An improved particle swarm algorithm-based method for kinetic modeling study of ammonia/air laminar flame speed

•A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic reaction rate constants is constructed.•An ammonia kinetic mechanism with low prediction error of the laminar flame speed is developed. In recen...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 363; p. 131019
Main Authors Hu, Yu, Li, Jun, Chen, Haie, Li, Kang, Wang, Lei, Zhang, Fu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN0016-2361
DOI10.1016/j.fuel.2024.131019

Cover

Abstract •A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic reaction rate constants is constructed.•An ammonia kinetic mechanism with low prediction error of the laminar flame speed is developed. In recent years, ammonia has garnered increasing attention as a promising carbon-free fuel. Laminar flame speed is a critical property of ammonia fuel that has been extensively studied by researchers using chemical kinetics mechanisms. However, some deviations still remain in the numerical predictions. To further improve the prediction accuracy of the laminar flame speed for ammonia/air flame, an ammonia kinetic mechanism is developed in this work. Reactions from Gri-Mech 3.0, Li et al. mechanism, and Han et al. mechanism that have significant impact on laminar flame speed were first assembled to the Okafor et al. mechanism, and H/OH sub-mechanisms were merged to establish a kinetic mechanism containing 43 species and 142 reactions. A particle swarm algorithm with improved inertia weights is proposed and the fitness function for outputting laminar flame speed prediction error is customized based on Cantera codes, then forming the algorithm framework used to optimize the kinetic mechanism. The pre-exponential factor A, the temperature exponent n and the activation energy Ea of the four reactions in the merged mechanism that have high sensitivity to the laminar flame speed are selected as the independent variables for optimization, and the reactions rate constants corresponding to the high prediction accuracy of the laminar flame speed is finally obtained. The numerical prediction indicates a reduction in mean absolute percentage error of laminar flame speed from 22.563 % to 10.649 % using the optimization mechanism. The results of the sensitivity and reaction pathways analyses demonstrated that more H-related reactions were considered in the optimized mechanism, and the relative ROP of H-related reactions were adjusted at different equivalence ratios, resulting in higher or lower predictions of laminar flame speed compared with the unoptimized Okafor et al. mechanism. Ignition delay time as well as the species distribution of NH3, NO, and N2O was studied. The ignition delay time predictions using the optimized mechanism are in better agreement with the experiment data at P = 11 atm and 30 atm. The optimization mechanism demonstrated accurate predictions for NH3 and NO while exhibiting an overestimation for N2O, but the N2O prediction error is smaller compared to the Okafor et al. mechanism.
AbstractList •A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic reaction rate constants is constructed.•An ammonia kinetic mechanism with low prediction error of the laminar flame speed is developed. In recent years, ammonia has garnered increasing attention as a promising carbon-free fuel. Laminar flame speed is a critical property of ammonia fuel that has been extensively studied by researchers using chemical kinetics mechanisms. However, some deviations still remain in the numerical predictions. To further improve the prediction accuracy of the laminar flame speed for ammonia/air flame, an ammonia kinetic mechanism is developed in this work. Reactions from Gri-Mech 3.0, Li et al. mechanism, and Han et al. mechanism that have significant impact on laminar flame speed were first assembled to the Okafor et al. mechanism, and H/OH sub-mechanisms were merged to establish a kinetic mechanism containing 43 species and 142 reactions. A particle swarm algorithm with improved inertia weights is proposed and the fitness function for outputting laminar flame speed prediction error is customized based on Cantera codes, then forming the algorithm framework used to optimize the kinetic mechanism. The pre-exponential factor A, the temperature exponent n and the activation energy Ea of the four reactions in the merged mechanism that have high sensitivity to the laminar flame speed are selected as the independent variables for optimization, and the reactions rate constants corresponding to the high prediction accuracy of the laminar flame speed is finally obtained. The numerical prediction indicates a reduction in mean absolute percentage error of laminar flame speed from 22.563 % to 10.649 % using the optimization mechanism. The results of the sensitivity and reaction pathways analyses demonstrated that more H-related reactions were considered in the optimized mechanism, and the relative ROP of H-related reactions were adjusted at different equivalence ratios, resulting in higher or lower predictions of laminar flame speed compared with the unoptimized Okafor et al. mechanism. Ignition delay time as well as the species distribution of NH3, NO, and N2O was studied. The ignition delay time predictions using the optimized mechanism are in better agreement with the experiment data at P = 11 atm and 30 atm. The optimization mechanism demonstrated accurate predictions for NH3 and NO while exhibiting an overestimation for N2O, but the N2O prediction error is smaller compared to the Okafor et al. mechanism.
ArticleNumber 131019
Author Li, Jun
Wang, Lei
Chen, Haie
Li, Kang
Zhang, Fu
Hu, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Hu
  fullname: Hu, Yu
  email: huyu@xhlab.cn
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 2
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 3
  givenname: Haie
  surname: Chen
  fullname: Chen, Haie
  organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China
– sequence: 4
  givenname: Kang
  surname: Li
  fullname: Li, Kang
  organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China
– sequence: 5
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China
– sequence: 6
  givenname: Fu
  surname: Zhang
  fullname: Zhang, Fu
  organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China
BookMark eNp9kL1uAjEQhF0QKZDkBVL5BQ58_3dSGoTyJyGlSWprz16DydlGtiHi7WNEqhRUu9rZb6SZGZlYZ5GQx5zNc5Y3i91cHXCcF6yo5nmZTv2ETFlSsqJs8lsyC2HHGGu7upoSt7RUm713R5R0Dz5qMSINP-ANhXHjvI5bkw0Qkmwwbp2kynn6rS2mV2qcxFHbDQ3xIE_UKQrGOKthAdrTEYy24KlKSzLdI8p7cqNgDPjwN-_I18vz5-otW3-8vq-W60yUjMVMyaYuC1A9AHStrHo2iA5a0VZFl7MGeinroUIUfQkpYVG1paihwqZuYVC1KO9Id_EV3oXgUXGhI0TtbPSgR54zfi6L7_i5LH4ui1_KSmjxD917bcCfrkNPFwhTqKNGz4PQaAVK7VFELp2-hv8CEcaJ-Q
CitedBy_id crossref_primary_10_2118_223950_PA
Cites_doi 10.1080/00102208808947092
10.1021/ef800140f
10.1080/00102200008952125
10.1016/j.combustflame.2019.08.033
10.1016/j.fuel.2010.07.055
10.1115/IMECE2006-13048
10.1016/S0010-2180(96)00151-4
10.1016/j.pecs.2018.07.001
10.1016/j.combustflame.2009.03.005
10.1016/j.combustflame.2012.06.003
10.1016/j.fuel.2015.06.070
10.1016/S0010-2180(00)00152-8
10.1016/j.jclepro.2021.126562
10.1016/j.jclepro.2023.139478
10.1115/1.4038416
10.1016/j.combustflame.2022.112093
10.1016/j.combustflame.2014.08.022
10.1016/j.ijhydene.2015.04.024
10.1016/j.proci.2016.09.009
10.1007/s10910-011-9859-7
10.1016/j.ress.2011.06.009
10.1016/j.pecs.2018.01.002
10.1002/kin.20717
10.1016/j.combustflame.2019.03.008
10.1016/j.pecs.2007.02.004
10.1016/j.combustflame.2018.04.011
10.1016/j.fuel.2023.129812
10.1016/j.combustflame.2019.11.032
10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V
10.1177/1468087415611031
10.1002/kin.20942
10.1016/j.fuel.2019.116059
10.1016/j.jlp.2023.105043
10.1016/j.combustflame.2010.12.013
10.1016/j.ijhydene.2017.12.066
10.1016/j.icheatmasstransfer.2023.106861
10.1016/j.proci.2016.07.088
10.1016/j.energy.2022.125458
10.1016/j.jhazmat.2007.11.089
10.1016/j.fuel.2016.04.100
10.1016/j.combustflame.2012.06.008
10.3390/en16062773
10.1016/j.enconman.2004.09.012
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.fuel.2024.131019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_fuel_2024_131019
S0016236124001650
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
VH1
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c300t-fd6532af9aaa87d490bc8a7c7428106a9dd5b4eec93a1012473c5a4e657abf5c3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Thu Apr 24 23:12:27 EDT 2025
Wed Oct 01 04:05:00 EDT 2025
Tue Dec 03 03:44:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle swarm algorithm
Kinetic modeling
Laminar flame speed
Ammonia/air flame
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-fd6532af9aaa87d490bc8a7c7428106a9dd5b4eec93a1012473c5a4e657abf5c3
ParticipantIDs crossref_citationtrail_10_1016_j_fuel_2024_131019
crossref_primary_10_1016_j_fuel_2024_131019
elsevier_sciencedirect_doi_10_1016_j_fuel_2024_131019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Fuel (Guildford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cardoso, Silva, Rocha, Hall, Costa, Eusébio (b0035) 2021; 296
Versailles, Watson, Durocher, Bourque, Bergthorson (b0150) 2018; 140
Han, Wang, He, Zhu, Cen (b0185) 2020; 213
Varga, Szabó, Zsély, Zempléni, Turányi (b0130) 2011; 49
Alekseev, Konnov (b0250) 2018; 194
Bayraktar, Durgun (b0060) 2005; 46
Bian, Vandooren, Van Tiggelen (b0255) 1988; 21
Liu, Lin, Zhang, Lei, Qi, Wang (b0040) 2023; 262
Yu, Eckart, Essmann, Markus, Valera-Medina, Schießl (b0045) 2023; 83
Meng, Qin, Liu, Wei, Tian, Long (b0100) 2024; 357
Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa (b0110) 2019; 204
Li, Zou, Yao, Lin, Fu, Luo (b0155) 2022; 241
Kurata, Iki, Matsunuma, Inoue, Tsujimura, Furutani (b0025) 2017; 36
Tian, Li, Zhang, Glarborg, Qi (b0105) 2009; 156
Glarborg, Miller, Ruscic, Klippenstein (b0090) 2018; 67
Song, Hashemi, Christensen, Zou, Marshall, Glarborg (b0085) 2016; 181
Mathieu, Petersen (b0070) 2015; 162
Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (b0200) 2000; 123
Valera-Medina, Xiao, Owen-Jones, David, Bowen (b0050) 2018; 69
Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI-Mech 3.0, 1999. URL Http://Www Me Berkeley Edu/Gri_mech 2011;38.
Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (b0205) 2008; 155
Mei, Zhang, Ma, Cui, Guo, Cao (b0210) 2019; 210
Konnov, Ruyck (b0180) 2000; 152
Bertram, Zhang, Kong (b0240) 2016; 17
Turányi, Nagy, Zsély, Cserháti, Varga, Szabó (b0125) 2012; 44
Zhang, Niu, Zhang, Yu (b0245) 2022; 39
Otomo, Koshi, Mitsumori, Iwasaki, Yamada (b0120) 2018; 43
Grannell SM, Assanis DN, Bohac SV, Gillespie DE. The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. vol. 47837, 2006, p. 15–27.
Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (b0195) 2015; 159
Bae C, Kim J. Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute 2017;36:3389–413.
Goodwin DG, Moffat HK, Speth RL. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes 2018.
Ichikawa, Hayakawa, Kitagawa, Somarathne, Kudo, Kobayashi (b0215) 2015; 40
Meng, Qin, Liu, Cui, Tian, Long (b0095) 2023; 428
Ronney (b0220) 1988; 59
Sikalo, Hasemann, Schulz, Kempf, Wlokas (b0145) 2015; 47
Lan, Wang, Sun, Chang, Deng, Sun (b0235) 2022; 31
Galmiche, Halter, Foucher (b0165) 2012; 159
Felden A. Cantera Tutorials-A series of tutorials to get started with the python interface of cantera. Cerfacs (November 2015,[Online] Available: Https://Www Cerfacs Fr/Cantera/Docs/Tutorials/CANTERA_HandsOn Pdf 2015.
Aung, Hassan, Faeth (b0055) 1997; 109
Dagaut, Glarborg, Alzueta (b0065) 2008; 34
Duynslaegher, Contino, Vandooren, Jeanmart (b0140) 2012; 159
Shi Y, Eberhart R. A modified particle swarm optimizer, IEEE; 1998, p. 69–73.
Miller, Pjij (b0080) 1999; 31
Li, Konnov, He, Qin, Zhang (b0115) 2019; 257
Nagy, Turanyi (b0135) 2012; 107
Klippenstein, Harding, Glarborg, Miller (b0075) 2011; 158
Porowski, Kowalik, Grzmiączka, Jurišević, Gawdzik (b0170) 2023; 146
Reiter, Kong (b0010) 2011; 90
Kennedy, Eberhart (b0225) 1995; 4
Reiter, Kong (b0015) 2008; 22
Wang, Sheng (b0020) 2023; 16
Liu (10.1016/j.fuel.2024.131019_b0040) 2023; 262
Reiter (10.1016/j.fuel.2024.131019_b0010) 2011; 90
Ronney (10.1016/j.fuel.2024.131019_b0220) 1988; 59
Nagy (10.1016/j.fuel.2024.131019_b0135) 2012; 107
Meng (10.1016/j.fuel.2024.131019_b0095) 2023; 428
Otomo (10.1016/j.fuel.2024.131019_b0120) 2018; 43
Lan (10.1016/j.fuel.2024.131019_b0235) 2022; 31
10.1016/j.fuel.2024.131019_b0190
Li (10.1016/j.fuel.2024.131019_b0155) 2022; 241
10.1016/j.fuel.2024.131019_b0030
Song (10.1016/j.fuel.2024.131019_b0085) 2016; 181
Takizawa (10.1016/j.fuel.2024.131019_b0205) 2008; 155
Varga (10.1016/j.fuel.2024.131019_b0130) 2011; 49
Bian (10.1016/j.fuel.2024.131019_b0255) 1988; 21
Glarborg (10.1016/j.fuel.2024.131019_b0090) 2018; 67
Pfahl (10.1016/j.fuel.2024.131019_b0200) 2000; 123
Alekseev (10.1016/j.fuel.2024.131019_b0250) 2018; 194
Han (10.1016/j.fuel.2024.131019_b0185) 2020; 213
Wang (10.1016/j.fuel.2024.131019_b0020) 2023; 16
Yu (10.1016/j.fuel.2024.131019_b0045) 2023; 83
Kurata (10.1016/j.fuel.2024.131019_b0025) 2017; 36
Versailles (10.1016/j.fuel.2024.131019_b0150) 2018; 140
Galmiche (10.1016/j.fuel.2024.131019_b0165) 2012; 159
10.1016/j.fuel.2024.131019_b0175
Zhang (10.1016/j.fuel.2024.131019_b0245) 2022; 39
Aung (10.1016/j.fuel.2024.131019_b0055) 1997; 109
Sikalo (10.1016/j.fuel.2024.131019_b0145) 2015; 47
Meng (10.1016/j.fuel.2024.131019_b0100) 2024; 357
Duynslaegher (10.1016/j.fuel.2024.131019_b0140) 2012; 159
Li (10.1016/j.fuel.2024.131019_b0115) 2019; 257
Dagaut (10.1016/j.fuel.2024.131019_b0065) 2008; 34
Tian (10.1016/j.fuel.2024.131019_b0105) 2009; 156
Valera-Medina (10.1016/j.fuel.2024.131019_b0050) 2018; 69
Kennedy (10.1016/j.fuel.2024.131019_b0225) 1995; 4
10.1016/j.fuel.2024.131019_b0005
Miller (10.1016/j.fuel.2024.131019_b0080) 1999; 31
Hayakawa (10.1016/j.fuel.2024.131019_b0195) 2015; 159
Okafor (10.1016/j.fuel.2024.131019_b0110) 2019; 204
Ichikawa (10.1016/j.fuel.2024.131019_b0215) 2015; 40
Konnov (10.1016/j.fuel.2024.131019_b0180) 2000; 152
Mathieu (10.1016/j.fuel.2024.131019_b0070) 2015; 162
10.1016/j.fuel.2024.131019_b0160
Reiter (10.1016/j.fuel.2024.131019_b0015) 2008; 22
Cardoso (10.1016/j.fuel.2024.131019_b0035) 2021; 296
10.1016/j.fuel.2024.131019_b0230
Porowski (10.1016/j.fuel.2024.131019_b0170) 2023; 146
Turányi (10.1016/j.fuel.2024.131019_b0125) 2012; 44
Bayraktar (10.1016/j.fuel.2024.131019_b0060) 2005; 46
Mei (10.1016/j.fuel.2024.131019_b0210) 2019; 210
Klippenstein (10.1016/j.fuel.2024.131019_b0075) 2011; 158
Bertram (10.1016/j.fuel.2024.131019_b0240) 2016; 17
References_xml – volume: 44
  start-page: 284
  year: 2012
  end-page: 302
  ident: b0125
  article-title: Determination of rate parameters based on both direct and indirect measurements
  publication-title: Int J Chem Kinet
– volume: 140
  year: 2018
  ident: b0150
  article-title: Thermochemical mechanism optimization for accurate predictions of CH concentrations in premixed flames of C
  publication-title: J Eng Gas Turbines Power
– volume: 146
  year: 2023
  ident: b0170
  article-title: Influence of initial temperature on laminar burning velocity in hydrogen-air mixtures as potential for green energy carrier
  publication-title: Int Commun Heat Mass Transfer
– volume: 17
  start-page: 732
  year: 2016
  end-page: 747
  ident: b0240
  article-title: A novel particle swarm and genetic algorithm hybrid method for diesel engine performance optimization
  publication-title: Int J Engine Res
– reference: Shi Y, Eberhart R. A modified particle swarm optimizer, IEEE; 1998, p. 69–73.
– volume: 158
  start-page: 774
  year: 2011
  end-page: 789
  ident: b0075
  article-title: The role of NNH in NO formation and control
  publication-title: Combust Flame
– volume: 43
  start-page: 3004
  year: 2018
  end-page: 3014
  ident: b0120
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int J Hydrogen Energy
– volume: 21
  start-page: 953
  year: 1988
  end-page: 963
  ident: b0255
  article-title: Experimental study of the structure of an ammonia-oxygen flame
  publication-title: Elsevier
– volume: 162
  start-page: 554
  year: 2015
  end-page: 570
  ident: b0070
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry
  publication-title: Combust Flame
– volume: 155
  start-page: 144
  year: 2008
  end-page: 152
  ident: b0205
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J Hazard Mater
– volume: 181
  start-page: 358
  year: 2016
  end-page: 365
  ident: b0085
  article-title: Ammonia oxidation at high pressure and intermediate temperatures
  publication-title: Fuel
– reference: Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI-Mech 3.0, 1999. URL Http://Www Me Berkeley Edu/Gri_mech 2011;38.
– volume: 123
  start-page: 140
  year: 2000
  end-page: 158
  ident: b0200
  article-title: Flammability limits, ignition energy, and flame speeds in H
  publication-title: Combust Flame
– volume: 428
  year: 2023
  ident: b0095
  article-title: Investigation of ammonia cracking combined with lean-burn operation for zero-carbon combustion and NO/N
  publication-title: J Clean Prod
– volume: 34
  start-page: 1
  year: 2008
  end-page: 46
  ident: b0065
  article-title: The oxidation of hydrogen cyanide and related chemistry
  publication-title: Prog Energy Combust Sci
– volume: 262
  year: 2023
  ident: b0040
  article-title: Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio
  publication-title: Energy
– volume: 69
  start-page: 63
  year: 2018
  end-page: 102
  ident: b0050
  article-title: Ammonia for power
  publication-title: Prog Energy Combust Sci
– volume: 257
  year: 2019
  ident: b0115
  article-title: Chemical mechanism development and reduction for combustion of NH
  publication-title: Fuel
– volume: 152
  start-page: 23
  year: 2000
  end-page: 37
  ident: b0180
  article-title: Kinetic modeling of the thermal decomposition of ammonia
  publication-title: Combust Sci Technol
– volume: 109
  start-page: 1
  year: 1997
  end-page: 24
  ident: b0055
  article-title: Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure
  publication-title: Combust Flame
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0225
  article-title: Particle swarm optimization
  publication-title: IEEE
– volume: 241
  year: 2022
  ident: b0155
  article-title: An optimized kinetic model for H
  publication-title: Combust Flame
– volume: 90
  start-page: 87
  year: 2011
  end-page: 97
  ident: b0010
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
– reference: Bae C, Kim J. Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute 2017;36:3389–413.
– volume: 46
  start-page: 2317
  year: 2005
  end-page: 2333
  ident: b0060
  article-title: Investigating the effects of LPG on spark ignition engine combustion and performance
  publication-title: Energ Conver Manage
– volume: 159
  start-page: 2799
  year: 2012
  end-page: 2805
  ident: b0140
  article-title: Modeling of ammonia combustion at low pressure
  publication-title: Combust Flame
– volume: 213
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0185
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH
  publication-title: Combust Flame
– reference: Felden A. Cantera Tutorials-A series of tutorials to get started with the python interface of cantera. Cerfacs (November 2015,[Online] Available: Https://Www Cerfacs Fr/Cantera/Docs/Tutorials/CANTERA_HandsOn Pdf 2015.
– volume: 31
  year: 2022
  ident: b0235
  article-title: Artificial neural network approach for mechanical properties prediction of as-cast A380 aluminum alloy
  publication-title: Mater Today Commun
– volume: 204
  start-page: 162
  year: 2019
  end-page: 175
  ident: b0110
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust Flame
– volume: 22
  start-page: 2963
  year: 2008
  end-page: 2971
  ident: b0015
  article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions
  publication-title: Energy Fuel
– volume: 159
  start-page: 3286
  year: 2012
  end-page: 3299
  ident: b0165
  article-title: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures
  publication-title: Combust Flame
– volume: 31
  start-page: 757
  year: 1999
  end-page: 765
  ident: b0080
  article-title: Modeling the thermal De-NOx process: closing in on a final solution
  publication-title: Int J Chem Kinet
– volume: 47
  start-page: 695
  year: 2015
  end-page: 723
  ident: b0145
  article-title: A genetic algorithm–based method for the optimization of reduced kinetics mechanisms
  publication-title: Int J Chem Kinet
– volume: 49
  start-page: 1798
  year: 2011
  end-page: 1809
  ident: b0130
  article-title: Numerical investigation of the uncertainty of Arrhenius parameters
  publication-title: J Math Chem
– volume: 107
  start-page: 29
  year: 2012
  end-page: 34
  ident: b0135
  article-title: Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models
  publication-title: Reliab Eng Syst Saf
– volume: 67
  start-page: 31
  year: 2018
  end-page: 68
  ident: b0090
  article-title: Modeling nitrogen chemistry in combustion
  publication-title: Prog Energy Combust Sci
– volume: 194
  start-page: 28
  year: 2018
  end-page: 36
  ident: b0250
  article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames
  publication-title: Combust Flame
– volume: 39
  start-page: 2503
  year: 2022
  end-page: 2515
  ident: b0245
  article-title: Prediction of three-dimensional fractal dimension of hematite flocs based on particle swarm optimization optimized back propagation neural network
  publication-title: Min Metall Explor
– volume: 16
  start-page: 2773
  year: 2023
  ident: b0020
  article-title: Evaluating the effect of ammonia Co-firing on the performance of a pulverized coal-fired utility boiler
  publication-title: Energies
– volume: 59
  start-page: 123
  year: 1988
  end-page: 141
  ident: b0220
  article-title: Effect of chemistry and transport properties on near-limit flames at microgravity
  publication-title: Combust Sci Technol
– reference: Grannell SM, Assanis DN, Bohac SV, Gillespie DE. The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. vol. 47837, 2006, p. 15–27.
– volume: 83
  year: 2023
  ident: b0045
  article-title: Investigation of spark ignition processes of laminar strained premixed stoichiometric NH
  publication-title: J Loss Prev Process Ind
– volume: 40
  start-page: 9570
  year: 2015
  end-page: 9578
  ident: b0215
  article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures
  publication-title: Int J Hydrogen Energy
– reference: Goodwin DG, Moffat HK, Speth RL. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes 2018.
– volume: 210
  start-page: 236
  year: 2019
  end-page: 246
  ident: b0210
  article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions
  publication-title: Combust Flame
– volume: 159
  start-page: 98
  year: 2015
  end-page: 106
  ident: b0195
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
– volume: 296
  year: 2021
  ident: b0035
  article-title: Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines
  publication-title: J Clean Prod
– volume: 357
  year: 2024
  ident: b0100
  article-title: Visualization and simulation study of ammonia blending with hydrogen as combustion application in lean-burn condition
  publication-title: Fuel
– volume: 156
  start-page: 1413
  year: 2009
  end-page: 1426
  ident: b0105
  article-title: An experimental and kinetic modeling study of premixed NH
  publication-title: Combust Flame
– volume: 36
  start-page: 3351
  year: 2017
  end-page: 3359
  ident: b0025
  article-title: Performances and emission characteristics of NH
  publication-title: Proc Combust Inst
– volume: 59
  start-page: 123
  year: 1988
  ident: 10.1016/j.fuel.2024.131019_b0220
  article-title: Effect of chemistry and transport properties on near-limit flames at microgravity
  publication-title: Combust Sci Technol
  doi: 10.1080/00102208808947092
– volume: 22
  start-page: 2963
  year: 2008
  ident: 10.1016/j.fuel.2024.131019_b0015
  article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions
  publication-title: Energy Fuel
  doi: 10.1021/ef800140f
– volume: 152
  start-page: 23
  year: 2000
  ident: 10.1016/j.fuel.2024.131019_b0180
  article-title: Kinetic modeling of the thermal decomposition of ammonia
  publication-title: Combust Sci Technol
  doi: 10.1080/00102200008952125
– volume: 210
  start-page: 236
  year: 2019
  ident: 10.1016/j.fuel.2024.131019_b0210
  article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.08.033
– volume: 90
  start-page: 87
  year: 2011
  ident: 10.1016/j.fuel.2024.131019_b0010
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.07.055
– ident: 10.1016/j.fuel.2024.131019_b0030
  doi: 10.1115/IMECE2006-13048
– volume: 109
  start-page: 1
  year: 1997
  ident: 10.1016/j.fuel.2024.131019_b0055
  article-title: Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(96)00151-4
– volume: 69
  start-page: 63
  year: 2018
  ident: 10.1016/j.fuel.2024.131019_b0050
  article-title: Ammonia for power
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2018.07.001
– volume: 156
  start-page: 1413
  year: 2009
  ident: 10.1016/j.fuel.2024.131019_b0105
  article-title: An experimental and kinetic modeling study of premixed NH3/CH2/O2/Ar flames at low pressure
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2009.03.005
– volume: 159
  start-page: 2799
  year: 2012
  ident: 10.1016/j.fuel.2024.131019_b0140
  article-title: Modeling of ammonia combustion at low pressure
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2012.06.003
– ident: 10.1016/j.fuel.2024.131019_b0230
– volume: 159
  start-page: 98
  year: 2015
  ident: 10.1016/j.fuel.2024.131019_b0195
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.070
– volume: 123
  start-page: 140
  year: 2000
  ident: 10.1016/j.fuel.2024.131019_b0200
  article-title: Flammability limits, ignition energy, and flame speeds in H2–CH2–NH3–N2O–O2–N2 mixtures
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(00)00152-8
– volume: 296
  year: 2021
  ident: 10.1016/j.fuel.2024.131019_b0035
  article-title: Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.126562
– volume: 428
  year: 2023
  ident: 10.1016/j.fuel.2024.131019_b0095
  article-title: Investigation of ammonia cracking combined with lean-burn operation for zero-carbon combustion and NO/N2O/NO2 improvements
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.139478
– volume: 140
  year: 2018
  ident: 10.1016/j.fuel.2024.131019_b0150
  article-title: Thermochemical mechanism optimization for accurate predictions of CH concentrations in premixed flames of C1–C3 alkane fuels
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.4038416
– volume: 241
  year: 2022
  ident: 10.1016/j.fuel.2024.131019_b0155
  article-title: An optimized kinetic model for H2/CO combustion in CO2 diluent at elevated pressures
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2022.112093
– volume: 162
  start-page: 554
  year: 2015
  ident: 10.1016/j.fuel.2024.131019_b0070
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2014.08.022
– volume: 40
  start-page: 9570
  year: 2015
  ident: 10.1016/j.fuel.2024.131019_b0215
  article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.04.024
– ident: 10.1016/j.fuel.2024.131019_b0005
  doi: 10.1016/j.proci.2016.09.009
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.fuel.2024.131019_b0225
  article-title: Particle swarm optimization
  publication-title: IEEE
– volume: 49
  start-page: 1798
  year: 2011
  ident: 10.1016/j.fuel.2024.131019_b0130
  article-title: Numerical investigation of the uncertainty of Arrhenius parameters
  publication-title: J Math Chem
  doi: 10.1007/s10910-011-9859-7
– volume: 107
  start-page: 29
  year: 2012
  ident: 10.1016/j.fuel.2024.131019_b0135
  article-title: Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.06.009
– volume: 21
  start-page: 953
  year: 1988
  ident: 10.1016/j.fuel.2024.131019_b0255
  article-title: Experimental study of the structure of an ammonia-oxygen flame
  publication-title: Elsevier
– volume: 67
  start-page: 31
  year: 2018
  ident: 10.1016/j.fuel.2024.131019_b0090
  article-title: Modeling nitrogen chemistry in combustion
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2018.01.002
– volume: 44
  start-page: 284
  year: 2012
  ident: 10.1016/j.fuel.2024.131019_b0125
  article-title: Determination of rate parameters based on both direct and indirect measurements
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.20717
– volume: 204
  start-page: 162
  year: 2019
  ident: 10.1016/j.fuel.2024.131019_b0110
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.03.008
– volume: 34
  start-page: 1
  year: 2008
  ident: 10.1016/j.fuel.2024.131019_b0065
  article-title: The oxidation of hydrogen cyanide and related chemistry
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2007.02.004
– volume: 194
  start-page: 28
  year: 2018
  ident: 10.1016/j.fuel.2024.131019_b0250
  article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2018.04.011
– volume: 357
  year: 2024
  ident: 10.1016/j.fuel.2024.131019_b0100
  article-title: Visualization and simulation study of ammonia blending with hydrogen as combustion application in lean-burn condition
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129812
– ident: 10.1016/j.fuel.2024.131019_b0190
– volume: 213
  start-page: 1
  year: 2020
  ident: 10.1016/j.fuel.2024.131019_b0185
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.11.032
– volume: 31
  start-page: 757
  year: 1999
  ident: 10.1016/j.fuel.2024.131019_b0080
  article-title: Modeling the thermal De-NOx process: closing in on a final solution
  publication-title: Int J Chem Kinet
  doi: 10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V
– volume: 17
  start-page: 732
  year: 2016
  ident: 10.1016/j.fuel.2024.131019_b0240
  article-title: A novel particle swarm and genetic algorithm hybrid method for diesel engine performance optimization
  publication-title: Int J Engine Res
  doi: 10.1177/1468087415611031
– volume: 47
  start-page: 695
  year: 2015
  ident: 10.1016/j.fuel.2024.131019_b0145
  article-title: A genetic algorithm–based method for the optimization of reduced kinetics mechanisms
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.20942
– volume: 39
  start-page: 2503
  year: 2022
  ident: 10.1016/j.fuel.2024.131019_b0245
  article-title: Prediction of three-dimensional fractal dimension of hematite flocs based on particle swarm optimization optimized back propagation neural network
  publication-title: Min Metall Explor
– volume: 257
  year: 2019
  ident: 10.1016/j.fuel.2024.131019_b0115
  article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH2 mixtures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116059
– volume: 83
  year: 2023
  ident: 10.1016/j.fuel.2024.131019_b0045
  article-title: Investigation of spark ignition processes of laminar strained premixed stoichiometric NH3-H2-air flames
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2023.105043
– volume: 158
  start-page: 774
  year: 2011
  ident: 10.1016/j.fuel.2024.131019_b0075
  article-title: The role of NNH in NO formation and control
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2010.12.013
– ident: 10.1016/j.fuel.2024.131019_b0160
– volume: 43
  start-page: 3004
  year: 2018
  ident: 10.1016/j.fuel.2024.131019_b0120
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.066
– ident: 10.1016/j.fuel.2024.131019_b0175
– volume: 146
  year: 2023
  ident: 10.1016/j.fuel.2024.131019_b0170
  article-title: Influence of initial temperature on laminar burning velocity in hydrogen-air mixtures as potential for green energy carrier
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2023.106861
– volume: 36
  start-page: 3351
  year: 2017
  ident: 10.1016/j.fuel.2024.131019_b0025
  article-title: Performances and emission characteristics of NH3–air and NH3–CH2–air combustion gas-turbine power generations
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2016.07.088
– volume: 262
  year: 2023
  ident: 10.1016/j.fuel.2024.131019_b0040
  article-title: Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125458
– volume: 155
  start-page: 144
  year: 2008
  ident: 10.1016/j.fuel.2024.131019_b0205
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2007.11.089
– volume: 31
  year: 2022
  ident: 10.1016/j.fuel.2024.131019_b0235
  article-title: Artificial neural network approach for mechanical properties prediction of as-cast A380 aluminum alloy
  publication-title: Mater Today Commun
– volume: 181
  start-page: 358
  year: 2016
  ident: 10.1016/j.fuel.2024.131019_b0085
  article-title: Ammonia oxidation at high pressure and intermediate temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.04.100
– volume: 159
  start-page: 3286
  year: 2012
  ident: 10.1016/j.fuel.2024.131019_b0165
  article-title: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2012.06.008
– volume: 16
  start-page: 2773
  year: 2023
  ident: 10.1016/j.fuel.2024.131019_b0020
  article-title: Evaluating the effect of ammonia Co-firing on the performance of a pulverized coal-fired utility boiler
  publication-title: Energies
  doi: 10.3390/en16062773
– volume: 46
  start-page: 2317
  year: 2005
  ident: 10.1016/j.fuel.2024.131019_b0060
  article-title: Investigating the effects of LPG on spark ignition engine combustion and performance
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2004.09.012
SSID ssj0007854
Score 2.458534
Snippet •A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 131019
SubjectTerms Ammonia/air flame
Kinetic modeling
Laminar flame speed
Optimization
Particle swarm algorithm
Title An improved particle swarm algorithm-based method for kinetic modeling study of ammonia/air laminar flame speed
URI https://dx.doi.org/10.1016/j.fuel.2024.131019
Volume 363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0016-2361
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007854
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  issn: 0016-2361
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007854
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0016-2361
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007854
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0016-2361
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007854
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0016-2361
  databaseCode: AKRWK
  dateStart: 19700101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7R57CM5lmKpij1Z6C3sKxptk1BbvPnb3clDK0gP3pIwsyyTYR67M98gdC0jYh27HzlGKg-ObpQjqfEdYSQJCEt0VCaKjxM2npL7GZ210LDphYGyytr2Vza9tNb1l34tzX6RptDj6zGADoEqSI-VeTshHKYY9D5_yjx4SCskZo85QF03zlQ1XsnawPWDT3qeDXMAbecv57ThcEYHaL-OFPGg2swhapnsCO1t4Aceo3yQ4bQ8FTAaF_W28fuHWC6wmD_nNvF_WTjgqDSuRkVjG6PiN7uCJcXlFBy7EC4xZnGeYAFamYq-SJfYqgr06uLEPthFC-vmTtB0dPs0HDv1BAVHBa67chLNaOCLJBJChFyTyJUqFFzZfDi0uaCItKaSGKOiQADQF-GBooIYRrmQCVXBKWpneWbOEHYVkZbIU64viYxC6TKlAsE4l5ryxOsgrxFdrGp4cZhyMY-bOrLXGMQdg7jjStwddPPNU1TgGlupafNH4l8qElvrv4Xv_J98F2gX3qrqxkvUXi3X5spGICvZLVWsi3YGdw_jyRfAFNvg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbSpuHH8lYVVQF2k6t1C2yHQcCbRKVVmz8dnx5QJEQA1uU3FnW5XQP--47hG5kQIxjdwNLS-XA0Y2yJNWuJbQkHmFxFBSJ4mjMBlPyMKOzBurVvTBQVlnZ_tKmF9a6etOppNnJkwR6fB0G0CFQBekwyNu3CHU5ZGDtj-86D-7TEorZYRaQV50zZZFXvNZw_-CStmPiHIDb-c07bXic_j7aq0JF3C13c4AaOj1EuxsAgkco66Y4KY4FdITzat_47V0sF1jMnzKT-T8vLPBUES5nRWMTpOJXs4IhxcUYHLMQLkBmcRZjAWqZiI5IltjoCjTr4tg8mEVz4-eO0bR_N-kNrGqEgqU8215ZccSo54o4EEL4PCKBLZUvuDIJsW-SQRFEEZVEaxV4ApC-CPcUFUQzyoWMqfJOUDPNUn2KsK2INESOsl1JZOBLmynlCca5jCiPnRZyatGFqsIXhzEX87AuJHsJQdwhiDssxd1Ct188eYmu8Sc1rf9I-ENHQmP-_-A7-yffNdoeTEbDcHg_fjxHO_ClLHW8QM3Vcq0vTTiykleFun0C9XTddQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+particle+swarm+algorithm-based+method+for+kinetic+modeling+study+of+ammonia%2Fair+laminar+flame+speed&rft.jtitle=Fuel+%28Guildford%29&rft.au=Hu%2C+Yu&rft.au=Li%2C+Jun&rft.au=Chen%2C+Haie&rft.au=Li%2C+Kang&rft.date=2024-05-01&rft.issn=0016-2361&rft.volume=363&rft.spage=131019&rft_id=info:doi/10.1016%2Fj.fuel.2024.131019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2024_131019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon