Improving the classification of phishing websites using a hybrid algorithm

In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class distribution and may consist of irrelevant features. Therefore, in the data preprocessing, the adaptive synthetic sampling approach has been used...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence Vol. 38; no. 2; pp. 667 - 689
Main Authors Sharma, Suvita Rani, Singh, Birmohan, Kaur, Manpreet
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.04.2022
Subjects
Online AccessGet full text
ISSN0824-7935
1467-8640
DOI10.1111/coin.12494

Cover

Abstract In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class distribution and may consist of irrelevant features. Therefore, in the data preprocessing, the adaptive synthetic sampling approach has been used to handle the imbalanced data. Irrelevant or redundant features are removed from the balanced data using the proposed binary version of Rao algorithms. The S‐shaped and V‐shaped transfer functions are applied for mapping continuous search space to discrete search space. Also, the results of these S‐shaped and V‐shaped transfer functions are analyzed for proposed algorithms. The performance is improved by optimizing the value of the k parameter in the kNN classifier. The dataset used in this article has been taken from the UCI machine‐learning repository. The performance of the proposed approach has been evaluated using the polygon area metric. The obtained classification accuracy is 97.044%. A comparison of the proposed hybrid algorithm with the other state‐of‐the‐art techniques is also made for validation. Moreover, the proposed approach has been compared with seven metaheuristic feature selection algorithms and six filter methods for performance analysis. Additionally, we have applied the proposed approach to URLs that are registered on the PhishTank website.
AbstractList In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class distribution and may consist of irrelevant features. Therefore, in the data preprocessing, the adaptive synthetic sampling approach has been used to handle the imbalanced data. Irrelevant or redundant features are removed from the balanced data using the proposed binary version of Rao algorithms. The S‐shaped and V‐shaped transfer functions are applied for mapping continuous search space to discrete search space. Also, the results of these S‐shaped and V‐shaped transfer functions are analyzed for proposed algorithms. The performance is improved by optimizing the value of the k parameter in the kNN classifier. The dataset used in this article has been taken from the UCI machine‐learning repository. The performance of the proposed approach has been evaluated using the polygon area metric. The obtained classification accuracy is 97.044%. A comparison of the proposed hybrid algorithm with the other state‐of‐the‐art techniques is also made for validation. Moreover, the proposed approach has been compared with seven metaheuristic feature selection algorithms and six filter methods for performance analysis. Additionally, we have applied the proposed approach to URLs that are registered on the PhishTank website.
Author Sharma, Suvita Rani
Singh, Birmohan
Kaur, Manpreet
Author_xml – sequence: 1
  givenname: Suvita Rani
  surname: Sharma
  fullname: Sharma, Suvita Rani
  email: suvita.sharma1204@gmail.com
  organization: Sant Longowal Institute of Engineering and Technology
– sequence: 2
  givenname: Birmohan
  orcidid: 0000-0001-6345-5537
  surname: Singh
  fullname: Singh, Birmohan
  email: birmohans@gmail.com
  organization: Sant Longowal Institute of Engineering and Technology
– sequence: 3
  givenname: Manpreet
  orcidid: 0000-0002-1858-1291
  surname: Kaur
  fullname: Kaur, Manpreet
  email: aneja_mpk@yahoo.com
  organization: Sant Longowal Institute of Engineering and Technology
BookMark eNp9kE1LAzEQhoNUsFUv_oIFb8LWfG2SHqX4USn2oueQZJNuynZTk62l_97dricR5zIM87zvDO8EjJrQWABuEJyiru5N8M0UYTqjZ2CMKOO5YBSOwBgKTHM-I8UFmKS0gRAiQsUYvC62uxi-fLPO2spmplYpeeeNan1osuCyXeVT1a8PViff2pTtUz-qrDrq6MtM1esQfVttr8C5U3Wy1z_9Enw8Pb7PX_Ll6nkxf1jmhkBEcwE519RaTonArBAGc4axxZBq5JhiJTMlZsJoonlpneMzUxaKQ4sRpZBocgluB9_u8c-9Ta3chH1supOy8-uYAlPSUXcDZWJIKVond9FvVTxKBGWfleyzkqesOhj-go1vTxG0Ufn6bwkaJAdf2-M_5nK-WrwNmm_8kn5F
CitedBy_id crossref_primary_10_1007_s10207_024_00851_x
crossref_primary_10_1111_coin_70036
crossref_primary_10_29130_dubited_1426401
crossref_primary_10_3390_math11010129
Cites_doi 10.1109/ACCESS.2019.2920655
10.1007/s00521-014-1629-6
10.1016/j.eswa.2018.04.017
10.1007/s00357-018-9261-2
10.1016/j.cor.2018.02.021
10.1109/CVPR.2004.1315213
10.1016/j.neucom.2015.06.083
10.1109/ACCESS.2020.2964321
10.1016/j.ins.2019.01.064
10.1162/153244303322753616
10.1007/978-3-642-01307-2_43
10.1016/S1361-3723(19)30025-9
10.1016/j.asoc.2016.08.005
10.1109/ACCESS.2020.3013617
10.7753/IJCATR0506.1013
10.5267/j.ijiec.2019.6.002
10.1007/s00521-017-2988-6
10.1093/bioinformatics/btm344
10.1007/s12046-018-0805-2
10.1007/s00521-013-1490-z
10.1016/j.cad.2010.12.015
10.1007/s00357-020-09362-5
10.1109/IJCNN.2008.4633969
10.1007/978-3-642-15859-9_6
10.5753/sbrc.2019.7416
10.1145/1007730.1007733
10.1145/3227609.3227655
10.1007/s00521-013-1525-5
10.1007/978-3-030-00557-3_46
10.1145/1007730.1007736
10.1016/j.eswa.2013.09.022
10.1155/2017/9512741
10.1109/72.914517
10.1007/s00521-018-3624-9
10.1109/ICCISci.2019.8716444
10.1613/jair.953
10.1109/ICDM.2001.989527
10.1109/ICTCS.2017.43
10.1016/j.swevo.2012.09.002
10.1109/TPAMI.2005.159
10.1109/ICSMC.1997.637339
10.1016/j.eswa.2010.12.156
10.1007/s10489-018-1348-2
10.5120/ijca2016911061
10.1007/s00500-018-3084-2
10.1186/1748-7188-8-23
10.1016/s0950-7051(99)00024-6
10.1109/ISDFS.2018.8355342
10.3390/axioms8030079
10.1016/j.eswa.2018.08.051
10.1049/iet-ifs.2013.0202
10.1109/ICoICT.2019.8835308
10.17577/IJERTV4IS120262
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/coin.12494
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1467-8640
EndPage 689
ExternalDocumentID 10_1111_coin_12494
COIN12494
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
UCJ
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3014-8077b4ee74382658c27622e204b1f6a6d6cd268cb3b7deff79cd5a70e214403b3
IEDL.DBID DR2
ISSN 0824-7935
IngestDate Sun Sep 07 08:40:36 EDT 2025
Wed Oct 01 05:09:09 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Jan 22 16:24:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3014-8077b4ee74382658c27622e204b1f6a6d6cd268cb3b7deff79cd5a70e214403b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1858-1291
0000-0001-6345-5537
PQID 2654405243
PQPubID 34323
PageCount 23
ParticipantIDs proquest_journals_2654405243
crossref_primary_10_1111_coin_12494
crossref_citationtrail_10_1111_coin_12494
wiley_primary_10_1111_coin_12494_COIN12494
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computational intelligence
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2002; 16
2019; 8
2019; 7
2015; 4
2017; 2017
2019; 31
2010
2018; 107
2014; 25
2004; 6
2020; 11
2019; 106
2016; 147
2014; 41
2005; 27
2011; 3
2011; 38
2013; 8
2018; 43
2013; 9
2019; 484
2020; 8
2016; 5
2021; 38
2019; 23
1999; 12
2003; 3
2019; 116
2019; 49
2011; 43
2014; 8
2001; 12
2016; 48
2007; 23
2016; 8
2018; 35
2016; 172
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
Lamba A (e_1_2_12_52_1) 2016; 8
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_68_1
e_1_2_12_62_1
e_1_2_12_60_1
e_1_2_12_28_1
e_1_2_12_31_1
e_1_2_12_33_1
e_1_2_12_54_1
Too J (e_1_2_12_69_1) 2019; 7
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_71_1
e_1_2_12_3_1
e_1_2_12_5_1
Ladha L (e_1_2_12_35_1) 2011; 3
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
Cai Y‐l (e_1_2_12_49_1) 2010
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_61_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_9_1
References_xml – volume: 12
  start-page: 269
  issue: 5‐6
  year: 1999
  end-page: 275
  article-title: Strategic induction of decision trees
  publication-title: Knowledge‐Based Systems
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– start-page: 336
  year: 2010
  end-page: 340
– volume: 11
  start-page: 107
  year: 2020
  end-page: 130
  article-title: Rao algorithms: Three metaphor‐less simple algorithms for solving optimization problems
  publication-title: Int J Ind Eng Comput
– volume: 49
  start-page: 1580
  issue: 4
  year: 2019
  end-page: 1596
  article-title: Hybridization of feature selection and feature weighting for high dimensional data
  publication-title: Appl Intell
– volume: 8
  start-page: 153
  issue: 3
  year: 2014
  end-page: 160
  article-title: Intelligent rule‐based phishing websites classification
  publication-title: IET Inf Secur
– volume: 8
  start-page: 1
  year: 2013
  end-page: 11
  article-title: Jaccard index based similarity measure to compare transcription factor binding site models
  publication-title: Algorithms Mol Biol
– volume: 3
  start-page: 1787
  issue: 5
  year: 2011
  end-page: 1797
  article-title: Feature selection methods and algorithms
  publication-title: Int J Comput Sci Eng
– volume: 38
  start-page: 16
  issue: 1
  year: 2021
  end-page: 26
  article-title: A new performance evaluation metric for classifiers: polygon area metric
  publication-title: J Classif
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  end-page: 201
  article-title: An introduction to kernel‐based learning algorithms
  publication-title: IEEE Trans Neural Netw
– volume: 8
  start-page: 997
  issue: 2
  year: 2016
  end-page: 1003
  article-title: Optimization of KNN with firefly algorithm
  publication-title: BVICAM's Int J Inf Technol
– volume: 107
  start-page: 32
  year: 2018
  end-page: 44
  article-title: Recognizing human activity in mobile crowdsensing environment using optimized k ‐NN algorithm
  publication-title: Expert Syst Appl
– volume: 41
  start-page: 2239
  issue: 5
  year: 2014
  end-page: 2249
  article-title: A hybrid intelligent system for medical data classification
  publication-title: Expert Syst Appl
– volume: 48
  start-page: 729
  year: 2016
  end-page: 734
  article-title: A new fast associative classification algorithm for detecting phishing websites
  publication-title: Appl Soft Comput
– volume: 5
  start-page: 395
  issue: 6
  year: 2016
  end-page: 402
  article-title: A review on feature selection methods for classification tasks
  publication-title: Int J Comput Appl Technol Res
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  article-title: S‐shaped versus V‐shaped transfer functions for binary Particle Swarm Optimization
  publication-title: Swarm Evol Comput
– volume: 38
  start-page: 8144
  issue: 7
  year: 2011
  end-page: 8150
  article-title: Hybrid feature selection by combining filters and wrappers
  publication-title: Expert Syst Appl
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  end-page: 315
  article-title: Teaching ‐ learning‐based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput Aided Des
– volume: 7
  start-page: 73271
  year: 2019
  end-page: 73284
  article-title: OFS‐NN: an effective phishing websites detection model based on optimal feature selection and neural network
  publication-title: IEEE Access
– volume: 23
  start-page: 4315
  issue: 12
  year: 2019
  end-page: 4327
  article-title: Heuristic nonlinear regression strategy for detecting phishing websites
  publication-title: Soft Comput
– volume: 116
  start-page: 147
  year: 2019
  end-page: 160
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst Appl
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: synthetic minority over‐sampling technique
  publication-title: J Artif Intell Res
– volume: 7
  start-page: 12
  issue: 1
  year: 2019
  article-title: EMG feature selection and classification using a Pbest‐guide binary particle swarm optimization
  publication-title: Comput Des
– volume: 8
  start-page: 79
  issue: 3
  year: 2019
  article-title: Hybrid binary particle swarm optimization differential evolution‐based feature selection for EMG signals classification
  publication-title: Axioms
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 15
  article-title: An enhanced grey wolf optimization based machine for medical diagnosis
  publication-title: Comput Math Methods Med
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  end-page: 2517
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 8
  start-page: 8041
  year: 2020
  end-page: 8055
  article-title: Enhanced binary moth flame optimization as a feature selection algorithm to predict software fault prediction
  publication-title: IEEE Access
– volume: 6
  start-page: 1
  issue: 1
  year: 2004
  end-page: 6
  article-title: Special issue on learning from imbalanced data sets
  publication-title: ACM SIGKDD Explor Newslett
– start-page: 37
  year: 2010
  end-page: 43
– volume: 4
  start-page: 172
  issue: 12
  year: 2015
  end-page: 174
  article-title: Machine learning based phishing website detection system
  publication-title: Int J Eng Res
– volume: 43
  start-page: 1
  issue: 3
  year: 2018
  end-page: 18
  article-title: An approach for classification of malignant and benign microcalcification clusters
  publication-title: Sadhana Acad Proc Eng Sci
– volume: 31
  start-page: 171
  issue: 1
  year: 2019
  end-page: 188
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput Appl
– volume: 35
  start-page: 300
  issue: 2
  year: 2018
  end-page: 344
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J Classif
– volume: 8
  start-page: 140936
  year: 2020
  end-page: 140963
  article-title: An efficient binary equilibrium optimizer algorithm for feature selection
  publication-title: IEEE Access
– volume: 25
  start-page: 1423
  issue: 6
  year: 2014
  end-page: 1435
  article-title: Binary optimization using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Neural Comput Appl
– volume: 106
  start-page: 210
  year: 2019
  end-page: 224
  article-title: Application of optimized machine learning techniques for prediction of occupational accidents
  publication-title: Comput Oper Res
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  end-page: 1238
  article-title: Feature selection based on mutual information criteria of max‐dependency, max‐relevance, and min‐redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 484
  start-page: 153
  year: 2019
  end-page: 166
  article-title: A new hybrid ensemble feature selection framework for machine learning‐based phishing detection system
  publication-title: Inf Sci
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 25
  start-page: 443
  issue: 2
  year: 2014
  end-page: 458
  article-title: Predicting phishing websites based on self‐structuring neural network
  publication-title: Neural Comput Appl
– volume: 25
  start-page: 663
  issue: 3‐4
  year: 2014
  end-page: 681
  article-title: Binary bat algorithm
  publication-title: Neural Comput Appl
– volume: 31
  start-page: 7935
  issue: 11
  year: 2019
  end-page: 7944
  article-title: Optimization of K‐nearest neighbor using particle swarm optimization for face recognition
  publication-title: Neural Comput Appl
– volume: 147
  start-page: 5
  issue: 5
  year: 2016
  end-page: 11
  article-title: Detection and prediction of phishing websites using classification mining techniques
  publication-title: Int J Comput Appl
– ident: e_1_2_12_63_1
  doi: 10.1109/ACCESS.2019.2920655
– ident: e_1_2_12_64_1
  doi: 10.1007/s00521-014-1629-6
– ident: e_1_2_12_53_1
  doi: 10.1016/j.eswa.2018.04.017
– ident: e_1_2_12_42_1
  doi: 10.1007/s00357-018-9261-2
– ident: e_1_2_12_51_1
  doi: 10.1016/j.cor.2018.02.021
– ident: e_1_2_12_29_1
  doi: 10.1109/CVPR.2004.1315213
– ident: e_1_2_12_65_1
  doi: 10.1016/j.neucom.2015.06.083
– ident: e_1_2_12_45_1
  doi: 10.1109/ACCESS.2020.2964321
– ident: e_1_2_12_20_1
  doi: 10.1016/j.ins.2019.01.064
– ident: e_1_2_12_36_1
  doi: 10.1162/153244303322753616
– ident: e_1_2_12_31_1
  doi: 10.1007/978-3-642-01307-2_43
– ident: e_1_2_12_9_1
  doi: 10.1016/S1361-3723(19)30025-9
– ident: e_1_2_12_15_1
  doi: 10.1016/j.asoc.2016.08.005
– ident: e_1_2_12_46_1
  doi: 10.1109/ACCESS.2020.3013617
– ident: e_1_2_12_34_1
  doi: 10.7753/IJCATR0506.1013
– ident: e_1_2_12_47_1
  doi: 10.5267/j.ijiec.2019.6.002
– ident: e_1_2_12_23_1
– ident: e_1_2_12_66_1
  doi: 10.1007/s00521-017-2988-6
– ident: e_1_2_12_38_1
  doi: 10.1093/bioinformatics/btm344
– ident: e_1_2_12_59_1
  doi: 10.1007/s12046-018-0805-2
– ident: e_1_2_12_22_1
  doi: 10.1007/s00521-013-1490-z
– ident: e_1_2_12_56_1
  doi: 10.1016/j.cad.2010.12.015
– ident: e_1_2_12_37_1
– ident: e_1_2_12_58_1
  doi: 10.1007/s00357-020-09362-5
– ident: e_1_2_12_32_1
  doi: 10.1109/IJCNN.2008.4633969
– ident: e_1_2_12_7_1
– volume: 7
  start-page: 12
  issue: 1
  year: 2019
  ident: e_1_2_12_69_1
  article-title: EMG feature selection and classification using a Pbest‐guide binary particle swarm optimization
  publication-title: Comput Des
– ident: e_1_2_12_10_1
– ident: e_1_2_12_40_1
  doi: 10.1007/978-3-642-15859-9_6
– ident: e_1_2_12_70_1
  doi: 10.5753/sbrc.2019.7416
– volume: 8
  start-page: 997
  issue: 2
  year: 2016
  ident: e_1_2_12_52_1
  article-title: Optimization of KNN with firefly algorithm
  publication-title: BVICAM's Int J Inf Technol
– ident: e_1_2_12_2_1
– ident: e_1_2_12_26_1
  doi: 10.1145/1007730.1007733
– ident: e_1_2_12_18_1
  doi: 10.1145/3227609.3227655
– ident: e_1_2_12_41_1
  doi: 10.1007/s00521-013-1525-5
– ident: e_1_2_12_17_1
  doi: 10.1007/978-3-030-00557-3_46
– ident: e_1_2_12_62_1
  doi: 10.1145/1007730.1007736
– ident: e_1_2_12_60_1
  doi: 10.1016/j.eswa.2013.09.022
– volume: 3
  start-page: 1787
  issue: 5
  year: 2011
  ident: e_1_2_12_35_1
  article-title: Feature selection methods and algorithms
  publication-title: Int J Comput Sci Eng
– ident: e_1_2_12_43_1
  doi: 10.1155/2017/9512741
– ident: e_1_2_12_50_1
  doi: 10.1109/72.914517
– ident: e_1_2_12_54_1
  doi: 10.1007/s00521-018-3624-9
– ident: e_1_2_12_21_1
  doi: 10.1109/ICCISci.2019.8716444
– ident: e_1_2_12_24_1
  doi: 10.1613/jair.953
– ident: e_1_2_12_27_1
  doi: 10.1109/ICDM.2001.989527
– ident: e_1_2_12_67_1
  doi: 10.1109/ICTCS.2017.43
– ident: e_1_2_12_57_1
  doi: 10.1016/j.swevo.2012.09.002
– ident: e_1_2_12_14_1
  doi: 10.1109/TPAMI.2005.159
– ident: e_1_2_12_55_1
  doi: 10.1109/ICSMC.1997.637339
– ident: e_1_2_12_39_1
  doi: 10.1016/j.eswa.2010.12.156
– ident: e_1_2_12_48_1
  doi: 10.1007/s10489-018-1348-2
– ident: e_1_2_12_4_1
  doi: 10.5120/ijca2016911061
– ident: e_1_2_12_8_1
– ident: e_1_2_12_19_1
  doi: 10.1007/s00500-018-3084-2
– ident: e_1_2_12_6_1
– ident: e_1_2_12_61_1
  doi: 10.1186/1748-7188-8-23
– start-page: 336
  volume-title: NTCIR‐8 Workshop Meeting
  year: 2010
  ident: e_1_2_12_49_1
– ident: e_1_2_12_13_1
  doi: 10.1016/s0950-7051(99)00024-6
– ident: e_1_2_12_16_1
  doi: 10.1109/ISDFS.2018.8355342
– ident: e_1_2_12_68_1
  doi: 10.3390/axioms8030079
– ident: e_1_2_12_44_1
  doi: 10.1016/j.eswa.2018.08.051
– ident: e_1_2_12_11_1
– ident: e_1_2_12_12_1
  doi: 10.1049/iet-ifs.2013.0202
– ident: e_1_2_12_71_1
– ident: e_1_2_12_33_1
  doi: 10.1109/ICoICT.2019.8835308
– ident: e_1_2_12_5_1
  doi: 10.17577/IJERTV4IS120262
– ident: e_1_2_12_30_1
– ident: e_1_2_12_3_1
– ident: e_1_2_12_28_1
– ident: e_1_2_12_25_1
SSID ssj0001348
Score 2.3007622
Snippet In this article, a hybrid algorithm has been proposed for the identification of phishing and legitimate websites. The dataset may have an imbalanced class...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 667
SubjectTerms Adaptive sampling
Algorithms
Classification
Cybercrime
data balancing
Datasets
features selection
Heuristic methods
Phishing
phishing websites
Rao algorithms
Transfer functions
Websites
Title Improving the classification of phishing websites using a hybrid algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12494
https://www.proquest.com/docview/2654405243
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8640
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001348
  issn: 0824-7935
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8640
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001348
  issn: 0824-7935
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0824-7935
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001348
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_DkxfnJ06nBPSi0NEm6Rd4keGYAyeIg12kJGm6DWc7tu6gf715abtNEUFvPbyGJC8v-b3kvd9D6FIjCm5z7lg8INRigausQPiJpZG9VK5wQyYg3_mh73UHrDd0hzV0U-XCFPwQqws3sAyzX4OBc7HYMHKZTdIWlE4GMlCHesafelpzRznUlM7SRxyz9CJ0S25SCONZ__r1NFpDzE2gak6aTh29VH0sAkxeW8tctOTHN_rG_w5iF-2UEBTfFmtmD9VUuo_qVXkHXFr7AeqtLhywRolYAs6GwCKjS5wleDYuLrCw3orhEXqBIYp-hDkev0MiGObTUTaf5OO3QzTo3D23u1ZZesGS4GMBRbEvmFI-vBNqkCKJ3jSJIjYTTuJxL_ZkTLxACir8WCWJH8rY5b6tgIHNpoIeoa00S9Uxwsx3E8pp7McyZAFJAiVCGksitU-vwsRpoKtKBZEsecmhPMY0qvwTmKTITFIDXaxkZwUbx49SzUqTUWmRi0iPQvfMJYw20LVRyS8tRO3H-775OvmL8CnaJpAdYQJ7mmgrny_VmcYsuTg3a_MTfDPoug
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UD3oRnxFFbaIXTZawbfd1NEQCCJgYSLht2m4XiAiEx0F_vZ3uLqAxJnrbQ3ez7cy030xnvkHoViMKXubctrhPqMV8R1m-8GJLI3upHOEETEC9c6vt1rqs0XN6aW4O1MIk_BCrgBtYhtmvwcAhIL1h5XIyHJegdzLbRjvM1Y4KYKKXNXuUTU3zLH3IMUuroZOyk0Iiz_rdr-fRGmRuQlVz1lTzSUPVuaEohBST19JyIUry4xuB47-ncYD2UxSKHxK1OURbanyE8lmHB5wa_DFqrGIOWANFLAFqQ26RESeexHg6SGJYWO_GcA89x5BI38ccD96hFgzzUX8yGy4GbyeoW33sVGpW2n3BkuBmAUuxJ5hSHlwVapwiid43iSJlJuzY5W7kyoi4vhRUeJGKYy-QkcO9sgIStjIV9BTlxpOxOkOYeU5MOY28SAbMJ7GvREAjSaR261UQ2wV0l8kglCk1OXTIGIWZiwKLFJpFKqCb1dhpQsjx46hiJsowNcp5qGeh_8whjBbQvZHJL18IK8_1tnk6_8vga7Rb67SaYbPefrpAewSKJUyeTxHlFrOlutQQZiGujKJ-AhUZ7Ns
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG5cEuNFXCOuTfSiyRDoMsvRgARQ0RhJuE3aTgtEBSJw0F9vX2dYNMZEb3PoTKZ977Vf2-99D6FziyhEUYiSJ0JCPRZy7YUyMJ5F9kpzySMmId_5runXWqzR5u2MmwO5MKk-xOzADSLDzdcQ4HqYmIUoV4NevwC1k9kyWmU8CoHRV3mcq0eVqCueZRc55lk35Jk6KRB55u9-XY_mIHMRqrq1pppLC6qOnEQhUEyeC5OxLKiPbwKO_-7GJtrIUCi-St1mCy3p_jbKTSs84Czgd1BjduaALVDECqA2cIucOfHA4GE3PcPCdjaGe-gRBiJ9BwvcfYdcMCxeOoO33rj7uota1euncs3Lqi94CrZZoFIcSKZ1AFeFFqcoYudNokmRyZLxhZ_4KiF-qCSVQaKNCSKVcBEUNYiwFamke2ilP-jrfYRZwA0VNAkSFbGQmFDLiCaKKLut15Ep5dHF1AaxyqTJoULGSzzdosAgxW6Q8uhs1naYCnL82Opoaso4C8pRbHth_4wTRvPo0tnkly_E5ft60z0d_KXxKVp7qFTj23rz5hCtE8iVcDSfI7QyfpvoY4tgxvLE-ekn15XsXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+classification+of+phishing+websites+using+a+hybrid+algorithm&rft.jtitle=Computational+intelligence&rft.au=Sharma%2C+Suvita+Rani&rft.au=Singh%2C+Birmohan&rft.au=Kaur%2C+Manpreet&rft.date=2022-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=38&rft.issue=2&rft.spage=667&rft.epage=689&rft_id=info:doi/10.1111%2Fcoin.12494&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon