Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease

Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD can help to understand the disease better and assist in its treatment. Recently, modern computer‐aided approaches have been used for the predi...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 38; no. 1
Main Authors Zomorodi‐moghadam, Mariam, Abdar, Moloud, Davarzani, Zohreh, Zhou, Xujuan, Pławiak, Pawel, Acharya, U.Rajendra
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.01.2021
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
DOI10.1111/exsy.12485

Cover

Abstract Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD can help to understand the disease better and assist in its treatment. Recently, modern computer‐aided approaches have been used for the prediction and diagnosis of diseases. Swarm intelligence algorithms like particle swarm optimization (PSO) have demonstrated great performance in solving different optimization problems. As rule discovery can be modelled as an optimization problem, it can be mapped to an optimization problem and solved by means of an evolutionary algorithm like PSO. An approach for discovering classification rules of CAD is proposed. The work is based on the real‐world CAD data set and aims at the detection of this disease by producing the accurate and effective rules. The proposed algorithm is a hybrid binary‐real PSO, which includes the combination of categorical and numerical encoding of a particle and a different approach for calculating the velocity of particles. The rules were developed from randomly generated particles, which take random values in the range of each attribute in the rule. Two different feature selection methods based on multi‐objective evolutionary search and PSO were applied on the data set, and the most relevant features were selected by the algorithms. The accuracy of two different rule sets were evaluated. The rule set with 11 features obtained more accurate results than the rule set with 13 features. Our results show that the proposed approach has the ability to produce effective rules with highest accuracy for the detection of CAD.
AbstractList Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD can help to understand the disease better and assist in its treatment. Recently, modern computer‐aided approaches have been used for the prediction and diagnosis of diseases. Swarm intelligence algorithms like particle swarm optimization (PSO) have demonstrated great performance in solving different optimization problems. As rule discovery can be modelled as an optimization problem, it can be mapped to an optimization problem and solved by means of an evolutionary algorithm like PSO. An approach for discovering classification rules of CAD is proposed. The work is based on the real‐world CAD data set and aims at the detection of this disease by producing the accurate and effective rules. The proposed algorithm is a hybrid binary‐real PSO, which includes the combination of categorical and numerical encoding of a particle and a different approach for calculating the velocity of particles. The rules were developed from randomly generated particles, which take random values in the range of each attribute in the rule. Two different feature selection methods based on multi‐objective evolutionary search and PSO were applied on the data set, and the most relevant features were selected by the algorithms. The accuracy of two different rule sets were evaluated. The rule set with 11 features obtained more accurate results than the rule set with 13 features. Our results show that the proposed approach has the ability to produce effective rules with highest accuracy for the detection of CAD.
Author Acharya, U.Rajendra
Abdar, Moloud
Davarzani, Zohreh
Zhou, Xujuan
Pławiak, Pawel
Zomorodi‐moghadam, Mariam
Author_xml – sequence: 1
  givenname: Mariam
  orcidid: 0000-0002-1308-3453
  surname: Zomorodi‐moghadam
  fullname: Zomorodi‐moghadam, Mariam
  email: m_zomorodi@um.ac.ir
  organization: Ferdowsi University of Mashhad
– sequence: 2
  givenname: Moloud
  surname: Abdar
  fullname: Abdar, Moloud
  organization: Université du Québec à Montré al
– sequence: 3
  givenname: Zohreh
  surname: Davarzani
  fullname: Davarzani, Zohreh
  organization: PNU University
– sequence: 4
  givenname: Xujuan
  surname: Zhou
  fullname: Zhou, Xujuan
  email: xujuan.zhou@usq.edu.au
  organization: University of Southern Queensland
– sequence: 5
  givenname: Pawel
  orcidid: 0000-0002-4317-2801
  surname: Pławiak
  fullname: Pławiak, Pawel
  organization: Cracow University of Technology
– sequence: 6
  givenname: U.Rajendra
  surname: Acharya
  fullname: Acharya, U.Rajendra
  organization: Ngee Ann Polytechnic
BookMark eNp9kMFLwzAUxoNMcJte_AsC3oTOpEmb9ChjOmHgQQU9hTRNNKNrZtI5619vunoS8V0evO_3vcf7JmDUuEYDcI7RDMe60p-hm-GU8uwIjDHNeYJIQUdgjNI8TyhL0QmYhLBGCGHG8jGQy670toJb6Vurag3DXvoNdNvWbuyXbK1roHEe-l3UKhuU-9C-g7aB7Vs_kK-NCzZAZ6By3jUyinFVz0Ray6BPwbGRddBnP30Knm4Wj_Nlsrq_vZtfrxJFEM4SxgtEmDQyk1jmKJeYlIhmnFKeVshgmmqqaZUplRFmDFUlqUxZcmJkQZRkZAouhr1b7953OrRi7Xa-iSdFShnmuOAYRQoNlPIuBK-NULY9vNl6aWuBkeiDFH2Q4hBktFz-smy93cRH_4bxAO9trbt_SLF4fngZPN_rRog9
CitedBy_id crossref_primary_10_1016_j_ins_2022_05_055
crossref_primary_10_1515_bams_2021_0063
crossref_primary_10_1016_j_advengsoft_2022_103283
crossref_primary_10_1002_cpe_6675
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_1016_j_engappai_2023_106662
crossref_primary_10_35940_ijeat_A3132_0411422
crossref_primary_10_1007_s11042_020_09439_8
crossref_primary_10_1111_exsy_13799
crossref_primary_10_1142_S0219622021500176
crossref_primary_10_1007_s13369_022_07198_2
crossref_primary_10_32890_jict2021_20_4_1
crossref_primary_10_4018_IJITSA_290001
crossref_primary_10_1007_s40883_022_00273_y
crossref_primary_10_1016_j_inffus_2023_101813
crossref_primary_10_1016_j_medengphy_2022_103937
crossref_primary_10_1007_s10586_023_04062_2
crossref_primary_10_1080_0954898X_2023_2238070
crossref_primary_10_1016_j_ins_2023_119164
crossref_primary_10_1016_j_engappai_2025_110209
crossref_primary_10_1186_s12859_020_03626_y
crossref_primary_10_1111_exsy_12918
crossref_primary_10_3389_fdata_2022_1021518
crossref_primary_10_1016_j_asoc_2021_107856
crossref_primary_10_1111_exsy_13409
crossref_primary_10_1155_2022_9660746
crossref_primary_10_1111_exsy_12653
crossref_primary_10_3233_JIFS_213257
crossref_primary_10_1007_s40815_021_01191_x
crossref_primary_10_1002_ima_22963
crossref_primary_10_2139_ssrn_4123849
crossref_primary_10_3390_s21124090
crossref_primary_10_1111_exsy_13069
crossref_primary_10_1111_exsy_13300
crossref_primary_10_1111_exsy_12573
crossref_primary_10_1016_j_procs_2024_09_285
crossref_primary_10_1108_DTA_08_2023_0437
crossref_primary_10_1007_s11042_024_18425_3
crossref_primary_10_1007_s13369_021_05347_7
crossref_primary_10_1007_s10462_022_10214_4
crossref_primary_10_1007_s13369_020_05115_z
crossref_primary_10_1109_ACCESS_2022_3168980
crossref_primary_10_1109_ACCESS_2024_3470537
crossref_primary_10_3390_e23010014
crossref_primary_10_1016_j_bbe_2021_07_003
crossref_primary_10_3390_electronics11060909
crossref_primary_10_3390_s20113032
Cites_doi 10.1016/j.cogsys.2018.07.004
10.5812/cardiovascmed.10888
10.1016/j.knosys.2016.07.004
10.1109/CEC.2003.1299577
10.1016/j.cmpb.2017.02.001
10.1016/j.neunet.2007.12.031
10.1007/978-3-540-30483-8_35
10.1016/j.eswa.2010.10.086
10.1016/j.asoc.2018.10.054
10.1016/j.ress.2017.10.019
10.1016/S0034-4257(97)00049-7
10.1109/TFUZZ.2007.900904
10.1007/s11042-018-5749-3
10.1109/COMAPP.2017.8079784
10.15439/2017F219
10.1155/2018/2520706
10.1162/neco.1990.2.4.480
10.1214/aos/1176347963
10.1109/TEVC.2013.2290086
10.1007/978-1-4615-5725-8_8
10.1016/S0933-3657(01)00077-X
10.1109/JBHI.2018.2808281
10.1007/978-3-642-18965-4_33
10.5539/cis.v3n1p180
10.3390/ijerph16040599
10.1109/AICCSA.2008.4493524
10.1109/IPDPS.2003.1213275
10.1007/978-3-540-74205-0_42
10.1016/S0031-3203(02)00063-8
10.1016/j.cell.2018.12.015
10.1109/ICSMC.1997.637339
10.1016/j.eswa.2017.09.022
10.1007/978-981-10-1837-4_2
10.1016/j.neucom.2018.12.066
10.1016/S0167-739X(97)00021-6
10.1109/MCI.2011.942584
10.1007/978-3-7908-1840-6_3
10.1109/TII.2019.2900295
10.1016/j.patrec.2018.11.004
10.1109/21.97458
10.12720/jomb.1.1.26-29
10.1109/COMST.2019.2904897
10.1016/j.cmpb.2017.01.004
10.1118/1.4725759
10.1016/S0933-3657(98)00062-1
10.1016/S0933-3657(02)00049-0
10.1016/j.cmpb.2018.04.005
10.1109/CEC.2001.934377
10.1109/ICETETS.2016.7603000
10.1109/COMAPP.2017.8079783
10.1016/j.parco.2003.12.015
10.1016/j.swevo.2017.10.002
10.1016/j.cogsys.2018.12.001
10.1038/nature14539
10.1145/2330163.2330175
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.12485
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_12485
EXSY12485
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3015-789037afa5a1a606a13b04584482d0f142e4e4d5cc537ff4cb3dfbb83fa93ca73
IEDL.DBID DR2
ISSN 0266-4720
IngestDate Fri Jul 25 07:16:04 EDT 2025
Wed Oct 01 02:56:00 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Wed Jan 22 16:31:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3015-789037afa5a1a606a13b04584482d0f142e4e4d5cc537ff4cb3dfbb83fa93ca73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1308-3453
0000-0002-4317-2801
PQID 2471819810
PQPubID 32130
PageCount 17
ParticipantIDs proquest_journals_2471819810
crossref_citationtrail_10_1111_exsy_12485
crossref_primary_10_1111_exsy_12485
wiley_primary_10_1111_exsy_12485_EXSY12485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1991; 19
2013; 2
2018; 161
2016; 109
2019; 54
2018b; 92
2019; 16
1997; 5
2018; 6
2004; 30
2018; 170
2000
1999; 16
2019; 23
1997; 13
2018a; 39
2008; 21
2014; 18
2003; 1
2010; 3
2010; 2
2015; 5
1997; 61
2019; 75
2012
2011
2015; 521
2019; 78
1998
2003; 36
2008
2007
1996
1995
2012; 39
2004
2003
2011; 38
2001; 23
2015; 8
2011; 6
2007; 15
1990; 2
2002; 26
2018; 2018
2012; 1
1991; 21
2002; 24
2019
2018
2019; 333
2003; 26
2017
2016
2018; 52
2017; 141
2016; 137
2001; 1
2013
2019; 176
e_1_2_8_28_1
Liu J. (e_1_2_8_44_1) 2003; 26
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Abdar M. (e_1_2_8_4_1) 2018; 6
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
Abdar M. (e_1_2_8_2_1) 2015; 8
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Zhang N. (e_1_2_8_70_1) 2018
Abdar M. (e_1_2_8_3_1) 2015; 5
Bigus J. P. (e_1_2_8_20_1) 1996
Han J. (e_1_2_8_32_1) 2011
Berry M. J. A. (e_1_2_8_19_1) 2004
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
Eberhart R. C. (e_1_2_8_25_1) 1995
Freitas A. A (e_1_2_8_29_1) 2013
Mishra A. K. (e_1_2_8_48_1) 2016; 137
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_65_1
e_1_2_8_63_1
Chye K. H. (e_1_2_8_23_1) 2002; 24
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
Srinivas K. (e_1_2_8_59_1) 2010; 2
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2011
– volume: 21
  start-page: 660
  issue: 3
  year: 1991
  end-page: 674
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE transactions on systems, man, and cybernetics
– volume: 92
  start-page: 334
  year: 2018b
  end-page: 349
  article-title: Novel methodology of cardiac health recognition based on ecg signals and evolutionary‐neural system
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 446
  issue: 4
  year: 2003
  end-page: 453
  article-title: Classification based on organizational coevolutionary algorithm
  publication-title: CHINESE JOURNAL OF COMPUTERS‐CHINESE EDITION‐
– start-page: 291
  year: 2004
  end-page: 296
– volume: 2
  start-page: 133
  issue: 3
  year: 2013
  article-title: Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features
  publication-title: Research in cardiovascular medicine
– start-page: 819
  year: 2003
  end-page: 845
– volume: 109
  start-page: 187
  year: 2016
  end-page: 197
  article-title: Coronary artery disease detection using computational intelligence methods
  publication-title: Knowledge‐Based Systems
– volume: 26
  start-page: 1
  issue: 1‐2
  year: 2002
  end-page: 24
  article-title: Uniqueness of medical data mining
  publication-title: Artificial intelligence in medicine
– start-page: 306
  year: 2017
  end-page: 311
– volume: 13
  start-page: 197
  issue: 2‐3
  year: 1997
  end-page: 210
  article-title: Data mining with decision trees and decision rules
  publication-title: Future generation computer systems
– volume: 8
  issue: 2
  year: 2015
  article-title: Using decision trees in data mining for predicting factors influencing of heart disease
  publication-title: Carpathian Journal of Electronic & Computer Engineering
– volume: 24
  start-page: 1
  issue: 2
  year: 2002
  end-page: 28
  article-title: Data mining and customer relationship marketing in the banking industry
  publication-title: Singapore Management Review
– volume: 39
  start-page: 192
  year: 2018a
  end-page: 208
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ecg signals
  publication-title: Swarm and evolutionary computation
– volume: 1
  issue: 1
  year: 2012
  article-title: Diagnosis of coronary artery disease using data mining based on lab data and echo features
  publication-title: Journal of Medical and Bioengineering
– start-page: 1
  year: 2016
  end-page: 5
– volume: 2018
  year: 2018
  article-title: Integrating correlation‐based feature selection and clustering for improved cardiovascular disease diagnosis
  publication-title: Complexity
– volume: 39
  start-page: 4255
  issue: 7Part1
  year: 2012
  end-page: 4264
  article-title: Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm
  publication-title: Medical physics
– volume: 21
  start-page: 427
  issue: 2‐3
  year: 2008
  end-page: 436
  article-title: Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
  publication-title: Neural networks
– start-page: 805
  year: 2000
  end-page: 810
– volume: 36
  start-page: 61
  issue: 1
  year: 2003
  end-page: 68
  article-title: Classification of heart rate data using artificial neural network and fuzzy equivalence relation
  publication-title: Pattern recognition
– start-page: 6
  year: 2003
  end-page: pp
– volume: 1
  start-page: 215
  year: 2003
  end-page: 220
– volume: 16
  start-page: 3
  issue: 1
  year: 1999
  end-page: 23
  article-title: Selected techniques for data mining in medicine
  publication-title: Artificial intelligence in medicine
– start-page: 155
  year: 2017
  end-page: 163
– volume: 15
  start-page: 536
  issue: 4
  year: 2007
  end-page: 550
  article-title: Fuzzy‐xcs: A michigan genetic fuzzy system
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  article-title: Deep learning
  publication-title: nature
– volume: 5
  start-page: 2088
  issue: 6
  year: 2015
  end-page: 8708
  article-title: Comparing performance of data mining algorithms in prediction heart diseases
  publication-title: International Journal of Electrical & Computer Engineering
– volume: 61
  start-page: 399
  issue: 3
  year: 1997
  end-page: 409
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote sensing of environment
– year: 2004
– year: 1995
  article-title: A new optimizer using particle swarm theory, paper presented at sixth international symposium on micromachine and human science, inst. of electr. and electron
  publication-title: English Nagoya Japan
– start-page: 377
  year: 2007
  end-page: 384
– year: 2019
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Communications Surveys & Tutorials
– year: 2018
  article-title: A new nested ensemble technique for automated diagnosis of breast cancer
  publication-title: Pattern Recognition Letters
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Deep learning for healthcare applications based on physiological signals: A review
  publication-title: Computer methods and programs in biomedicine
– volume: 16
  start-page: 599
  issue: 4
  year: 2019
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: International journal of environmental research and public health
– volume: 23
  start-page: 89
  issue: 1
  year: 2001
  end-page: 109
  article-title: Machine learning for medical diagnosis: History, state of the art and perspective
  publication-title: Artificial Intelligence in medicine
– volume: 141
  start-page: 105
  year: 2017
  end-page: 109
  article-title: Hs‐crp is strongly associated with coronary heart disease (chd): A data mining approach using decision tree algorithm
  publication-title: Computer methods and programs in biomedicine
– volume: 6
  start-page: 68
  issue: 4
  year: 2011
  end-page: 75
  article-title: Evolutionary computation meets machine learning: A survey
  publication-title: IEEE Computational Intelligence Magazine
– volume: 23
  start-page: 314
  issue: 1
  year: 2019
  end-page: 323
  article-title: Deep learning for fall detection: Three‐dimensional cnn combined with lstm on video kinematic data
  publication-title: IEEE journal of biomedical and health informatics
– volume: 78
  start-page: 857
  issue: 1
  year: 2019
  end-page: 875
  article-title: Abstractive text summarization using lstm‐cnn based deep learning
  publication-title: Multimedia Tools and Applications
– start-page: 108
  year: 2008
  end-page: 115
– start-page: 117
  year: 1998
  end-page: 136
– volume: 30
  start-page: 767
  issue: 5‐6
  year: 2004
  end-page: 783
  article-title: Particle swarm based data mining algorithms for classification tasks
  publication-title: Parallel Computing
– year: 2007
– year: 1996
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  end-page: 67
  article-title: Multivariate adaptive regression splines
  publication-title: The annals of statistics
– volume: 3
  start-page: 180
  issue: 1
  year: 2010
  article-title: Analysis of particle swarm optimization algorithm
  publication-title: Computer and information science
– volume: 2
  start-page: 250
  issue: 02
  year: 2010
  end-page: 255
  article-title: Applications of data mining techniques in healthcare and prediction of heart attacks
  publication-title: International Journal on Computer Science and Engineering (IJCSE)
– start-page: 49
  year: 2000
  end-page: 88
– volume: 54
  start-page: 116
  year: 2019
  end-page: 127
  article-title: A novel machine learning approach for early detection of hepatocellular carcinoma patients
  publication-title: Cognitive Systems Research
– volume: 38
  start-page: 5507
  issue: 5
  year: 2011
  end-page: 5513
  article-title: Using data mining techniques for multi‐diseases prediction modeling of hypertension and hyperlipidemia by common risk factors
  publication-title: Expert systems with applications
– volume: 6
  start-page: 277
  issue: 2
  year: 2018
  end-page: 285
  article-title: Impact of patients'gender on parkinson's disease using classification algorithms
  publication-title: Journal of AI and Data Mining
– year: 2012
– volume: 1
  start-page: 81
  year: 2001
  end-page: 86
– start-page: 69
  year: 1998
  end-page: 73
– volume: 176
  start-page: 535
  issue: 3
  year: 2019
  end-page: 548
  article-title: Predicting splicing from primary sequence with deep learning
  publication-title: Cell
– start-page: 1
  year: 2018
  end-page: 12
  article-title: Multimodal correlation deep belief networks for multi‐view classification
  publication-title: Applied Intelligence
– volume: 170
  start-page: 73
  year: 2018
  end-page: 82
  article-title: Software reliability prediction using a deep learning model based on the rnn encoder–decoder
  publication-title: Reliability Engineering & System Safety
– volume: 2
  start-page: 480
  issue: 4
  year: 1990
  end-page: 489
  article-title: Use of an artificial neural network for data analysis in clinical decision‐making: The diagnosis of acute coronary occlusion
  publication-title: Neural computation
– start-page: 13
  year: 2017
  end-page: 23
– volume: 52
  start-page: 198
  year: 2018
  end-page: 211
  article-title: An efficient compression of ecg signals using deep convolutional autoencoders
  publication-title: Cognitive Systems Research
– volume: 333
  start-page: 110
  year: 2019
  end-page: 123
  article-title: A novel statistical approach for clustering positive data based on finite inverted beta‐Liouville mixture models
  publication-title: Neurocomputing
– volume: 18
  start-page: 4
  issue: 1
  year: 2014
  end-page: 19
  article-title: A survey of multiobjective evolutionary algorithms for data mining: Part i
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 299
  year: 2017
  end-page: 305
– volume: 75
  start-page: 21
  year: 2019
  end-page: 28
  article-title: Modified genetic algorithm approaches for classification of abnormal magnetic resonance brain tumour images
  publication-title: Applied Soft Computing
– year: 2019
  article-title: Joint learning of degradation assessment and rule prediction for aero‐engines via dual‐task deep lstm networks
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 137
  issue: 2
  year: 2016
  article-title: PSO‐ based swarm intelligence technique for multi‐objective classification rule mining
  publication-title: International Journal of Computer Applications
– volume: 5
  start-page: 4104
  year: 1997
  end-page: 4108
– volume: 141
  start-page: 19
  year: 2017
  end-page: 26
  article-title: Computer aided decision making for heart disease detection using hybrid neural network‐genetic algorithm
  publication-title: Computer methods and programs in biomedicine
– year: 2013
– volume: 6
  start-page: 277
  issue: 2
  year: 2018
  ident: e_1_2_8_4_1
  article-title: Impact of patients'gender on parkinson's disease using classification algorithms
  publication-title: Journal of AI and Data Mining
– ident: e_1_2_8_69_1
  doi: 10.1016/j.cogsys.2018.07.004
– ident: e_1_2_8_8_1
  doi: 10.5812/cardiovascmed.10888
– ident: e_1_2_8_10_1
  doi: 10.1016/j.knosys.2016.07.004
– ident: e_1_2_8_62_1
  doi: 10.1109/CEC.2003.1299577
– ident: e_1_2_8_61_1
  doi: 10.1016/j.cmpb.2017.02.001
– start-page: 1
  year: 2018
  ident: e_1_2_8_70_1
  article-title: Multimodal correlation deep belief networks for multi‐view classification
  publication-title: Applied Intelligence
– volume: 5
  start-page: 2088
  issue: 6
  year: 2015
  ident: e_1_2_8_3_1
  article-title: Comparing performance of data mining algorithms in prediction heart diseases
  publication-title: International Journal of Electrical & Computer Engineering
– ident: e_1_2_8_14_1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neunet.2007.12.031
– ident: e_1_2_8_43_1
  doi: 10.1007/978-3-540-30483-8_35
– ident: e_1_2_8_22_1
  doi: 10.1016/j.eswa.2010.10.086
– ident: e_1_2_8_34_1
  doi: 10.1016/j.asoc.2018.10.054
– ident: e_1_2_8_64_1
  doi: 10.1016/j.ress.2017.10.019
– ident: e_1_2_8_30_1
  doi: 10.1016/S0034-4257(97)00049-7
– ident: e_1_2_8_21_1
  doi: 10.1109/TFUZZ.2007.900904
– ident: e_1_2_8_56_1
  doi: 10.1007/s11042-018-5749-3
– ident: e_1_2_8_11_1
  doi: 10.1109/COMAPP.2017.8079784
– ident: e_1_2_8_15_1
  doi: 10.15439/2017F219
– ident: e_1_2_8_65_1
  doi: 10.1155/2018/2520706
– ident: e_1_2_8_17_1
  doi: 10.1162/neco.1990.2.4.480
– volume-title: Data mining: Concepts and techniques
  year: 2011
  ident: e_1_2_8_32_1
– volume: 26
  start-page: 446
  issue: 4
  year: 2003
  ident: e_1_2_8_44_1
  article-title: Classification based on organizational coevolutionary algorithm
  publication-title: CHINESE JOURNAL OF COMPUTERS‐CHINESE EDITION‐
– ident: e_1_2_8_31_1
  doi: 10.1214/aos/1176347963
– ident: e_1_2_8_49_1
  doi: 10.1109/TEVC.2013.2290086
– ident: e_1_2_8_67_1
  doi: 10.1007/978-1-4615-5725-8_8
– ident: e_1_2_8_39_1
  doi: 10.1016/S0933-3657(01)00077-X
– ident: e_1_2_8_45_1
  doi: 10.1109/JBHI.2018.2808281
– volume-title: Data mining with neural networks: Solving business problems from application development to decision support
  year: 1996
  ident: e_1_2_8_20_1
– ident: e_1_2_8_28_1
  doi: 10.1007/978-3-642-18965-4_33
– ident: e_1_2_8_16_1
  doi: 10.5539/cis.v3n1p180
– ident: e_1_2_8_68_1
  doi: 10.3390/ijerph16040599
– ident: e_1_2_8_50_1
  doi: 10.1109/AICCSA.2008.4493524
– ident: e_1_2_8_57_1
  doi: 10.1109/IPDPS.2003.1213275
– ident: e_1_2_8_63_1
  doi: 10.1007/978-3-540-74205-0_42
– volume: 2
  start-page: 250
  issue: 02
  year: 2010
  ident: e_1_2_8_59_1
  article-title: Applications of data mining techniques in healthcare and prediction of heart attacks
  publication-title: International Journal on Computer Science and Engineering (IJCSE)
– volume: 8
  issue: 2
  year: 2015
  ident: e_1_2_8_2_1
  article-title: Using decision trees in data mining for predicting factors influencing of heart disease
  publication-title: Carpathian Journal of Electronic & Computer Engineering
– ident: e_1_2_8_6_1
  doi: 10.1016/S0031-3203(02)00063-8
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cell.2018.12.015
– ident: e_1_2_8_38_1
  doi: 10.1109/ICSMC.1997.637339
– ident: e_1_2_8_52_1
  doi: 10.1016/j.eswa.2017.09.022
– volume: 24
  start-page: 1
  issue: 2
  year: 2002
  ident: e_1_2_8_23_1
  article-title: Data mining and customer relationship marketing in the banking industry
  publication-title: Singapore Management Review
– ident: e_1_2_8_60_1
  doi: 10.1007/978-981-10-1837-4_2
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neucom.2018.12.066
– ident: e_1_2_8_12_1
  doi: 10.1016/S0167-739X(97)00021-6
– year: 1995
  ident: e_1_2_8_25_1
  article-title: A new optimizer using particle swarm theory, paper presented at sixth international symposium on micromachine and human science, inst. of electr. and electron
  publication-title: English Nagoya Japan
– ident: e_1_2_8_72_1
  doi: 10.1109/MCI.2011.942584
– ident: e_1_2_8_18_1
  doi: 10.1007/978-3-7908-1840-6_3
– ident: e_1_2_8_55_1
– ident: e_1_2_8_47_1
  doi: 10.1109/TII.2019.2900295
– ident: e_1_2_8_5_1
  doi: 10.1016/j.patrec.2018.11.004
– ident: e_1_2_8_53_1
  doi: 10.1109/21.97458
– ident: e_1_2_8_9_1
  doi: 10.12720/jomb.1.1.26-29
– ident: e_1_2_8_27_1
– ident: e_1_2_8_71_1
  doi: 10.1109/COMST.2019.2904897
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cmpb.2017.01.004
– ident: e_1_2_8_7_1
  doi: 10.1118/1.4725759
– volume: 137
  issue: 2
  year: 2016
  ident: e_1_2_8_48_1
  article-title: PSO‐ based swarm intelligence technique for multi‐objective classification rule mining
  publication-title: International Journal of Computer Applications
– volume-title: Data mining and knowledge discovery with evolutionary algorithms
  year: 2013
  ident: e_1_2_8_29_1
– ident: e_1_2_8_41_1
  doi: 10.1016/S0933-3657(98)00062-1
– ident: e_1_2_8_24_1
  doi: 10.1016/S0933-3657(02)00049-0
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cmpb.2018.04.005
– ident: e_1_2_8_54_1
  doi: 10.1109/CEC.2001.934377
– ident: e_1_2_8_37_1
  doi: 10.1109/ICETETS.2016.7603000
– ident: e_1_2_8_33_1
  doi: 10.1109/COMAPP.2017.8079783
– ident: e_1_2_8_58_1
  doi: 10.1016/j.parco.2003.12.015
– ident: e_1_2_8_51_1
  doi: 10.1016/j.swevo.2017.10.002
– volume-title: Data mining techniques: For marketing, sales, and customer relationship management
  year: 2004
  ident: e_1_2_8_19_1
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cogsys.2018.12.001
– ident: e_1_2_8_42_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_66_1
  doi: 10.1145/2330163.2330175
SSID ssj0001776
Score 2.489412
Snippet Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Cardiovascular disease
classification
Coronary artery disease
coronary artery disease (CAD)
Coronary vessels
Datasets
Diagnosis
Evolutionary algorithms
hybrid particle swarm optimization
Optimization
Particle swarm optimization
Risk analysis
rule discovery
Swarm intelligence
Vein & artery diseases
Title Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12485
https://www.proquest.com/docview/2471819810
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1468-0394
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: AKVCP
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-4720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MefHi_MTpHAG9KHQ0bdq04GXoxhD14BzMg5QkbWHoPlg3dP71Jmm6TRFBb6VNSpL3kfeS934P4CyMA5pKclqSG5ilShRaPBTYCvWdWUhswjXa573f6ZGbvtcvwWWRC5PjQywP3JRkaH2tBJzxbE3Ik_ds0cAKkUsqYOz62p96WGFHYaory0kfw7cIdWyDTarCeFZdv-5GKxNz3VDVO027As_FGPMAk5fGfMYb4uMbfON_J7ENW8YERc2cZ3aglIx2oVKUd0BG2veAdRYqnQtNDHeh7I1Nh2gslczQZG8iafKi6Vx-U9m9Khp0gQYjJI1K-ULH8A0yNE6RUDgJcpRIR5AukLkW2odeu_V41bFMRQZLSEXgWSpr1qUsZR7DTLo-DLtc37SSwIntFBMnIQmJPSE8l6YpEdyNU84DN2WhKxh1D6A8Go-SQ0CSRzD1ucdjOyGBoDymoapjFBMsVNcqnBeUiYSBK1dVM16jwm1RaxfptavC6bLtJAfp-LFVrSBwZAQ1ixy1OeMwwHYVLjSlfvlD1Op3n_TT0V8aH8OmoyJh9MFNDcqz6Tw5kabMjNdho3l9d9uta9b9BFDE86A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46H_TF-ROnUwP6otDRtOnSPopsVJ170AnzqSRpC0PXjXVD519vLku3KSLoW2mT0ubukrvku-8QOg9in6VKnJbSBm5BiUJLBJJYgT4zC6hNhWb7bNfDJ3rb9boGmwO5MDN-iPmGG1iGnq_BwGFDesnKk_d8WiNAybWK1mhdBSrgEz0s2KMI07XlVJRRtyhzbMNOCkCeRd-v69HCyVx2VfVa0yzPCqrmmqIQICYvtclY1OTHNwLHf__GFto0Xii-mqnNNlpJsh1ULio8YGPwu4iHU8jowkOjYDh_46M-Hqh5pm8SOLHyevFoop5Bgi8AQqe4l2HlV6obGsbXy_EgxRKoEtRnYg0inWJzMrSHnpqNznVomaIMllRzgWdB4qzLeMo9TriKfjhxhT5spb4T2ymhTkITGntSei5LUyqFG6dC-G7KA1dy5u6jUjbIkgOElZoQVheeiO2E-pKJmAVQyiimRELXCrooRBNJw1gOhTNeoyJygbGL9NhV0Nm87XDG0_Fjq2oh4cjYah45sD6TwCd2BV1qUf3yhqjRfXzWV4d_aXyK1sPOfStq3bTvjtCGA8AYvY9TRaXxaJIcK89mLE60_n4C2v_2LQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86QXxxfuJ0akBfFDqaNl3aR3Eb84MhfsB8KknawNB1Y93Q-deby7IPRQR9K21S2txdcpf87ncInUZJyJQWp6O1gTtQotARkSROZM7MIupSYdg-W9XmE71uB22LzYFcmAk_xGzDDSzDzNdg4Gk_UQtWnr7n4woBSq5ltEKDKAREX-1-zh5FmKktp6OMqkOZ51p2UgDyzPt-XY_mTuaiq2rWmkZxUlA1NxSFADF5qYyGoiI_vhE4_vs3NtC69ULxxURtNtFSmm2h4rTCA7YGv414cwwZXbhvFQznb3zQxT09z3RtAifWXi8ejPQzSPAFQOgYdzKs_Up9w8D4OjnuKSyBKkF_JjYg0jG2J0M76KlRf7xsOrYogyP1XBA4kDjrM654wAnX0Q8nvjCHrTT0ElcR6qU0pUkgZeAzpagUfqKECH3FI19y5u-iQtbL0j2EtZoQVhWBSNyUhpKJhEVQyiihRELXEjqbiiaWlrEcCme8xtPIBcYuNmNXQieztv0JT8ePrcpTCcfWVvPYg_WZRCFxS-jciOqXN8T19sOzudr_S-NjtHpXa8S3V62bA7TmAS7GbOOUUWE4GKWH2rEZiiOjvp-RVPWx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+particle+swarm+optimization+for+rule+discovery+in+the+diagnosis+of+coronary+artery+disease&rft.jtitle=Expert+systems&rft.au=Zomorodi%E2%80%90moghadam%2C+Mariam&rft.au=Abdar%2C+Moloud&rft.au=Davarzani%2C+Zohreh&rft.au=Zhou%2C+Xujuan&rft.date=2021-01-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=38&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.12485&rft.externalDBID=10.1111%252Fexsy.12485&rft.externalDocID=EXSY12485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon