Optimization and prediction of mechanical properties of composite concrete with crumb rubber using RSM and hybrid DNN-HHO algorithm
Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling waste tires, using crumb rubber from used tires in the construction sector is a highly practical alternative. Concrete with crumb rubber (CR) imp...
Saved in:
| Published in | Journal of Building Engineering Vol. 84; p. 108486 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2352-7102 2352-7102 |
| DOI | 10.1016/j.jobe.2024.108486 |
Cover
| Abstract | Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling waste tires, using crumb rubber from used tires in the construction sector is a highly practical alternative. Concrete with crumb rubber (CR) improves flexibility and durability, providing higher mechanical strength. So, this study aimed to apply Response Surface Methodology (RSM) and a hybrid deep neural network-horse herd optimization (DNN-HHO) to optimize the mechanical characteristics of composite concrete with CR. Aluminium (Al), Hydrogen peroxide (H2O2), Sodium Sulfate (Na2SO4) and Sodium Chloride (NaCl) are used as composite materials with CR. Manufactured sand (M-sand) is used in this study because it is eco-friendly, economical and improved concrete quality. The RSM model evaluates the 27 proportions and tests them to assess their mechanical strength and other parameters. The research's conclusions are as follows: Evaluation of 27 proportions reveals that Al + H2O2+2.5R achieves optimal compressive, split tensile, flexural, and pull-out strength of 3.80 MPa,46.08 MPa,4.75 MPa, and 3.67 MPa, respectively. The developed RSM model exhibits strong regression and significant fit, as evidenced by the derived ANOVA. Comparing the actual versus predicted plots, it is observed that all points align closely with the fitted line all outputs, indicating the superior prediction performance of the proposed DNN-HHO model over both DNN and RSM. Furthermore, the regression values in the proposed model are exceptionally surpassing the RSM regression values. These findings affirm the superiority of the hybrid DNN-HHO algorithm in predicting results.
•The mechanical properties of concrete with CR under various proportions were studied.•Al + H2O2+2.5R mix proportion achieved highest mechanical strength of the concrete.•SEM analysis established better matrix formed between CR, M-Sand and cement mixtures.•Hybrid DNN-HHO algorithm proved superior as it predicted results than DNN and RSM.•The developed DNN-HHO model achieved best prediction performance with least error. |
|---|---|
| AbstractList | Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling waste tires, using crumb rubber from used tires in the construction sector is a highly practical alternative. Concrete with crumb rubber (CR) improves flexibility and durability, providing higher mechanical strength. So, this study aimed to apply Response Surface Methodology (RSM) and a hybrid deep neural network-horse herd optimization (DNN-HHO) to optimize the mechanical characteristics of composite concrete with CR. Aluminium (Al), Hydrogen peroxide (H2O2), Sodium Sulfate (Na2SO4) and Sodium Chloride (NaCl) are used as composite materials with CR. Manufactured sand (M-sand) is used in this study because it is eco-friendly, economical and improved concrete quality. The RSM model evaluates the 27 proportions and tests them to assess their mechanical strength and other parameters. The research's conclusions are as follows: Evaluation of 27 proportions reveals that Al + H2O2+2.5R achieves optimal compressive, split tensile, flexural, and pull-out strength of 3.80 MPa,46.08 MPa,4.75 MPa, and 3.67 MPa, respectively. The developed RSM model exhibits strong regression and significant fit, as evidenced by the derived ANOVA. Comparing the actual versus predicted plots, it is observed that all points align closely with the fitted line all outputs, indicating the superior prediction performance of the proposed DNN-HHO model over both DNN and RSM. Furthermore, the regression values in the proposed model are exceptionally surpassing the RSM regression values. These findings affirm the superiority of the hybrid DNN-HHO algorithm in predicting results.
•The mechanical properties of concrete with CR under various proportions were studied.•Al + H2O2+2.5R mix proportion achieved highest mechanical strength of the concrete.•SEM analysis established better matrix formed between CR, M-Sand and cement mixtures.•Hybrid DNN-HHO algorithm proved superior as it predicted results than DNN and RSM.•The developed DNN-HHO model achieved best prediction performance with least error. |
| ArticleNumber | 108486 |
| Author | Venkatesan, G. Anjali, R. |
| Author_xml | – sequence: 1 givenname: R. surname: Anjali fullname: Anjali, R. email: anjaliramchitu@gmail.com – sequence: 2 givenname: G. surname: Venkatesan fullname: Venkatesan, G. |
| BookMark | eNp9kMtKAzEUhoMoqNUXcJUXmHqSTKdTcCP1UqG24GUdkswZm9KZDEmq1K0vbtq6EBeu8uc_fAfOd0oOW9ciIRcM-gxYcbnsL53GPgeep6LMy-KAnHAx4NmQAT_8lY_JeQhLAOCjgSiL_IR8zbtoG_uponUtVW1FO4-VNbuvq2mDZqFaa9QqDVyHPloM24FxTeeCjZhSazym8GHjghq_bjT1a63R03Ww7Rt9en7cbV5stLcVvZnNsslkTtXqzfmENGfkqFargOc_b4-83t2-jCfZdH7_ML6eZkYAxKxWDETBjC4LJfJyaESqGeBQKVQgBiWHeqRFBaNCp5KjLlk-qDDXCBxgKHqk3O813oXgsZbGxt3h0Su7kgzk1qdcyq1PufUp9z4Tyv-gnbeN8pv_oas9hOmod4teBmOxNcmvRxNl5ex_-Dddi5KE |
| CitedBy_id | crossref_primary_10_3390_buildings14092693 crossref_primary_10_3390_computation13010014 crossref_primary_10_1080_10298436_2024_2427867 crossref_primary_10_1002_app_55951 |
| Cites_doi | 10.1016/j.proeng.2017.11.052 10.1617/s11527-023-02175-z 10.1016/j.jclepro.2023.136068 10.1016/j.conbuildmat.2020.121096 10.3390/pr10030490 10.1016/j.conbuildmat.2019.07.108 10.1111/ffe.13889 10.1016/j.jclepro.2021.128230 10.1016/j.cemconcomp.2021.104100 10.1007/s42452-019-1504-2 10.3390/ma15051776 10.1080/10298436.2021.1936519 10.1016/j.conbuildmat.2019.07.245 10.1016/j.conbuildmat.2022.129955 10.3390/su12219230 10.1016/j.compstruct.2022.116248 10.1016/j.conbuildmat.2020.121835 10.1016/j.conbuildmat.2020.119442 10.1155/2022/5404416 10.1016/j.conbuildmat.2022.126370 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jobe.2024.108486 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-7102 |
| ExternalDocumentID | 10_1016_j_jobe_2024_108486 S2352710224000536 |
| GroupedDBID | --M 0R~ 457 7-5 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGUMN AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EFLBG FDB FEDTE FIRID FYGXN GBLVA HVGLF KOM M41 O9- OAUVE ROL SPC SPCBC SSB SSL SST SSZ T5K ~G- 4.4 AAYXX ABXDB ACLOT CITATION EJD |
| ID | FETCH-LOGICAL-c300t-fa10361cb86a3487c330010e7aaea035820f9b3d096be7a2eb8145de4be020073 |
| IEDL.DBID | AIKHN |
| ISSN | 2352-7102 |
| IngestDate | Wed Oct 01 05:43:57 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 Sat Sep 06 17:17:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep neural network Flexural strength Split tensile strength Pull-out strength And response surface methodology Crumb rubber Horse herd optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-fa10361cb86a3487c330010e7aaea035820f9b3d096be7a2eb8145de4be020073 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jobe_2024_108486 crossref_primary_10_1016_j_jobe_2024_108486 elsevier_sciencedirect_doi_10_1016_j_jobe_2024_108486 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Building Engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Nagajothi, Elavenil (bib24) 2016; 14 Ganesh, Muthukannan (bib17) 2019; 6 Wan, Chang, Xu, Šavija (bib28) 2023; 364 Hamed, Vormwald (bib35) 2010 (bib37) 2021 Eltayeb, Ma, Zhuge, Youssf, Mills (bib43) 2020; 30 Hossain, Shahjalal, Islam, Tiznobaik, Alam (bib11) 2019; 225 Karunarathna, Linforth, Kashani, Liu, Ngo (bib42) 2021; 314 Priya, Thirumalini (bib23) 2018; 48 Mahalakshmi, Khed (bib22) 2020; 27 Amudhavalli, Sivasankar, Shunmugasundaram, Kumar (bib20) 2020; 27 Ding, Hou, Xia, Ismail, Ye (bib27) 2022; 302 Niaki, Ahangari, Izadi, Pashaian (bib31) 2023; 46 B Ly, Nguyen, Tran (bib29) 2021; 301 Rajesh, Brightson (bib34) 2019 Standard (bib36) 2009 Du, Liu, Sun, Li, Wu, Li, Lv, Wang (bib9) 2022; 322 Zhang, Zhang, Jiang, Zhao, Wang, Zhu, Yan, Zhu (bib14) 2023; 389 Li, Zhou, Ma, Hou (bib1) 2022 Demirel, Kabutey, Herák, Sedlaček, Mizera, Dajbych (bib39) 2022; 10 (bib33) 1970 Aravind, Abdulrehman (bib4) 2022; 23 IS 2770-1(Part-1): Methods of Testing Bond in Reinforced Concrete-Pull-Out Test. Abdulkadir, Mohammed, Liew, Wahab (bib25) 2021; 14 Li, Xue, Liang, Wu, Dong, Wang (bib8) 2021; 266 Sebastin, David, Karthick, Singh, Vanjinathan, Kumar, Meem (bib21) 2022; 2022 (bib32) 2013 Li, Li, Sun, Shen, Sheng (bib40) 2021; 121 Srikakulam (bib18) 2020; 27 Maravelaki, Kapetanaki, Papayianni, Ioannou, Faria, Alvarez, Stefanidou (bib3) 2023; 56 Ataria, Wang (bib12) 2022; 15 Yamei, Lihua (bib15) 2017; 210 Needhidasan, Ramesh, Prabu (bib16) 2020; 22 Pranavan, Srinivasan (bib19) 2021; 45 Awolusi, Oke, Akinkurolere, Sojobi (bib26) 2019; 10 George, Elvis (bib5) 2019; 1 Yu, Ye, Sun, Zhao, Feng (bib30) 2021; 28 Siddika, Al Mamun, Alyousef, Amran, Aslani, Alabduljabbar (bib41) 2019; 224 Zhang, Zhang, Zhao, Jiang, Chen, Hou, Wang, Yan, Zhu (bib13) 2023; 65 Oladapo, Ekanem (bib10) 2014; 3 Elseknidy, Salmiaton, Nor Shafizah, Saad (bib6) 2020; 12 Shi, Liu, Liu, Wang, He, Xu, Ren (bib7) 2020; 256 Shah, Yuan, Zuo (bib2) 2021; 274 Maravelaki (10.1016/j.jobe.2024.108486_bib3) 2023; 56 Yamei (10.1016/j.jobe.2024.108486_bib15) 2017; 210 (10.1016/j.jobe.2024.108486_bib32) 2013 Mahalakshmi (10.1016/j.jobe.2024.108486_bib22) 2020; 27 Siddika (10.1016/j.jobe.2024.108486_bib41) 2019; 224 Eltayeb (10.1016/j.jobe.2024.108486_bib43) 2020; 30 Elseknidy (10.1016/j.jobe.2024.108486_bib6) 2020; 12 Wan (10.1016/j.jobe.2024.108486_bib28) 2023; 364 Demirel (10.1016/j.jobe.2024.108486_bib39) 2022; 10 Li (10.1016/j.jobe.2024.108486_bib1) 2022 Needhidasan (10.1016/j.jobe.2024.108486_bib16) 2020; 22 Nagajothi (10.1016/j.jobe.2024.108486_bib24) 2016; 14 Sebastin (10.1016/j.jobe.2024.108486_bib21) 2022; 2022 Priya (10.1016/j.jobe.2024.108486_bib23) 2018; 48 Yu (10.1016/j.jobe.2024.108486_bib30) 2021; 28 Niaki (10.1016/j.jobe.2024.108486_bib31) 2023; 46 Srikakulam (10.1016/j.jobe.2024.108486_bib18) 2020; 27 Aravind (10.1016/j.jobe.2024.108486_bib4) 2022; 23 Zhang (10.1016/j.jobe.2024.108486_bib13) 2023; 65 Abdulkadir (10.1016/j.jobe.2024.108486_bib25) 2021; 14 Ataria (10.1016/j.jobe.2024.108486_bib12) 2022; 15 Zhang (10.1016/j.jobe.2024.108486_bib14) 2023; 389 (10.1016/j.jobe.2024.108486_bib37) 2021 Shi (10.1016/j.jobe.2024.108486_bib7) 2020; 256 B Ly (10.1016/j.jobe.2024.108486_bib29) 2021; 301 Standard (10.1016/j.jobe.2024.108486_bib36) 2009 Shah (10.1016/j.jobe.2024.108486_bib2) 2021; 274 Ding (10.1016/j.jobe.2024.108486_bib27) 2022; 302 Hossain (10.1016/j.jobe.2024.108486_bib11) 2019; 225 Pranavan (10.1016/j.jobe.2024.108486_bib19) 2021; 45 Li (10.1016/j.jobe.2024.108486_bib8) 2021; 266 George (10.1016/j.jobe.2024.108486_bib5) 2019; 1 Awolusi (10.1016/j.jobe.2024.108486_bib26) 2019; 10 10.1016/j.jobe.2024.108486_bib38 Li (10.1016/j.jobe.2024.108486_bib40) 2021; 121 Oladapo (10.1016/j.jobe.2024.108486_bib10) 2014; 3 Rajesh (10.1016/j.jobe.2024.108486_bib34) 2019 Du (10.1016/j.jobe.2024.108486_bib9) 2022; 322 Ganesh (10.1016/j.jobe.2024.108486_bib17) 2019; 6 Amudhavalli (10.1016/j.jobe.2024.108486_bib20) 2020; 27 Hamed (10.1016/j.jobe.2024.108486_bib35) 2010 Karunarathna (10.1016/j.jobe.2024.108486_bib42) 2021; 314 (10.1016/j.jobe.2024.108486_bib33) 1970 |
| References_xml | – volume: 28 year: 2021 ident: bib30 article-title: Deep learning method for predicting the mechanical properties of aluminum alloys with small data sets publication-title: Mater. Today Commun. – volume: 256 year: 2020 ident: bib7 article-title: Preparation and characterization of lightweight aggregate foamed geopolymer concretes aerated using hydrogen peroxide publication-title: Construct. Build. Mater. – volume: 10 year: 2019 ident: bib26 article-title: Application of response surface methodology: predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler publication-title: Case Stud. Constr. Mater. – volume: 45 start-page: 7079 year: 2021 end-page: 7085 ident: bib19 article-title: Investigation on behaviour of M-sand and sea sand based concrete publication-title: Mater. Today: Proc. – volume: 389 year: 2023 ident: bib14 article-title: Uniaxial tensile properties of multi-scale fiber reinforced rubberized concrete after exposure to elevated temperatures publication-title: J. Clean. Prod. – volume: 12 start-page: 9230 year: 2020 ident: bib6 article-title: A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust publication-title: Sustainability – year: 2010 ident: bib35 article-title: Rheological Properties and Fatigue Restistance of Crumb Rubber Modified Bitumen – reference: IS 2770-1(Part-1): Methods of Testing Bond in Reinforced Concrete-Pull-Out Test. – volume: 364 year: 2023 ident: bib28 article-title: Optimization of vascular structure of self-healing concrete using deep neural network (DNN) publication-title: Construct. Build. Mater. – volume: 10 start-page: 490 year: 2022 ident: bib39 article-title: Using Box–Behnken design coupled with response surface methodology for optimizing rapeseed oil expression parameters under heating and freezing conditions publication-title: Processes – volume: 46 start-page: 603 year: 2023 end-page: 615 ident: bib31 article-title: Evaluation of fracture toughness properties of polymer concrete composite using deep learning approach publication-title: Fatig. Fract. Eng. Mater. Struct. – volume: 27 start-page: 1230 year: 2020 end-page: 1234 ident: bib18 article-title: Experimental investigation on the strength parameters of rubberized engineered cementitious composite with M sand publication-title: Materials Today: Proceedings. – year: 2022 ident: bib1 article-title: Advanced Concrete Technology – volume: 22 start-page: 715 year: 2020 end-page: 721 ident: bib16 article-title: Experimental study on use of E-waste plastics as coarse aggregate in concrete with manufactured sand publication-title: Mater. Today: Proc. – volume: 322 year: 2022 ident: bib9 article-title: Enhancing concrete sulfate resistance by adding NaCl publication-title: Construct. Build. Mater. – volume: 65 year: 2023 ident: bib13 article-title: Influence of multi-scale fiber on residual compressive properties of a novel rubberized concrete subjected to elevated temperatures publication-title: J. Build. Eng. – volume: 48 start-page: 483 year: 2018 ident: bib23 article-title: Evaluation of strength and durability of natural fibre reinforced high strength concrete with M-sand publication-title: Rev. Rom. Mater. – year: 1970 ident: bib33 publication-title: IS: 383- Recommended Guidelines for Test on Aggregates – volume: 314 year: 2021 ident: bib42 article-title: Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete publication-title: J. Clean. Prod. – volume: 266 year: 2021 ident: bib8 article-title: Effect of CS-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste publication-title: Construct. Build. Mater. – volume: 27 start-page: 1061 year: 2020 end-page: 1065 ident: bib22 article-title: Experimental study on M-sand in self-compacting concrete with and without silica fume publication-title: Mater. Today: Proc. – volume: 121 year: 2021 ident: bib40 article-title: Development of sustainable concrete incorporating seawater: a critical review on cement hydration, microstructure and mechanical strength publication-title: Cement Concr. Compos. – volume: 225 start-page: 983 year: 2019 end-page: 996 ident: bib11 article-title: Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber publication-title: Construct. Build. Mater. – volume: 274 year: 2021 ident: bib2 article-title: Air entrainment in fresh concrete and its effects on hardened concrete-a review publication-title: Construct. Build. Mater. – volume: 3 start-page: 2395 year: 2014 end-page: 2397 ident: bib10 article-title: Effect of sodium chloride (NaCl) on concrete compressive strength publication-title: Int. J. Eng. Res. Technol. – volume: 23 start-page: 4160 year: 2022 end-page: 4173 ident: bib4 article-title: A review and sequel experimental analysis on physical and mechanical properties of permeable concrete for pavement construction publication-title: Int. J. Pavement Eng. – volume: 14 start-page: 115 year: 2016 end-page: 126 ident: bib24 article-title: Strength assessment of geopolymer concrete using M-sand publication-title: Int. J. Chem. Sci. – volume: 301 year: 2021 ident: bib29 article-title: Development of deep neural network model to predict the compressive strength of rubber concrete publication-title: Construct. Build. Mater. – volume: 56 start-page: 106 year: 2023 ident: bib3 article-title: RILEM TC 277-LHS report: additives and admixtures for modern lime-based mortars publication-title: Mater. Struct. – volume: 2022 start-page: 1 year: 2022 end-page: 5 ident: bib21 article-title: Investigation on mechanical and durability performance of reinforced concrete containing red soil as alternate for M-sand publication-title: J. Nanomater. – year: 2013 ident: bib32 article-title: 12269: Ordinary Portland Cement, 53 Grade—Specification (First Revision) – volume: 15 start-page: 1776 year: 2022 ident: bib12 article-title: Mechanical properties and durability performance of recycled aggregate concrete containing crumb rubber publication-title: Materials – year: 2021 ident: bib37 publication-title: Is 516 (Part-1 Sec-I) –Testing of Strength of Hardened Concrete – volume: 27 start-page: 1401 year: 2020 end-page: 1406 ident: bib20 article-title: Characteristics of granite dust concrete with M− sand as replacement of fine aggregate composites publication-title: Mater. Today: Proc. – volume: 14 year: 2021 ident: bib25 article-title: Modelling and multi-objective optimization of the fresh and mechanical properties of self-compacting high volume fly ash ECC (HVFA-ECC) using response surface methodology (RSM) publication-title: Case Stud. Constr. Mater. – volume: 1 start-page: 1514 year: 2019 ident: bib5 article-title: Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network publication-title: SN Appl. Sci. – volume: 6 start-page: 501 year: 2019 end-page: 512 ident: bib17 article-title: Investigation on the glass fiber reinforced geopolymer concrete made of M-sand publication-title: Journal of Materials and Engineering Structures «JMES» – volume: 30 year: 2020 ident: bib43 article-title: Influence of rubber particles on the properties of foam concrete publication-title: J. Build. Eng. – volume: 210 start-page: 87 year: 2017 end-page: 92 ident: bib15 article-title: Effect of particle shape of limestone manufactured sand and natural sand on concrete publication-title: Procedia Eng. – year: 2019 ident: bib34 article-title: Mechanical Characteristics of Eco-Friendly Concrete Using GGBS and Manufactured Sand – year: 2009 ident: bib36 article-title: Is 10262: Guidelines for Concrete Mix Design Proportioning – volume: 224 start-page: 711 year: 2019 end-page: 731 ident: bib41 article-title: Properties and utilizations of waste tire rubber in concrete: a review publication-title: Construct. Build. Mater. – volume: 302 year: 2022 ident: bib27 article-title: Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN) publication-title: Compos. Struct. – volume: 14 start-page: 115 issue: S1 year: 2016 ident: 10.1016/j.jobe.2024.108486_bib24 article-title: Strength assessment of geopolymer concrete using M-sand publication-title: Int. J. Chem. Sci. – volume: 210 start-page: 87 year: 2017 ident: 10.1016/j.jobe.2024.108486_bib15 article-title: Effect of particle shape of limestone manufactured sand and natural sand on concrete publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.11.052 – year: 2022 ident: 10.1016/j.jobe.2024.108486_bib1 – volume: 56 start-page: 106 issue: 5 year: 2023 ident: 10.1016/j.jobe.2024.108486_bib3 article-title: RILEM TC 277-LHS report: additives and admixtures for modern lime-based mortars publication-title: Mater. Struct. doi: 10.1617/s11527-023-02175-z – volume: 389 year: 2023 ident: 10.1016/j.jobe.2024.108486_bib14 article-title: Uniaxial tensile properties of multi-scale fiber reinforced rubberized concrete after exposure to elevated temperatures publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136068 – year: 2013 ident: 10.1016/j.jobe.2024.108486_bib32 – volume: 266 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib8 article-title: Effect of CS-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121096 – volume: 10 start-page: 490 issue: 3 year: 2022 ident: 10.1016/j.jobe.2024.108486_bib39 article-title: Using Box–Behnken design coupled with response surface methodology for optimizing rapeseed oil expression parameters under heating and freezing conditions publication-title: Processes doi: 10.3390/pr10030490 – volume: 224 start-page: 711 year: 2019 ident: 10.1016/j.jobe.2024.108486_bib41 article-title: Properties and utilizations of waste tire rubber in concrete: a review publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.108 – volume: 46 start-page: 603 issue: 2 year: 2023 ident: 10.1016/j.jobe.2024.108486_bib31 article-title: Evaluation of fracture toughness properties of polymer concrete composite using deep learning approach publication-title: Fatig. Fract. Eng. Mater. Struct. doi: 10.1111/ffe.13889 – volume: 314 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib42 article-title: Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128230 – volume: 30 year: 2020 ident: 10.1016/j.jobe.2024.108486_bib43 article-title: Influence of rubber particles on the properties of foam concrete publication-title: J. Build. Eng. – year: 2021 ident: 10.1016/j.jobe.2024.108486_bib37 – volume: 121 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib40 article-title: Development of sustainable concrete incorporating seawater: a critical review on cement hydration, microstructure and mechanical strength publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104100 – volume: 1 start-page: 1514 issue: 11 year: 2019 ident: 10.1016/j.jobe.2024.108486_bib5 article-title: Modelling of the mechanical properties of concrete with cement ratio partially replaced by aluminium waste and sawdust ash using artificial neural network publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1504-2 – volume: 15 start-page: 1776 issue: 5 year: 2022 ident: 10.1016/j.jobe.2024.108486_bib12 article-title: Mechanical properties and durability performance of recycled aggregate concrete containing crumb rubber publication-title: Materials doi: 10.3390/ma15051776 – volume: 3 start-page: 2395 year: 2014 ident: 10.1016/j.jobe.2024.108486_bib10 article-title: Effect of sodium chloride (NaCl) on concrete compressive strength publication-title: Int. J. Eng. Res. Technol. – volume: 23 start-page: 4160 issue: 12 year: 2022 ident: 10.1016/j.jobe.2024.108486_bib4 article-title: A review and sequel experimental analysis on physical and mechanical properties of permeable concrete for pavement construction publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2021.1936519 – volume: 225 start-page: 983 year: 2019 ident: 10.1016/j.jobe.2024.108486_bib11 article-title: Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.245 – year: 1970 ident: 10.1016/j.jobe.2024.108486_bib33 – volume: 22 start-page: 715 year: 2020 ident: 10.1016/j.jobe.2024.108486_bib16 article-title: Experimental study on use of E-waste plastics as coarse aggregate in concrete with manufactured sand publication-title: Mater. Today: Proc. – volume: 27 start-page: 1230 year: 2020 ident: 10.1016/j.jobe.2024.108486_bib18 article-title: Experimental investigation on the strength parameters of rubberized engineered cementitious composite with M sand publication-title: Materials Today: Proceedings. – volume: 45 start-page: 7079 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib19 article-title: Investigation on behaviour of M-sand and sea sand based concrete publication-title: Mater. Today: Proc. – volume: 301 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib29 article-title: Development of deep neural network model to predict the compressive strength of rubber concrete publication-title: Construct. Build. Mater. – volume: 364 year: 2023 ident: 10.1016/j.jobe.2024.108486_bib28 article-title: Optimization of vascular structure of self-healing concrete using deep neural network (DNN) publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129955 – volume: 12 start-page: 9230 issue: 21 year: 2020 ident: 10.1016/j.jobe.2024.108486_bib6 article-title: A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust publication-title: Sustainability doi: 10.3390/su12219230 – volume: 6 start-page: 501 issue: 4 year: 2019 ident: 10.1016/j.jobe.2024.108486_bib17 article-title: Investigation on the glass fiber reinforced geopolymer concrete made of M-sand publication-title: Journal of Materials and Engineering Structures «JMES» – volume: 27 start-page: 1401 year: 2020 ident: 10.1016/j.jobe.2024.108486_bib20 article-title: Characteristics of granite dust concrete with M− sand as replacement of fine aggregate composites publication-title: Mater. Today: Proc. – year: 2009 ident: 10.1016/j.jobe.2024.108486_bib36 – year: 2019 ident: 10.1016/j.jobe.2024.108486_bib34 – volume: 302 year: 2022 ident: 10.1016/j.jobe.2024.108486_bib27 article-title: Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN) publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.116248 – year: 2010 ident: 10.1016/j.jobe.2024.108486_bib35 – volume: 274 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib2 article-title: Air entrainment in fresh concrete and its effects on hardened concrete-a review publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121835 – volume: 14 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib25 article-title: Modelling and multi-objective optimization of the fresh and mechanical properties of self-compacting high volume fly ash ECC (HVFA-ECC) using response surface methodology (RSM) publication-title: Case Stud. Constr. Mater. – volume: 28 year: 2021 ident: 10.1016/j.jobe.2024.108486_bib30 article-title: Deep learning method for predicting the mechanical properties of aluminum alloys with small data sets publication-title: Mater. Today Commun. – volume: 65 year: 2023 ident: 10.1016/j.jobe.2024.108486_bib13 article-title: Influence of multi-scale fiber on residual compressive properties of a novel rubberized concrete subjected to elevated temperatures publication-title: J. Build. Eng. – volume: 256 year: 2020 ident: 10.1016/j.jobe.2024.108486_bib7 article-title: Preparation and characterization of lightweight aggregate foamed geopolymer concretes aerated using hydrogen peroxide publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119442 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.jobe.2024.108486_bib21 article-title: Investigation on mechanical and durability performance of reinforced concrete containing red soil as alternate for M-sand publication-title: J. Nanomater. doi: 10.1155/2022/5404416 – volume: 322 year: 2022 ident: 10.1016/j.jobe.2024.108486_bib9 article-title: Enhancing concrete sulfate resistance by adding NaCl publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2022.126370 – volume: 27 start-page: 1061 year: 2020 ident: 10.1016/j.jobe.2024.108486_bib22 article-title: Experimental study on M-sand in self-compacting concrete with and without silica fume publication-title: Mater. Today: Proc. – volume: 10 year: 2019 ident: 10.1016/j.jobe.2024.108486_bib26 article-title: Application of response surface methodology: predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler publication-title: Case Stud. Constr. Mater. – ident: 10.1016/j.jobe.2024.108486_bib38 – volume: 48 start-page: 483 issue: 4 year: 2018 ident: 10.1016/j.jobe.2024.108486_bib23 article-title: Evaluation of strength and durability of natural fibre reinforced high strength concrete with M-sand publication-title: Rev. Rom. Mater. |
| SSID | ssj0002953864 |
| Score | 2.3579545 |
| Snippet | Scrap tires can cause serious health, environmental, and aesthetic issues since they are heavy and non-biodegradable. Due to the restrictions on recycling... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108486 |
| SubjectTerms | And response surface methodology Crumb rubber Deep neural network Flexural strength Horse herd optimization Pull-out strength Split tensile strength |
| Title | Optimization and prediction of mechanical properties of composite concrete with crumb rubber using RSM and hybrid DNN-HHO algorithm |
| URI | https://dx.doi.org/10.1016/j.jobe.2024.108486 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2352-7102 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002953864 issn: 2352-7102 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 2352-7102 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002953864 issn: 2352-7102 databaseCode: ACRLP dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 2352-7102 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002953864 issn: 2352-7102 databaseCode: AIKHN dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7U9uLFaNRYX9mDN0MKLFA4NtUGNdLE2qQ3srsstU2hBNuDZ_-4M7A0mhgP3vbBEDL7mJnl-2YJubG9JFW-tA3GlGM4TApDpL5rWNKxBQ8Cx6-zfUZeOHUeZ-6sRYYNFwZhlXrvr_f0arfWLT2tzV6xWPQmNvgO_SojWsUo9fZIB-yP77dJZ_DwFEa7oxY7gFVdJZJCEUQf2po-UyO9lsi7scFYIeDOQVb1bybqm9kZHZID7S_SQf1JR6Sl8mPyOYaFnmkGJeV5QosSf7hU1XVKM4V8XlQ_dKwLhE6rd-xAADmitBSUcvAXoYAHsVSW20zQciuEKilC4ef0ZfJcvfntAzld9C6KjDAcU76ar0sQyU7IdHT_OgwNfZuCIZlpboyUW2CtLCl8jzMIUyRjGBCqPueKm0iYNdNAsARiGgGNthK-5biJcoQy8UCTnZJ2vs7VGaGWTGAIzQB8C9gDEk8EZgKRV8pNP00gvusSq1FgLHWqcbzxYhU3mLJljEqPUelxrfQuud3JFHWijT-fdptxiX9MlxgswR9y5_-UuyD7WKuRjpekvSm36gq8kY241rPtC9363TE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3oxGjV-24M3s7Ct3diOBCVTYCYCCbel7TqFwCATDp79x31vK0YT48Hb1u4ty2v7Prrf75WQG9dPMx0o12JMc4szJS2ZBZ7lKO5KEYY8qKp9xn404o9jb1wj7Q0XBmGVxvZXNr201qalYbTZWE4mjYELsUOzrIhWMkr9LbLNPdaE1bndeuhG8ddWixvCqi4LSaEIog9dQ5-pkF5T5N244KwQcMeRVf2bi_rmdjr7ZM_Ei7RVfdIBqen8kHw8wUKfGwYlFXlKlwX-cClvFxmda-TzovqhY7FE6LR-ww4EkCNKS8NVDvEiXOBGLFXFei5psZZSFxSh8C_0edAv3_z6jpwuehfHVhQ9UTF7WRQgMj8io879sB1Z5jQFSzHbXlmZcMBbOUoGvmCQpijGMCHUTSG0sJEwa2ehZCnkNBIaXS0Dh3up5lLbuKHJjkk9X-T6hFBHpTCEdgixBdiA1JehnULmlQk7yFLI706Js1FgokypcTzxYpZsMGXTBJWeoNKTSumn5PZLZlkV2vjzaW8zLsmP6ZKAJ_hD7uyfctdkJxr2e0nvIe6ek13sqVCPF6S-Ktb6EiKTlbwyM-8TRkXgEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+and+prediction+of+mechanical+properties+of+composite+concrete+with+crumb+rubber+using+RSM+and+hybrid+DNN-HHO+algorithm&rft.jtitle=Journal+of+Building+Engineering&rft.au=Anjali%2C+R.&rft.au=Venkatesan%2C+G.&rft.date=2024-05-01&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=84&rft.spage=108486&rft_id=info:doi/10.1016%2Fj.jobe.2024.108486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2024_108486 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon |