Non-parametric Bayesian models of response function in dynamic image sequences
•Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response functions.•We propose and study five non-parametric prior models of the response functions.•We analyze performance and behavior of the proposed models o...
Saved in:
Published in | Computer vision and image understanding Vol. 151; pp. 90 - 100 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1077-3142 1090-235X |
DOI | 10.1016/j.cviu.2015.11.010 |
Cover
Abstract | •Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response functions.•We propose and study five non-parametric prior models of the response functions.•We analyze performance and behavior of the proposed models on synthetic data.•Dynamic scintigraphy experiments demonstrate potential of the method in practice.
Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions are used within hierarchical priors of the blind source separation and deconvolution algorithm. Comparison of the resulting algorithms with these priors is performed on synthetic datasets as well as on real datasets from dynamic renal scintigraphy. It is shown that flexible non-parametric priors improve estimation of response functions in both cases. MATLAB implementation of the resulting algorithms is freely available for download. |
---|---|
AbstractList | •Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response functions.•We propose and study five non-parametric prior models of the response functions.•We analyze performance and behavior of the proposed models on synthetic data.•Dynamic scintigraphy experiments demonstrate potential of the method in practice.
Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions are used within hierarchical priors of the blind source separation and deconvolution algorithm. Comparison of the resulting algorithms with these priors is performed on synthetic datasets as well as on real datasets from dynamic renal scintigraphy. It is shown that flexible non-parametric priors improve estimation of response functions in both cases. MATLAB implementation of the resulting algorithms is freely available for download. |
Author | Tichý, Ondřej Šmídl, Václav |
Author_xml | – sequence: 1 givenname: Ondřej surname: Tichý fullname: Tichý, Ondřej email: otichy@utia.cas.cz – sequence: 2 givenname: Václav surname: Šmídl fullname: Šmídl, Václav |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A7tmsl9Z8KLFLyj1ouAtZJNZSekmNdkt9N-7Sz156GkGZp5h3mdBZs47JOQWWAoMyrttqg92SDmDIgVIGbALMgdWs4Rnxdds6qsqySDnV2QR45YxgLyGOdlsvEv2KqgO-2A1fVRHjFY52nmDu0h9SwPGvXcRaTs43VvvqHXUHJ3qxn3bqW-kEX8GdBrjNbls1S7izV9dks_np4_Va7J-f3lbPawTnTHWJ63SQjRlnpusKUXdGF43ZZ1Bi5VA4IIzpousEII3YBDaaaxynpumqFTBi2xJxOmuDj7GgK3UtlfTc31QdieBycmL3MrJi5y8SAA5ehlR_g_dhzFFOJ6H7k_Q6AQPFoOM2k6JjQ2oe2m8PYf_AjgLf1w |
CitedBy_id | crossref_primary_10_1109_LSP_2019_2897230 crossref_primary_10_5194_acp_17_12677_2017 crossref_primary_10_1016_j_softx_2021_100761 |
Cites_doi | 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2 10.1109/TITB.2007.910744 10.1109/TMI.2011.2160276 10.1088/0031-9155/38/8/005 10.1016/0010-4809(82)90052-0 10.1038/44565 10.1109/TNS.1982.4332188 10.1109/TMI.2012.2225636 10.1088/0031-9155/58/10/3145 10.1109/TMI.2014.2352791 10.1016/S1361-8415(00)00032-3 10.1016/j.neuroimage.2008.10.065 10.1109/TBME.2011.2182195 10.2967/jnumed.113.127381 10.1016/S1053-8119(00)91405-8 10.1016/j.cviu.2014.06.004 10.1016/j.neuroimage.2011.10.047 10.1109/42.897811 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cviu.2015.11.010 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1090-235X |
EndPage | 100 |
ExternalDocumentID | 10_1016_j_cviu_2015_11_010 S1077314215002544 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS SST ~HD |
ID | FETCH-LOGICAL-c300t-fac88b644d3b689bd29b6931fe78e128200c535882b1de1f29b6a424db57a5253 |
IEDL.DBID | .~1 |
ISSN | 1077-3142 |
IngestDate | Thu Apr 24 23:04:37 EDT 2025 Wed Oct 01 05:09:01 EDT 2025 Fri Feb 23 02:26:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Response function Blind source separation Probabilistic models Dynamic medical imaging Bayesian methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-fac88b644d3b689bd29b6931fe78e128200c535882b1de1f29b6a424db57a5253 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cviu_2015_11_010 crossref_primary_10_1016_j_cviu_2015_11_010 elsevier_sciencedirect_doi_10_1016_j_cviu_2015_11_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 2016-10-00 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hamill, Whitaker, Snyder (bib0023) 2001; 129 Kuruc, Caldicott, Treves (bib0011) 1982; 15 Šámal, Valoušek (bib0027) 2012; 39 Lanz, Poitry-Yamate, Gruetter (bib0001) 2014; 55 Diffey, Hall, Corfield (bib0020) 1976; 17 Durand, Blaufox, Britton, Carlsen, Cosgriff, Fine, Fleming, Nimmon, Piepsz, Prigent (bib0008) 2008; 38 Tichý, Šmídl (bib0015) 2015; 34 Fleming, Kemp (bib0006) 1999; 40 Chen, Choyke, Chan, Chi, Wang, Wang (bib0010) 2011; 30 Lee, Seung (bib0025) 1999; 401 Taxt, Jirik, Rygh, Gruner, Bartos, Andersen, Curry, Reed (bib0007) 2012; 59 Brolin, Gleisner, Ljungberg (bib0026) 2013; 58 Martel, Moody, Allder, Delay, Morgan (bib0005) 2001; 5 Smaragdis (bib0024) 2004 Benali, Buvat, Frouin, Bazin, Paola (bib0028) 1993; 38 Woolrich (bib0017) 2012; 62 Lindquist, Meng Loh, Atlas, Wager (bib0009) 2009; 45 Di Paola, Bazin, Aubry, Aurengo, Cavailloles, Herry, Kahn (bib0004) 1982; 29 Steinberg, Pizarro, Williams (bib0018) 2015; 131 Goutte, Nielsen, Hansen (bib0014) 2000; 19 Tipping (bib0021) 2001; 1 Miskin (bib0016) 2000 Tichý, Šmídl, Šámal (bib0012) 2014 Šmídl, Quinn (bib0019) 2006 Kershaw, Abe, Kashikura, Zhang, Kanno (bib0013) 2000; 11 Bishop, Tipping (bib0022) 2000 Chaari, Vincent, Forbes, Dojat, Ciuciu (bib0003) 2013; 32 Margadán-Méndez, Juslin, Nesterov, Kalliokoski, Knuuti, Ruotsalainen (bib0002) 2010; 14 Kuruc (10.1016/j.cviu.2015.11.010_bib0011) 1982; 15 Hamill (10.1016/j.cviu.2015.11.010_bib0023) 2001; 129 Benali (10.1016/j.cviu.2015.11.010_bib0028) 1993; 38 Taxt (10.1016/j.cviu.2015.11.010_bib0007) 2012; 59 Kershaw (10.1016/j.cviu.2015.11.010_bib0013) 2000; 11 Brolin (10.1016/j.cviu.2015.11.010_bib0026) 2013; 58 Durand (10.1016/j.cviu.2015.11.010_bib0008) 2008; 38 Smaragdis (10.1016/j.cviu.2015.11.010_bib0024) 2004 Lindquist (10.1016/j.cviu.2015.11.010_bib0009) 2009; 45 Margadán-Méndez (10.1016/j.cviu.2015.11.010_bib0002) 2010; 14 Bishop (10.1016/j.cviu.2015.11.010_bib0022) 2000 Steinberg (10.1016/j.cviu.2015.11.010_bib0018) 2015; 131 Chen (10.1016/j.cviu.2015.11.010_bib0010) 2011; 30 Tichý (10.1016/j.cviu.2015.11.010_bib0015) 2015; 34 Lanz (10.1016/j.cviu.2015.11.010_bib0001) 2014; 55 Fleming (10.1016/j.cviu.2015.11.010_bib0006) 1999; 40 Miskin (10.1016/j.cviu.2015.11.010_bib0016) 2000 Šámal (10.1016/j.cviu.2015.11.010_bib0027) 2012; 39 Tipping (10.1016/j.cviu.2015.11.010_bib0021) 2001; 1 Diffey (10.1016/j.cviu.2015.11.010_bib0020) 1976; 17 Goutte (10.1016/j.cviu.2015.11.010_bib0014) 2000; 19 Woolrich (10.1016/j.cviu.2015.11.010_bib0017) 2012; 62 Di Paola (10.1016/j.cviu.2015.11.010_bib0004) 1982; 29 Tichý (10.1016/j.cviu.2015.11.010_sbref0012) 2014 Martel (10.1016/j.cviu.2015.11.010_bib0005) 2001; 5 Lee (10.1016/j.cviu.2015.11.010_bib0025) 1999; 401 Šmídl (10.1016/j.cviu.2015.11.010_bib0019) 2006 Chaari (10.1016/j.cviu.2015.11.010_bib0003) 2013; 32 |
References_xml | – volume: 62 start-page: 801 year: 2012 end-page: 810 ident: bib0017 article-title: Bayesian inference in fMRI publication-title: NeuroImage – volume: 15 start-page: 46 year: 1982 end-page: 56 ident: bib0011 article-title: Improved Deconvolution Technique for the Calculation of Renal Retention Functions. publication-title: Comp. and Biomed. Res. – volume: 11 start-page: S474 year: 2000 ident: bib0013 article-title: A bayesian approach to estimating the haemodynamic response function in event-related fmri publication-title: Neuroimage – volume: 131 start-page: 128 year: 2015 end-page: 144 ident: bib0018 article-title: Hierarchical Bayesian models for unsupervised scene understanding publication-title: Comput. Vis. Image Underst. – volume: 38 start-page: 82 year: 2008 end-page: 102 ident: bib0008 article-title: International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements publication-title: Proceedings of the Seminars in nuclear medicine – year: 2014 ident: bib0012 article-title: Model-based extraction of input and organ functions in dynamic scintigraphic imaging publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. – volume: 29 start-page: 1310 year: 1982 end-page: 1321 ident: bib0004 article-title: Handling of dynamic sequences in nuclear medicine publication-title: Nucl. Sci. IEEE Trans. – volume: 5 start-page: 29 year: 2001 end-page: 39 ident: bib0005 article-title: Extracting parametric images from dynamic contrast-enhanced mri studies of the brain using factor analysis publication-title: Med. Image Anal. – volume: 14 start-page: 795 year: 2010 end-page: 802 ident: bib0002 article-title: ICA based automatic segmentation of dynamic cardiac PET images. publication-title: Inf. Technol. Biomed. IEEE Trans. – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: bib0021 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 1012 year: 2012 end-page: 1021 ident: bib0007 article-title: Single-channel blind estimation of arterial input function and tissue impulse response in dce-mri publication-title: Biomed. Eng. IEEE Trans. – year: 2000 ident: bib0016 publication-title: Ensemble Learning for Independent Component Analysis – start-page: 46 year: 2000 end-page: 53 ident: bib0022 article-title: Variational relevance vector machines publication-title: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence – volume: 40 start-page: 1503 year: 1999 ident: bib0006 article-title: A comparison of deconvolution and the Patlak-Rutland plot in renography analysis publication-title: J. Nucl. Med. – volume: 129 start-page: 2776 year: 2001 end-page: 2790 ident: bib0023 article-title: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter publication-title: Mon. Weather Rev. – volume: 38 start-page: 1065 year: 1993 ident: bib0028 article-title: A statistical model for the determination of the optimal metric in factor analysis of medical image sequences (FAMIS) publication-title: Phys. Med. Biol. – volume: 58 start-page: 3145 year: 2013 ident: bib0026 article-title: Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and monte carlo simulated scintillation camera imaging publication-title: Phys. Med. Biol. – volume: 34 start-page: 258 year: 2015 end-page: 266 ident: bib0015 article-title: Bayesian blind separation and deconvolution of dynamic image sequences using sparsity priors publication-title: Med. Imaging IEEE Trans. – start-page: 494 year: 2004 end-page: 499 ident: bib0024 article-title: Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs publication-title: Proceedings of the Independent Component Analysis and Blind Signal Separation – volume: 30 start-page: 2044 year: 2011 end-page: 2058 ident: bib0010 article-title: Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors publication-title: Med. Imaging IEEE Trans. – year: 2006 ident: bib0019 publication-title: The Variational Bayes Method in Signal Processing – volume: 17 start-page: 352 year: 1976 ident: bib0020 article-title: The 99mTc-DTPA dynamic renal scan with deconvolution analysis publication-title: J. Nucl. Med. – volume: 45 start-page: S187 year: 2009 end-page: S198 ident: bib0009 article-title: Modeling the hemodynamic response function in fmri: efficiency, bias and mis-modeling publication-title: Neuroimage – volume: 32 start-page: 821 year: 2013 end-page: 837 ident: bib0003 article-title: Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach publication-title: Med. Imaging IEEE Trans. – volume: 55 start-page: 1380 year: 2014 end-page: 1388 ident: bib0001 article-title: Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice publication-title: J. Nucl. Med. – volume: 39 start-page: S170 year: 2012 end-page: S171 ident: bib0027 article-title: Clinically documented data set of dynamic renal scintigraphy for clinical audits and quality assurance of nuclear medicine software publication-title: Eur. J. N. Med. Mol. Imaging – volume: 19 start-page: 1188 year: 2000 end-page: 1201 ident: bib0014 article-title: Modeling the hemodynamic response in fMRI using smooth fir filters publication-title: Med. Imaging IEEE Trans. – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib0025 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – start-page: 46 year: 2000 ident: 10.1016/j.cviu.2015.11.010_bib0022 article-title: Variational relevance vector machines – volume: 129 start-page: 2776 issue: 11 year: 2001 ident: 10.1016/j.cviu.2015.11.010_bib0023 article-title: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2 – volume: 14 start-page: 795 issue: 3 year: 2010 ident: 10.1016/j.cviu.2015.11.010_bib0002 article-title: ICA based automatic segmentation of dynamic cardiac PET images. publication-title: Inf. Technol. Biomed. IEEE Trans. doi: 10.1109/TITB.2007.910744 – volume: 38 start-page: 82 year: 2008 ident: 10.1016/j.cviu.2015.11.010_bib0008 article-title: International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements – volume: 30 start-page: 2044 issue: 12 year: 2011 ident: 10.1016/j.cviu.2015.11.010_bib0010 article-title: Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors publication-title: Med. Imaging IEEE Trans. doi: 10.1109/TMI.2011.2160276 – volume: 38 start-page: 1065 year: 1993 ident: 10.1016/j.cviu.2015.11.010_bib0028 article-title: A statistical model for the determination of the optimal metric in factor analysis of medical image sequences (FAMIS) publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/38/8/005 – year: 2014 ident: 10.1016/j.cviu.2015.11.010_sbref0012 article-title: Model-based extraction of input and organ functions in dynamic scintigraphic imaging publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. – volume: 39 start-page: S170 year: 2012 ident: 10.1016/j.cviu.2015.11.010_bib0027 article-title: Clinically documented data set of dynamic renal scintigraphy for clinical audits and quality assurance of nuclear medicine software – volume: 15 start-page: 46 issue: 1 year: 1982 ident: 10.1016/j.cviu.2015.11.010_bib0011 article-title: Improved Deconvolution Technique for the Calculation of Renal Retention Functions. publication-title: Comp. and Biomed. Res. doi: 10.1016/0010-4809(82)90052-0 – start-page: 494 year: 2004 ident: 10.1016/j.cviu.2015.11.010_bib0024 article-title: Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.cviu.2015.11.010_bib0025 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 40 start-page: 1503 issue: 9 year: 1999 ident: 10.1016/j.cviu.2015.11.010_bib0006 article-title: A comparison of deconvolution and the Patlak-Rutland plot in renography analysis publication-title: J. Nucl. Med. – volume: 1 start-page: 211 year: 2001 ident: 10.1016/j.cviu.2015.11.010_bib0021 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – year: 2000 ident: 10.1016/j.cviu.2015.11.010_bib0016 – volume: 29 start-page: 1310 issue: 4 year: 1982 ident: 10.1016/j.cviu.2015.11.010_bib0004 article-title: Handling of dynamic sequences in nuclear medicine publication-title: Nucl. Sci. IEEE Trans. doi: 10.1109/TNS.1982.4332188 – volume: 32 start-page: 821 issue: 5 year: 2013 ident: 10.1016/j.cviu.2015.11.010_bib0003 article-title: Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach publication-title: Med. Imaging IEEE Trans. doi: 10.1109/TMI.2012.2225636 – volume: 58 start-page: 3145 issue: 10 year: 2013 ident: 10.1016/j.cviu.2015.11.010_bib0026 article-title: Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and monte carlo simulated scintillation camera imaging publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/10/3145 – volume: 34 start-page: 258 issue: 1 year: 2015 ident: 10.1016/j.cviu.2015.11.010_bib0015 article-title: Bayesian blind separation and deconvolution of dynamic image sequences using sparsity priors publication-title: Med. Imaging IEEE Trans. doi: 10.1109/TMI.2014.2352791 – volume: 5 start-page: 29 issue: 1 year: 2001 ident: 10.1016/j.cviu.2015.11.010_bib0005 article-title: Extracting parametric images from dynamic contrast-enhanced mri studies of the brain using factor analysis publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(00)00032-3 – volume: 45 start-page: S187 issue: 1 year: 2009 ident: 10.1016/j.cviu.2015.11.010_bib0009 article-title: Modeling the hemodynamic response function in fmri: efficiency, bias and mis-modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.065 – volume: 17 start-page: 352 issue: 5 year: 1976 ident: 10.1016/j.cviu.2015.11.010_bib0020 article-title: The 99mTc-DTPA dynamic renal scan with deconvolution analysis publication-title: J. Nucl. Med. – year: 2006 ident: 10.1016/j.cviu.2015.11.010_bib0019 – volume: 59 start-page: 1012 issue: 4 year: 2012 ident: 10.1016/j.cviu.2015.11.010_bib0007 article-title: Single-channel blind estimation of arterial input function and tissue impulse response in dce-mri publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2011.2182195 – volume: 55 start-page: 1380 issue: 8 year: 2014 ident: 10.1016/j.cviu.2015.11.010_bib0001 article-title: Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice publication-title: J. Nucl. Med. doi: 10.2967/jnumed.113.127381 – volume: 11 start-page: S474 issue: 5 year: 2000 ident: 10.1016/j.cviu.2015.11.010_bib0013 article-title: A bayesian approach to estimating the haemodynamic response function in event-related fmri publication-title: Neuroimage doi: 10.1016/S1053-8119(00)91405-8 – volume: 131 start-page: 128 year: 2015 ident: 10.1016/j.cviu.2015.11.010_bib0018 article-title: Hierarchical Bayesian models for unsupervised scene understanding publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2014.06.004 – volume: 62 start-page: 801 issue: 2 year: 2012 ident: 10.1016/j.cviu.2015.11.010_bib0017 article-title: Bayesian inference in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.047 – volume: 19 start-page: 1188 issue: 12 year: 2000 ident: 10.1016/j.cviu.2015.11.010_bib0014 article-title: Modeling the hemodynamic response in fMRI using smooth fir filters publication-title: Med. Imaging IEEE Trans. doi: 10.1109/42.897811 |
SSID | ssj0011491 |
Score | 2.214038 |
Snippet | •Bayesian blind source separation and deconvolution problem is introduced.•Source dynamics is a result of convolution of unknown input and response... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 90 |
SubjectTerms | Bayesian methods Blind source separation Dynamic medical imaging Probabilistic models Response function |
Title | Non-parametric Bayesian models of response function in dynamic image sequences |
URI | https://dx.doi.org/10.1016/j.cviu.2015.11.010 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-235X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011491 issn: 1077-3142 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SL3rwoyp-k4M3Sdtskt3tUUWpir1owduy2SSwYrdiW8GLv92ZTbYoSA8eNzuBMElmXuDNPELONIS43FrOYoh9TBopWCqkYi6KCukcYPxaee5hGA9G8u5ZPa-Qq6YWBmmVIfb7mF5H6zDSDd7svpVl9xEeLongEnKWb7SFFewyRlpf52tB8wC4X6vmoTFD61A44zlexUc5R3qX6mAnT6yi_Ss5_Ug4N1tkIyBFeuEXs01WbNUmmwE10nAnpzDUCDM0Y22y_qPL4A4ZDicVwxbfY1TPKuhl_mmxdJLWKjhTOnH03TNlLcU0h1tFy4oaL1ZPyzHEHLrgXO-S0c3109WABRkFVoheb8ZcXqSpBtxjhI7TvjZRX8d9wZ1NUgvpCe5JoYQCqK25sdzh71xG0miV5CpSYo-0qkll9wnlMs9VontOuEQqLXTPxFrKAsyV4SY5ILzxX1aEHuModfGaNWSylwx9nqHP4fGRgc8PyPlizpvvsLHUWjXbkv06JxmkgCXzDv8574iswVfs6XvHpDV7n9sTgCEzfVqfs1OyenF7Pxh-A3Wb230 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PbCh0Dq2k3QEBCrQZgEktiiObSmIplUfSPx7zrVTgYQYWP2QrLP93Tn57j6Ac4kQl2tNgwixL-CKsyBhXAQmDAtuDMb4c-W5fhp1X_jDq3hdgps6F8bSKj32O0yfo7VvaXlrtkZl2XrCh0vMKEef5QptLcMKF4jJDVi5un_spoufCfgIoI56aD_J8dDnzjiaV_FRzizDS1zaYp42kfY3__TN59xtwYYPFsmVW882LOlqBzZ94Ej8tZxgU63NULftwPq3QoO7kKbDKrBVvgdWQKsg1_mnttmTZC6EMyFDQ8aOLKuJ9XR2t0hZEeX06kk5QNghC9r1Hrzc3T7fdAOvpBAUrN2eBiYvkkRi6KOYjJKOVGFHRh1GjY4TjR4Kr0ohmMBoW1KlqbHdOQ-5kiLORSjYPjSqYaUPgFCe5yKWbcNMzIVksq0iyXmBw4WiKm4Cre2XFb7MuFW7eM9qPtlbZm2eWZvj-yNDmzfhYjFn5Ips_Dla1NuS_TgqGXqBP-Yd_nPeGax2n_u9rHefPh7BGvZEjs13DI3peKZPMCqZylN_6r4A-JDeKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-parametric+Bayesian+models+of+response+function+in+dynamic+image+sequences&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Tich%C3%BD%2C+Ond%C5%99ej&rft.au=%C5%A0m%C3%ADdl%2C+V%C3%A1clav&rft.date=2016-10-01&rft.issn=1077-3142&rft.volume=151&rft.spage=90&rft.epage=100&rft_id=info:doi/10.1016%2Fj.cviu.2015.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2015_11_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |