An improved particle swarm algorithm-based method for kinetic modeling study of ammonia/air laminar flame speed
•A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic reaction rate constants is constructed.•An ammonia kinetic mechanism with low prediction error of the laminar flame speed is developed. In recen...
Saved in:
| Published in | Fuel (Guildford) Vol. 363; p. 131019 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-2361 |
| DOI | 10.1016/j.fuel.2024.131019 |
Cover
| Abstract | •A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic reaction rate constants is constructed.•An ammonia kinetic mechanism with low prediction error of the laminar flame speed is developed.
In recent years, ammonia has garnered increasing attention as a promising carbon-free fuel. Laminar flame speed is a critical property of ammonia fuel that has been extensively studied by researchers using chemical kinetics mechanisms. However, some deviations still remain in the numerical predictions. To further improve the prediction accuracy of the laminar flame speed for ammonia/air flame, an ammonia kinetic mechanism is developed in this work. Reactions from Gri-Mech 3.0, Li et al. mechanism, and Han et al. mechanism that have significant impact on laminar flame speed were first assembled to the Okafor et al. mechanism, and H/OH sub-mechanisms were merged to establish a kinetic mechanism containing 43 species and 142 reactions. A particle swarm algorithm with improved inertia weights is proposed and the fitness function for outputting laminar flame speed prediction error is customized based on Cantera codes, then forming the algorithm framework used to optimize the kinetic mechanism. The pre-exponential factor A, the temperature exponent n and the activation energy Ea of the four reactions in the merged mechanism that have high sensitivity to the laminar flame speed are selected as the independent variables for optimization, and the reactions rate constants corresponding to the high prediction accuracy of the laminar flame speed is finally obtained. The numerical prediction indicates a reduction in mean absolute percentage error of laminar flame speed from 22.563 % to 10.649 % using the optimization mechanism. The results of the sensitivity and reaction pathways analyses demonstrated that more H-related reactions were considered in the optimized mechanism, and the relative ROP of H-related reactions were adjusted at different equivalence ratios, resulting in higher or lower predictions of laminar flame speed compared with the unoptimized Okafor et al. mechanism. Ignition delay time as well as the species distribution of NH3, NO, and N2O was studied. The ignition delay time predictions using the optimized mechanism are in better agreement with the experiment data at P = 11 atm and 30 atm. The optimization mechanism demonstrated accurate predictions for NH3 and NO while exhibiting an overestimation for N2O, but the N2O prediction error is smaller compared to the Okafor et al. mechanism. |
|---|---|
| AbstractList | •A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic reaction rate constants is constructed.•An ammonia kinetic mechanism with low prediction error of the laminar flame speed is developed.
In recent years, ammonia has garnered increasing attention as a promising carbon-free fuel. Laminar flame speed is a critical property of ammonia fuel that has been extensively studied by researchers using chemical kinetics mechanisms. However, some deviations still remain in the numerical predictions. To further improve the prediction accuracy of the laminar flame speed for ammonia/air flame, an ammonia kinetic mechanism is developed in this work. Reactions from Gri-Mech 3.0, Li et al. mechanism, and Han et al. mechanism that have significant impact on laminar flame speed were first assembled to the Okafor et al. mechanism, and H/OH sub-mechanisms were merged to establish a kinetic mechanism containing 43 species and 142 reactions. A particle swarm algorithm with improved inertia weights is proposed and the fitness function for outputting laminar flame speed prediction error is customized based on Cantera codes, then forming the algorithm framework used to optimize the kinetic mechanism. The pre-exponential factor A, the temperature exponent n and the activation energy Ea of the four reactions in the merged mechanism that have high sensitivity to the laminar flame speed are selected as the independent variables for optimization, and the reactions rate constants corresponding to the high prediction accuracy of the laminar flame speed is finally obtained. The numerical prediction indicates a reduction in mean absolute percentage error of laminar flame speed from 22.563 % to 10.649 % using the optimization mechanism. The results of the sensitivity and reaction pathways analyses demonstrated that more H-related reactions were considered in the optimized mechanism, and the relative ROP of H-related reactions were adjusted at different equivalence ratios, resulting in higher or lower predictions of laminar flame speed compared with the unoptimized Okafor et al. mechanism. Ignition delay time as well as the species distribution of NH3, NO, and N2O was studied. The ignition delay time predictions using the optimized mechanism are in better agreement with the experiment data at P = 11 atm and 30 atm. The optimization mechanism demonstrated accurate predictions for NH3 and NO while exhibiting an overestimation for N2O, but the N2O prediction error is smaller compared to the Okafor et al. mechanism. |
| ArticleNumber | 131019 |
| Author | Li, Jun Wang, Lei Chen, Haie Li, Kang Zhang, Fu Hu, Yu |
| Author_xml | – sequence: 1 givenname: Yu surname: Hu fullname: Hu, Yu email: huyu@xhlab.cn organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 2 givenname: Jun surname: Li fullname: Li, Jun organization: School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 3 givenname: Haie surname: Chen fullname: Chen, Haie organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China – sequence: 4 givenname: Kang surname: Li fullname: Li, Kang organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China – sequence: 5 givenname: Lei surname: Wang fullname: Wang, Lei organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China – sequence: 6 givenname: Fu surname: Zhang fullname: Zhang, Fu organization: National Energy Key Laboratory for New Hydrogen-ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, PR China |
| BookMark | eNp9kL1uAjEQhF0QKZDkBVL5BQ58_3dSGoTyJyGlSWprz16DydlGtiHi7WNEqhRUu9rZb6SZGZlYZ5GQx5zNc5Y3i91cHXCcF6yo5nmZTv2ETFlSsqJs8lsyC2HHGGu7upoSt7RUm713R5R0Dz5qMSINP-ANhXHjvI5bkw0Qkmwwbp2kynn6rS2mV2qcxFHbDQ3xIE_UKQrGOKthAdrTEYy24KlKSzLdI8p7cqNgDPjwN-_I18vz5-otW3-8vq-W60yUjMVMyaYuC1A9AHStrHo2iA5a0VZFl7MGeinroUIUfQkpYVG1paihwqZuYVC1KO9Id_EV3oXgUXGhI0TtbPSgR54zfi6L7_i5LH4ui1_KSmjxD917bcCfrkNPFwhTqKNGz4PQaAVK7VFELp2-hv8CEcaJ-Q |
| CitedBy_id | crossref_primary_10_2118_223950_PA |
| Cites_doi | 10.1080/00102208808947092 10.1021/ef800140f 10.1080/00102200008952125 10.1016/j.combustflame.2019.08.033 10.1016/j.fuel.2010.07.055 10.1115/IMECE2006-13048 10.1016/S0010-2180(96)00151-4 10.1016/j.pecs.2018.07.001 10.1016/j.combustflame.2009.03.005 10.1016/j.combustflame.2012.06.003 10.1016/j.fuel.2015.06.070 10.1016/S0010-2180(00)00152-8 10.1016/j.jclepro.2021.126562 10.1016/j.jclepro.2023.139478 10.1115/1.4038416 10.1016/j.combustflame.2022.112093 10.1016/j.combustflame.2014.08.022 10.1016/j.ijhydene.2015.04.024 10.1016/j.proci.2016.09.009 10.1007/s10910-011-9859-7 10.1016/j.ress.2011.06.009 10.1016/j.pecs.2018.01.002 10.1002/kin.20717 10.1016/j.combustflame.2019.03.008 10.1016/j.pecs.2007.02.004 10.1016/j.combustflame.2018.04.011 10.1016/j.fuel.2023.129812 10.1016/j.combustflame.2019.11.032 10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V 10.1177/1468087415611031 10.1002/kin.20942 10.1016/j.fuel.2019.116059 10.1016/j.jlp.2023.105043 10.1016/j.combustflame.2010.12.013 10.1016/j.ijhydene.2017.12.066 10.1016/j.icheatmasstransfer.2023.106861 10.1016/j.proci.2016.07.088 10.1016/j.energy.2022.125458 10.1016/j.jhazmat.2007.11.089 10.1016/j.fuel.2016.04.100 10.1016/j.combustflame.2012.06.008 10.3390/en16062773 10.1016/j.enconman.2004.09.012 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.fuel.2024.131019 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_fuel_2024_131019 S0016236124001650 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AATTM AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB VH1 WUQ XPP ZY4 ~HD |
| ID | FETCH-LOGICAL-c300t-fd6532af9aaa87d490bc8a7c7428106a9dd5b4eec93a1012473c5a4e657abf5c3 |
| IEDL.DBID | .~1 |
| ISSN | 0016-2361 |
| IngestDate | Thu Apr 24 23:12:27 EDT 2025 Wed Oct 01 04:05:00 EDT 2025 Tue Dec 03 03:44:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Particle swarm algorithm Kinetic modeling Laminar flame speed Ammonia/air flame Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-fd6532af9aaa87d490bc8a7c7428106a9dd5b4eec93a1012473c5a4e657abf5c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_fuel_2024_131019 crossref_primary_10_1016_j_fuel_2024_131019 elsevier_sciencedirect_doi_10_1016_j_fuel_2024_131019 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cardoso, Silva, Rocha, Hall, Costa, Eusébio (b0035) 2021; 296 Versailles, Watson, Durocher, Bourque, Bergthorson (b0150) 2018; 140 Han, Wang, He, Zhu, Cen (b0185) 2020; 213 Varga, Szabó, Zsély, Zempléni, Turányi (b0130) 2011; 49 Alekseev, Konnov (b0250) 2018; 194 Bayraktar, Durgun (b0060) 2005; 46 Bian, Vandooren, Van Tiggelen (b0255) 1988; 21 Liu, Lin, Zhang, Lei, Qi, Wang (b0040) 2023; 262 Yu, Eckart, Essmann, Markus, Valera-Medina, Schießl (b0045) 2023; 83 Meng, Qin, Liu, Wei, Tian, Long (b0100) 2024; 357 Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa (b0110) 2019; 204 Li, Zou, Yao, Lin, Fu, Luo (b0155) 2022; 241 Kurata, Iki, Matsunuma, Inoue, Tsujimura, Furutani (b0025) 2017; 36 Tian, Li, Zhang, Glarborg, Qi (b0105) 2009; 156 Glarborg, Miller, Ruscic, Klippenstein (b0090) 2018; 67 Song, Hashemi, Christensen, Zou, Marshall, Glarborg (b0085) 2016; 181 Mathieu, Petersen (b0070) 2015; 162 Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (b0200) 2000; 123 Valera-Medina, Xiao, Owen-Jones, David, Bowen (b0050) 2018; 69 Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI-Mech 3.0, 1999. URL Http://Www Me Berkeley Edu/Gri_mech 2011;38. Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (b0205) 2008; 155 Mei, Zhang, Ma, Cui, Guo, Cao (b0210) 2019; 210 Konnov, Ruyck (b0180) 2000; 152 Bertram, Zhang, Kong (b0240) 2016; 17 Turányi, Nagy, Zsély, Cserháti, Varga, Szabó (b0125) 2012; 44 Zhang, Niu, Zhang, Yu (b0245) 2022; 39 Otomo, Koshi, Mitsumori, Iwasaki, Yamada (b0120) 2018; 43 Grannell SM, Assanis DN, Bohac SV, Gillespie DE. The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. vol. 47837, 2006, p. 15–27. Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (b0195) 2015; 159 Bae C, Kim J. Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute 2017;36:3389–413. Goodwin DG, Moffat HK, Speth RL. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes 2018. Ichikawa, Hayakawa, Kitagawa, Somarathne, Kudo, Kobayashi (b0215) 2015; 40 Meng, Qin, Liu, Cui, Tian, Long (b0095) 2023; 428 Ronney (b0220) 1988; 59 Sikalo, Hasemann, Schulz, Kempf, Wlokas (b0145) 2015; 47 Lan, Wang, Sun, Chang, Deng, Sun (b0235) 2022; 31 Galmiche, Halter, Foucher (b0165) 2012; 159 Felden A. Cantera Tutorials-A series of tutorials to get started with the python interface of cantera. Cerfacs (November 2015,[Online] Available: Https://Www Cerfacs Fr/Cantera/Docs/Tutorials/CANTERA_HandsOn Pdf 2015. Aung, Hassan, Faeth (b0055) 1997; 109 Dagaut, Glarborg, Alzueta (b0065) 2008; 34 Duynslaegher, Contino, Vandooren, Jeanmart (b0140) 2012; 159 Shi Y, Eberhart R. A modified particle swarm optimizer, IEEE; 1998, p. 69–73. Miller, Pjij (b0080) 1999; 31 Li, Konnov, He, Qin, Zhang (b0115) 2019; 257 Nagy, Turanyi (b0135) 2012; 107 Klippenstein, Harding, Glarborg, Miller (b0075) 2011; 158 Porowski, Kowalik, Grzmiączka, Jurišević, Gawdzik (b0170) 2023; 146 Reiter, Kong (b0010) 2011; 90 Kennedy, Eberhart (b0225) 1995; 4 Reiter, Kong (b0015) 2008; 22 Wang, Sheng (b0020) 2023; 16 Liu (10.1016/j.fuel.2024.131019_b0040) 2023; 262 Reiter (10.1016/j.fuel.2024.131019_b0010) 2011; 90 Ronney (10.1016/j.fuel.2024.131019_b0220) 1988; 59 Nagy (10.1016/j.fuel.2024.131019_b0135) 2012; 107 Meng (10.1016/j.fuel.2024.131019_b0095) 2023; 428 Otomo (10.1016/j.fuel.2024.131019_b0120) 2018; 43 Lan (10.1016/j.fuel.2024.131019_b0235) 2022; 31 10.1016/j.fuel.2024.131019_b0190 Li (10.1016/j.fuel.2024.131019_b0155) 2022; 241 10.1016/j.fuel.2024.131019_b0030 Song (10.1016/j.fuel.2024.131019_b0085) 2016; 181 Takizawa (10.1016/j.fuel.2024.131019_b0205) 2008; 155 Varga (10.1016/j.fuel.2024.131019_b0130) 2011; 49 Bian (10.1016/j.fuel.2024.131019_b0255) 1988; 21 Glarborg (10.1016/j.fuel.2024.131019_b0090) 2018; 67 Pfahl (10.1016/j.fuel.2024.131019_b0200) 2000; 123 Alekseev (10.1016/j.fuel.2024.131019_b0250) 2018; 194 Han (10.1016/j.fuel.2024.131019_b0185) 2020; 213 Wang (10.1016/j.fuel.2024.131019_b0020) 2023; 16 Yu (10.1016/j.fuel.2024.131019_b0045) 2023; 83 Kurata (10.1016/j.fuel.2024.131019_b0025) 2017; 36 Versailles (10.1016/j.fuel.2024.131019_b0150) 2018; 140 Galmiche (10.1016/j.fuel.2024.131019_b0165) 2012; 159 10.1016/j.fuel.2024.131019_b0175 Zhang (10.1016/j.fuel.2024.131019_b0245) 2022; 39 Aung (10.1016/j.fuel.2024.131019_b0055) 1997; 109 Sikalo (10.1016/j.fuel.2024.131019_b0145) 2015; 47 Meng (10.1016/j.fuel.2024.131019_b0100) 2024; 357 Duynslaegher (10.1016/j.fuel.2024.131019_b0140) 2012; 159 Li (10.1016/j.fuel.2024.131019_b0115) 2019; 257 Dagaut (10.1016/j.fuel.2024.131019_b0065) 2008; 34 Tian (10.1016/j.fuel.2024.131019_b0105) 2009; 156 Valera-Medina (10.1016/j.fuel.2024.131019_b0050) 2018; 69 Kennedy (10.1016/j.fuel.2024.131019_b0225) 1995; 4 10.1016/j.fuel.2024.131019_b0005 Miller (10.1016/j.fuel.2024.131019_b0080) 1999; 31 Hayakawa (10.1016/j.fuel.2024.131019_b0195) 2015; 159 Okafor (10.1016/j.fuel.2024.131019_b0110) 2019; 204 Ichikawa (10.1016/j.fuel.2024.131019_b0215) 2015; 40 Konnov (10.1016/j.fuel.2024.131019_b0180) 2000; 152 Mathieu (10.1016/j.fuel.2024.131019_b0070) 2015; 162 10.1016/j.fuel.2024.131019_b0160 Reiter (10.1016/j.fuel.2024.131019_b0015) 2008; 22 Cardoso (10.1016/j.fuel.2024.131019_b0035) 2021; 296 10.1016/j.fuel.2024.131019_b0230 Porowski (10.1016/j.fuel.2024.131019_b0170) 2023; 146 Turányi (10.1016/j.fuel.2024.131019_b0125) 2012; 44 Bayraktar (10.1016/j.fuel.2024.131019_b0060) 2005; 46 Mei (10.1016/j.fuel.2024.131019_b0210) 2019; 210 Klippenstein (10.1016/j.fuel.2024.131019_b0075) 2011; 158 Bertram (10.1016/j.fuel.2024.131019_b0240) 2016; 17 |
| References_xml | – volume: 44 start-page: 284 year: 2012 end-page: 302 ident: b0125 article-title: Determination of rate parameters based on both direct and indirect measurements publication-title: Int J Chem Kinet – volume: 140 year: 2018 ident: b0150 article-title: Thermochemical mechanism optimization for accurate predictions of CH concentrations in premixed flames of C publication-title: J Eng Gas Turbines Power – volume: 146 year: 2023 ident: b0170 article-title: Influence of initial temperature on laminar burning velocity in hydrogen-air mixtures as potential for green energy carrier publication-title: Int Commun Heat Mass Transfer – volume: 17 start-page: 732 year: 2016 end-page: 747 ident: b0240 article-title: A novel particle swarm and genetic algorithm hybrid method for diesel engine performance optimization publication-title: Int J Engine Res – reference: Shi Y, Eberhart R. A modified particle swarm optimizer, IEEE; 1998, p. 69–73. – volume: 158 start-page: 774 year: 2011 end-page: 789 ident: b0075 article-title: The role of NNH in NO formation and control publication-title: Combust Flame – volume: 43 start-page: 3004 year: 2018 end-page: 3014 ident: b0120 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int J Hydrogen Energy – volume: 21 start-page: 953 year: 1988 end-page: 963 ident: b0255 article-title: Experimental study of the structure of an ammonia-oxygen flame publication-title: Elsevier – volume: 162 start-page: 554 year: 2015 end-page: 570 ident: b0070 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry publication-title: Combust Flame – volume: 155 start-page: 144 year: 2008 end-page: 152 ident: b0205 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J Hazard Mater – volume: 181 start-page: 358 year: 2016 end-page: 365 ident: b0085 article-title: Ammonia oxidation at high pressure and intermediate temperatures publication-title: Fuel – reference: Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. GRI-Mech 3.0, 1999. URL Http://Www Me Berkeley Edu/Gri_mech 2011;38. – volume: 123 start-page: 140 year: 2000 end-page: 158 ident: b0200 article-title: Flammability limits, ignition energy, and flame speeds in H publication-title: Combust Flame – volume: 428 year: 2023 ident: b0095 article-title: Investigation of ammonia cracking combined with lean-burn operation for zero-carbon combustion and NO/N publication-title: J Clean Prod – volume: 34 start-page: 1 year: 2008 end-page: 46 ident: b0065 article-title: The oxidation of hydrogen cyanide and related chemistry publication-title: Prog Energy Combust Sci – volume: 262 year: 2023 ident: b0040 article-title: Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio publication-title: Energy – volume: 69 start-page: 63 year: 2018 end-page: 102 ident: b0050 article-title: Ammonia for power publication-title: Prog Energy Combust Sci – volume: 257 year: 2019 ident: b0115 article-title: Chemical mechanism development and reduction for combustion of NH publication-title: Fuel – volume: 152 start-page: 23 year: 2000 end-page: 37 ident: b0180 article-title: Kinetic modeling of the thermal decomposition of ammonia publication-title: Combust Sci Technol – volume: 109 start-page: 1 year: 1997 end-page: 24 ident: b0055 article-title: Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure publication-title: Combust Flame – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: b0225 article-title: Particle swarm optimization publication-title: IEEE – volume: 241 year: 2022 ident: b0155 article-title: An optimized kinetic model for H publication-title: Combust Flame – volume: 90 start-page: 87 year: 2011 end-page: 97 ident: b0010 article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel publication-title: Fuel – reference: Bae C, Kim J. Alternative fuels for internal combustion engines. Proceedings of the Combustion Institute 2017;36:3389–413. – volume: 46 start-page: 2317 year: 2005 end-page: 2333 ident: b0060 article-title: Investigating the effects of LPG on spark ignition engine combustion and performance publication-title: Energ Conver Manage – volume: 159 start-page: 2799 year: 2012 end-page: 2805 ident: b0140 article-title: Modeling of ammonia combustion at low pressure publication-title: Combust Flame – volume: 213 start-page: 1 year: 2020 end-page: 13 ident: b0185 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH publication-title: Combust Flame – reference: Felden A. Cantera Tutorials-A series of tutorials to get started with the python interface of cantera. Cerfacs (November 2015,[Online] Available: Https://Www Cerfacs Fr/Cantera/Docs/Tutorials/CANTERA_HandsOn Pdf 2015. – volume: 31 year: 2022 ident: b0235 article-title: Artificial neural network approach for mechanical properties prediction of as-cast A380 aluminum alloy publication-title: Mater Today Commun – volume: 204 start-page: 162 year: 2019 end-page: 175 ident: b0110 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust Flame – volume: 22 start-page: 2963 year: 2008 end-page: 2971 ident: b0015 article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions publication-title: Energy Fuel – volume: 159 start-page: 3286 year: 2012 end-page: 3299 ident: b0165 article-title: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures publication-title: Combust Flame – volume: 31 start-page: 757 year: 1999 end-page: 765 ident: b0080 article-title: Modeling the thermal De-NOx process: closing in on a final solution publication-title: Int J Chem Kinet – volume: 47 start-page: 695 year: 2015 end-page: 723 ident: b0145 article-title: A genetic algorithm–based method for the optimization of reduced kinetics mechanisms publication-title: Int J Chem Kinet – volume: 49 start-page: 1798 year: 2011 end-page: 1809 ident: b0130 article-title: Numerical investigation of the uncertainty of Arrhenius parameters publication-title: J Math Chem – volume: 107 start-page: 29 year: 2012 end-page: 34 ident: b0135 article-title: Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models publication-title: Reliab Eng Syst Saf – volume: 67 start-page: 31 year: 2018 end-page: 68 ident: b0090 article-title: Modeling nitrogen chemistry in combustion publication-title: Prog Energy Combust Sci – volume: 194 start-page: 28 year: 2018 end-page: 36 ident: b0250 article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames publication-title: Combust Flame – volume: 39 start-page: 2503 year: 2022 end-page: 2515 ident: b0245 article-title: Prediction of three-dimensional fractal dimension of hematite flocs based on particle swarm optimization optimized back propagation neural network publication-title: Min Metall Explor – volume: 16 start-page: 2773 year: 2023 ident: b0020 article-title: Evaluating the effect of ammonia Co-firing on the performance of a pulverized coal-fired utility boiler publication-title: Energies – volume: 59 start-page: 123 year: 1988 end-page: 141 ident: b0220 article-title: Effect of chemistry and transport properties on near-limit flames at microgravity publication-title: Combust Sci Technol – reference: Grannell SM, Assanis DN, Bohac SV, Gillespie DE. The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine. vol. 47837, 2006, p. 15–27. – volume: 83 year: 2023 ident: b0045 article-title: Investigation of spark ignition processes of laminar strained premixed stoichiometric NH publication-title: J Loss Prev Process Ind – volume: 40 start-page: 9570 year: 2015 end-page: 9578 ident: b0215 article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures publication-title: Int J Hydrogen Energy – reference: Goodwin DG, Moffat HK, Speth RL. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes 2018. – volume: 210 start-page: 236 year: 2019 end-page: 246 ident: b0210 article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions publication-title: Combust Flame – volume: 159 start-page: 98 year: 2015 end-page: 106 ident: b0195 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel – volume: 296 year: 2021 ident: b0035 article-title: Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines publication-title: J Clean Prod – volume: 357 year: 2024 ident: b0100 article-title: Visualization and simulation study of ammonia blending with hydrogen as combustion application in lean-burn condition publication-title: Fuel – volume: 156 start-page: 1413 year: 2009 end-page: 1426 ident: b0105 article-title: An experimental and kinetic modeling study of premixed NH publication-title: Combust Flame – volume: 36 start-page: 3351 year: 2017 end-page: 3359 ident: b0025 article-title: Performances and emission characteristics of NH publication-title: Proc Combust Inst – volume: 59 start-page: 123 year: 1988 ident: 10.1016/j.fuel.2024.131019_b0220 article-title: Effect of chemistry and transport properties on near-limit flames at microgravity publication-title: Combust Sci Technol doi: 10.1080/00102208808947092 – volume: 22 start-page: 2963 year: 2008 ident: 10.1016/j.fuel.2024.131019_b0015 article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions publication-title: Energy Fuel doi: 10.1021/ef800140f – volume: 152 start-page: 23 year: 2000 ident: 10.1016/j.fuel.2024.131019_b0180 article-title: Kinetic modeling of the thermal decomposition of ammonia publication-title: Combust Sci Technol doi: 10.1080/00102200008952125 – volume: 210 start-page: 236 year: 2019 ident: 10.1016/j.fuel.2024.131019_b0210 article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.08.033 – volume: 90 start-page: 87 year: 2011 ident: 10.1016/j.fuel.2024.131019_b0010 article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel publication-title: Fuel doi: 10.1016/j.fuel.2010.07.055 – ident: 10.1016/j.fuel.2024.131019_b0030 doi: 10.1115/IMECE2006-13048 – volume: 109 start-page: 1 year: 1997 ident: 10.1016/j.fuel.2024.131019_b0055 article-title: Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure publication-title: Combust Flame doi: 10.1016/S0010-2180(96)00151-4 – volume: 69 start-page: 63 year: 2018 ident: 10.1016/j.fuel.2024.131019_b0050 article-title: Ammonia for power publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2018.07.001 – volume: 156 start-page: 1413 year: 2009 ident: 10.1016/j.fuel.2024.131019_b0105 article-title: An experimental and kinetic modeling study of premixed NH3/CH2/O2/Ar flames at low pressure publication-title: Combust Flame doi: 10.1016/j.combustflame.2009.03.005 – volume: 159 start-page: 2799 year: 2012 ident: 10.1016/j.fuel.2024.131019_b0140 article-title: Modeling of ammonia combustion at low pressure publication-title: Combust Flame doi: 10.1016/j.combustflame.2012.06.003 – ident: 10.1016/j.fuel.2024.131019_b0230 – volume: 159 start-page: 98 year: 2015 ident: 10.1016/j.fuel.2024.131019_b0195 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel doi: 10.1016/j.fuel.2015.06.070 – volume: 123 start-page: 140 year: 2000 ident: 10.1016/j.fuel.2024.131019_b0200 article-title: Flammability limits, ignition energy, and flame speeds in H2–CH2–NH3–N2O–O2–N2 mixtures publication-title: Combust Flame doi: 10.1016/S0010-2180(00)00152-8 – volume: 296 year: 2021 ident: 10.1016/j.fuel.2024.131019_b0035 article-title: Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126562 – volume: 428 year: 2023 ident: 10.1016/j.fuel.2024.131019_b0095 article-title: Investigation of ammonia cracking combined with lean-burn operation for zero-carbon combustion and NO/N2O/NO2 improvements publication-title: J Clean Prod doi: 10.1016/j.jclepro.2023.139478 – volume: 140 year: 2018 ident: 10.1016/j.fuel.2024.131019_b0150 article-title: Thermochemical mechanism optimization for accurate predictions of CH concentrations in premixed flames of C1–C3 alkane fuels publication-title: J Eng Gas Turbines Power doi: 10.1115/1.4038416 – volume: 241 year: 2022 ident: 10.1016/j.fuel.2024.131019_b0155 article-title: An optimized kinetic model for H2/CO combustion in CO2 diluent at elevated pressures publication-title: Combust Flame doi: 10.1016/j.combustflame.2022.112093 – volume: 162 start-page: 554 year: 2015 ident: 10.1016/j.fuel.2024.131019_b0070 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry publication-title: Combust Flame doi: 10.1016/j.combustflame.2014.08.022 – volume: 40 start-page: 9570 year: 2015 ident: 10.1016/j.fuel.2024.131019_b0215 article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.04.024 – ident: 10.1016/j.fuel.2024.131019_b0005 doi: 10.1016/j.proci.2016.09.009 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.fuel.2024.131019_b0225 article-title: Particle swarm optimization publication-title: IEEE – volume: 49 start-page: 1798 year: 2011 ident: 10.1016/j.fuel.2024.131019_b0130 article-title: Numerical investigation of the uncertainty of Arrhenius parameters publication-title: J Math Chem doi: 10.1007/s10910-011-9859-7 – volume: 107 start-page: 29 year: 2012 ident: 10.1016/j.fuel.2024.131019_b0135 article-title: Determination of the uncertainty domain of the Arrhenius parameters needed for the investigation of combustion kinetic models publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2011.06.009 – volume: 21 start-page: 953 year: 1988 ident: 10.1016/j.fuel.2024.131019_b0255 article-title: Experimental study of the structure of an ammonia-oxygen flame publication-title: Elsevier – volume: 67 start-page: 31 year: 2018 ident: 10.1016/j.fuel.2024.131019_b0090 article-title: Modeling nitrogen chemistry in combustion publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2018.01.002 – volume: 44 start-page: 284 year: 2012 ident: 10.1016/j.fuel.2024.131019_b0125 article-title: Determination of rate parameters based on both direct and indirect measurements publication-title: Int J Chem Kinet doi: 10.1002/kin.20717 – volume: 204 start-page: 162 year: 2019 ident: 10.1016/j.fuel.2024.131019_b0110 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.03.008 – volume: 34 start-page: 1 year: 2008 ident: 10.1016/j.fuel.2024.131019_b0065 article-title: The oxidation of hydrogen cyanide and related chemistry publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2007.02.004 – volume: 194 start-page: 28 year: 2018 ident: 10.1016/j.fuel.2024.131019_b0250 article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames publication-title: Combust Flame doi: 10.1016/j.combustflame.2018.04.011 – volume: 357 year: 2024 ident: 10.1016/j.fuel.2024.131019_b0100 article-title: Visualization and simulation study of ammonia blending with hydrogen as combustion application in lean-burn condition publication-title: Fuel doi: 10.1016/j.fuel.2023.129812 – ident: 10.1016/j.fuel.2024.131019_b0190 – volume: 213 start-page: 1 year: 2020 ident: 10.1016/j.fuel.2024.131019_b0185 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.11.032 – volume: 31 start-page: 757 year: 1999 ident: 10.1016/j.fuel.2024.131019_b0080 article-title: Modeling the thermal De-NOx process: closing in on a final solution publication-title: Int J Chem Kinet doi: 10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V – volume: 17 start-page: 732 year: 2016 ident: 10.1016/j.fuel.2024.131019_b0240 article-title: A novel particle swarm and genetic algorithm hybrid method for diesel engine performance optimization publication-title: Int J Engine Res doi: 10.1177/1468087415611031 – volume: 47 start-page: 695 year: 2015 ident: 10.1016/j.fuel.2024.131019_b0145 article-title: A genetic algorithm–based method for the optimization of reduced kinetics mechanisms publication-title: Int J Chem Kinet doi: 10.1002/kin.20942 – volume: 39 start-page: 2503 year: 2022 ident: 10.1016/j.fuel.2024.131019_b0245 article-title: Prediction of three-dimensional fractal dimension of hematite flocs based on particle swarm optimization optimized back propagation neural network publication-title: Min Metall Explor – volume: 257 year: 2019 ident: 10.1016/j.fuel.2024.131019_b0115 article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH2 mixtures publication-title: Fuel doi: 10.1016/j.fuel.2019.116059 – volume: 83 year: 2023 ident: 10.1016/j.fuel.2024.131019_b0045 article-title: Investigation of spark ignition processes of laminar strained premixed stoichiometric NH3-H2-air flames publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2023.105043 – volume: 158 start-page: 774 year: 2011 ident: 10.1016/j.fuel.2024.131019_b0075 article-title: The role of NNH in NO formation and control publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.12.013 – ident: 10.1016/j.fuel.2024.131019_b0160 – volume: 43 start-page: 3004 year: 2018 ident: 10.1016/j.fuel.2024.131019_b0120 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.066 – ident: 10.1016/j.fuel.2024.131019_b0175 – volume: 146 year: 2023 ident: 10.1016/j.fuel.2024.131019_b0170 article-title: Influence of initial temperature on laminar burning velocity in hydrogen-air mixtures as potential for green energy carrier publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2023.106861 – volume: 36 start-page: 3351 year: 2017 ident: 10.1016/j.fuel.2024.131019_b0025 article-title: Performances and emission characteristics of NH3–air and NH3–CH2–air combustion gas-turbine power generations publication-title: Proc Combust Inst doi: 10.1016/j.proci.2016.07.088 – volume: 262 year: 2023 ident: 10.1016/j.fuel.2024.131019_b0040 article-title: Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio publication-title: Energy doi: 10.1016/j.energy.2022.125458 – volume: 155 start-page: 144 year: 2008 ident: 10.1016/j.fuel.2024.131019_b0205 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2007.11.089 – volume: 31 year: 2022 ident: 10.1016/j.fuel.2024.131019_b0235 article-title: Artificial neural network approach for mechanical properties prediction of as-cast A380 aluminum alloy publication-title: Mater Today Commun – volume: 181 start-page: 358 year: 2016 ident: 10.1016/j.fuel.2024.131019_b0085 article-title: Ammonia oxidation at high pressure and intermediate temperatures publication-title: Fuel doi: 10.1016/j.fuel.2016.04.100 – volume: 159 start-page: 3286 year: 2012 ident: 10.1016/j.fuel.2024.131019_b0165 article-title: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures publication-title: Combust Flame doi: 10.1016/j.combustflame.2012.06.008 – volume: 16 start-page: 2773 year: 2023 ident: 10.1016/j.fuel.2024.131019_b0020 article-title: Evaluating the effect of ammonia Co-firing on the performance of a pulverized coal-fired utility boiler publication-title: Energies doi: 10.3390/en16062773 – volume: 46 start-page: 2317 year: 2005 ident: 10.1016/j.fuel.2024.131019_b0060 article-title: Investigating the effects of LPG on spark ignition engine combustion and performance publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2004.09.012 |
| SSID | ssj0007854 |
| Score | 2.458534 |
| Snippet | •A particle swarm algorithm with improved inertia weights for faster convergence performance is proposed.•An algorithm framework for optimizing mechanistic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 131019 |
| SubjectTerms | Ammonia/air flame Kinetic modeling Laminar flame speed Optimization Particle swarm algorithm |
| Title | An improved particle swarm algorithm-based method for kinetic modeling study of ammonia/air laminar flame speed |
| URI | https://dx.doi.org/10.1016/j.fuel.2024.131019 |
| Volume | 363 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0016-2361 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007854 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection issn: 0016-2361 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007854 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0016-2361 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007854 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0016-2361 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007854 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0016-2361 databaseCode: AKRWK dateStart: 19700101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7R57CM5lmKpij1Z6C3sKxptk1BbvPnb3clDK0gP3pIwsyyTYR67M98gdC0jYh27HzlGKg-ObpQjqfEdYSQJCEt0VCaKjxM2npL7GZ210LDphYGyytr2Vza9tNb1l34tzX6RptDj6zGADoEqSI-VeTshHKYY9D5_yjx4SCskZo85QF03zlQ1XsnawPWDT3qeDXMAbecv57ThcEYHaL-OFPGg2swhapnsCO1t4Aceo3yQ4bQ8FTAaF_W28fuHWC6wmD_nNvF_WTjgqDSuRkVjG6PiN7uCJcXlFBy7EC4xZnGeYAFamYq-SJfYqgr06uLEPthFC-vmTtB0dPs0HDv1BAVHBa67chLNaOCLJBJChFyTyJUqFFzZfDi0uaCItKaSGKOiQADQF-GBooIYRrmQCVXBKWpneWbOEHYVkZbIU64viYxC6TKlAsE4l5ryxOsgrxFdrGp4cZhyMY-bOrLXGMQdg7jjStwddPPNU1TgGlupafNH4l8qElvrv4Xv_J98F2gX3qrqxkvUXi3X5spGICvZLVWsi3YGdw_jyRfAFNvg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbSpuHH8lYVVQF2k6t1C2yHQcCbRKVVmz8dnx5QJEQA1uU3FnW5XQP--47hG5kQIxjdwNLS-XA0Y2yJNWuJbQkHmFxFBSJ4mjMBlPyMKOzBurVvTBQVlnZ_tKmF9a6etOppNnJkwR6fB0G0CFQBekwyNu3CHU5ZGDtj-86D-7TEorZYRaQV50zZZFXvNZw_-CStmPiHIDb-c07bXic_j7aq0JF3C13c4AaOj1EuxsAgkco66Y4KY4FdITzat_47V0sF1jMnzKT-T8vLPBUES5nRWMTpOJXs4IhxcUYHLMQLkBmcRZjAWqZiI5IltjoCjTr4tg8mEVz4-eO0bR_N-kNrGqEgqU8215ZccSo54o4EEL4PCKBLZUvuDIJsW-SQRFEEZVEaxV4ApC-CPcUFUQzyoWMqfJOUDPNUn2KsK2INESOsl1JZOBLmynlCca5jCiPnRZyatGFqsIXhzEX87AuJHsJQdwhiDssxd1Ct188eYmu8Sc1rf9I-ENHQmP-_-A7-yffNdoeTEbDcHg_fjxHO_ClLHW8QM3Vcq0vTTiykleFun0C9XTddQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+particle+swarm+algorithm-based+method+for+kinetic+modeling+study+of+ammonia%2Fair+laminar+flame+speed&rft.jtitle=Fuel+%28Guildford%29&rft.au=Hu%2C+Yu&rft.au=Li%2C+Jun&rft.au=Chen%2C+Haie&rft.au=Li%2C+Kang&rft.date=2024-05-01&rft.issn=0016-2361&rft.volume=363&rft.spage=131019&rft_id=info:doi/10.1016%2Fj.fuel.2024.131019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2024_131019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |