Optimization of fuzzy similarity by genetic algorithm in user‐based collaborative filtering recommender systems

The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for re...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 39; no. 4
Main Authors Houshmand‐Nanehkaran, Farimah, Lajevardi, Seyed Mohammadreza, Mahlouji‐Bidgholi, Mahmoud
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2022
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
DOI10.1111/exsy.12893

Cover

Abstract The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for recommending in less time. The fuzzy‐genetic collaborative filtering (FGCF) approach recommends items by optimizing fuzzy similarities in the continuous genetic algorithm (CGA). In this method, first, the crisp values of user ratings are converted to fuzzy ratings, and then the fuzzy similarities are calculated. Similarity values are placed into the genes of the genetic algorithm, optimized, and finally, they are used in fuzzy prediction. Therefore, the fuzzy system is used twice in this process. Experimental results on RecSys, Movielens 100 K, and Movielens 1 M datasets show that FGCF improves the collaborative filtering RS performance in terms of quality and accuracy of recommendations, time and space complexities. The FGCF method is robust against the sparsity of data due to the correct choice of neighbours and avoids the users' different rating scales problem but it not able to solve the cold‐start challenge.
AbstractList The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for recommending in less time. The fuzzy‐genetic collaborative filtering (FGCF) approach recommends items by optimizing fuzzy similarities in the continuous genetic algorithm (CGA). In this method, first, the crisp values of user ratings are converted to fuzzy ratings, and then the fuzzy similarities are calculated. Similarity values are placed into the genes of the genetic algorithm, optimized, and finally, they are used in fuzzy prediction. Therefore, the fuzzy system is used twice in this process. Experimental results on RecSys, Movielens 100 K, and Movielens 1 M datasets show that FGCF improves the collaborative filtering RS performance in terms of quality and accuracy of recommendations, time and space complexities. The FGCF method is robust against the sparsity of data due to the correct choice of neighbours and avoids the users' different rating scales problem but it not able to solve the cold‐start challenge.
The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for recommending in less time. The fuzzy‐genetic collaborative filtering (FGCF) approach recommends items by optimizing fuzzy similarities in the continuous genetic algorithm (CGA). In this method, first, the crisp values of user ratings are converted to fuzzy ratings, and then the fuzzy similarities are calculated. Similarity values are placed into the genes of the genetic algorithm, optimized, and finally, they are used in fuzzy prediction. Therefore, the fuzzy system is used twice in this process. Experimental results on RecSys, Movielens 100 K, and Movielens 1 M datasets show that FGCF improves the collaborative filtering RS performance in terms of quality and accuracy of recommendations, time and space complexities. The FGCF method is robust against the sparsity of data due to the correct choice of neighbours and avoids the users' different rating scales problem but it not able to solve the cold‐start challenge.
Author Mahlouji‐Bidgholi, Mahmoud
Houshmand‐Nanehkaran, Farimah
Lajevardi, Seyed Mohammadreza
Author_xml – sequence: 1
  givenname: Farimah
  orcidid: 0000-0003-1687-1719
  surname: Houshmand‐Nanehkaran
  fullname: Houshmand‐Nanehkaran, Farimah
  organization: Kashan Branch, Islamic Azad University
– sequence: 2
  givenname: Seyed Mohammadreza
  orcidid: 0000-0002-4744-2784
  surname: Lajevardi
  fullname: Lajevardi, Seyed Mohammadreza
  email: r.lajevardi@iaukashan.ac.ir
  organization: Kashan Branch, Islamic Azad University
– sequence: 3
  givenname: Mahmoud
  orcidid: 0000-0001-8895-8501
  surname: Mahlouji‐Bidgholi
  fullname: Mahlouji‐Bidgholi, Mahmoud
  organization: Kashan Branch, Islamic Azad University
BookMark eNp9kM9Kw0AQxhdRsK1efIIFb0Lqbna7mxyl1D9Q6EEFPYVNMqlbkmy7u1HTk4_gM_okpo0nEecwwwy_7xv4huiwNjUgdEbJmHZ1Ce-uHdMwitkBGlAuooCwmB-iAQmFCLgMyTEaOrcihFApxQBtFmuvK71VXpsamwIXzXbbYtfdSmW1b3Ha4iXU4HWGVbk03e2lwrrGjQP79fGZKgc5zkxZqtTYzuYVcKFLD1bXS2whM1UFdQ4Wu9Z5qNwJOipU6eD0Z47Q4_XsYXobzBc3d9OreZAxQllASQSS7TvleZbGnLOCdEtBIybTXHIQYTSRVKRxTuJcsCIThE6EnIDiuWIjdN77rq3ZNOB8sjKNrbuXSSi4oDxmMu4o0lOZNc5ZKJJM-30Y3ipdJpQku2CTXbDJPthOcvFLsra6Urb9G6Y9_KZLaP8hk9nT_XOv-QadgI8U
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125301
crossref_primary_10_1108_IJICC_01_2024_0016
crossref_primary_10_1007_s10489_023_05244_6
crossref_primary_10_1371_journal_pone_0290622
crossref_primary_10_3233_IDT_230092
Cites_doi 10.1016/j.eswa.2006.04.012
10.1109/ICEDEG.2018.8372343
10.1016/j.eswa.2016.05.021
10.1145/3127325.3128331
10.1016/j.knosys.2019.105243
10.1016/j.eij.2016.10.002
10.1186/s40537-020-00292-y
10.1016/j.knosys.2009.07.007
10.1007/978-3-319-17996-4_26
10.3390/sym8070054
10.1016/j.jvlc.2014.09.011
10.1016/j.asoc.2015.10.060
10.1016/j.ins.2016.01.083
10.1016/j.knosys.2015.03.006
10.1007/s00521-016-2817-3
10.1007/978-3-642-15172-9_6
10.1109/TFUZZ.2014.2315655
10.1504/IJAIP.2020.104108
10.1016/j.eswa.2015.12.050
10.1111/j.1467-8640.2012.00427.x
10.1016/j.eswa.2008.06.038
10.1108/K-07-2014-0130
10.1007/s41870-020-00431-x
10.1016/j.ins.2011.01.012
10.1007/978-981-15-0790-8_13
10.1007/s40815-019-00630-0
10.1109/ICCCT.2013.6749613
10.1016/j.knosys.2014.03.004
10.1016/j.ins.2007.07.001
10.1016/j.eswa.2015.08.035
10.1109/ISKE.2015.44
10.1007/s12530-019-09296-3
10.1155/2013/129123
10.1016/j.ins.2013.01.025
10.3233/AIC-180593
10.1016/j.ins.2012.04.008
10.1016/j.eswa.2009.04.038
10.1016/j.swevo.2013.07.001
10.1111/exsy.12061
10.2991/ijcis.2017.10.1.52
10.1109/TFUZZ.2015.2426201
10.1016/j.asoc.2015.03.003
10.4236/jilsa.2014.61001
10.1504/IJAIP.2018.095491
10.1023/A:1009804230409
10.1016/j.eswa.2014.03.025
10.1016/j.knosys.2019.105385
10.1145/2914586.2914641
10.1007/978-3-319-30927-9_23
10.1109/EECCIS.2018.8692809
10.3233/WEB-190415
10.1016/j.ins.2019.10.041
10.18495/comengapp.v8i2.305
10.1109/CEC.2014.6900495
10.1016/j.knosys.2020.105756
10.1016/j.dss.2015.03.008
10.1007/978-3-319-22053-6_48
10.1016/j.eswa.2019.112871
10.1016/j.eswa.2019.04.034
10.1016/j.eij.2012.12.001
10.1016/j.eswa.2007.08.016
10.1016/j.dss.2016.05.002
10.1109/ICIS.2016.7550751
10.1016/j.knosys.2011.06.005
10.1016/j.ipm.2020.102310
10.1016/j.eswa.2007.03.010
10.1002/int.20206
10.1007/s11042-016-3481-4
10.1016/j.ins.2019.10.072
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00310
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.12893
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_12893
EXSY12893
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3013-108e73108e714dcb9443f0e71f1837bd74e6285716b9d09d63fc6015675ea4da3
IEDL.DBID DR2
ISSN 0266-4720
IngestDate Fri Jul 25 03:05:51 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Wed Oct 01 02:56:02 EDT 2025
Wed Jan 22 16:25:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3013-108e73108e714dcb9443f0e71f1837bd74e6285716b9d09d63fc6015675ea4da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1687-1719
0000-0001-8895-8501
0000-0002-4744-2784
PQID 2646149379
PQPubID 32130
PageCount 27
ParticipantIDs proquest_journals_2646149379
crossref_citationtrail_10_1111_exsy_12893
crossref_primary_10_1111_exsy_12893
wiley_primary_10_1111_exsy_12893_EXSY12893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2013; 29
2015; 31
2018; 442
2015; 74
2015; 32
2019; 17
2016; 75
2020; 16
2020; 15
2008; 34
2014; 25
2008; 35
2020; 57
2020; 12
2020; 11
2016; 345
2020; 1057
2007; 33
2014; 67
2012; 206
2010; 23
2020; 7
2013; 14
2014; 2
2013; 2013
2013; 13
2019; 21
2015; 83
2007; 177
2016; 43
2016; 87
2013; 235
2016; 40
2011; 24
2018; 30
2015; 9227
2007; 22
2010; 5
2016; 45
2019; 8
2020; 1087
2020; 140
2010
2019; 32
2016; 53
2016; 51
2014; 06
2020; 784
2014; 41
2020b; 196
2015; 23
2020a; 11
2009; 36
2020; 1053
2020; 151
2015; 358
2020; 990
2001; 5
2020
2020; 191
2017; 10
2020; 194
2020; 512
2019
2018
2017
2020; 513
2016
2016; 61
2011; 181
2018; 836
2019; 813
2017; 18
2014
2013
2018; 11
2016; 8
2012; 9
2019; 132
e_1_2_11_72_1
Moses S. J. (e_1_2_11_49_1) 2020
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_34_1
e_1_2_11_53_1
Zhang S. (e_1_2_11_85_1) 2013; 2013
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Hwang C. S. (e_1_2_11_32_1) 2010; 5
Jain G. (e_1_2_11_33_1) 2020
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
Salehi M. (e_1_2_11_63_1) 2014; 2
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
Opheusden B. (e_1_2_11_76_1) 2020; 16
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
Bhat A. (e_1_2_11_15_1) 2019
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Bandyopadhyay S. (e_1_2_11_13_1) 2020
e_1_2_11_71_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
Anand D. A. (e_1_2_11_10_1) 2012; 9
Singh P. K. (e_1_2_11_70_1) 2020
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
Mustika H. F. (e_1_2_11_50_1) 2019; 8
Shirude S. B. (e_1_2_11_69_1) 2018
e_1_2_11_82_1
e_1_2_11_80_1
Appalla P. (e_1_2_11_11_1) 2018
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
Gao J. (e_1_2_11_27_1) 2020
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_86_1
Mallik S. (e_1_2_11_46_1) 2020
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
Ramakrishnan G. (e_1_2_11_61_1) 2020
e_1_2_11_37_1
e_1_2_11_39_1
Barzanti L. (e_1_2_11_14_1) 2020
References_xml – volume: 2
  start-page: 137
  issue: 3
  year: 2014
  end-page: 144
  article-title: Latent feature based recommender system for learning materials using genetic algorithm
  publication-title: Journal of Information Systems and Telecommunication
– volume: 151
  start-page: 73
  year: 2020
  end-page: 82
– volume: 83
  start-page: 51
  issue: 1
  year: 2015
  end-page: 57
  article-title: Exploiting matrix factorization to asymmetric user similarities in recommendation systems
  publication-title: Knowledge‐Based Systems
– volume: 1057
  start-page: 325
  year: 2020
  end-page: 338
– volume: 8
  start-page: 54
  issue: 7
  year: 2016
  article-title: Top‐N recommender systems using genetic algorithm‐based visual‐clustering methods
  publication-title: Symmetry
– volume: 1053
  start-page: 343
  year: 2020
  end-page: 352
– volume: 512
  start-page: 1324
  year: 2020
  end-page: 1334
  article-title: A recursive algorithm to increase the speed of regression‐based binary recommendation systems
  publication-title: Information Sciences
– volume: 36
  start-page: 5173
  issue: 3
  year: 2009
  end-page: 5183
  article-title: A recommender system for research resources based on fuzzy linguistic modeling
  publication-title: Expert Systems with Applications
– volume: 16
  year: 2020
  article-title: Unbiased and efficient log‐likelihood estimation with inverse binomial sampling
  publication-title: ArXiv Preprint ArXiv:2001.03985
– volume: 30
  start-page: 1679
  issue: 5
  year: 2018
  end-page: 1687
  article-title: Recommender system with grey wolf optimizer and FCM
  publication-title: Neural Computing and Applications
– volume: 191
  year: 2020
  article-title: A matrix factorization based dynamic granularity recommendation with three‐way decisions
  publication-title: Knowledge‐Based Systems
– volume: 45
  start-page: 946
  issue: 6
  year: 2016
  end-page: 961
  article-title: Recommender system based on customer segmentation (RSCS)
  publication-title: Kybernetes
– volume: 345
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Recommending items to group of users using matrix factorization based collaborative filtering
  publication-title: Information Sciences
– volume: 06
  start-page: 1
  issue: 01
  year: 2014
  end-page: 10
  article-title: Fuzzy‐weighted similarity measures for memory‐based collaborative recommender systems
  publication-title: Journal of Intelligent Learning Systems and Applications
– volume: 43
  start-page: 23
  year: 2016
  end-page: 41
  article-title: Adaptive sentiment‐aware one‐class collaborative filtering
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 204
  year: 2016
  end-page: 218
  article-title: An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering
  publication-title: Expert Systems with Applications
– volume: 57
  issue: 6
  year: 2020
  article-title: A collaborative filtering recommender system using genetic algorithm
  publication-title: Information Processing and Management
– year: 2018
– year: 2014
– volume: 813
  start-page: 85
  year: 2019
  end-page: 97
– volume: 14
  start-page: 67
  issue: 1
  year: 2013
  end-page: 78
  article-title: Hybrid attribute‐based recommender system for learning material using genetic algorithm and a multidimensional information model
  publication-title: Egyptian Informatics Journal
– start-page: 62
  year: 2010
  end-page: 76
– volume: 1087
  start-page: 1
  year: 2020
  end-page: 10
– volume: 990
  start-page: 193
  year: 2020
  end-page: 203
– volume: 11
  start-page: 62
  year: 2020
  end-page: 79
– volume: 5
  start-page: 13
  issue: 8
  year: 2010
  end-page: 136
  article-title: Genetic algorithms for feature weighting in multi‐criteria recommender systems
  publication-title: Journal of Convergence Information Technology
– volume: 87
  start-page: 80
  year: 2016
  end-page: 93
  article-title: Member contribution‐based group recommender system
  publication-title: Decision Support Systems
– volume: 196
  start-page: 196
  year: 2020b
  article-title: Credibility score based multi‐criteria recommender system
  publication-title: Knowledge‐Based Systems
– volume: 18
  start-page: 105
  issue: 2
  year: 2017
  end-page: 112
  article-title: An effective collaborative movie recommender system with cuckoo search
  publication-title: Egyptian Informatics Journal
– volume: 22
  start-page: 401
  issue: 5
  year: 2007
  end-page: 417
  article-title: Intelligent e‐government services with personalized recommendation techniques
  publication-title: International Journal of Intelligent Systems
– volume: 24
  start-page: 1310
  issue: 8
  year: 2011
  end-page: 1316
  article-title: Improving collaborative filtering recommender system results and performance using genetic algorithms
  publication-title: Knowledge‐Based Systems
– volume: 67
  start-page: 429
  year: 2014
  end-page: 438
  article-title: TPLUFIB‐WEB: A fuzzy linguistic web system to help in the treatment of low back pain problems
  publication-title: Knowledge‐Based Systems
– volume: 11
  start-page: 378
  issue: 3–4
  year: 2018
  end-page: 396
  article-title: Using artificial intelligence techniques in collaborative filtering recommender systems: Survey
  publication-title: International Journal of Advanced Intelligence Paradigms
– volume: 206
  start-page: 63
  year: 2012
  end-page: 82
  article-title: PB‐ADVISOR: A private banking multi‐investment portfolio advisor
  publication-title: Information Sciences
– volume: 74
  start-page: 12
  year: 2015
  end-page: 32
  article-title: Recommender system application developments: A survey
  publication-title: Decision Support Systems
– volume: 132
  start-page: 110
  year: 2019
  end-page: 125
  article-title: Sparseness reduction in collaborative filtering using a nearest neighbour artificial immune system with genetic algorithms
  publication-title: Expert Systems with Applications
– volume: 25
  start-page: 667
  issue: 6
  year: 2014
  end-page: 675
  article-title: An improved collaborative movie recommendation system using computational intelligence
  publication-title: Journal of Visual Languages and Computing
– volume: 61
  start-page: 122
  year: 2016
  end-page: 128
  article-title: A genetic algorithm solution to the collaborative filtering problem
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 32
  issue: 1
  year: 2010
  end-page: 39
  article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries
  publication-title: Knowledge‐Based Systems
– year: 2019
– volume: 23
  start-page: 2412
  issue: 6
  year: 2015
  end-page: 2426
  article-title: A fuzzy tree matching‐based personalized E‐learning recommender system
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 194
  year: 2020
  article-title: Helping university students to choose elective courses by using a hybrid multi‐criteria recommendation system with genetic optimization
  publication-title: Knowledge‐Based Systems
– volume: 140
  year: 2020
  article-title: Weighted aspect‐based opinion mining using deep learning for recommender system
  publication-title: Expert Systems with Applications
– volume: 358
  start-page: 291
  year: 2015
  end-page: 298
  article-title: Video recommendation using neuro‐fuzzy on social TV environment
  publication-title: Advances in Intelligent Systems and Computing
– volume: 23
  start-page: 29
  issue: 1
  year: 2015
  end-page: 43
  article-title: A fuzzy preference tree‐based recommender system for personalized business‐to‐business e‐services
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 36
  start-page: 12520
  issue: 10
  year: 2009
  end-page: 12528
  article-title: A multi‐disciplinar recommender system to advice research resources in university digital libraries
  publication-title: Expert Systems with Applications
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 10
  article-title: A new method for e‐government procurement using collaborative filtering and Bayesian approach
  publication-title: The Scientific World Journal
– volume: 35
  start-page: 1386
  issue: 3
  year: 2008
  end-page: 1399
  article-title: Fuzzy‐genetic approach to recommender systems based on a novel hybrid user model
  publication-title: Expert Systems with Applications
– volume: 181
  start-page: 1503
  issue: 9
  year: 2011
  end-page: 1516
  article-title: A google wave‐based fuzzy recommender system to disseminate information in university digital libraries 2.0
  publication-title: Information Sciences
– volume: 29
  start-page: 37
  issue: 1
  year: 2013
  end-page: 69
  article-title: A web‐based personalized business partner recommendation system using fuzzy semantic techniques
  publication-title: Computational Intelligence
– volume: 13
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Enhancing collaborative filtering recommendations by utilizing multi‐objective particle swarm optimization embedded association rule mining
  publication-title: Swarm and Evolutionary Computation
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 15
  article-title: Improving prediction with enhanced distributed memory‐based resilient dataset filter
  publication-title: Journal of Big Data
– volume: 5
  start-page: 115
  issue: 1–2
  year: 2001
  end-page: 153
  article-title: E‐commerce recommendation applications
  publication-title: Data Mining and Knowledge Discovery
– volume: 513
  start-page: 412
  year: 2020
  end-page: 428
  article-title: Applying landmarks to enhance memory‐based collaborative filtering
  publication-title: Information Sciences
– volume: 12
  start-page: 467
  issue: 2
  year: 2020
  end-page: 472
  article-title: Analyzing emotion based movie recommender system using fuzzy emotion features
  publication-title: International Journal of Information Technology
– year: 2016
– volume: 9
  start-page: 348
  issue: 5
  year: 2012
  end-page: 354
  article-title: Feature extraction for collaborative filtering: A genetic programming approach
  publication-title: International Journal of Computer Science Issues
– volume: 177
  start-page: 4906
  issue: 22
  year: 2007
  end-page: 4921
  article-title: One‐and‐only item recommendation with fuzzy logic techniques
  publication-title: Information Sciences
– volume: 21
  start-page: 1367
  issue: 5
  year: 2019
  end-page: 1378
  article-title: Analysis of Travellers' online reviews in social networking sites using fuzzy logic approach
  publication-title: International Journal of Fuzzy Systems
– volume: 40
  start-page: 187
  year: 2016
  end-page: 198
  article-title: A fuzzy model for managing natural noise in recommender systems
  publication-title: Applied Soft Computing Journal
– volume: 51
  start-page: 227
  year: 2016
  end-page: 237
  article-title: A fuzzy trust enhanced collaborative filtering for effective context‐aware recommender systems
  publication-title: Smart Innovation, Systems and Technologies
– volume: 235
  start-page: 117
  year: 2013
  end-page: 129
  article-title: A hybrid fuzzy‐based personalized recommender system for telecom products/services
  publication-title: Information Sciences
– volume: 442
  start-page: 21
  year: 2018
  end-page: 32
– volume: 17
  start-page: 229
  issue: 3
  year: 2019
  end-page: 241
  article-title: Improving collaborative filtering recommender system results and performance using satisfaction degree and emotions of users
  publication-title: Web Intelligence
– start-page: 634
  year: 2020
  end-page: 644
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Applied Soft Computing Journal
– volume: 15
  start-page: 77
  issue: 1
  year: 2020
  end-page: 88
  article-title: Improving recommendation quality and performance of genetic‐based recommender system
  publication-title: International Journal of Advanced Intelligence Paradigms
– volume: 9227
  start-page: 453
  year: 2015
  end-page: 460
  article-title: An item based collaborative filtering system combined with genetic algorithms using rating behavior
  publication-title: Lecture Notes in Computer Science
– volume: 8
  start-page: 85
  issue: 2
  year: 2019
  end-page: 92
  article-title: Book recommender system using genetic algorithm and association rule mining
  publication-title: Computer Engineering and Applications Journal
– volume: 33
  start-page: 230
  issue: 1
  year: 2007
  end-page: 240
  article-title: An intelligent fuzzy‐based recommendation system for consumer electronic products
  publication-title: Expert Systems with Applications
– volume: 41
  start-page: 5680
  issue: 13
  year: 2014
  end-page: 5688
  article-title: Power coefficient as a similarity measure for memory‐based collaborative recommender systems
  publication-title: Expert Systems with Applications
– volume: 32
  start-page: 125
  issue: 2
  year: 2019
  end-page: 141
  article-title: Fuzzy‐genetic approach to context‐aware recommender systems based on the hybridization of collaborative filtering and reclusive method techniques
  publication-title: AI Communications
– volume: 75
  start-page: 9225
  issue: 15
  year: 2016
  end-page: 9239
  article-title: A collaborative recommender system enhanced with particle swarm optimization technique
  publication-title: Multimedia Tools and Applications
– volume: 11
  start-page: 29
  issue: 1
  year: 2020a
  end-page: 44
  article-title: An aggregation approach to multi‐criteria recommender system using genetic programming
  publication-title: Evolving Systems
– volume: 836
  start-page: 661
  year: 2018
  end-page: 673
– volume: 34
  start-page: 2298
  issue: 4
  year: 2008
  end-page: 2315
  article-title: Personalized web‐based tutoring system based on fuzzy item response theory
  publication-title: Expert Systems with Applications
– start-page: 119
  year: 2020
  end-page: 126
– volume: 784
  start-page: 59
  year: 2020
  end-page: 67
– year: 2017
– volume: 32
  start-page: 264
  issue: 2
  year: 2015
  end-page: 276
  article-title: E‐learning recommender system for a group of learners based on the unified learner profile approach
  publication-title: Expert Systems
– year: 2013
– volume: 10
  start-page: 776
  issue: 1
  year: 2017
  end-page: 803
  article-title: Fuzzy tools in recommender systems: A survey
  publication-title: International Journal of Computational Intelligence Systems
– volume: 5
  start-page: 13
  issue: 8
  year: 2010
  ident: e_1_2_11_32_1
  article-title: Genetic algorithms for feature weighting in multi‐criteria recommender systems
  publication-title: Journal of Convergence Information Technology
– start-page: 325
  volume-title: Advances in intelligent systems and computing
  year: 2020
  ident: e_1_2_11_61_1
– ident: e_1_2_11_17_1
  doi: 10.1016/j.eswa.2006.04.012
– start-page: 343
  volume-title: Advances in intelligent systems and computing
  year: 2020
  ident: e_1_2_11_33_1
– ident: e_1_2_11_48_1
  doi: 10.1109/ICEDEG.2018.8372343
– ident: e_1_2_11_12_1
  doi: 10.1016/j.eswa.2016.05.021
– ident: e_1_2_11_20_1
  doi: 10.1145/3127325.3128331
– ident: e_1_2_11_43_1
  doi: 10.1016/j.knosys.2019.105243
– ident: e_1_2_11_35_1
  doi: 10.1016/j.eij.2016.10.002
– ident: e_1_2_11_51_1
  doi: 10.1186/s40537-020-00292-y
– ident: e_1_2_11_58_1
  doi: 10.1016/j.knosys.2009.07.007
– ident: e_1_2_11_52_1
  doi: 10.1007/978-3-319-17996-4_26
– ident: e_1_2_11_47_1
  doi: 10.3390/sym8070054
– ident: e_1_2_11_79_1
  doi: 10.1016/j.jvlc.2014.09.011
– ident: e_1_2_11_83_1
  doi: 10.1016/j.asoc.2015.10.060
– ident: e_1_2_11_54_1
  doi: 10.1016/j.ins.2016.01.083
– ident: e_1_2_11_57_1
  doi: 10.1016/j.knosys.2015.03.006
– ident: e_1_2_11_36_1
  doi: 10.1007/s00521-016-2817-3
– ident: e_1_2_11_72_1
  doi: 10.1007/978-3-642-15172-9_6
– ident: e_1_2_11_81_1
  doi: 10.1109/TFUZZ.2014.2315655
– ident: e_1_2_11_6_1
  doi: 10.1504/IJAIP.2020.104108
– volume: 2
  start-page: 137
  issue: 3
  year: 2014
  ident: e_1_2_11_63_1
  article-title: Latent feature based recommender system for learning materials using genetic algorithm
  publication-title: Journal of Information Systems and Telecommunication
– ident: e_1_2_11_21_1
  doi: 10.1016/j.eswa.2015.12.050
– ident: e_1_2_11_44_1
  doi: 10.1111/j.1467-8640.2012.00427.x
– ident: e_1_2_11_59_1
  doi: 10.1016/j.eswa.2008.06.038
– ident: e_1_2_11_62_1
  doi: 10.1108/K-07-2014-0130
– ident: e_1_2_11_66_1
  doi: 10.1007/s41870-020-00431-x
– ident: e_1_2_11_68_1
  doi: 10.1016/j.ins.2011.01.012
– start-page: 21
  volume-title: Lecture notes in electrical engineering
  year: 2018
  ident: e_1_2_11_11_1
– ident: e_1_2_11_39_1
  doi: 10.1007/978-981-15-0790-8_13
– ident: e_1_2_11_53_1
  doi: 10.1007/s40815-019-00630-0
– ident: e_1_2_11_77_1
  doi: 10.1109/ICCCT.2013.6749613
– start-page: 85
  volume-title: Advances in intelligent systems and computing
  year: 2019
  ident: e_1_2_11_15_1
– ident: e_1_2_11_26_1
  doi: 10.1016/j.knosys.2014.03.004
– ident: e_1_2_11_19_1
  doi: 10.1016/j.ins.2007.07.001
– ident: e_1_2_11_55_1
  doi: 10.1016/j.eswa.2015.08.035
– start-page: 73
  volume-title: Smart innovation, systems and technologies
  year: 2020
  ident: e_1_2_11_14_1
– ident: e_1_2_11_71_1
  doi: 10.1109/ISKE.2015.44
– ident: e_1_2_11_30_1
  doi: 10.1007/s12530-019-09296-3
– volume: 2013
  start-page: 1
  year: 2013
  ident: e_1_2_11_85_1
  article-title: A new method for e‐government procurement using collaborative filtering and Bayesian approach
  publication-title: The Scientific World Journal
  doi: 10.1155/2013/129123
– start-page: 59
  volume-title: Studies in computational intelligence
  year: 2020
  ident: e_1_2_11_13_1
– ident: e_1_2_11_86_1
  doi: 10.1016/j.ins.2013.01.025
– ident: e_1_2_11_42_1
  doi: 10.3233/AIC-180593
– ident: e_1_2_11_28_1
  doi: 10.1016/j.ins.2012.04.008
– ident: e_1_2_11_60_1
  doi: 10.1016/j.eswa.2009.04.038
– volume: 16
  start-page: e1008483
  year: 2020
  ident: e_1_2_11_76_1
  article-title: Unbiased and efficient log‐likelihood estimation with inverse binomial sampling
  publication-title: ArXiv Preprint ArXiv:2001.03985
– ident: e_1_2_11_74_1
  doi: 10.1016/j.swevo.2013.07.001
– ident: e_1_2_11_24_1
  doi: 10.1111/exsy.12061
– ident: e_1_2_11_84_1
  doi: 10.2991/ijcis.2017.10.1.52
– volume: 9
  start-page: 348
  issue: 5
  year: 2012
  ident: e_1_2_11_10_1
  article-title: Feature extraction for collaborative filtering: A genetic programming approach
  publication-title: International Journal of Computer Science Issues
– ident: e_1_2_11_80_1
  doi: 10.1109/TFUZZ.2015.2426201
– ident: e_1_2_11_75_1
  doi: 10.1016/j.asoc.2015.03.003
– ident: e_1_2_11_8_1
  doi: 10.4236/jilsa.2014.61001
– ident: e_1_2_11_38_1
  doi: 10.1504/IJAIP.2018.095491
– ident: e_1_2_11_67_1
  doi: 10.1023/A:1009804230409
– start-page: 634
  volume-title: Advances in intelligent systems and computing
  year: 2020
  ident: e_1_2_11_27_1
– ident: e_1_2_11_7_1
  doi: 10.1016/j.eswa.2014.03.025
– ident: e_1_2_11_25_1
  doi: 10.1016/j.knosys.2019.105385
– ident: e_1_2_11_73_1
  doi: 10.1145/2914586.2914641
– start-page: 661
  volume-title: Communications in Computer and Information Science
  year: 2018
  ident: e_1_2_11_69_1
– ident: e_1_2_11_41_1
  doi: 10.1007/978-3-319-30927-9_23
– start-page: 193
  volume-title: Advances in intelligent systems and computing
  year: 2020
  ident: e_1_2_11_46_1
– ident: e_1_2_11_2_1
  doi: 10.1109/EECCIS.2018.8692809
– ident: e_1_2_11_3_1
  doi: 10.3233/WEB-190415
– ident: e_1_2_11_40_1
  doi: 10.1016/j.ins.2019.10.041
– volume: 8
  start-page: 85
  issue: 2
  year: 2019
  ident: e_1_2_11_50_1
  article-title: Book recommender system using genetic algorithm and association rule mining
  publication-title: Computer Engineering and Applications Journal
  doi: 10.18495/comengapp.v8i2.305
– ident: e_1_2_11_56_1
  doi: 10.1109/CEC.2014.6900495
– ident: e_1_2_11_31_1
  doi: 10.1016/j.knosys.2020.105756
– start-page: 1
  volume-title: Advances in intelligent systems and computing
  year: 2020
  ident: e_1_2_11_70_1
– ident: e_1_2_11_45_1
  doi: 10.1016/j.dss.2015.03.008
– ident: e_1_2_11_82_1
  doi: 10.1007/978-3-319-22053-6_48
– ident: e_1_2_11_22_1
  doi: 10.1016/j.eswa.2019.112871
– ident: e_1_2_11_23_1
  doi: 10.1016/j.eswa.2019.04.034
– ident: e_1_2_11_64_1
  doi: 10.1016/j.eij.2012.12.001
– start-page: 62
  volume-title: International journal of swarm intelligence research
  year: 2020
  ident: e_1_2_11_49_1
– ident: e_1_2_11_9_1
  doi: 10.1016/j.eswa.2007.08.016
– ident: e_1_2_11_78_1
  doi: 10.1016/j.dss.2016.05.002
– ident: e_1_2_11_4_1
  doi: 10.1109/ICIS.2016.7550751
– ident: e_1_2_11_16_1
  doi: 10.1016/j.knosys.2011.06.005
– ident: e_1_2_11_5_1
  doi: 10.1016/j.ipm.2020.102310
– ident: e_1_2_11_18_1
  doi: 10.1016/j.eswa.2007.03.010
– ident: e_1_2_11_29_1
  doi: 10.1002/int.20206
– ident: e_1_2_11_34_1
  doi: 10.1007/s11042-016-3481-4
– ident: e_1_2_11_37_1
  doi: 10.1016/j.ins.2019.10.072
– ident: e_1_2_11_65_1
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00310
SSID ssj0001776
Score 2.3041315
Snippet The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Collaboration
collaborative filtering
Filtration
genetic algorithm
Genetic algorithms
Mathematical analysis
Optimization
prediction
Ratings
Recommender systems
Similarity
Title Optimization of fuzzy similarity by genetic algorithm in user‐based collaborative filtering recommender systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12893
https://www.proquest.com/docview/2646149379
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1468-0394
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-4720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7iky_exXkjoC8KHe2SNiv4IrIhggpeYD5ISZpERbep3cTtyZ_gb_SXeE7auiki6EtpQ1ra5Fy-k-Z8h5Atw1gttkJ6mlmJJcy0V0955IVMCpsaocM65jsfHUcHF_ywFbYmyG6ZC5PzQ3wuuKFmOHuNCi5VNqbk5iUbVMG6xkj1GbDIxVOnI-6oQLjKchBjRB4XNb_gJsVtPKNbv3qjEcQcB6rO0zRnyFX5jvkGk7tqv6eq6fAbfeN_P2KWTBcQlO7lMjNHJkxnnsyU5R1ooe0L5PEEzEm7yNOkXUttfzgc0AzaIBwG9E7VgIL8YRoklffXXWi7adPbDsWVj_fXN_SQmo5J2rOh9hZ_z4O_pBiKt9uukh3N-aSzRXLRbJzvH3hFhQYvZVgWIvDrRjB3DLhOVcw5sz5cWLAUQmnBDaZoQkymYu3HOmI2jTB5W4RGci3ZEpnsdDtmmVCrFatzqTQzIVdRILWvAdxBOKaj0NSCCtkuZypJC_pyrKJxn5RhDI5l4sayQjY_-z7kpB0_9lorJzwpFDdLAB8CYAHMFlfIjpu5X56QNFpnl-5s5S-dV8lUDZMo3LbJNTLZe-qbdYA2PbXhRPgDxhX6EA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR5TVElxASpXUTtwcEaIqu8QilVMUxzYgaAukRbQnPoFv5EuYcdIFhJDgEiWREyn2LG-cmXmEbGnGSqERsaOYiZHCTDnlhAeOz2JhEi2UX8Z655PToHrFD2t-Lc_NwVqYrD9Ef8MNNcPaa1Rw3JAe0nL9mnaKYF5DNkrGeQCBCmKi80H3KE9YbjmIMgKHi5KbdyfFRJ7Bs1_90QBkDkNV62sq0xmhampbFGKKyX2x3ZLFpPutgeO_P2OGTOUolO5mYjNLRnRjjkz3GB5orvDz5OkMLEo9L9WkTUNNu9vt0BTuQUQMAJ7KDgURxEpIGj_cNOHebZ3eNShufny8vaOTVHRI2F40NXf4hx5cJsVovF63ZHY0aymdLpCryv7lXtXJSRqchCEzhOeWtWD26HGVyJBzZly4MGAshFSCa6zShLBMhsoNVcBMEmD9tvB1zFXMFslYo9nQS4QaJVmZx1Ix7XMZeLFyFeA7iMhU4OuSVyDbvaWKkryDORJpPES9SAbnMrJzWSCb_bGPWd-OH0et9lY8ynU3jQAiAmYB2BYWyI5dul_eEO3XLq7t2fJfBm-QierlyXF0fHB6tEImS1hTYbMoV8lY67mt1wDptOS6ledPX__-MQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swELZYJMTlsYs-NktwASlVUjtxckRAxQ5ikcopimMbELTlvbSI9sRP4DfyS5hxUloQQoJLlEROpNizfOPMfEPImmasEhmROIqZBFuYKSdMeeD4LBEm1UL5IdY7Hx0Hu5d8v-bXitwcrIXJ-SHeN9xQM6y9RgXXD8oMaLl-yjplMK8RGyaj3I9CzOjbPuuzR3nC9paDKCNwuKi4BTspJvL0n_3oj_ogcxCqWl9TncgbqmaWohBTTO7K7ZYsp91PBI6__oxJ8qdAoXQzF5spMqQb02Si1-GBFgo_Q_6dgEWpF6WatGmoaXe7HZrBPYiIAcBT2aEgglgJSZP76ybcu6nT2wbFzY_X5xd0kooOCNujpuYW_9CDy6QYjdfrtpkdzSmls1lyWd252Np1iiYNTsqwM4Tnhlowe_S4SmXEOTMuXBgwFkIqwTVWaUJYJiPlRipgJg2wflv4OuEqYXNkpNFs6HlCjZIs5IlUTPtcBl6iXAX4DiIyFfi64pXIem-p4rRgMMdGGvdxL5LBuYztXJbI6vvYh5y348tRi70VjwvdzWKAiIBZALZFJbJhl-6bN8Q7tfMre_b3J4NXyNjpdjU-3Ds-WCDjFSypsEmUi2Sk9b-tlwDotOSyFec3DFX9tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+fuzzy+similarity+by+genetic+algorithm+in+user%E2%80%90based+collaborative+filtering+recommender+systems&rft.jtitle=Expert+systems&rft.au=Farimah+Houshmand%E2%80%90Nanehkaran&rft.au=Lajevardi%2C+Seyed+Mohammadreza&rft.au=Mahmoud+Mahlouji%E2%80%90Bidgholi&rft.date=2022-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=4&rft_id=info:doi/10.1111%2Fexsy.12893&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon