Optimization and prediction of mechanical properties of composite concrete with crumb rubber using RSM and hybrid DNN-HHO algorithm

Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling waste tires, using crumb rubber from used tires in the construction sector is a highly practical alternative. Concrete with crumb rubber (CR) imp...

Full description

Saved in:
Bibliographic Details
Published inJournal of Building Engineering Vol. 84; p. 108486
Main Authors Anjali, R., Venkatesan, G.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN2352-7102
2352-7102
DOI10.1016/j.jobe.2024.108486

Cover

Abstract Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling waste tires, using crumb rubber from used tires in the construction sector is a highly practical alternative. Concrete with crumb rubber (CR) improves flexibility and durability, providing higher mechanical strength. So, this study aimed to apply Response Surface Methodology (RSM) and a hybrid deep neural network-horse herd optimization (DNN-HHO) to optimize the mechanical characteristics of composite concrete with CR. Aluminium (Al), Hydrogen peroxide (H2O2), Sodium Sulfate (Na2SO4) and Sodium Chloride (NaCl) are used as composite materials with CR. Manufactured sand (M-sand) is used in this study because it is eco-friendly, economical and improved concrete quality. The RSM model evaluates the 27 proportions and tests them to assess their mechanical strength and other parameters. The research's conclusions are as follows: Evaluation of 27 proportions reveals that Al + H2O2+2.5R achieves optimal compressive, split tensile, flexural, and pull-out strength of 3.80 MPa,46.08 MPa,4.75 MPa, and 3.67 MPa, respectively. The developed RSM model exhibits strong regression and significant fit, as evidenced by the derived ANOVA. Comparing the actual versus predicted plots, it is observed that all points align closely with the fitted line all outputs, indicating the superior prediction performance of the proposed DNN-HHO model over both DNN and RSM. Furthermore, the regression values in the proposed model are exceptionally surpassing the RSM regression values. These findings affirm the superiority of the hybrid DNN-HHO algorithm in predicting results. •The mechanical properties of concrete with CR under various proportions were studied.•Al + H2O2+2.5R mix proportion achieved highest mechanical strength of the concrete.•SEM analysis established better matrix formed between CR, M-Sand and cement mixtures.•Hybrid DNN-HHO algorithm proved superior as it predicted results than DNN and RSM.•The developed DNN-HHO model achieved best prediction performance with least error.
AbstractList Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling waste tires, using crumb rubber from used tires in the construction sector is a highly practical alternative. Concrete with crumb rubber (CR) improves flexibility and durability, providing higher mechanical strength. So, this study aimed to apply Response Surface Methodology (RSM) and a hybrid deep neural network-horse herd optimization (DNN-HHO) to optimize the mechanical characteristics of composite concrete with CR. Aluminium (Al), Hydrogen peroxide (H2O2), Sodium Sulfate (Na2SO4) and Sodium Chloride (NaCl) are used as composite materials with CR. Manufactured sand (M-sand) is used in this study because it is eco-friendly, economical and improved concrete quality. The RSM model evaluates the 27 proportions and tests them to assess their mechanical strength and other parameters. The research's conclusions are as follows: Evaluation of 27 proportions reveals that Al + H2O2+2.5R achieves optimal compressive, split tensile, flexural, and pull-out strength of 3.80 MPa,46.08 MPa,4.75 MPa, and 3.67 MPa, respectively. The developed RSM model exhibits strong regression and significant fit, as evidenced by the derived ANOVA. Comparing the actual versus predicted plots, it is observed that all points align closely with the fitted line all outputs, indicating the superior prediction performance of the proposed DNN-HHO model over both DNN and RSM. Furthermore, the regression values in the proposed model are exceptionally surpassing the RSM regression values. These findings affirm the superiority of the hybrid DNN-HHO algorithm in predicting results. •The mechanical properties of concrete with CR under various proportions were studied.•Al + H2O2+2.5R mix proportion achieved highest mechanical strength of the concrete.•SEM analysis established better matrix formed between CR, M-Sand and cement mixtures.•Hybrid DNN-HHO algorithm proved superior as it predicted results than DNN and RSM.•The developed DNN-HHO model achieved best prediction performance with least error.
ArticleNumber 108486
Author Venkatesan, G.
Anjali, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Anjali
  fullname: Anjali, R.
  email: anjaliramchitu@gmail.com
– sequence: 2
  givenname: G.
  surname: Venkatesan
  fullname: Venkatesan, G.
BookMark eNp9kMtKAzEUhoMoqNUXcJUXmHqSTKdTcCP1UqG24GUdkswZm9KZDEmq1K0vbtq6EBeu8uc_fAfOd0oOW9ciIRcM-gxYcbnsL53GPgeep6LMy-KAnHAx4NmQAT_8lY_JeQhLAOCjgSiL_IR8zbtoG_uponUtVW1FO4-VNbuvq2mDZqFaa9QqDVyHPloM24FxTeeCjZhSazym8GHjghq_bjT1a63R03Ww7Rt9en7cbV5stLcVvZnNsslkTtXqzfmENGfkqFargOc_b4-83t2-jCfZdH7_ML6eZkYAxKxWDETBjC4LJfJyaESqGeBQKVQgBiWHeqRFBaNCp5KjLlk-qDDXCBxgKHqk3O813oXgsZbGxt3h0Su7kgzk1qdcyq1PufUp9z4Tyv-gnbeN8pv_oas9hOmod4teBmOxNcmvRxNl5ex_-Dddi5KE
CitedBy_id crossref_primary_10_3390_buildings14092693
crossref_primary_10_3390_computation13010014
crossref_primary_10_1080_10298436_2024_2427867
crossref_primary_10_1002_app_55951
Cites_doi 10.1016/j.proeng.2017.11.052
10.1617/s11527-023-02175-z
10.1016/j.jclepro.2023.136068
10.1016/j.conbuildmat.2020.121096
10.3390/pr10030490
10.1016/j.conbuildmat.2019.07.108
10.1111/ffe.13889
10.1016/j.jclepro.2021.128230
10.1016/j.cemconcomp.2021.104100
10.1007/s42452-019-1504-2
10.3390/ma15051776
10.1080/10298436.2021.1936519
10.1016/j.conbuildmat.2019.07.245
10.1016/j.conbuildmat.2022.129955
10.3390/su12219230
10.1016/j.compstruct.2022.116248
10.1016/j.conbuildmat.2020.121835
10.1016/j.conbuildmat.2020.119442
10.1155/2022/5404416
10.1016/j.conbuildmat.2022.126370
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jobe.2024.108486
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-7102
ExternalDocumentID 10_1016_j_jobe_2024_108486
S2352710224000536
GroupedDBID --M
0R~
457
7-5
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGUMN
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSL
SST
SSZ
T5K
~G-
4.4
AAYXX
ABXDB
ACLOT
CITATION
EJD
ID FETCH-LOGICAL-c300t-fa10361cb86a3487c330010e7aaea035820f9b3d096be7a2eb8145de4be020073
IEDL.DBID AIKHN
ISSN 2352-7102
IngestDate Wed Oct 01 05:43:57 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
Sat Sep 06 17:17:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep neural network
Flexural strength
Split tensile strength
Pull-out strength
And response surface methodology
Crumb rubber
Horse herd optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-fa10361cb86a3487c330010e7aaea035820f9b3d096be7a2eb8145de4be020073
ParticipantIDs crossref_citationtrail_10_1016_j_jobe_2024_108486
crossref_primary_10_1016_j_jobe_2024_108486
elsevier_sciencedirect_doi_10_1016_j_jobe_2024_108486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Building Engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nagajothi, Elavenil (bib24) 2016; 14
Ganesh, Muthukannan (bib17) 2019; 6
Wan, Chang, Xu, Šavija (bib28) 2023; 364
Hamed, Vormwald (bib35) 2010
(bib37) 2021
Eltayeb, Ma, Zhuge, Youssf, Mills (bib43) 2020; 30
Hossain, Shahjalal, Islam, Tiznobaik, Alam (bib11) 2019; 225
Karunarathna, Linforth, Kashani, Liu, Ngo (bib42) 2021; 314
Priya, Thirumalini (bib23) 2018; 48
Mahalakshmi, Khed (bib22) 2020; 27
Amudhavalli, Sivasankar, Shunmugasundaram, Kumar (bib20) 2020; 27
Ding, Hou, Xia, Ismail, Ye (bib27) 2022; 302
Niaki, Ahangari, Izadi, Pashaian (bib31) 2023; 46
B Ly, Nguyen, Tran (bib29) 2021; 301
Rajesh, Brightson (bib34) 2019
Standard (bib36) 2009
Du, Liu, Sun, Li, Wu, Li, Lv, Wang (bib9) 2022; 322
Zhang, Zhang, Jiang, Zhao, Wang, Zhu, Yan, Zhu (bib14) 2023; 389
Li, Zhou, Ma, Hou (bib1) 2022
Demirel, Kabutey, Herák, Sedlaček, Mizera, Dajbych (bib39) 2022; 10
(bib33) 1970
Aravind, Abdulrehman (bib4) 2022; 23
IS 2770-1(Part-1): Methods of Testing Bond in Reinforced Concrete-Pull-Out Test.
Abdulkadir, Mohammed, Liew, Wahab (bib25) 2021; 14
Li, Xue, Liang, Wu, Dong, Wang (bib8) 2021; 266
Sebastin, David, Karthick, Singh, Vanjinathan, Kumar, Meem (bib21) 2022; 2022
(bib32) 2013
Li, Li, Sun, Shen, Sheng (bib40) 2021; 121
Srikakulam (bib18) 2020; 27
Maravelaki, Kapetanaki, Papayianni, Ioannou, Faria, Alvarez, Stefanidou (bib3) 2023; 56
Ataria, Wang (bib12) 2022; 15
Yamei, Lihua (bib15) 2017; 210
Needhidasan, Ramesh, Prabu (bib16) 2020; 22
Pranavan, Srinivasan (bib19) 2021; 45
Awolusi, Oke, Akinkurolere, Sojobi (bib26) 2019; 10
George, Elvis (bib5) 2019; 1
Yu, Ye, Sun, Zhao, Feng (bib30) 2021; 28
Siddika, Al Mamun, Alyousef, Amran, Aslani, Alabduljabbar (bib41) 2019; 224
Zhang, Zhang, Zhao, Jiang, Chen, Hou, Wang, Yan, Zhu (bib13) 2023; 65
Oladapo, Ekanem (bib10) 2014; 3
Elseknidy, Salmiaton, Nor Shafizah, Saad (bib6) 2020; 12
Shi, Liu, Liu, Wang, He, Xu, Ren (bib7) 2020; 256
Shah, Yuan, Zuo (bib2) 2021; 274
Maravelaki (10.1016/j.jobe.2024.108486_bib3) 2023; 56
Yamei (10.1016/j.jobe.2024.108486_bib15) 2017; 210
(10.1016/j.jobe.2024.108486_bib32) 2013
Mahalakshmi (10.1016/j.jobe.2024.108486_bib22) 2020; 27
Siddika (10.1016/j.jobe.2024.108486_bib41) 2019; 224
Eltayeb (10.1016/j.jobe.2024.108486_bib43) 2020; 30
Elseknidy (10.1016/j.jobe.2024.108486_bib6) 2020; 12
Wan (10.1016/j.jobe.2024.108486_bib28) 2023; 364
Demirel (10.1016/j.jobe.2024.108486_bib39) 2022; 10
Li (10.1016/j.jobe.2024.108486_bib1) 2022
Needhidasan (10.1016/j.jobe.2024.108486_bib16) 2020; 22
Nagajothi (10.1016/j.jobe.2024.108486_bib24) 2016; 14
Sebastin (10.1016/j.jobe.2024.108486_bib21) 2022; 2022
Priya (10.1016/j.jobe.2024.108486_bib23) 2018; 48
Yu (10.1016/j.jobe.2024.108486_bib30) 2021; 28
Niaki (10.1016/j.jobe.2024.108486_bib31) 2023; 46
Srikakulam (10.1016/j.jobe.2024.108486_bib18) 2020; 27
Aravind (10.1016/j.jobe.2024.108486_bib4) 2022; 23
Zhang (10.1016/j.jobe.2024.108486_bib13) 2023; 65
Abdulkadir (10.1016/j.jobe.2024.108486_bib25) 2021; 14
Ataria (10.1016/j.jobe.2024.108486_bib12) 2022; 15
Zhang (10.1016/j.jobe.2024.108486_bib14) 2023; 389
(10.1016/j.jobe.2024.108486_bib37) 2021
Shi (10.1016/j.jobe.2024.108486_bib7) 2020; 256
B Ly (10.1016/j.jobe.2024.108486_bib29) 2021; 301
Standard (10.1016/j.jobe.2024.108486_bib36) 2009
Shah (10.1016/j.jobe.2024.108486_bib2) 2021; 274
Ding (10.1016/j.jobe.2024.108486_bib27) 2022; 302
Hossain (10.1016/j.jobe.2024.108486_bib11) 2019; 225
Pranavan (10.1016/j.jobe.2024.108486_bib19) 2021; 45
Li (10.1016/j.jobe.2024.108486_bib8) 2021; 266
George (10.1016/j.jobe.2024.108486_bib5) 2019; 1
Awolusi (10.1016/j.jobe.2024.108486_bib26) 2019; 10
10.1016/j.jobe.2024.108486_bib38
Li (10.1016/j.jobe.2024.108486_bib40) 2021; 121
Oladapo (10.1016/j.jobe.2024.108486_bib10) 2014; 3
Rajesh (10.1016/j.jobe.2024.108486_bib34) 2019
Du (10.1016/j.jobe.2024.108486_bib9) 2022; 322
Ganesh (10.1016/j.jobe.2024.108486_bib17) 2019; 6
Amudhavalli (10.1016/j.jobe.2024.108486_bib20) 2020; 27
Hamed (10.1016/j.jobe.2024.108486_bib35) 2010
Karunarathna (10.1016/j.jobe.2024.108486_bib42) 2021; 314
(10.1016/j.jobe.2024.108486_bib33) 1970
References_xml – volume: 28
  year: 2021
  ident: bib30
  article-title: Deep learning method for predicting the mechanical properties of aluminum alloys with small data sets
  publication-title: Mater. Today Commun.
– volume: 256
  year: 2020
  ident: bib7
  article-title: Preparation and characterization of lightweight aggregate foamed geopolymer concretes aerated using hydrogen peroxide
  publication-title: Construct. Build. Mater.
– volume: 10
  year: 2019
  ident: bib26
  article-title: Application of response surface methodology: predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler
  publication-title: Case Stud. Constr. Mater.
– volume: 45
  start-page: 7079
  year: 2021
  end-page: 7085
  ident: bib19
  article-title: Investigation on behaviour of M-sand and sea sand based concrete
  publication-title: Mater. Today: Proc.
– volume: 389
  year: 2023
  ident: bib14
  article-title: Uniaxial tensile properties of multi-scale fiber reinforced rubberized concrete after exposure to elevated temperatures
  publication-title: J. Clean. Prod.
– volume: 12
  start-page: 9230
  year: 2020
  ident: bib6
  article-title: A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust
  publication-title: Sustainability
– year: 2010
  ident: bib35
  article-title: Rheological Properties and Fatigue Restistance of Crumb Rubber Modified Bitumen
– reference: IS 2770-1(Part-1): Methods of Testing Bond in Reinforced Concrete-Pull-Out Test.
– volume: 364
  year: 2023
  ident: bib28
  article-title: Optimization of vascular structure of self-healing concrete using deep neural network (DNN)
  publication-title: Construct. Build. Mater.
– volume: 10
  start-page: 490
  year: 2022
  ident: bib39
  article-title: Using Box–Behnken design coupled with response surface methodology for optimizing rapeseed oil expression parameters under heating and freezing conditions
  publication-title: Processes
– volume: 46
  start-page: 603
  year: 2023
  end-page: 615
  ident: bib31
  article-title: Evaluation of fracture toughness properties of polymer concrete composite using deep learning approach
  publication-title: Fatig. Fract. Eng. Mater. Struct.
– volume: 27
  start-page: 1230
  year: 2020
  end-page: 1234
  ident: bib18
  article-title: Experimental investigation on the strength parameters of rubberized engineered cementitious composite with M sand
  publication-title: Materials Today: Proceedings.
– year: 2022
  ident: bib1
  article-title: Advanced Concrete Technology
– volume: 22
  start-page: 715
  year: 2020
  end-page: 721
  ident: bib16
  article-title: Experimental study on use of E-waste plastics as coarse aggregate in concrete with manufactured sand
  publication-title: Mater. Today: Proc.
– volume: 322
  year: 2022
  ident: bib9
  article-title: Enhancing concrete sulfate resistance by adding NaCl
  publication-title: Construct. Build. Mater.
– volume: 65
  year: 2023
  ident: bib13
  article-title: Influence of multi-scale fiber on residual compressive properties of a novel rubberized concrete subjected to elevated temperatures
  publication-title: J. Build. Eng.
– volume: 48
  start-page: 483
  year: 2018
  ident: bib23
  article-title: Evaluation of strength and durability of natural fibre reinforced high strength concrete with M-sand
  publication-title: Rev. Rom. Mater.
– year: 1970
  ident: bib33
  publication-title: IS: 383- Recommended Guidelines for Test on Aggregates
– volume: 314
  year: 2021
  ident: bib42
  article-title: Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete
  publication-title: J. Clean. Prod.
– volume: 266
  year: 2021
  ident: bib8
  article-title: Effect of CS-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste
  publication-title: Construct. Build. Mater.
– volume: 27
  start-page: 1061
  year: 2020
  end-page: 1065
  ident: bib22
  article-title: Experimental study on M-sand in self-compacting concrete with and without silica fume
  publication-title: Mater. Today: Proc.
– volume: 121
  year: 2021
  ident: bib40
  article-title: Development of sustainable concrete incorporating seawater: a critical review on cement hydration, microstructure and mechanical strength
  publication-title: Cement Concr. Compos.
– volume: 225
  start-page: 983
  year: 2019
  end-page: 996
  ident: bib11
  article-title: Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber
  publication-title: Construct. Build. Mater.
– volume: 274
  year: 2021
  ident: bib2
  article-title: Air entrainment in fresh concrete and its effects on hardened concrete-a review
  publication-title: Construct. Build. Mater.
– volume: 3
  start-page: 2395
  year: 2014
  end-page: 2397
  ident: bib10
  article-title: Effect of sodium chloride (NaCl) on concrete compressive strength
  publication-title: Int. J. Eng. Res. Technol.
– volume: 23
  start-page: 4160
  year: 2022
  end-page: 4173
  ident: bib4
  article-title: A review and sequel experimental analysis on physical and mechanical properties of permeable concrete for pavement construction
  publication-title: Int. J. Pavement Eng.
– volume: 14
  start-page: 115
  year: 2016
  end-page: 126
  ident: bib24
  article-title: Strength assessment of geopolymer concrete using M-sand
  publication-title: Int. J. Chem. Sci.
– volume: 301
  year: 2021
  ident: bib29
  article-title: Development of deep neural network model to predict the compressive strength of rubber concrete
  publication-title: Construct. Build. Mater.
– volume: 56
  start-page: 106
  year: 2023
  ident: bib3
  article-title: RILEM TC 277-LHS report: additives and admixtures for modern lime-based mortars
  publication-title: Mater. Struct.
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 5
  ident: bib21
  article-title: Investigation on mechanical and durability performance of reinforced concrete containing red soil as alternate for M-sand
  publication-title: J. Nanomater.
– year: 2013
  ident: bib32
  article-title: 12269: Ordinary Portland Cement, 53 Grade—Specification (First Revision)
– volume: 15
  start-page: 1776
  year: 2022
  ident: bib12
  article-title: Mechanical properties and durability performance of recycled aggregate concrete containing crumb rubber
  publication-title: Materials
– year: 2021
  ident: bib37
  publication-title: Is 516 (Part-1 Sec-I) –Testing of Strength of Hardened Concrete
– volume: 27
  start-page: 1401
  year: 2020
  end-page: 1406
  ident: bib20
  article-title: Characteristics of granite dust concrete with M− sand as replacement of fine aggregate composites
  publication-title: Mater. Today: Proc.
– volume: 14
  year: 2021
  ident: bib25
  article-title: Modelling and multi-objective optimization of the fresh and mechanical properties of self-compacting high volume fly ash ECC (HVFA-ECC) using response surface methodology (RSM)
  publication-title: Case Stud. Constr. Mater.
– volume: 1
  start-page: 1514
  year: 2019
  ident: bib5
  article-title: Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network
  publication-title: SN Appl. Sci.
– volume: 6
  start-page: 501
  year: 2019
  end-page: 512
  ident: bib17
  article-title: Investigation on the glass fiber reinforced geopolymer concrete made of M-sand
  publication-title: Journal of Materials and Engineering Structures «JMES»
– volume: 30
  year: 2020
  ident: bib43
  article-title: Influence of rubber particles on the properties of foam concrete
  publication-title: J. Build. Eng.
– volume: 210
  start-page: 87
  year: 2017
  end-page: 92
  ident: bib15
  article-title: Effect of particle shape of limestone manufactured sand and natural sand on concrete
  publication-title: Procedia Eng.
– year: 2019
  ident: bib34
  article-title: Mechanical Characteristics of Eco-Friendly Concrete Using GGBS and Manufactured Sand
– year: 2009
  ident: bib36
  article-title: Is 10262: Guidelines for Concrete Mix Design Proportioning
– volume: 224
  start-page: 711
  year: 2019
  end-page: 731
  ident: bib41
  article-title: Properties and utilizations of waste tire rubber in concrete: a review
  publication-title: Construct. Build. Mater.
– volume: 302
  year: 2022
  ident: bib27
  article-title: Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN)
  publication-title: Compos. Struct.
– volume: 14
  start-page: 115
  issue: S1
  year: 2016
  ident: 10.1016/j.jobe.2024.108486_bib24
  article-title: Strength assessment of geopolymer concrete using M-sand
  publication-title: Int. J. Chem. Sci.
– volume: 210
  start-page: 87
  year: 2017
  ident: 10.1016/j.jobe.2024.108486_bib15
  article-title: Effect of particle shape of limestone manufactured sand and natural sand on concrete
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.11.052
– year: 2022
  ident: 10.1016/j.jobe.2024.108486_bib1
– volume: 56
  start-page: 106
  issue: 5
  year: 2023
  ident: 10.1016/j.jobe.2024.108486_bib3
  article-title: RILEM TC 277-LHS report: additives and admixtures for modern lime-based mortars
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-023-02175-z
– volume: 389
  year: 2023
  ident: 10.1016/j.jobe.2024.108486_bib14
  article-title: Uniaxial tensile properties of multi-scale fiber reinforced rubberized concrete after exposure to elevated temperatures
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136068
– year: 2013
  ident: 10.1016/j.jobe.2024.108486_bib32
– volume: 266
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib8
  article-title: Effect of CS-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121096
– volume: 10
  start-page: 490
  issue: 3
  year: 2022
  ident: 10.1016/j.jobe.2024.108486_bib39
  article-title: Using Box–Behnken design coupled with response surface methodology for optimizing rapeseed oil expression parameters under heating and freezing conditions
  publication-title: Processes
  doi: 10.3390/pr10030490
– volume: 224
  start-page: 711
  year: 2019
  ident: 10.1016/j.jobe.2024.108486_bib41
  article-title: Properties and utilizations of waste tire rubber in concrete: a review
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.108
– volume: 46
  start-page: 603
  issue: 2
  year: 2023
  ident: 10.1016/j.jobe.2024.108486_bib31
  article-title: Evaluation of fracture toughness properties of polymer concrete composite using deep learning approach
  publication-title: Fatig. Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.13889
– volume: 314
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib42
  article-title: Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128230
– volume: 30
  year: 2020
  ident: 10.1016/j.jobe.2024.108486_bib43
  article-title: Influence of rubber particles on the properties of foam concrete
  publication-title: J. Build. Eng.
– year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib37
– volume: 121
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib40
  article-title: Development of sustainable concrete incorporating seawater: a critical review on cement hydration, microstructure and mechanical strength
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104100
– volume: 1
  start-page: 1514
  issue: 11
  year: 2019
  ident: 10.1016/j.jobe.2024.108486_bib5
  article-title: Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1504-2
– volume: 15
  start-page: 1776
  issue: 5
  year: 2022
  ident: 10.1016/j.jobe.2024.108486_bib12
  article-title: Mechanical properties and durability performance of recycled aggregate concrete containing crumb rubber
  publication-title: Materials
  doi: 10.3390/ma15051776
– volume: 3
  start-page: 2395
  year: 2014
  ident: 10.1016/j.jobe.2024.108486_bib10
  article-title: Effect of sodium chloride (NaCl) on concrete compressive strength
  publication-title: Int. J. Eng. Res. Technol.
– volume: 23
  start-page: 4160
  issue: 12
  year: 2022
  ident: 10.1016/j.jobe.2024.108486_bib4
  article-title: A review and sequel experimental analysis on physical and mechanical properties of permeable concrete for pavement construction
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2021.1936519
– volume: 225
  start-page: 983
  year: 2019
  ident: 10.1016/j.jobe.2024.108486_bib11
  article-title: Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.245
– year: 1970
  ident: 10.1016/j.jobe.2024.108486_bib33
– volume: 22
  start-page: 715
  year: 2020
  ident: 10.1016/j.jobe.2024.108486_bib16
  article-title: Experimental study on use of E-waste plastics as coarse aggregate in concrete with manufactured sand
  publication-title: Mater. Today: Proc.
– volume: 27
  start-page: 1230
  year: 2020
  ident: 10.1016/j.jobe.2024.108486_bib18
  article-title: Experimental investigation on the strength parameters of rubberized engineered cementitious composite with M sand
  publication-title: Materials Today: Proceedings.
– volume: 45
  start-page: 7079
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib19
  article-title: Investigation on behaviour of M-sand and sea sand based concrete
  publication-title: Mater. Today: Proc.
– volume: 301
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib29
  article-title: Development of deep neural network model to predict the compressive strength of rubber concrete
  publication-title: Construct. Build. Mater.
– volume: 364
  year: 2023
  ident: 10.1016/j.jobe.2024.108486_bib28
  article-title: Optimization of vascular structure of self-healing concrete using deep neural network (DNN)
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129955
– volume: 12
  start-page: 9230
  issue: 21
  year: 2020
  ident: 10.1016/j.jobe.2024.108486_bib6
  article-title: A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust
  publication-title: Sustainability
  doi: 10.3390/su12219230
– volume: 6
  start-page: 501
  issue: 4
  year: 2019
  ident: 10.1016/j.jobe.2024.108486_bib17
  article-title: Investigation on the glass fiber reinforced geopolymer concrete made of M-sand
  publication-title: Journal of Materials and Engineering Structures «JMES»
– volume: 27
  start-page: 1401
  year: 2020
  ident: 10.1016/j.jobe.2024.108486_bib20
  article-title: Characteristics of granite dust concrete with M− sand as replacement of fine aggregate composites
  publication-title: Mater. Today: Proc.
– year: 2009
  ident: 10.1016/j.jobe.2024.108486_bib36
– year: 2019
  ident: 10.1016/j.jobe.2024.108486_bib34
– volume: 302
  year: 2022
  ident: 10.1016/j.jobe.2024.108486_bib27
  article-title: Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN)
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.116248
– year: 2010
  ident: 10.1016/j.jobe.2024.108486_bib35
– volume: 274
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib2
  article-title: Air entrainment in fresh concrete and its effects on hardened concrete-a review
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121835
– volume: 14
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib25
  article-title: Modelling and multi-objective optimization of the fresh and mechanical properties of self-compacting high volume fly ash ECC (HVFA-ECC) using response surface methodology (RSM)
  publication-title: Case Stud. Constr. Mater.
– volume: 28
  year: 2021
  ident: 10.1016/j.jobe.2024.108486_bib30
  article-title: Deep learning method for predicting the mechanical properties of aluminum alloys with small data sets
  publication-title: Mater. Today Commun.
– volume: 65
  year: 2023
  ident: 10.1016/j.jobe.2024.108486_bib13
  article-title: Influence of multi-scale fiber on residual compressive properties of a novel rubberized concrete subjected to elevated temperatures
  publication-title: J. Build. Eng.
– volume: 256
  year: 2020
  ident: 10.1016/j.jobe.2024.108486_bib7
  article-title: Preparation and characterization of lightweight aggregate foamed geopolymer concretes aerated using hydrogen peroxide
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119442
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.jobe.2024.108486_bib21
  article-title: Investigation on mechanical and durability performance of reinforced concrete containing red soil as alternate for M-sand
  publication-title: J. Nanomater.
  doi: 10.1155/2022/5404416
– volume: 322
  year: 2022
  ident: 10.1016/j.jobe.2024.108486_bib9
  article-title: Enhancing concrete sulfate resistance by adding NaCl
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.126370
– volume: 27
  start-page: 1061
  year: 2020
  ident: 10.1016/j.jobe.2024.108486_bib22
  article-title: Experimental study on M-sand in self-compacting concrete with and without silica fume
  publication-title: Mater. Today: Proc.
– volume: 10
  year: 2019
  ident: 10.1016/j.jobe.2024.108486_bib26
  article-title: Application of response surface methodology: predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler
  publication-title: Case Stud. Constr. Mater.
– ident: 10.1016/j.jobe.2024.108486_bib38
– volume: 48
  start-page: 483
  issue: 4
  year: 2018
  ident: 10.1016/j.jobe.2024.108486_bib23
  article-title: Evaluation of strength and durability of natural fibre reinforced high strength concrete with M-sand
  publication-title: Rev. Rom. Mater.
SSID ssj0002953864
Score 2.3579545
Snippet Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108486
SubjectTerms And response surface methodology
Crumb rubber
Deep neural network
Flexural strength
Horse herd optimization
Pull-out strength
Split tensile strength
Title Optimization and prediction of mechanical properties of composite concrete with crumb rubber using RSM and hybrid DNN-HHO algorithm
URI https://dx.doi.org/10.1016/j.jobe.2024.108486
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2352-7102
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002953864
  issn: 2352-7102
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 2352-7102
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002953864
  issn: 2352-7102
  databaseCode: ACRLP
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 2352-7102
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002953864
  issn: 2352-7102
  databaseCode: AIKHN
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7U9uLFaNRYX9mDN0MKLFA4NtUGNdLE2qQ3srsstU2hBNuDZ_-4M7A0mhgP3vbBEDL7mJnl-2YJubG9JFW-tA3GlGM4TApDpL5rWNKxBQ8Cx6-zfUZeOHUeZ-6sRYYNFwZhlXrvr_f0arfWLT2tzV6xWPQmNvgO_SojWsUo9fZIB-yP77dJZ_DwFEa7oxY7gFVdJZJCEUQf2po-UyO9lsi7scFYIeDOQVb1bybqm9kZHZID7S_SQf1JR6Sl8mPyOYaFnmkGJeV5QosSf7hU1XVKM4V8XlQ_dKwLhE6rd-xAADmitBSUcvAXoYAHsVSW20zQciuEKilC4ef0ZfJcvfntAzld9C6KjDAcU76ar0sQyU7IdHT_OgwNfZuCIZlpboyUW2CtLCl8jzMIUyRjGBCqPueKm0iYNdNAsARiGgGNthK-5biJcoQy8UCTnZJ2vs7VGaGWTGAIzQB8C9gDEk8EZgKRV8pNP00gvusSq1FgLHWqcbzxYhU3mLJljEqPUelxrfQuud3JFHWijT-fdptxiX9MlxgswR9y5_-UuyD7WKuRjpekvSm36gq8kY241rPtC9363TE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3oxGjV-24M3s7Ct3diOBCVTYCYCCbel7TqFwCATDp79x31vK0YT48Hb1u4ty2v7Prrf75WQG9dPMx0o12JMc4szJS2ZBZ7lKO5KEYY8qKp9xn404o9jb1wj7Q0XBmGVxvZXNr201qalYbTZWE4mjYELsUOzrIhWMkr9LbLNPdaE1bndeuhG8ddWixvCqi4LSaEIog9dQ5-pkF5T5N244KwQcMeRVf2bi_rmdjr7ZM_Ei7RVfdIBqen8kHw8wUKfGwYlFXlKlwX-cClvFxmda-TzovqhY7FE6LR-ww4EkCNKS8NVDvEiXOBGLFXFei5psZZSFxSh8C_0edAv3_z6jpwuehfHVhQ9UTF7WRQgMj8io879sB1Z5jQFSzHbXlmZcMBbOUoGvmCQpijGMCHUTSG0sJEwa2ehZCnkNBIaXS0Dh3up5lLbuKHJjkk9X-T6hFBHpTCEdgixBdiA1JehnULmlQk7yFLI706Js1FgokypcTzxYpZsMGXTBJWeoNKTSumn5PZLZlkV2vjzaW8zLsmP6ZKAJ_hD7uyfctdkJxr2e0nvIe6ek13sqVCPF6S-Ktb6EiKTlbwyM-8TRkXgEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+and+prediction+of+mechanical+properties+of+composite+concrete+with+crumb+rubber+using+RSM+and+hybrid+DNN-HHO+algorithm&rft.jtitle=Journal+of+Building+Engineering&rft.au=Anjali%2C+R.&rft.au=Venkatesan%2C+G.&rft.date=2024-05-01&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=84&rft.spage=108486&rft_id=info:doi/10.1016%2Fj.jobe.2024.108486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2024_108486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon