Improving the classification of phishing websites using a hybrid algorithm
In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class distribution and may consist of irrelevant features. Therefore, in the data preprocessing, the adaptive synthetic sampling approach has been used...
Saved in:
| Published in | Computational intelligence Vol. 38; no. 2; pp. 667 - 689 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Blackwell Publishing Ltd
01.04.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0824-7935 1467-8640 |
| DOI | 10.1111/coin.12494 |
Cover
| Abstract | In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class distribution and may consist of irrelevant features. Therefore, in the data preprocessing, the adaptive synthetic sampling approach has been used to handle the imbalanced data. Irrelevant or redundant features are removed from the balanced data using the proposed binary version of Rao algorithms. The S‐shaped and V‐shaped transfer functions are applied for mapping continuous search space to discrete search space. Also, the results of these S‐shaped and V‐shaped transfer functions are analyzed for proposed algorithms. The performance is improved by optimizing the value of the k parameter in the kNN classifier. The dataset used in this article has been taken from the UCI machine‐learning repository. The performance of the proposed approach has been evaluated using the polygon area metric. The obtained classification accuracy is 97.044%. A comparison of the proposed hybrid algorithm with the other state‐of‐the‐art techniques is also made for validation. Moreover, the proposed approach has been compared with seven metaheuristic feature selection algorithms and six filter methods for performance analysis. Additionally, we have applied the proposed approach to URLs that are registered on the PhishTank website. |
|---|---|
| AbstractList | In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class distribution and may consist of irrelevant features. Therefore, in the data preprocessing, the adaptive synthetic sampling approach has been used to handle the imbalanced data. Irrelevant or redundant features are removed from the balanced data using the proposed binary version of Rao algorithms. The S‐shaped and V‐shaped transfer functions are applied for mapping continuous search space to discrete search space. Also, the results of these S‐shaped and V‐shaped transfer functions are analyzed for proposed algorithms. The performance is improved by optimizing the value of the k parameter in the kNN classifier. The dataset used in this article has been taken from the UCI machine‐learning repository. The performance of the proposed approach has been evaluated using the polygon area metric. The obtained classification accuracy is 97.044%. A comparison of the proposed hybrid algorithm with the other state‐of‐the‐art techniques is also made for validation. Moreover, the proposed approach has been compared with seven metaheuristic feature selection algorithms and six filter methods for performance analysis. Additionally, we have applied the proposed approach to URLs that are registered on the PhishTank website. |
| Author | Sharma, Suvita Rani Singh, Birmohan Kaur, Manpreet |
| Author_xml | – sequence: 1 givenname: Suvita Rani surname: Sharma fullname: Sharma, Suvita Rani email: suvita.sharma1204@gmail.com organization: Sant Longowal Institute of Engineering and Technology – sequence: 2 givenname: Birmohan orcidid: 0000-0001-6345-5537 surname: Singh fullname: Singh, Birmohan email: birmohans@gmail.com organization: Sant Longowal Institute of Engineering and Technology – sequence: 3 givenname: Manpreet orcidid: 0000-0002-1858-1291 surname: Kaur fullname: Kaur, Manpreet email: aneja_mpk@yahoo.com organization: Sant Longowal Institute of Engineering and Technology |
| BookMark | eNp9kE1LAzEQhoNUsFUv_oIFb8LWfG2SHqX4USn2oueQZJNuynZTk62l_97dricR5zIM87zvDO8EjJrQWABuEJyiru5N8M0UYTqjZ2CMKOO5YBSOwBgKTHM-I8UFmKS0gRAiQsUYvC62uxi-fLPO2spmplYpeeeNan1osuCyXeVT1a8PViff2pTtUz-qrDrq6MtM1esQfVttr8C5U3Wy1z_9Enw8Pb7PX_Ll6nkxf1jmhkBEcwE519RaTonArBAGc4axxZBq5JhiJTMlZsJoonlpneMzUxaKQ4sRpZBocgluB9_u8c-9Ta3chH1supOy8-uYAlPSUXcDZWJIKVond9FvVTxKBGWfleyzkqesOhj-go1vTxG0Ufn6bwkaJAdf2-M_5nK-WrwNmm_8kn5F |
| CitedBy_id | crossref_primary_10_1007_s10207_024_00851_x crossref_primary_10_1111_coin_70036 crossref_primary_10_29130_dubited_1426401 crossref_primary_10_3390_math11010129 |
| Cites_doi | 10.1109/ACCESS.2019.2920655 10.1007/s00521-014-1629-6 10.1016/j.eswa.2018.04.017 10.1007/s00357-018-9261-2 10.1016/j.cor.2018.02.021 10.1109/CVPR.2004.1315213 10.1016/j.neucom.2015.06.083 10.1109/ACCESS.2020.2964321 10.1016/j.ins.2019.01.064 10.1162/153244303322753616 10.1007/978-3-642-01307-2_43 10.1016/S1361-3723(19)30025-9 10.1016/j.asoc.2016.08.005 10.1109/ACCESS.2020.3013617 10.7753/IJCATR0506.1013 10.5267/j.ijiec.2019.6.002 10.1007/s00521-017-2988-6 10.1093/bioinformatics/btm344 10.1007/s12046-018-0805-2 10.1007/s00521-013-1490-z 10.1016/j.cad.2010.12.015 10.1007/s00357-020-09362-5 10.1109/IJCNN.2008.4633969 10.1007/978-3-642-15859-9_6 10.5753/sbrc.2019.7416 10.1145/1007730.1007733 10.1145/3227609.3227655 10.1007/s00521-013-1525-5 10.1007/978-3-030-00557-3_46 10.1145/1007730.1007736 10.1016/j.eswa.2013.09.022 10.1155/2017/9512741 10.1109/72.914517 10.1007/s00521-018-3624-9 10.1109/ICCISci.2019.8716444 10.1613/jair.953 10.1109/ICDM.2001.989527 10.1109/ICTCS.2017.43 10.1016/j.swevo.2012.09.002 10.1109/TPAMI.2005.159 10.1109/ICSMC.1997.637339 10.1016/j.eswa.2010.12.156 10.1007/s10489-018-1348-2 10.5120/ijca2016911061 10.1007/s00500-018-3084-2 10.1186/1748-7188-8-23 10.1016/s0950-7051(99)00024-6 10.1109/ISDFS.2018.8355342 10.3390/axioms8030079 10.1016/j.eswa.2018.08.051 10.1049/iet-ifs.2013.0202 10.1109/ICoICT.2019.8835308 10.17577/IJERTV4IS120262 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/coin.12494 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1467-8640 |
| EndPage | 689 |
| ExternalDocumentID | 10_1111_coin_12494 COIN12494 |
| Genre | article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 UCJ VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3014-8077b4ee74382658c27622e204b1f6a6d6cd268cb3b7deff79cd5a70e214403b3 |
| IEDL.DBID | DR2 |
| ISSN | 0824-7935 |
| IngestDate | Sun Sep 07 08:40:36 EDT 2025 Wed Oct 01 05:09:09 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Wed Jan 22 16:24:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3014-8077b4ee74382658c27622e204b1f6a6d6cd268cb3b7deff79cd5a70e214403b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1858-1291 0000-0001-6345-5537 |
| PQID | 2654405243 |
| PQPubID | 34323 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2654405243 crossref_primary_10_1111_coin_12494 crossref_citationtrail_10_1111_coin_12494 wiley_primary_10_1111_coin_12494_COIN12494 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computational intelligence |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2002; 16 2019; 8 2019; 7 2015; 4 2017; 2017 2019; 31 2010 2018; 107 2014; 25 2004; 6 2020; 11 2019; 106 2016; 147 2014; 41 2005; 27 2011; 3 2011; 38 2013; 8 2018; 43 2013; 9 2019; 484 2020; 8 2016; 5 2021; 38 2019; 23 1999; 12 2003; 3 2019; 116 2019; 49 2011; 43 2014; 8 2001; 12 2016; 48 2007; 23 2016; 8 2018; 35 2016; 172 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 Lamba A (e_1_2_12_52_1) 2016; 8 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_66_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_68_1 e_1_2_12_62_1 e_1_2_12_60_1 e_1_2_12_28_1 e_1_2_12_31_1 e_1_2_12_33_1 e_1_2_12_54_1 Too J (e_1_2_12_69_1) 2019; 7 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_71_1 e_1_2_12_3_1 e_1_2_12_5_1 Ladha L (e_1_2_12_35_1) 2011; 3 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 Cai Y‐l (e_1_2_12_49_1) 2010 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_61_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_9_1 |
| References_xml | – volume: 12 start-page: 269 issue: 5‐6 year: 1999 end-page: 275 article-title: Strategic induction of decision trees publication-title: Knowledge‐Based Systems – volume: 3 start-page: 1157 year: 2003 end-page: 1182 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – start-page: 336 year: 2010 end-page: 340 – volume: 11 start-page: 107 year: 2020 end-page: 130 article-title: Rao algorithms: Three metaphor‐less simple algorithms for solving optimization problems publication-title: Int J Ind Eng Comput – volume: 49 start-page: 1580 issue: 4 year: 2019 end-page: 1596 article-title: Hybridization of feature selection and feature weighting for high dimensional data publication-title: Appl Intell – volume: 8 start-page: 153 issue: 3 year: 2014 end-page: 160 article-title: Intelligent rule‐based phishing websites classification publication-title: IET Inf Secur – volume: 8 start-page: 1 year: 2013 end-page: 11 article-title: Jaccard index based similarity measure to compare transcription factor binding site models publication-title: Algorithms Mol Biol – volume: 3 start-page: 1787 issue: 5 year: 2011 end-page: 1797 article-title: Feature selection methods and algorithms publication-title: Int J Comput Sci Eng – volume: 38 start-page: 16 issue: 1 year: 2021 end-page: 26 article-title: A new performance evaluation metric for classifiers: polygon area metric publication-title: J Classif – volume: 12 start-page: 181 issue: 2 year: 2001 end-page: 201 article-title: An introduction to kernel‐based learning algorithms publication-title: IEEE Trans Neural Netw – volume: 8 start-page: 997 issue: 2 year: 2016 end-page: 1003 article-title: Optimization of KNN with firefly algorithm publication-title: BVICAM's Int J Inf Technol – volume: 107 start-page: 32 year: 2018 end-page: 44 article-title: Recognizing human activity in mobile crowdsensing environment using optimized k ‐NN algorithm publication-title: Expert Syst Appl – volume: 41 start-page: 2239 issue: 5 year: 2014 end-page: 2249 article-title: A hybrid intelligent system for medical data classification publication-title: Expert Syst Appl – volume: 48 start-page: 729 year: 2016 end-page: 734 article-title: A new fast associative classification algorithm for detecting phishing websites publication-title: Appl Soft Comput – volume: 5 start-page: 395 issue: 6 year: 2016 end-page: 402 article-title: A review on feature selection methods for classification tasks publication-title: Int J Comput Appl Technol Res – volume: 9 start-page: 1 year: 2013 end-page: 14 article-title: S‐shaped versus V‐shaped transfer functions for binary Particle Swarm Optimization publication-title: Swarm Evol Comput – volume: 38 start-page: 8144 issue: 7 year: 2011 end-page: 8150 article-title: Hybrid feature selection by combining filters and wrappers publication-title: Expert Syst Appl – volume: 43 start-page: 303 issue: 3 year: 2011 end-page: 315 article-title: Teaching ‐ learning‐based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des – volume: 7 start-page: 73271 year: 2019 end-page: 73284 article-title: OFS‐NN: an effective phishing websites detection model based on optimal feature selection and neural network publication-title: IEEE Access – volume: 23 start-page: 4315 issue: 12 year: 2019 end-page: 4327 article-title: Heuristic nonlinear regression strategy for detecting phishing websites publication-title: Soft Comput – volume: 116 start-page: 147 year: 2019 end-page: 160 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst Appl – volume: 16 start-page: 321 year: 2002 end-page: 357 article-title: SMOTE: synthetic minority over‐sampling technique publication-title: J Artif Intell Res – volume: 7 start-page: 12 issue: 1 year: 2019 article-title: EMG feature selection and classification using a Pbest‐guide binary particle swarm optimization publication-title: Comput Des – volume: 8 start-page: 79 issue: 3 year: 2019 article-title: Hybrid binary particle swarm optimization differential evolution‐based feature selection for EMG signals classification publication-title: Axioms – volume: 2017 start-page: 1 year: 2017 end-page: 15 article-title: An enhanced grey wolf optimization based machine for medical diagnosis publication-title: Comput Math Methods Med – volume: 23 start-page: 2507 issue: 19 year: 2007 end-page: 2517 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 8 start-page: 8041 year: 2020 end-page: 8055 article-title: Enhanced binary moth flame optimization as a feature selection algorithm to predict software fault prediction publication-title: IEEE Access – volume: 6 start-page: 1 issue: 1 year: 2004 end-page: 6 article-title: Special issue on learning from imbalanced data sets publication-title: ACM SIGKDD Explor Newslett – start-page: 37 year: 2010 end-page: 43 – volume: 4 start-page: 172 issue: 12 year: 2015 end-page: 174 article-title: Machine learning based phishing website detection system publication-title: Int J Eng Res – volume: 43 start-page: 1 issue: 3 year: 2018 end-page: 18 article-title: An approach for classification of malignant and benign microcalcification clusters publication-title: Sadhana Acad Proc Eng Sci – volume: 31 start-page: 171 issue: 1 year: 2019 end-page: 188 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput Appl – volume: 35 start-page: 300 issue: 2 year: 2018 end-page: 344 article-title: A new chaotic whale optimization algorithm for features selection publication-title: J Classif – volume: 8 start-page: 140936 year: 2020 end-page: 140963 article-title: An efficient binary equilibrium optimizer algorithm for feature selection publication-title: IEEE Access – volume: 25 start-page: 1423 issue: 6 year: 2014 end-page: 1435 article-title: Binary optimization using hybrid particle swarm optimization and gravitational search algorithm publication-title: Neural Comput Appl – volume: 106 start-page: 210 year: 2019 end-page: 224 article-title: Application of optimized machine learning techniques for prediction of occupational accidents publication-title: Comput Oper Res – volume: 27 start-page: 1226 issue: 8 year: 2005 end-page: 1238 article-title: Feature selection based on mutual information criteria of max‐dependency, max‐relevance, and min‐redundancy publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 484 start-page: 153 year: 2019 end-page: 166 article-title: A new hybrid ensemble feature selection framework for machine learning‐based phishing detection system publication-title: Inf Sci – volume: 172 start-page: 371 year: 2016 end-page: 381 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 25 start-page: 443 issue: 2 year: 2014 end-page: 458 article-title: Predicting phishing websites based on self‐structuring neural network publication-title: Neural Comput Appl – volume: 25 start-page: 663 issue: 3‐4 year: 2014 end-page: 681 article-title: Binary bat algorithm publication-title: Neural Comput Appl – volume: 31 start-page: 7935 issue: 11 year: 2019 end-page: 7944 article-title: Optimization of K‐nearest neighbor using particle swarm optimization for face recognition publication-title: Neural Comput Appl – volume: 147 start-page: 5 issue: 5 year: 2016 end-page: 11 article-title: Detection and prediction of phishing websites using classification mining techniques publication-title: Int J Comput Appl – ident: e_1_2_12_63_1 doi: 10.1109/ACCESS.2019.2920655 – ident: e_1_2_12_64_1 doi: 10.1007/s00521-014-1629-6 – ident: e_1_2_12_53_1 doi: 10.1016/j.eswa.2018.04.017 – ident: e_1_2_12_42_1 doi: 10.1007/s00357-018-9261-2 – ident: e_1_2_12_51_1 doi: 10.1016/j.cor.2018.02.021 – ident: e_1_2_12_29_1 doi: 10.1109/CVPR.2004.1315213 – ident: e_1_2_12_65_1 doi: 10.1016/j.neucom.2015.06.083 – ident: e_1_2_12_45_1 doi: 10.1109/ACCESS.2020.2964321 – ident: e_1_2_12_20_1 doi: 10.1016/j.ins.2019.01.064 – ident: e_1_2_12_36_1 doi: 10.1162/153244303322753616 – ident: e_1_2_12_31_1 doi: 10.1007/978-3-642-01307-2_43 – ident: e_1_2_12_9_1 doi: 10.1016/S1361-3723(19)30025-9 – ident: e_1_2_12_15_1 doi: 10.1016/j.asoc.2016.08.005 – ident: e_1_2_12_46_1 doi: 10.1109/ACCESS.2020.3013617 – ident: e_1_2_12_34_1 doi: 10.7753/IJCATR0506.1013 – ident: e_1_2_12_47_1 doi: 10.5267/j.ijiec.2019.6.002 – ident: e_1_2_12_23_1 – ident: e_1_2_12_66_1 doi: 10.1007/s00521-017-2988-6 – ident: e_1_2_12_38_1 doi: 10.1093/bioinformatics/btm344 – ident: e_1_2_12_59_1 doi: 10.1007/s12046-018-0805-2 – ident: e_1_2_12_22_1 doi: 10.1007/s00521-013-1490-z – ident: e_1_2_12_56_1 doi: 10.1016/j.cad.2010.12.015 – ident: e_1_2_12_37_1 – ident: e_1_2_12_58_1 doi: 10.1007/s00357-020-09362-5 – ident: e_1_2_12_32_1 doi: 10.1109/IJCNN.2008.4633969 – ident: e_1_2_12_7_1 – volume: 7 start-page: 12 issue: 1 year: 2019 ident: e_1_2_12_69_1 article-title: EMG feature selection and classification using a Pbest‐guide binary particle swarm optimization publication-title: Comput Des – ident: e_1_2_12_10_1 – ident: e_1_2_12_40_1 doi: 10.1007/978-3-642-15859-9_6 – ident: e_1_2_12_70_1 doi: 10.5753/sbrc.2019.7416 – volume: 8 start-page: 997 issue: 2 year: 2016 ident: e_1_2_12_52_1 article-title: Optimization of KNN with firefly algorithm publication-title: BVICAM's Int J Inf Technol – ident: e_1_2_12_2_1 – ident: e_1_2_12_26_1 doi: 10.1145/1007730.1007733 – ident: e_1_2_12_18_1 doi: 10.1145/3227609.3227655 – ident: e_1_2_12_41_1 doi: 10.1007/s00521-013-1525-5 – ident: e_1_2_12_17_1 doi: 10.1007/978-3-030-00557-3_46 – ident: e_1_2_12_62_1 doi: 10.1145/1007730.1007736 – ident: e_1_2_12_60_1 doi: 10.1016/j.eswa.2013.09.022 – volume: 3 start-page: 1787 issue: 5 year: 2011 ident: e_1_2_12_35_1 article-title: Feature selection methods and algorithms publication-title: Int J Comput Sci Eng – ident: e_1_2_12_43_1 doi: 10.1155/2017/9512741 – ident: e_1_2_12_50_1 doi: 10.1109/72.914517 – ident: e_1_2_12_54_1 doi: 10.1007/s00521-018-3624-9 – ident: e_1_2_12_21_1 doi: 10.1109/ICCISci.2019.8716444 – ident: e_1_2_12_24_1 doi: 10.1613/jair.953 – ident: e_1_2_12_27_1 doi: 10.1109/ICDM.2001.989527 – ident: e_1_2_12_67_1 doi: 10.1109/ICTCS.2017.43 – ident: e_1_2_12_57_1 doi: 10.1016/j.swevo.2012.09.002 – ident: e_1_2_12_14_1 doi: 10.1109/TPAMI.2005.159 – ident: e_1_2_12_55_1 doi: 10.1109/ICSMC.1997.637339 – ident: e_1_2_12_39_1 doi: 10.1016/j.eswa.2010.12.156 – ident: e_1_2_12_48_1 doi: 10.1007/s10489-018-1348-2 – ident: e_1_2_12_4_1 doi: 10.5120/ijca2016911061 – ident: e_1_2_12_8_1 – ident: e_1_2_12_19_1 doi: 10.1007/s00500-018-3084-2 – ident: e_1_2_12_6_1 – ident: e_1_2_12_61_1 doi: 10.1186/1748-7188-8-23 – start-page: 336 volume-title: NTCIR‐8 Workshop Meeting year: 2010 ident: e_1_2_12_49_1 – ident: e_1_2_12_13_1 doi: 10.1016/s0950-7051(99)00024-6 – ident: e_1_2_12_16_1 doi: 10.1109/ISDFS.2018.8355342 – ident: e_1_2_12_68_1 doi: 10.3390/axioms8030079 – ident: e_1_2_12_44_1 doi: 10.1016/j.eswa.2018.08.051 – ident: e_1_2_12_11_1 – ident: e_1_2_12_12_1 doi: 10.1049/iet-ifs.2013.0202 – ident: e_1_2_12_71_1 – ident: e_1_2_12_33_1 doi: 10.1109/ICoICT.2019.8835308 – ident: e_1_2_12_5_1 doi: 10.17577/IJERTV4IS120262 – ident: e_1_2_12_30_1 – ident: e_1_2_12_3_1 – ident: e_1_2_12_28_1 – ident: e_1_2_12_25_1 |
| SSID | ssj0001348 |
| Score | 2.3007622 |
| Snippet | In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 667 |
| SubjectTerms | Adaptive sampling Algorithms Classification Cybercrime data balancing Datasets features selection Heuristic methods Phishing phishing websites Rao algorithms Transfer functions Websites |
| Title | Improving the classification of phishing websites using a hybrid algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12494 https://www.proquest.com/docview/2654405243 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8640 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001348 issn: 0824-7935 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8640 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001348 issn: 0824-7935 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0824-7935 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001348 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_DkxfnJ06nBPSi0NEm6Rd4keGYAyeIg12kJGm6DWc7tu6gf715abtNEUFvPbyGJC8v-b3kvd9D6FIjCm5z7lg8INRigausQPiJpZG9VK5wQyYg3_mh73UHrDd0hzV0U-XCFPwQqws3sAyzX4OBc7HYMHKZTdIWlE4GMlCHesafelpzRznUlM7SRxyz9CJ0S25SCONZ__r1NFpDzE2gak6aTh29VH0sAkxeW8tctOTHN_rG_w5iF-2UEBTfFmtmD9VUuo_qVXkHXFr7AeqtLhywRolYAs6GwCKjS5wleDYuLrCw3orhEXqBIYp-hDkev0MiGObTUTaf5OO3QzTo3D23u1ZZesGS4GMBRbEvmFI-vBNqkCKJ3jSJIjYTTuJxL_ZkTLxACir8WCWJH8rY5b6tgIHNpoIeoa00S9Uxwsx3E8pp7McyZAFJAiVCGksitU-vwsRpoKtKBZEsecmhPMY0qvwTmKTITFIDXaxkZwUbx49SzUqTUWmRi0iPQvfMJYw20LVRyS8tRO3H-775OvmL8CnaJpAdYQJ7mmgrny_VmcYsuTg3a_MTfDPoug |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UD3oRnxFFbaIXTZawbfd1NEQCCJgYSLht2m4XiAiEx0F_vZ3uLqAxJnrbQ3ez7cy030xnvkHoViMKXubctrhPqMV8R1m-8GJLI3upHOEETEC9c6vt1rqs0XN6aW4O1MIk_BCrgBtYhtmvwcAhIL1h5XIyHJegdzLbRjvM1Y4KYKKXNXuUTU3zLH3IMUuroZOyk0Iiz_rdr-fRGmRuQlVz1lTzSUPVuaEohBST19JyIUry4xuB47-ncYD2UxSKHxK1OURbanyE8lmHB5wa_DFqrGIOWANFLAFqQ26RESeexHg6SGJYWO_GcA89x5BI38ccD96hFgzzUX8yGy4GbyeoW33sVGpW2n3BkuBmAUuxJ5hSHlwVapwiid43iSJlJuzY5W7kyoi4vhRUeJGKYy-QkcO9sgIStjIV9BTlxpOxOkOYeU5MOY28SAbMJ7GvREAjSaR261UQ2wV0l8kglCk1OXTIGIWZiwKLFJpFKqCb1dhpQsjx46hiJsowNcp5qGeh_8whjBbQvZHJL18IK8_1tnk6_8vga7Rb67SaYbPefrpAewSKJUyeTxHlFrOlutQQZiGujKJ-AhUZ7Ns |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG5cEuNFXCOuTfSiyRDoMsvRgARQ0RhJuE3aTgtEBSJw0F9vX2dYNMZEb3PoTKZ977Vf2-99D6FziyhEUYiSJ0JCPRZy7YUyMJ5F9kpzySMmId_5runXWqzR5u2MmwO5MKk-xOzADSLDzdcQ4HqYmIUoV4NevwC1k9kyWmU8CoHRV3mcq0eVqCueZRc55lk35Jk6KRB55u9-XY_mIHMRqrq1pppLC6qOnEQhUEyeC5OxLKiPbwKO_-7GJtrIUCi-St1mCy3p_jbKTSs84Czgd1BjduaALVDECqA2cIucOfHA4GE3PcPCdjaGe-gRBiJ9BwvcfYdcMCxeOoO33rj7uota1euncs3Lqi94CrZZoFIcSKZ1AFeFFqcoYudNokmRyZLxhZ_4KiF-qCSVQaKNCSKVcBEUNYiwFamke2ilP-jrfYRZwA0VNAkSFbGQmFDLiCaKKLut15Ep5dHF1AaxyqTJoULGSzzdosAgxW6Q8uhs1naYCnL82Opoaso4C8pRbHth_4wTRvPo0tnkly_E5ft60z0d_KXxKVp7qFTj23rz5hCtE8iVcDSfI7QyfpvoY4tgxvLE-ekn15XsXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+classification+of+phishing+websites+using+a+hybrid+algorithm&rft.jtitle=Computational+intelligence&rft.au=Sharma%2C+Suvita+Rani&rft.au=Singh%2C+Birmohan&rft.au=Kaur%2C+Manpreet&rft.date=2022-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=38&rft.issue=2&rft.spage=667&rft.epage=689&rft_id=info:doi/10.1111%2Fcoin.12494&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon |