Optimization of fuzzy similarity by genetic algorithm in user‐based collaborative filtering recommender systems
The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for re...
        Saved in:
      
    
          | Published in | Expert systems Vol. 39; no. 4 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Blackwell Publishing Ltd
    
        01.05.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0266-4720 1468-0394  | 
| DOI | 10.1111/exsy.12893 | 
Cover
| Abstract | The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for recommending in less time. The fuzzy‐genetic collaborative filtering (FGCF) approach recommends items by optimizing fuzzy similarities in the continuous genetic algorithm (CGA). In this method, first, the crisp values of user ratings are converted to fuzzy ratings, and then the fuzzy similarities are calculated. Similarity values are placed into the genes of the genetic algorithm, optimized, and finally, they are used in fuzzy prediction. Therefore, the fuzzy system is used twice in this process. Experimental results on RecSys, Movielens 100 K, and Movielens 1 M datasets show that FGCF improves the collaborative filtering RS performance in terms of quality and accuracy of recommendations, time and space complexities. The FGCF method is robust against the sparsity of data due to the correct choice of neighbours and avoids the users' different rating scales problem but it not able to solve the cold‐start challenge. | 
    
|---|---|
| AbstractList | The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for recommending in less time. The fuzzy‐genetic collaborative filtering (FGCF) approach recommends items by optimizing fuzzy similarities in the continuous genetic algorithm (CGA). In this method, first, the crisp values of user ratings are converted to fuzzy ratings, and then the fuzzy similarities are calculated. Similarity values are placed into the genes of the genetic algorithm, optimized, and finally, they are used in fuzzy prediction. Therefore, the fuzzy system is used twice in this process. Experimental results on RecSys, Movielens 100 K, and Movielens 1 M datasets show that FGCF improves the collaborative filtering RS performance in terms of quality and accuracy of recommendations, time and space complexities. The FGCF method is robust against the sparsity of data due to the correct choice of neighbours and avoids the users' different rating scales problem but it not able to solve the cold‐start challenge. The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and finally finding interesting recommendations for active users. The main purpose of this research is to provide a list of the best items for recommending in less time. The fuzzy‐genetic collaborative filtering (FGCF) approach recommends items by optimizing fuzzy similarities in the continuous genetic algorithm (CGA). In this method, first, the crisp values of user ratings are converted to fuzzy ratings, and then the fuzzy similarities are calculated. Similarity values are placed into the genes of the genetic algorithm, optimized, and finally, they are used in fuzzy prediction. Therefore, the fuzzy system is used twice in this process. Experimental results on RecSys, Movielens 100 K, and Movielens 1 M datasets show that FGCF improves the collaborative filtering RS performance in terms of quality and accuracy of recommendations, time and space complexities. The FGCF method is robust against the sparsity of data due to the correct choice of neighbours and avoids the users' different rating scales problem but it not able to solve the cold‐start challenge.  | 
    
| Author | Mahlouji‐Bidgholi, Mahmoud Houshmand‐Nanehkaran, Farimah Lajevardi, Seyed Mohammadreza  | 
    
| Author_xml | – sequence: 1 givenname: Farimah orcidid: 0000-0003-1687-1719 surname: Houshmand‐Nanehkaran fullname: Houshmand‐Nanehkaran, Farimah organization: Kashan Branch, Islamic Azad University – sequence: 2 givenname: Seyed Mohammadreza orcidid: 0000-0002-4744-2784 surname: Lajevardi fullname: Lajevardi, Seyed Mohammadreza email: r.lajevardi@iaukashan.ac.ir organization: Kashan Branch, Islamic Azad University – sequence: 3 givenname: Mahmoud orcidid: 0000-0001-8895-8501 surname: Mahlouji‐Bidgholi fullname: Mahlouji‐Bidgholi, Mahmoud organization: Kashan Branch, Islamic Azad University  | 
    
| BookMark | eNp9kM9Kw0AQxhdRsK1efIIFb0Lqbna7mxyl1D9Q6EEFPYVNMqlbkmy7u1HTk4_gM_okpo0nEecwwwy_7xv4huiwNjUgdEbJmHZ1Ce-uHdMwitkBGlAuooCwmB-iAQmFCLgMyTEaOrcihFApxQBtFmuvK71VXpsamwIXzXbbYtfdSmW1b3Ha4iXU4HWGVbk03e2lwrrGjQP79fGZKgc5zkxZqtTYzuYVcKFLD1bXS2whM1UFdQ4Wu9Z5qNwJOipU6eD0Z47Q4_XsYXobzBc3d9OreZAxQllASQSS7TvleZbGnLOCdEtBIybTXHIQYTSRVKRxTuJcsCIThE6EnIDiuWIjdN77rq3ZNOB8sjKNrbuXSSi4oDxmMu4o0lOZNc5ZKJJM-30Y3ipdJpQku2CTXbDJPthOcvFLsra6Urb9G6Y9_KZLaP8hk9nT_XOv-QadgI8U | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125301 crossref_primary_10_1108_IJICC_01_2024_0016 crossref_primary_10_1007_s10489_023_05244_6 crossref_primary_10_1371_journal_pone_0290622 crossref_primary_10_3233_IDT_230092  | 
    
| Cites_doi | 10.1016/j.eswa.2006.04.012 10.1109/ICEDEG.2018.8372343 10.1016/j.eswa.2016.05.021 10.1145/3127325.3128331 10.1016/j.knosys.2019.105243 10.1016/j.eij.2016.10.002 10.1186/s40537-020-00292-y 10.1016/j.knosys.2009.07.007 10.1007/978-3-319-17996-4_26 10.3390/sym8070054 10.1016/j.jvlc.2014.09.011 10.1016/j.asoc.2015.10.060 10.1016/j.ins.2016.01.083 10.1016/j.knosys.2015.03.006 10.1007/s00521-016-2817-3 10.1007/978-3-642-15172-9_6 10.1109/TFUZZ.2014.2315655 10.1504/IJAIP.2020.104108 10.1016/j.eswa.2015.12.050 10.1111/j.1467-8640.2012.00427.x 10.1016/j.eswa.2008.06.038 10.1108/K-07-2014-0130 10.1007/s41870-020-00431-x 10.1016/j.ins.2011.01.012 10.1007/978-981-15-0790-8_13 10.1007/s40815-019-00630-0 10.1109/ICCCT.2013.6749613 10.1016/j.knosys.2014.03.004 10.1016/j.ins.2007.07.001 10.1016/j.eswa.2015.08.035 10.1109/ISKE.2015.44 10.1007/s12530-019-09296-3 10.1155/2013/129123 10.1016/j.ins.2013.01.025 10.3233/AIC-180593 10.1016/j.ins.2012.04.008 10.1016/j.eswa.2009.04.038 10.1016/j.swevo.2013.07.001 10.1111/exsy.12061 10.2991/ijcis.2017.10.1.52 10.1109/TFUZZ.2015.2426201 10.1016/j.asoc.2015.03.003 10.4236/jilsa.2014.61001 10.1504/IJAIP.2018.095491 10.1023/A:1009804230409 10.1016/j.eswa.2014.03.025 10.1016/j.knosys.2019.105385 10.1145/2914586.2914641 10.1007/978-3-319-30927-9_23 10.1109/EECCIS.2018.8692809 10.3233/WEB-190415 10.1016/j.ins.2019.10.041 10.18495/comengapp.v8i2.305 10.1109/CEC.2014.6900495 10.1016/j.knosys.2020.105756 10.1016/j.dss.2015.03.008 10.1007/978-3-319-22053-6_48 10.1016/j.eswa.2019.112871 10.1016/j.eswa.2019.04.034 10.1016/j.eij.2012.12.001 10.1016/j.eswa.2007.08.016 10.1016/j.dss.2016.05.002 10.1109/ICIS.2016.7550751 10.1016/j.knosys.2011.06.005 10.1016/j.ipm.2020.102310 10.1016/j.eswa.2007.03.010 10.1002/int.20206 10.1007/s11042-016-3481-4 10.1016/j.ins.2019.10.072 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00310  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd  | 
    
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| DOI | 10.1111/exsy.12893 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1468-0394 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1111_exsy_12893 EXSY12893  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT 77I AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c3013-108e73108e714dcb9443f0e71f1837bd74e6285716b9d09d63fc6015675ea4da3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0266-4720 | 
    
| IngestDate | Fri Jul 25 03:05:51 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Wed Oct 01 02:56:02 EDT 2025 Wed Jan 22 16:25:23 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3013-108e73108e714dcb9443f0e71f1837bd74e6285716b9d09d63fc6015675ea4da3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1687-1719 0000-0001-8895-8501 0000-0002-4744-2784  | 
    
| PQID | 2646149379 | 
    
| PQPubID | 32130 | 
    
| PageCount | 27 | 
    
| ParticipantIDs | proquest_journals_2646149379 crossref_citationtrail_10_1111_exsy_12893 crossref_primary_10_1111_exsy_12893 wiley_primary_10_1111_exsy_12893_EXSY12893  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2022 | 
    
| PublicationDateYYYYMMDD | 2022-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Expert systems | 
    
| PublicationYear | 2022 | 
    
| Publisher | Blackwell Publishing Ltd | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd | 
    
| References | 2013; 29 2015; 31 2018; 442 2015; 74 2015; 32 2019; 17 2016; 75 2020; 16 2020; 15 2008; 34 2014; 25 2008; 35 2020; 57 2020; 12 2020; 11 2016; 345 2020; 1057 2007; 33 2014; 67 2012; 206 2010; 23 2020; 7 2013; 14 2014; 2 2013; 2013 2013; 13 2019; 21 2015; 83 2007; 177 2016; 43 2016; 87 2013; 235 2016; 40 2011; 24 2018; 30 2015; 9227 2007; 22 2010; 5 2016; 45 2019; 8 2020; 1087 2020; 140 2010 2019; 32 2016; 53 2016; 51 2014; 06 2020; 784 2014; 41 2020b; 196 2015; 23 2020a; 11 2009; 36 2020; 1053 2020; 151 2015; 358 2020; 990 2001; 5 2020 2020; 191 2017; 10 2020; 194 2020; 512 2019 2018 2017 2020; 513 2016 2016; 61 2011; 181 2018; 836 2019; 813 2017; 18 2014 2013 2018; 11 2016; 8 2012; 9 2019; 132 e_1_2_11_72_1 Moses S. J. (e_1_2_11_49_1) 2020 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_34_1 e_1_2_11_53_1 Zhang S. (e_1_2_11_85_1) 2013; 2013 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Hwang C. S. (e_1_2_11_32_1) 2010; 5 Jain G. (e_1_2_11_33_1) 2020 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 Salehi M. (e_1_2_11_63_1) 2014; 2 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 Opheusden B. (e_1_2_11_76_1) 2020; 16 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 Bhat A. (e_1_2_11_15_1) 2019 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 Bandyopadhyay S. (e_1_2_11_13_1) 2020 e_1_2_11_71_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 Anand D. A. (e_1_2_11_10_1) 2012; 9 Singh P. K. (e_1_2_11_70_1) 2020 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 Mustika H. F. (e_1_2_11_50_1) 2019; 8 Shirude S. B. (e_1_2_11_69_1) 2018 e_1_2_11_82_1 e_1_2_11_80_1 Appalla P. (e_1_2_11_11_1) 2018 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 Gao J. (e_1_2_11_27_1) 2020 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_86_1 Mallik S. (e_1_2_11_46_1) 2020 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 Ramakrishnan G. (e_1_2_11_61_1) 2020 e_1_2_11_37_1 e_1_2_11_39_1 Barzanti L. (e_1_2_11_14_1) 2020  | 
    
| References_xml | – volume: 2 start-page: 137 issue: 3 year: 2014 end-page: 144 article-title: Latent feature based recommender system for learning materials using genetic algorithm publication-title: Journal of Information Systems and Telecommunication – volume: 151 start-page: 73 year: 2020 end-page: 82 – volume: 83 start-page: 51 issue: 1 year: 2015 end-page: 57 article-title: Exploiting matrix factorization to asymmetric user similarities in recommendation systems publication-title: Knowledge‐Based Systems – volume: 1057 start-page: 325 year: 2020 end-page: 338 – volume: 8 start-page: 54 issue: 7 year: 2016 article-title: Top‐N recommender systems using genetic algorithm‐based visual‐clustering methods publication-title: Symmetry – volume: 1053 start-page: 343 year: 2020 end-page: 352 – volume: 512 start-page: 1324 year: 2020 end-page: 1334 article-title: A recursive algorithm to increase the speed of regression‐based binary recommendation systems publication-title: Information Sciences – volume: 36 start-page: 5173 issue: 3 year: 2009 end-page: 5183 article-title: A recommender system for research resources based on fuzzy linguistic modeling publication-title: Expert Systems with Applications – volume: 16 year: 2020 article-title: Unbiased and efficient log‐likelihood estimation with inverse binomial sampling publication-title: ArXiv Preprint ArXiv:2001.03985 – volume: 30 start-page: 1679 issue: 5 year: 2018 end-page: 1687 article-title: Recommender system with grey wolf optimizer and FCM publication-title: Neural Computing and Applications – volume: 191 year: 2020 article-title: A matrix factorization based dynamic granularity recommendation with three‐way decisions publication-title: Knowledge‐Based Systems – volume: 45 start-page: 946 issue: 6 year: 2016 end-page: 961 article-title: Recommender system based on customer segmentation (RSCS) publication-title: Kybernetes – volume: 345 start-page: 313 year: 2016 end-page: 324 article-title: Recommending items to group of users using matrix factorization based collaborative filtering publication-title: Information Sciences – volume: 06 start-page: 1 issue: 01 year: 2014 end-page: 10 article-title: Fuzzy‐weighted similarity measures for memory‐based collaborative recommender systems publication-title: Journal of Intelligent Learning Systems and Applications – volume: 43 start-page: 23 year: 2016 end-page: 41 article-title: Adaptive sentiment‐aware one‐class collaborative filtering publication-title: Expert Systems with Applications – volume: 53 start-page: 204 year: 2016 end-page: 218 article-title: An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering publication-title: Expert Systems with Applications – volume: 57 issue: 6 year: 2020 article-title: A collaborative filtering recommender system using genetic algorithm publication-title: Information Processing and Management – year: 2018 – year: 2014 – volume: 813 start-page: 85 year: 2019 end-page: 97 – volume: 14 start-page: 67 issue: 1 year: 2013 end-page: 78 article-title: Hybrid attribute‐based recommender system for learning material using genetic algorithm and a multidimensional information model publication-title: Egyptian Informatics Journal – start-page: 62 year: 2010 end-page: 76 – volume: 1087 start-page: 1 year: 2020 end-page: 10 – volume: 990 start-page: 193 year: 2020 end-page: 203 – volume: 11 start-page: 62 year: 2020 end-page: 79 – volume: 5 start-page: 13 issue: 8 year: 2010 end-page: 136 article-title: Genetic algorithms for feature weighting in multi‐criteria recommender systems publication-title: Journal of Convergence Information Technology – volume: 87 start-page: 80 year: 2016 end-page: 93 article-title: Member contribution‐based group recommender system publication-title: Decision Support Systems – volume: 196 start-page: 196 year: 2020b article-title: Credibility score based multi‐criteria recommender system publication-title: Knowledge‐Based Systems – volume: 18 start-page: 105 issue: 2 year: 2017 end-page: 112 article-title: An effective collaborative movie recommender system with cuckoo search publication-title: Egyptian Informatics Journal – volume: 22 start-page: 401 issue: 5 year: 2007 end-page: 417 article-title: Intelligent e‐government services with personalized recommendation techniques publication-title: International Journal of Intelligent Systems – volume: 24 start-page: 1310 issue: 8 year: 2011 end-page: 1316 article-title: Improving collaborative filtering recommender system results and performance using genetic algorithms publication-title: Knowledge‐Based Systems – volume: 67 start-page: 429 year: 2014 end-page: 438 article-title: TPLUFIB‐WEB: A fuzzy linguistic web system to help in the treatment of low back pain problems publication-title: Knowledge‐Based Systems – volume: 11 start-page: 378 issue: 3–4 year: 2018 end-page: 396 article-title: Using artificial intelligence techniques in collaborative filtering recommender systems: Survey publication-title: International Journal of Advanced Intelligence Paradigms – volume: 206 start-page: 63 year: 2012 end-page: 82 article-title: PB‐ADVISOR: A private banking multi‐investment portfolio advisor publication-title: Information Sciences – volume: 74 start-page: 12 year: 2015 end-page: 32 article-title: Recommender system application developments: A survey publication-title: Decision Support Systems – volume: 132 start-page: 110 year: 2019 end-page: 125 article-title: Sparseness reduction in collaborative filtering using a nearest neighbour artificial immune system with genetic algorithms publication-title: Expert Systems with Applications – volume: 25 start-page: 667 issue: 6 year: 2014 end-page: 675 article-title: An improved collaborative movie recommendation system using computational intelligence publication-title: Journal of Visual Languages and Computing – volume: 61 start-page: 122 year: 2016 end-page: 128 article-title: A genetic algorithm solution to the collaborative filtering problem publication-title: Expert Systems with Applications – volume: 23 start-page: 32 issue: 1 year: 2010 end-page: 39 article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries publication-title: Knowledge‐Based Systems – year: 2019 – volume: 23 start-page: 2412 issue: 6 year: 2015 end-page: 2426 article-title: A fuzzy tree matching‐based personalized E‐learning recommender system publication-title: IEEE Transactions on Fuzzy Systems – volume: 194 year: 2020 article-title: Helping university students to choose elective courses by using a hybrid multi‐criteria recommendation system with genetic optimization publication-title: Knowledge‐Based Systems – volume: 140 year: 2020 article-title: Weighted aspect‐based opinion mining using deep learning for recommender system publication-title: Expert Systems with Applications – volume: 358 start-page: 291 year: 2015 end-page: 298 article-title: Video recommendation using neuro‐fuzzy on social TV environment publication-title: Advances in Intelligent Systems and Computing – volume: 23 start-page: 29 issue: 1 year: 2015 end-page: 43 article-title: A fuzzy preference tree‐based recommender system for personalized business‐to‐business e‐services publication-title: IEEE Transactions on Fuzzy Systems – volume: 36 start-page: 12520 issue: 10 year: 2009 end-page: 12528 article-title: A multi‐disciplinar recommender system to advice research resources in university digital libraries publication-title: Expert Systems with Applications – volume: 2013 start-page: 1 year: 2013 end-page: 10 article-title: A new method for e‐government procurement using collaborative filtering and Bayesian approach publication-title: The Scientific World Journal – volume: 35 start-page: 1386 issue: 3 year: 2008 end-page: 1399 article-title: Fuzzy‐genetic approach to recommender systems based on a novel hybrid user model publication-title: Expert Systems with Applications – volume: 181 start-page: 1503 issue: 9 year: 2011 end-page: 1516 article-title: A google wave‐based fuzzy recommender system to disseminate information in university digital libraries 2.0 publication-title: Information Sciences – volume: 29 start-page: 37 issue: 1 year: 2013 end-page: 69 article-title: A web‐based personalized business partner recommendation system using fuzzy semantic techniques publication-title: Computational Intelligence – volume: 13 start-page: 1 year: 2013 end-page: 12 article-title: Enhancing collaborative filtering recommendations by utilizing multi‐objective particle swarm optimization embedded association rule mining publication-title: Swarm and Evolutionary Computation – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 15 article-title: Improving prediction with enhanced distributed memory‐based resilient dataset filter publication-title: Journal of Big Data – volume: 5 start-page: 115 issue: 1–2 year: 2001 end-page: 153 article-title: E‐commerce recommendation applications publication-title: Data Mining and Knowledge Discovery – volume: 513 start-page: 412 year: 2020 end-page: 428 article-title: Applying landmarks to enhance memory‐based collaborative filtering publication-title: Information Sciences – volume: 12 start-page: 467 issue: 2 year: 2020 end-page: 472 article-title: Analyzing emotion based movie recommender system using fuzzy emotion features publication-title: International Journal of Information Technology – year: 2016 – volume: 9 start-page: 348 issue: 5 year: 2012 end-page: 354 article-title: Feature extraction for collaborative filtering: A genetic programming approach publication-title: International Journal of Computer Science Issues – volume: 177 start-page: 4906 issue: 22 year: 2007 end-page: 4921 article-title: One‐and‐only item recommendation with fuzzy logic techniques publication-title: Information Sciences – volume: 21 start-page: 1367 issue: 5 year: 2019 end-page: 1378 article-title: Analysis of Travellers' online reviews in social networking sites using fuzzy logic approach publication-title: International Journal of Fuzzy Systems – volume: 40 start-page: 187 year: 2016 end-page: 198 article-title: A fuzzy model for managing natural noise in recommender systems publication-title: Applied Soft Computing Journal – volume: 51 start-page: 227 year: 2016 end-page: 237 article-title: A fuzzy trust enhanced collaborative filtering for effective context‐aware recommender systems publication-title: Smart Innovation, Systems and Technologies – volume: 235 start-page: 117 year: 2013 end-page: 129 article-title: A hybrid fuzzy‐based personalized recommender system for telecom products/services publication-title: Information Sciences – volume: 442 start-page: 21 year: 2018 end-page: 32 – volume: 17 start-page: 229 issue: 3 year: 2019 end-page: 241 article-title: Improving collaborative filtering recommender system results and performance using satisfaction degree and emotions of users publication-title: Web Intelligence – start-page: 634 year: 2020 end-page: 644 – volume: 31 start-page: 153 year: 2015 end-page: 171 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Applied Soft Computing Journal – volume: 15 start-page: 77 issue: 1 year: 2020 end-page: 88 article-title: Improving recommendation quality and performance of genetic‐based recommender system publication-title: International Journal of Advanced Intelligence Paradigms – volume: 9227 start-page: 453 year: 2015 end-page: 460 article-title: An item based collaborative filtering system combined with genetic algorithms using rating behavior publication-title: Lecture Notes in Computer Science – volume: 8 start-page: 85 issue: 2 year: 2019 end-page: 92 article-title: Book recommender system using genetic algorithm and association rule mining publication-title: Computer Engineering and Applications Journal – volume: 33 start-page: 230 issue: 1 year: 2007 end-page: 240 article-title: An intelligent fuzzy‐based recommendation system for consumer electronic products publication-title: Expert Systems with Applications – volume: 41 start-page: 5680 issue: 13 year: 2014 end-page: 5688 article-title: Power coefficient as a similarity measure for memory‐based collaborative recommender systems publication-title: Expert Systems with Applications – volume: 32 start-page: 125 issue: 2 year: 2019 end-page: 141 article-title: Fuzzy‐genetic approach to context‐aware recommender systems based on the hybridization of collaborative filtering and reclusive method techniques publication-title: AI Communications – volume: 75 start-page: 9225 issue: 15 year: 2016 end-page: 9239 article-title: A collaborative recommender system enhanced with particle swarm optimization technique publication-title: Multimedia Tools and Applications – volume: 11 start-page: 29 issue: 1 year: 2020a end-page: 44 article-title: An aggregation approach to multi‐criteria recommender system using genetic programming publication-title: Evolving Systems – volume: 836 start-page: 661 year: 2018 end-page: 673 – volume: 34 start-page: 2298 issue: 4 year: 2008 end-page: 2315 article-title: Personalized web‐based tutoring system based on fuzzy item response theory publication-title: Expert Systems with Applications – start-page: 119 year: 2020 end-page: 126 – volume: 784 start-page: 59 year: 2020 end-page: 67 – year: 2017 – volume: 32 start-page: 264 issue: 2 year: 2015 end-page: 276 article-title: E‐learning recommender system for a group of learners based on the unified learner profile approach publication-title: Expert Systems – year: 2013 – volume: 10 start-page: 776 issue: 1 year: 2017 end-page: 803 article-title: Fuzzy tools in recommender systems: A survey publication-title: International Journal of Computational Intelligence Systems – volume: 5 start-page: 13 issue: 8 year: 2010 ident: e_1_2_11_32_1 article-title: Genetic algorithms for feature weighting in multi‐criteria recommender systems publication-title: Journal of Convergence Information Technology – start-page: 325 volume-title: Advances in intelligent systems and computing year: 2020 ident: e_1_2_11_61_1 – ident: e_1_2_11_17_1 doi: 10.1016/j.eswa.2006.04.012 – start-page: 343 volume-title: Advances in intelligent systems and computing year: 2020 ident: e_1_2_11_33_1 – ident: e_1_2_11_48_1 doi: 10.1109/ICEDEG.2018.8372343 – ident: e_1_2_11_12_1 doi: 10.1016/j.eswa.2016.05.021 – ident: e_1_2_11_20_1 doi: 10.1145/3127325.3128331 – ident: e_1_2_11_43_1 doi: 10.1016/j.knosys.2019.105243 – ident: e_1_2_11_35_1 doi: 10.1016/j.eij.2016.10.002 – ident: e_1_2_11_51_1 doi: 10.1186/s40537-020-00292-y – ident: e_1_2_11_58_1 doi: 10.1016/j.knosys.2009.07.007 – ident: e_1_2_11_52_1 doi: 10.1007/978-3-319-17996-4_26 – ident: e_1_2_11_47_1 doi: 10.3390/sym8070054 – ident: e_1_2_11_79_1 doi: 10.1016/j.jvlc.2014.09.011 – ident: e_1_2_11_83_1 doi: 10.1016/j.asoc.2015.10.060 – ident: e_1_2_11_54_1 doi: 10.1016/j.ins.2016.01.083 – ident: e_1_2_11_57_1 doi: 10.1016/j.knosys.2015.03.006 – ident: e_1_2_11_36_1 doi: 10.1007/s00521-016-2817-3 – ident: e_1_2_11_72_1 doi: 10.1007/978-3-642-15172-9_6 – ident: e_1_2_11_81_1 doi: 10.1109/TFUZZ.2014.2315655 – ident: e_1_2_11_6_1 doi: 10.1504/IJAIP.2020.104108 – volume: 2 start-page: 137 issue: 3 year: 2014 ident: e_1_2_11_63_1 article-title: Latent feature based recommender system for learning materials using genetic algorithm publication-title: Journal of Information Systems and Telecommunication – ident: e_1_2_11_21_1 doi: 10.1016/j.eswa.2015.12.050 – ident: e_1_2_11_44_1 doi: 10.1111/j.1467-8640.2012.00427.x – ident: e_1_2_11_59_1 doi: 10.1016/j.eswa.2008.06.038 – ident: e_1_2_11_62_1 doi: 10.1108/K-07-2014-0130 – ident: e_1_2_11_66_1 doi: 10.1007/s41870-020-00431-x – ident: e_1_2_11_68_1 doi: 10.1016/j.ins.2011.01.012 – start-page: 21 volume-title: Lecture notes in electrical engineering year: 2018 ident: e_1_2_11_11_1 – ident: e_1_2_11_39_1 doi: 10.1007/978-981-15-0790-8_13 – ident: e_1_2_11_53_1 doi: 10.1007/s40815-019-00630-0 – ident: e_1_2_11_77_1 doi: 10.1109/ICCCT.2013.6749613 – start-page: 85 volume-title: Advances in intelligent systems and computing year: 2019 ident: e_1_2_11_15_1 – ident: e_1_2_11_26_1 doi: 10.1016/j.knosys.2014.03.004 – ident: e_1_2_11_19_1 doi: 10.1016/j.ins.2007.07.001 – ident: e_1_2_11_55_1 doi: 10.1016/j.eswa.2015.08.035 – start-page: 73 volume-title: Smart innovation, systems and technologies year: 2020 ident: e_1_2_11_14_1 – ident: e_1_2_11_71_1 doi: 10.1109/ISKE.2015.44 – ident: e_1_2_11_30_1 doi: 10.1007/s12530-019-09296-3 – volume: 2013 start-page: 1 year: 2013 ident: e_1_2_11_85_1 article-title: A new method for e‐government procurement using collaborative filtering and Bayesian approach publication-title: The Scientific World Journal doi: 10.1155/2013/129123 – start-page: 59 volume-title: Studies in computational intelligence year: 2020 ident: e_1_2_11_13_1 – ident: e_1_2_11_86_1 doi: 10.1016/j.ins.2013.01.025 – ident: e_1_2_11_42_1 doi: 10.3233/AIC-180593 – ident: e_1_2_11_28_1 doi: 10.1016/j.ins.2012.04.008 – ident: e_1_2_11_60_1 doi: 10.1016/j.eswa.2009.04.038 – volume: 16 start-page: e1008483 year: 2020 ident: e_1_2_11_76_1 article-title: Unbiased and efficient log‐likelihood estimation with inverse binomial sampling publication-title: ArXiv Preprint ArXiv:2001.03985 – ident: e_1_2_11_74_1 doi: 10.1016/j.swevo.2013.07.001 – ident: e_1_2_11_24_1 doi: 10.1111/exsy.12061 – ident: e_1_2_11_84_1 doi: 10.2991/ijcis.2017.10.1.52 – volume: 9 start-page: 348 issue: 5 year: 2012 ident: e_1_2_11_10_1 article-title: Feature extraction for collaborative filtering: A genetic programming approach publication-title: International Journal of Computer Science Issues – ident: e_1_2_11_80_1 doi: 10.1109/TFUZZ.2015.2426201 – ident: e_1_2_11_75_1 doi: 10.1016/j.asoc.2015.03.003 – ident: e_1_2_11_8_1 doi: 10.4236/jilsa.2014.61001 – ident: e_1_2_11_38_1 doi: 10.1504/IJAIP.2018.095491 – ident: e_1_2_11_67_1 doi: 10.1023/A:1009804230409 – start-page: 634 volume-title: Advances in intelligent systems and computing year: 2020 ident: e_1_2_11_27_1 – ident: e_1_2_11_7_1 doi: 10.1016/j.eswa.2014.03.025 – ident: e_1_2_11_25_1 doi: 10.1016/j.knosys.2019.105385 – ident: e_1_2_11_73_1 doi: 10.1145/2914586.2914641 – start-page: 661 volume-title: Communications in Computer and Information Science year: 2018 ident: e_1_2_11_69_1 – ident: e_1_2_11_41_1 doi: 10.1007/978-3-319-30927-9_23 – start-page: 193 volume-title: Advances in intelligent systems and computing year: 2020 ident: e_1_2_11_46_1 – ident: e_1_2_11_2_1 doi: 10.1109/EECCIS.2018.8692809 – ident: e_1_2_11_3_1 doi: 10.3233/WEB-190415 – ident: e_1_2_11_40_1 doi: 10.1016/j.ins.2019.10.041 – volume: 8 start-page: 85 issue: 2 year: 2019 ident: e_1_2_11_50_1 article-title: Book recommender system using genetic algorithm and association rule mining publication-title: Computer Engineering and Applications Journal doi: 10.18495/comengapp.v8i2.305 – ident: e_1_2_11_56_1 doi: 10.1109/CEC.2014.6900495 – ident: e_1_2_11_31_1 doi: 10.1016/j.knosys.2020.105756 – start-page: 1 volume-title: Advances in intelligent systems and computing year: 2020 ident: e_1_2_11_70_1 – ident: e_1_2_11_45_1 doi: 10.1016/j.dss.2015.03.008 – ident: e_1_2_11_82_1 doi: 10.1007/978-3-319-22053-6_48 – ident: e_1_2_11_22_1 doi: 10.1016/j.eswa.2019.112871 – ident: e_1_2_11_23_1 doi: 10.1016/j.eswa.2019.04.034 – ident: e_1_2_11_64_1 doi: 10.1016/j.eij.2012.12.001 – start-page: 62 volume-title: International journal of swarm intelligence research year: 2020 ident: e_1_2_11_49_1 – ident: e_1_2_11_9_1 doi: 10.1016/j.eswa.2007.08.016 – ident: e_1_2_11_78_1 doi: 10.1016/j.dss.2016.05.002 – ident: e_1_2_11_4_1 doi: 10.1109/ICIS.2016.7550751 – ident: e_1_2_11_16_1 doi: 10.1016/j.knosys.2011.06.005 – ident: e_1_2_11_5_1 doi: 10.1016/j.ipm.2020.102310 – ident: e_1_2_11_18_1 doi: 10.1016/j.eswa.2007.03.010 – ident: e_1_2_11_29_1 doi: 10.1002/int.20206 – ident: e_1_2_11_34_1 doi: 10.1007/s11042-016-3481-4 – ident: e_1_2_11_37_1 doi: 10.1016/j.ins.2019.10.072 – ident: e_1_2_11_65_1 doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00310  | 
    
| SSID | ssj0001776 | 
    
| Score | 2.3041315 | 
    
| Snippet | The most important subjects in the memory‐based collaborative filtering recommender system (RS) are to accurately calculate the similarities between users and... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Collaboration collaborative filtering Filtration genetic algorithm Genetic algorithms Mathematical analysis Optimization prediction Ratings Recommender systems Similarity  | 
    
| Title | Optimization of fuzzy similarity by genetic algorithm in user‐based collaborative filtering recommender systems | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12893 https://www.proquest.com/docview/2646149379  | 
    
| Volume | 39 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate - TFS customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1468-0394 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1468-0394 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0266-4720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-0394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001776 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7iky_exXkjoC8KHe2SNiv4IrIhggpeYD5ISZpERbep3cTtyZ_gb_SXeE7auiki6EtpQ1ra5Fy-k-Z8h5Atw1gttkJ6mlmJJcy0V0955IVMCpsaocM65jsfHUcHF_ywFbYmyG6ZC5PzQ3wuuKFmOHuNCi5VNqbk5iUbVMG6xkj1GbDIxVOnI-6oQLjKchBjRB4XNb_gJsVtPKNbv3qjEcQcB6rO0zRnyFX5jvkGk7tqv6eq6fAbfeN_P2KWTBcQlO7lMjNHJkxnnsyU5R1ooe0L5PEEzEm7yNOkXUttfzgc0AzaIBwG9E7VgIL8YRoklffXXWi7adPbDsWVj_fXN_SQmo5J2rOh9hZ_z4O_pBiKt9uukh3N-aSzRXLRbJzvH3hFhQYvZVgWIvDrRjB3DLhOVcw5sz5cWLAUQmnBDaZoQkymYu3HOmI2jTB5W4RGci3ZEpnsdDtmmVCrFatzqTQzIVdRILWvAdxBOKaj0NSCCtkuZypJC_pyrKJxn5RhDI5l4sayQjY_-z7kpB0_9lorJzwpFDdLAB8CYAHMFlfIjpu5X56QNFpnl-5s5S-dV8lUDZMo3LbJNTLZe-qbdYA2PbXhRPgDxhX6EA | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR5TVElxASpXUTtwcEaIqu8QilVMUxzYgaAukRbQnPoFv5EuYcdIFhJDgEiWREyn2LG-cmXmEbGnGSqERsaOYiZHCTDnlhAeOz2JhEi2UX8Z655PToHrFD2t-Lc_NwVqYrD9Ef8MNNcPaa1Rw3JAe0nL9mnaKYF5DNkrGeQCBCmKi80H3KE9YbjmIMgKHi5KbdyfFRJ7Bs1_90QBkDkNV62sq0xmhampbFGKKyX2x3ZLFpPutgeO_P2OGTOUolO5mYjNLRnRjjkz3GB5orvDz5OkMLEo9L9WkTUNNu9vt0BTuQUQMAJ7KDgURxEpIGj_cNOHebZ3eNShufny8vaOTVHRI2F40NXf4hx5cJsVovF63ZHY0aymdLpCryv7lXtXJSRqchCEzhOeWtWD26HGVyJBzZly4MGAshFSCa6zShLBMhsoNVcBMEmD9tvB1zFXMFslYo9nQS4QaJVmZx1Ix7XMZeLFyFeA7iMhU4OuSVyDbvaWKkryDORJpPES9SAbnMrJzWSCb_bGPWd-OH0et9lY8ynU3jQAiAmYB2BYWyI5dul_eEO3XLq7t2fJfBm-QierlyXF0fHB6tEImS1hTYbMoV8lY67mt1wDptOS6ledPX__-MQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swELZYJMTlsYs-NktwASlVUjtxckRAxQ5ikcopimMbELTlvbSI9sRP4DfyS5hxUloQQoJLlEROpNizfOPMfEPImmasEhmROIqZBFuYKSdMeeD4LBEm1UL5IdY7Hx0Hu5d8v-bXitwcrIXJ-SHeN9xQM6y9RgXXD8oMaLl-yjplMK8RGyaj3I9CzOjbPuuzR3nC9paDKCNwuKi4BTspJvL0n_3oj_ogcxCqWl9TncgbqmaWohBTTO7K7ZYsp91PBI6__oxJ8qdAoXQzF5spMqQb02Si1-GBFgo_Q_6dgEWpF6WatGmoaXe7HZrBPYiIAcBT2aEgglgJSZP76ybcu6nT2wbFzY_X5xd0kooOCNujpuYW_9CDy6QYjdfrtpkdzSmls1lyWd252Np1iiYNTsqwM4Tnhlowe_S4SmXEOTMuXBgwFkIqwTVWaUJYJiPlRipgJg2wflv4OuEqYXNkpNFs6HlCjZIs5IlUTPtcBl6iXAX4DiIyFfi64pXIem-p4rRgMMdGGvdxL5LBuYztXJbI6vvYh5y348tRi70VjwvdzWKAiIBZALZFJbJhl-6bN8Q7tfMre_b3J4NXyNjpdjU-3Ds-WCDjFSypsEmUi2Sk9b-tlwDotOSyFec3DFX9tQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+fuzzy+similarity+by+genetic+algorithm+in+user%E2%80%90based+collaborative+filtering+recommender+systems&rft.jtitle=Expert+systems&rft.au=Farimah+Houshmand%E2%80%90Nanehkaran&rft.au=Lajevardi%2C+Seyed+Mohammadreza&rft.au=Mahmoud+Mahlouji%E2%80%90Bidgholi&rft.date=2022-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=4&rft_id=info:doi/10.1111%2Fexsy.12893&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |