12485&rft.externalDBID=10.1111%252Fexsy.12485&rft.externalDocID=EXSY12485 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |