Non-parametric Bayesian models of response function in dynamic image sequences

•Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response functions.•We propose and study five non-parametric prior models of the response functions.•We analyze performance and behavior of the proposed models o...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 151; pp. 90 - 100
Main Authors Tichý, Ondřej, Šmídl, Václav
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2016
Subjects
Online AccessGet full text
ISSN1077-3142
1090-235X
DOI10.1016/j.cviu.2015.11.010

Cover

Abstract •Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response functions.•We propose and study five non-parametric prior models of the response functions.•We analyze performance and behavior of the proposed models on synthetic data.•Dynamic scintigraphy experiments demonstrate potential of the method in practice. Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions are used within hierarchical priors of the blind source separation and deconvolution algorithm. Comparison of the resulting algorithms with these priors is performed on synthetic datasets as well as on real datasets from dynamic renal scintigraphy. It is shown that flexible non-parametric priors improve estimation of response functions in both cases. MATLAB implementation of the resulting algorithms is freely available for download.
AbstractList •Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response functions.•We propose and study five non-parametric prior models of the response functions.•We analyze performance and behavior of the proposed models on synthetic data.•Dynamic scintigraphy experiments demonstrate potential of the method in practice. Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions are used within hierarchical priors of the blind source separation and deconvolution algorithm. Comparison of the resulting algorithms with these priors is performed on synthetic datasets as well as on real datasets from dynamic renal scintigraphy. It is shown that flexible non-parametric priors improve estimation of response functions in both cases. MATLAB implementation of the resulting algorithms is freely available for download.
Author Tichý, Ondřej
Šmídl, Václav
Author_xml – sequence: 1
  givenname: Ondřej
  surname: Tichý
  fullname: Tichý, Ondřej
  email: otichy@utia.cas.cz
– sequence: 2
  givenname: Václav
  surname: Šmídl
  fullname: Šmídl, Václav
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A7tmsl9Z8KLFLyj1ouAtZJNZSekmNdkt9N-7Sz156GkGZp5h3mdBZs47JOQWWAoMyrttqg92SDmDIgVIGbALMgdWs4Rnxdds6qsqySDnV2QR45YxgLyGOdlsvEv2KqgO-2A1fVRHjFY52nmDu0h9SwPGvXcRaTs43VvvqHXUHJ3qxn3bqW-kEX8GdBrjNbls1S7izV9dks_np4_Va7J-f3lbPawTnTHWJ63SQjRlnpusKUXdGF43ZZ1Bi5VA4IIzpousEII3YBDaaaxynpumqFTBi2xJxOmuDj7GgK3UtlfTc31QdieBycmL3MrJi5y8SAA5ehlR_g_dhzFFOJ6H7k_Q6AQPFoOM2k6JjQ2oe2m8PYf_AjgLf1w
CitedBy_id crossref_primary_10_1109_LSP_2019_2897230
crossref_primary_10_5194_acp_17_12677_2017
crossref_primary_10_1016_j_softx_2021_100761
Cites_doi 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
10.1109/TITB.2007.910744
10.1109/TMI.2011.2160276
10.1088/0031-9155/38/8/005
10.1016/0010-4809(82)90052-0
10.1038/44565
10.1109/TNS.1982.4332188
10.1109/TMI.2012.2225636
10.1088/0031-9155/58/10/3145
10.1109/TMI.2014.2352791
10.1016/S1361-8415(00)00032-3
10.1016/j.neuroimage.2008.10.065
10.1109/TBME.2011.2182195
10.2967/jnumed.113.127381
10.1016/S1053-8119(00)91405-8
10.1016/j.cviu.2014.06.004
10.1016/j.neuroimage.2011.10.047
10.1109/42.897811
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.cviu.2015.11.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
EndPage 100
ExternalDocumentID 10_1016_j_cviu_2015_11_010
S1077314215002544
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
ID FETCH-LOGICAL-c300t-fac88b644d3b689bd29b6931fe78e128200c535882b1de1f29b6a424db57a5253
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Thu Apr 24 23:04:37 EDT 2025
Wed Oct 01 05:09:01 EDT 2025
Fri Feb 23 02:26:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Response function
Blind source separation
Probabilistic models
Dynamic medical imaging
Bayesian methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-fac88b644d3b689bd29b6931fe78e128200c535882b1de1f29b6a424db57a5253
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_cviu_2015_11_010
crossref_primary_10_1016_j_cviu_2015_11_010
elsevier_sciencedirect_doi_10_1016_j_cviu_2015_11_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
2016-10-00
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationTitle Computer vision and image understanding
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hamill, Whitaker, Snyder (bib0023) 2001; 129
Kuruc, Caldicott, Treves (bib0011) 1982; 15
Šámal, Valoušek (bib0027) 2012; 39
Lanz, Poitry-Yamate, Gruetter (bib0001) 2014; 55
Diffey, Hall, Corfield (bib0020) 1976; 17
Durand, Blaufox, Britton, Carlsen, Cosgriff, Fine, Fleming, Nimmon, Piepsz, Prigent (bib0008) 2008; 38
Tichý, Šmídl (bib0015) 2015; 34
Fleming, Kemp (bib0006) 1999; 40
Chen, Choyke, Chan, Chi, Wang, Wang (bib0010) 2011; 30
Lee, Seung (bib0025) 1999; 401
Taxt, Jirik, Rygh, Gruner, Bartos, Andersen, Curry, Reed (bib0007) 2012; 59
Brolin, Gleisner, Ljungberg (bib0026) 2013; 58
Martel, Moody, Allder, Delay, Morgan (bib0005) 2001; 5
Smaragdis (bib0024) 2004
Benali, Buvat, Frouin, Bazin, Paola (bib0028) 1993; 38
Woolrich (bib0017) 2012; 62
Lindquist, Meng Loh, Atlas, Wager (bib0009) 2009; 45
Di Paola, Bazin, Aubry, Aurengo, Cavailloles, Herry, Kahn (bib0004) 1982; 29
Steinberg, Pizarro, Williams (bib0018) 2015; 131
Goutte, Nielsen, Hansen (bib0014) 2000; 19
Tipping (bib0021) 2001; 1
Miskin (bib0016) 2000
Tichý, Šmídl, Šámal (bib0012) 2014
Šmídl, Quinn (bib0019) 2006
Kershaw, Abe, Kashikura, Zhang, Kanno (bib0013) 2000; 11
Bishop, Tipping (bib0022) 2000
Chaari, Vincent, Forbes, Dojat, Ciuciu (bib0003) 2013; 32
Margadán-Méndez, Juslin, Nesterov, Kalliokoski, Knuuti, Ruotsalainen (bib0002) 2010; 14
Kuruc (10.1016/j.cviu.2015.11.010_bib0011) 1982; 15
Hamill (10.1016/j.cviu.2015.11.010_bib0023) 2001; 129
Benali (10.1016/j.cviu.2015.11.010_bib0028) 1993; 38
Taxt (10.1016/j.cviu.2015.11.010_bib0007) 2012; 59
Kershaw (10.1016/j.cviu.2015.11.010_bib0013) 2000; 11
Brolin (10.1016/j.cviu.2015.11.010_bib0026) 2013; 58
Durand (10.1016/j.cviu.2015.11.010_bib0008) 2008; 38
Smaragdis (10.1016/j.cviu.2015.11.010_bib0024) 2004
Lindquist (10.1016/j.cviu.2015.11.010_bib0009) 2009; 45
Margadán-Méndez (10.1016/j.cviu.2015.11.010_bib0002) 2010; 14
Bishop (10.1016/j.cviu.2015.11.010_bib0022) 2000
Steinberg (10.1016/j.cviu.2015.11.010_bib0018) 2015; 131
Chen (10.1016/j.cviu.2015.11.010_bib0010) 2011; 30
Tichý (10.1016/j.cviu.2015.11.010_bib0015) 2015; 34
Lanz (10.1016/j.cviu.2015.11.010_bib0001) 2014; 55
Fleming (10.1016/j.cviu.2015.11.010_bib0006) 1999; 40
Miskin (10.1016/j.cviu.2015.11.010_bib0016) 2000
Šámal (10.1016/j.cviu.2015.11.010_bib0027) 2012; 39
Tipping (10.1016/j.cviu.2015.11.010_bib0021) 2001; 1
Diffey (10.1016/j.cviu.2015.11.010_bib0020) 1976; 17
Goutte (10.1016/j.cviu.2015.11.010_bib0014) 2000; 19
Woolrich (10.1016/j.cviu.2015.11.010_bib0017) 2012; 62
Di Paola (10.1016/j.cviu.2015.11.010_bib0004) 1982; 29
Tichý (10.1016/j.cviu.2015.11.010_sbref0012) 2014
Martel (10.1016/j.cviu.2015.11.010_bib0005) 2001; 5
Lee (10.1016/j.cviu.2015.11.010_bib0025) 1999; 401
Šmídl (10.1016/j.cviu.2015.11.010_bib0019) 2006
Chaari (10.1016/j.cviu.2015.11.010_bib0003) 2013; 32
References_xml – volume: 62
  start-page: 801
  year: 2012
  end-page: 810
  ident: bib0017
  article-title: Bayesian inference in fMRI
  publication-title: NeuroImage
– volume: 15
  start-page: 46
  year: 1982
  end-page: 56
  ident: bib0011
  article-title: Improved Deconvolution Technique for the Calculation of Renal Retention Functions.
  publication-title: Comp. and Biomed. Res.
– volume: 11
  start-page: S474
  year: 2000
  ident: bib0013
  article-title: A bayesian approach to estimating the haemodynamic response function in event-related fmri
  publication-title: Neuroimage
– volume: 131
  start-page: 128
  year: 2015
  end-page: 144
  ident: bib0018
  article-title: Hierarchical Bayesian models for unsupervised scene understanding
  publication-title: Comput. Vis. Image Underst.
– volume: 38
  start-page: 82
  year: 2008
  end-page: 102
  ident: bib0008
  article-title: International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements
  publication-title: Proceedings of the Seminars in nuclear medicine
– year: 2014
  ident: bib0012
  article-title: Model-based extraction of input and organ functions in dynamic scintigraphic imaging
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
– volume: 29
  start-page: 1310
  year: 1982
  end-page: 1321
  ident: bib0004
  article-title: Handling of dynamic sequences in nuclear medicine
  publication-title: Nucl. Sci. IEEE Trans.
– volume: 5
  start-page: 29
  year: 2001
  end-page: 39
  ident: bib0005
  article-title: Extracting parametric images from dynamic contrast-enhanced mri studies of the brain using factor analysis
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 795
  year: 2010
  end-page: 802
  ident: bib0002
  article-title: ICA based automatic segmentation of dynamic cardiac PET images.
  publication-title: Inf. Technol. Biomed. IEEE Trans.
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: bib0021
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 1012
  year: 2012
  end-page: 1021
  ident: bib0007
  article-title: Single-channel blind estimation of arterial input function and tissue impulse response in dce-mri
  publication-title: Biomed. Eng. IEEE Trans.
– year: 2000
  ident: bib0016
  publication-title: Ensemble Learning for Independent Component Analysis
– start-page: 46
  year: 2000
  end-page: 53
  ident: bib0022
  article-title: Variational relevance vector machines
  publication-title: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence
– volume: 40
  start-page: 1503
  year: 1999
  ident: bib0006
  article-title: A comparison of deconvolution and the Patlak-Rutland plot in renography analysis
  publication-title: J. Nucl. Med.
– volume: 129
  start-page: 2776
  year: 2001
  end-page: 2790
  ident: bib0023
  article-title: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
  publication-title: Mon. Weather Rev.
– volume: 38
  start-page: 1065
  year: 1993
  ident: bib0028
  article-title: A statistical model for the determination of the optimal metric in factor analysis of medical image sequences (FAMIS)
  publication-title: Phys. Med. Biol.
– volume: 58
  start-page: 3145
  year: 2013
  ident: bib0026
  article-title: Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and monte carlo simulated scintillation camera imaging
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 258
  year: 2015
  end-page: 266
  ident: bib0015
  article-title: Bayesian blind separation and deconvolution of dynamic image sequences using sparsity priors
  publication-title: Med. Imaging IEEE Trans.
– start-page: 494
  year: 2004
  end-page: 499
  ident: bib0024
  article-title: Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs
  publication-title: Proceedings of the Independent Component Analysis and Blind Signal Separation
– volume: 30
  start-page: 2044
  year: 2011
  end-page: 2058
  ident: bib0010
  article-title: Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors
  publication-title: Med. Imaging IEEE Trans.
– year: 2006
  ident: bib0019
  publication-title: The Variational Bayes Method in Signal Processing
– volume: 17
  start-page: 352
  year: 1976
  ident: bib0020
  article-title: The 99mTc-DTPA dynamic renal scan with deconvolution analysis
  publication-title: J. Nucl. Med.
– volume: 45
  start-page: S187
  year: 2009
  end-page: S198
  ident: bib0009
  article-title: Modeling the hemodynamic response function in fmri: efficiency, bias and mis-modeling
  publication-title: Neuroimage
– volume: 32
  start-page: 821
  year: 2013
  end-page: 837
  ident: bib0003
  article-title: Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach
  publication-title: Med. Imaging IEEE Trans.
– volume: 55
  start-page: 1380
  year: 2014
  end-page: 1388
  ident: bib0001
  article-title: Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice
  publication-title: J. Nucl. Med.
– volume: 39
  start-page: S170
  year: 2012
  end-page: S171
  ident: bib0027
  article-title: Clinically documented data set of dynamic renal scintigraphy for clinical audits and quality assurance of nuclear medicine software
  publication-title: Eur. J. N. Med. Mol. Imaging
– volume: 19
  start-page: 1188
  year: 2000
  end-page: 1201
  ident: bib0014
  article-title: Modeling the hemodynamic response in fMRI using smooth fir filters
  publication-title: Med. Imaging IEEE Trans.
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib0025
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– start-page: 46
  year: 2000
  ident: 10.1016/j.cviu.2015.11.010_bib0022
  article-title: Variational relevance vector machines
– volume: 129
  start-page: 2776
  issue: 11
  year: 2001
  ident: 10.1016/j.cviu.2015.11.010_bib0023
  article-title: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
– volume: 14
  start-page: 795
  issue: 3
  year: 2010
  ident: 10.1016/j.cviu.2015.11.010_bib0002
  article-title: ICA based automatic segmentation of dynamic cardiac PET images.
  publication-title: Inf. Technol. Biomed. IEEE Trans.
  doi: 10.1109/TITB.2007.910744
– volume: 38
  start-page: 82
  year: 2008
  ident: 10.1016/j.cviu.2015.11.010_bib0008
  article-title: International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements
– volume: 30
  start-page: 2044
  issue: 12
  year: 2011
  ident: 10.1016/j.cviu.2015.11.010_bib0010
  article-title: Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/TMI.2011.2160276
– volume: 38
  start-page: 1065
  year: 1993
  ident: 10.1016/j.cviu.2015.11.010_bib0028
  article-title: A statistical model for the determination of the optimal metric in factor analysis of medical image sequences (FAMIS)
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/38/8/005
– year: 2014
  ident: 10.1016/j.cviu.2015.11.010_sbref0012
  article-title: Model-based extraction of input and organ functions in dynamic scintigraphic imaging
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
– volume: 39
  start-page: S170
  year: 2012
  ident: 10.1016/j.cviu.2015.11.010_bib0027
  article-title: Clinically documented data set of dynamic renal scintigraphy for clinical audits and quality assurance of nuclear medicine software
– volume: 15
  start-page: 46
  issue: 1
  year: 1982
  ident: 10.1016/j.cviu.2015.11.010_bib0011
  article-title: Improved Deconvolution Technique for the Calculation of Renal Retention Functions.
  publication-title: Comp. and Biomed. Res.
  doi: 10.1016/0010-4809(82)90052-0
– start-page: 494
  year: 2004
  ident: 10.1016/j.cviu.2015.11.010_bib0024
  article-title: Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.cviu.2015.11.010_bib0025
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 40
  start-page: 1503
  issue: 9
  year: 1999
  ident: 10.1016/j.cviu.2015.11.010_bib0006
  article-title: A comparison of deconvolution and the Patlak-Rutland plot in renography analysis
  publication-title: J. Nucl. Med.
– volume: 1
  start-page: 211
  year: 2001
  ident: 10.1016/j.cviu.2015.11.010_bib0021
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– year: 2000
  ident: 10.1016/j.cviu.2015.11.010_bib0016
– volume: 29
  start-page: 1310
  issue: 4
  year: 1982
  ident: 10.1016/j.cviu.2015.11.010_bib0004
  article-title: Handling of dynamic sequences in nuclear medicine
  publication-title: Nucl. Sci. IEEE Trans.
  doi: 10.1109/TNS.1982.4332188
– volume: 32
  start-page: 821
  issue: 5
  year: 2013
  ident: 10.1016/j.cviu.2015.11.010_bib0003
  article-title: Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/TMI.2012.2225636
– volume: 58
  start-page: 3145
  issue: 10
  year: 2013
  ident: 10.1016/j.cviu.2015.11.010_bib0026
  article-title: Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and monte carlo simulated scintillation camera imaging
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/10/3145
– volume: 34
  start-page: 258
  issue: 1
  year: 2015
  ident: 10.1016/j.cviu.2015.11.010_bib0015
  article-title: Bayesian blind separation and deconvolution of dynamic image sequences using sparsity priors
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/TMI.2014.2352791
– volume: 5
  start-page: 29
  issue: 1
  year: 2001
  ident: 10.1016/j.cviu.2015.11.010_bib0005
  article-title: Extracting parametric images from dynamic contrast-enhanced mri studies of the brain using factor analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00032-3
– volume: 45
  start-page: S187
  issue: 1
  year: 2009
  ident: 10.1016/j.cviu.2015.11.010_bib0009
  article-title: Modeling the hemodynamic response function in fmri: efficiency, bias and mis-modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.065
– volume: 17
  start-page: 352
  issue: 5
  year: 1976
  ident: 10.1016/j.cviu.2015.11.010_bib0020
  article-title: The 99mTc-DTPA dynamic renal scan with deconvolution analysis
  publication-title: J. Nucl. Med.
– year: 2006
  ident: 10.1016/j.cviu.2015.11.010_bib0019
– volume: 59
  start-page: 1012
  issue: 4
  year: 2012
  ident: 10.1016/j.cviu.2015.11.010_bib0007
  article-title: Single-channel blind estimation of arterial input function and tissue impulse response in dce-mri
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2011.2182195
– volume: 55
  start-page: 1380
  issue: 8
  year: 2014
  ident: 10.1016/j.cviu.2015.11.010_bib0001
  article-title: Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.113.127381
– volume: 11
  start-page: S474
  issue: 5
  year: 2000
  ident: 10.1016/j.cviu.2015.11.010_bib0013
  article-title: A bayesian approach to estimating the haemodynamic response function in event-related fmri
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(00)91405-8
– volume: 131
  start-page: 128
  year: 2015
  ident: 10.1016/j.cviu.2015.11.010_bib0018
  article-title: Hierarchical Bayesian models for unsupervised scene understanding
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2014.06.004
– volume: 62
  start-page: 801
  issue: 2
  year: 2012
  ident: 10.1016/j.cviu.2015.11.010_bib0017
  article-title: Bayesian inference in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.047
– volume: 19
  start-page: 1188
  issue: 12
  year: 2000
  ident: 10.1016/j.cviu.2015.11.010_bib0014
  article-title: Modeling the hemodynamic response in fMRI using smooth fir filters
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/42.897811
SSID ssj0011491
Score 2.214038
Snippet •Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Bayesian methods
Blind source separation
Dynamic medical imaging
Probabilistic models
Response function
Title Non-parametric Bayesian models of response function in dynamic image sequences
URI https://dx.doi.org/10.1016/j.cviu.2015.11.010
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SL3rwoyp-k4M3Sdtskt3tUUWpir1owduy2SSwYrdiW8GLv92ZTbYoSA8eNzuBMElmXuDNPELONIS43FrOYoh9TBopWCqkYi6KCukcYPxaee5hGA9G8u5ZPa-Qq6YWBmmVIfb7mF5H6zDSDd7svpVl9xEeLongEnKWb7SFFewyRlpf52tB8wC4X6vmoTFD61A44zlexUc5R3qX6mAnT6yi_Ss5_Ug4N1tkIyBFeuEXs01WbNUmmwE10nAnpzDUCDM0Y22y_qPL4A4ZDicVwxbfY1TPKuhl_mmxdJLWKjhTOnH03TNlLcU0h1tFy4oaL1ZPyzHEHLrgXO-S0c3109WABRkFVoheb8ZcXqSpBtxjhI7TvjZRX8d9wZ1NUgvpCe5JoYQCqK25sdzh71xG0miV5CpSYo-0qkll9wnlMs9VontOuEQqLXTPxFrKAsyV4SY5ILzxX1aEHuModfGaNWSylwx9nqHP4fGRgc8PyPlizpvvsLHUWjXbkv06JxmkgCXzDv8574iswVfs6XvHpDV7n9sTgCEzfVqfs1OyenF7Pxh-A3Wb230
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PbCh0Dq2k3QEBCrQZgEktiiObSmIplUfSPx7zrVTgYQYWP2QrLP93Tn57j6Ac4kQl2tNgwixL-CKsyBhXAQmDAtuDMb4c-W5fhp1X_jDq3hdgps6F8bSKj32O0yfo7VvaXlrtkZl2XrCh0vMKEef5QptLcMKF4jJDVi5un_spoufCfgIoI56aD_J8dDnzjiaV_FRzizDS1zaYp42kfY3__TN59xtwYYPFsmVW882LOlqBzZ94Ej8tZxgU63NULftwPq3QoO7kKbDKrBVvgdWQKsg1_mnttmTZC6EMyFDQ8aOLKuJ9XR2t0hZEeX06kk5QNghC9r1Hrzc3T7fdAOvpBAUrN2eBiYvkkRi6KOYjJKOVGFHRh1GjY4TjR4Kr0ohmMBoW1KlqbHdOQ-5kiLORSjYPjSqYaUPgFCe5yKWbcNMzIVksq0iyXmBw4WiKm4Cre2XFb7MuFW7eM9qPtlbZm2eWZvj-yNDmzfhYjFn5Ips_Dla1NuS_TgqGXqBP-Yd_nPeGax2n_u9rHefPh7BGvZEjs13DI3peKZPMCqZylN_6r4A-JDeKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-parametric+Bayesian+models+of+response+function+in+dynamic+image+sequences&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Tich%C3%BD%2C+Ond%C5%99ej&rft.au=%C5%A0m%C3%ADdl%2C+V%C3%A1clav&rft.date=2016-10-01&rft.issn=1077-3142&rft.volume=151&rft.spage=90&rft.epage=100&rft_id=info:doi/10.1016%2Fj.cviu.2015.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2015_11_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon