Proposal and experimental case study on building ventilating fan fault diagnosis based on cuckoo search algorithm optimized extreme learning machine

•A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established rig.•The recognition rate of the CS-ELM is raised by 21.49% at most, reaching about 93%.•The training time, testing time and stability are a...

Full description

Saved in:
Bibliographic Details
Published inSustainable energy technologies and assessments Vol. 45; p. 100975
Main Authors Xu, Yingjie, Chen, Ning, Shen, Xi, Xu, Liangfeng, Pan, Zhongyu, Pan, Fan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text
ISSN2213-1388
DOI10.1016/j.seta.2020.100975

Cover

Abstract •A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established rig.•The recognition rate of the CS-ELM is raised by 21.49% at most, reaching about 93%.•The training time, testing time and stability are also improved by proposed method. As the necessary auxiliary equipment in the fields of building energy system, the fan's healthy condition is very important for energy saving and public safety. Machine-learning fault diagnosis can improve fan performance and bring benefits of energy, economy, and safety. However, the vibration signal of the fan is particularly susceptible to interference from other factors, which brings great trouble to the existing machine-learning fault diagnosis Therefore, in order to learn useful fault features more effectively, a fan fault diagnosis method based on cuckoo search (CS) algorithm optimized extreme learning machine (ELM) is proposed in this paper. Firstly, wavelet packet extracts the original signal features. Secondly, with the help of the powerful search ability of the CS algorithm, the ELM model parameters are optimized to fully learn the signal features. Finally, the optimized ELM is tested through two cases. The experimental fault data of two types of fan are collected and employed to verify the effectiveness of this method, and the superiority compared with other existing methods. The results show that the proposed method can increase total recognition rate by at least 2.25% and at most 21.49%, indicating good progress and application potential.
AbstractList •A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established rig.•The recognition rate of the CS-ELM is raised by 21.49% at most, reaching about 93%.•The training time, testing time and stability are also improved by proposed method. As the necessary auxiliary equipment in the fields of building energy system, the fan's healthy condition is very important for energy saving and public safety. Machine-learning fault diagnosis can improve fan performance and bring benefits of energy, economy, and safety. However, the vibration signal of the fan is particularly susceptible to interference from other factors, which brings great trouble to the existing machine-learning fault diagnosis Therefore, in order to learn useful fault features more effectively, a fan fault diagnosis method based on cuckoo search (CS) algorithm optimized extreme learning machine (ELM) is proposed in this paper. Firstly, wavelet packet extracts the original signal features. Secondly, with the help of the powerful search ability of the CS algorithm, the ELM model parameters are optimized to fully learn the signal features. Finally, the optimized ELM is tested through two cases. The experimental fault data of two types of fan are collected and employed to verify the effectiveness of this method, and the superiority compared with other existing methods. The results show that the proposed method can increase total recognition rate by at least 2.25% and at most 21.49%, indicating good progress and application potential.
ArticleNumber 100975
Author Xu, Yingjie
Chen, Ning
Pan, Fan
Xu, Liangfeng
Shen, Xi
Pan, Zhongyu
Author_xml – sequence: 1
  givenname: Yingjie
  surname: Xu
  fullname: Xu, Yingjie
  organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 2
  givenname: Ning
  surname: Chen
  fullname: Chen, Ning
  organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 3
  givenname: Xi
  surname: Shen
  fullname: Shen, Xi
  email: SX@zjut.edu.cn
  organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 4
  givenname: Liangfeng
  surname: Xu
  fullname: Xu, Liangfeng
  organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 5
  givenname: Zhongyu
  surname: Pan
  fullname: Pan, Zhongyu
  organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 6
  givenname: Fan
  surname: Pan
  fullname: Pan, Fan
  organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
BookMark eNp9kM9OAyEQhznUxKp9AU-8QCuw2-1u4sU0_kua6EHPZBZmW-ouNEAb9Tl8YCH15KEHwmTgm8nvuyAj6ywScs3ZjDNe3WxnASPMBBO5wZrFfETGQvBiyou6PieTELaMMV5UvORsTH5evdu5AD0Fqyl-7tCbAW1MDQUBaYh7_UWdpe3e9NrYNT2kV9NDzHUHNp19H6k2sLYumEDbhOlMqL36cI4GBK82FPq18yZuBup20QzmG_O66HFA2qcvNs8bQG2MxSty1kEfcPJ3X5L3h_u35dN09fL4vLxbTVXBWJx2jWZd1c4XsFBKdUJAzSvRiBS-bEs-1_O6qVstWlYCgwaxrcu2YrkUBW9EcUnEca7yLgSPndyl9OC_JGcy65RbmXXKrFMedSao_gcpE5MOZ6MH059Gb48oplAHg14GZdAq1MajilI7cwr_BcDdmJc
CitedBy_id crossref_primary_10_1080_10407790_2023_2280208
crossref_primary_10_1177_10775463241313018
crossref_primary_10_32604_cmc_2023_030784
crossref_primary_10_1080_23744731_2024_2416368
crossref_primary_10_1049_rpg2_12444
crossref_primary_10_1088_1361_6501_ac97ff
crossref_primary_10_1002_for_2785
crossref_primary_10_1177_01423312231153258
crossref_primary_10_1088_1361_6501_ad05a3
crossref_primary_10_3389_fenrg_2021_755649
crossref_primary_10_1155_2022_4981022
Cites_doi 10.1109/4235.771163
10.1016/j.measurement.2006.06.015
10.1016/j.ymssp.2012.09.015
10.1016/j.isatra.2019.08.053
10.1016/j.enconman.2018.11.004
10.1016/j.eswa.2009.01.065
10.1016/0004-3702(89)90050-7
10.1080/0952813X.2014.971442
10.1007/978-3-319-20294-5_67
10.1016/j.promfg.2020.05.061
10.1016/j.bspc.2009.02.004
10.1016/j.energy.2018.12.125
10.1007/s11721-007-0002-0
10.1016/j.ijepes.2014.12.075
10.1016/j.enbuild.2018.08.027
10.1016/j.ymssp.2019.106272
10.1016/S0888-3270(03)00077-3
10.1109/ICPHM.2011.6024350
10.1016/j.cogsys.2018.12.014
10.1016/j.phycom.2018.06.003
10.1109/ACCESS.2018.2789933
10.1016/j.measurement.2018.03.050
10.1109/NABIC.2009.5393690
10.1016/j.jsv.2016.03.030
10.1109/TIM.2017.2698738
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2015.04.069
10.1016/j.ymssp.2016.06.024
10.4028/www.scientific.net/AMR.580.99
10.1016/j.enbuild.2019.03.028
10.1016/j.measurement.2012.08.007
10.1016/j.neucom.2016.06.069
10.1007/s12559-015-9333-0
10.1016/j.energy.2020.119232
10.1016/j.ymssp.2005.10.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.seta.2020.100975
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_seta_2020_100975
S221313882031403X
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-f9d0f6b57a7cccf22a8162922024b415d5898bd2b04a0a9eeb84b600a9e231923
IEDL.DBID .~1
ISSN 2213-1388
IngestDate Wed Oct 01 04:03:10 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Fri Feb 23 02:43:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Fan
Cuckoo search algorithm
Extreme learning machine
Building energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f9d0f6b57a7cccf22a8162922024b415d5898bd2b04a0a9eeb84b600a9e231923
ParticipantIDs crossref_primary_10_1016_j_seta_2020_100975
crossref_citationtrail_10_1016_j_seta_2020_100975
elsevier_sciencedirect_doi_10_1016_j_seta_2020_100975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Sustainable energy technologies and assessments
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Morawski (b0045) 2007; 40
Cao G, Lei X, Luo C. Research of a fan fault diagnosis system based on wavelet and neural network. In 3rd International Conference on Power Electronics Systems and Applications (pp.1-6) IEEE(2009).
Herazo, Quintero, Candelo, Soto, Guerrero (b0150) 2016
Junsheng, Dejie, Yu (b0060) 2007; 21
Miao Q, Azarian M, Pecht M. Cooling fan bearing fault identification using vibration measurement. Conference on Prognostics and Health Management (pp.1-5) IEEE(2011).
Zhang, Jiang, Li (b0165) 2018; 34
Jian, Li (b0130) 2019; 56
Zhang, He, Wang, Zhang, Wang (b0025) 2019; 170
Xu, Mao, Huang, Shen, Xu, Chen (b0020) 2021; 216
Lan, Hu, Huang, Niu, Zeng, Xiong, Wu (b0090) 2018; 124
Mohanty, Parhi (b0160) 2016; 28
Xu, Huang, Jiang, Song, Xie, Xu (b0010) 2019; 191
Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science 1995: 39-43.
Jing, Li, Chen, Lu, Lv (b0015) 2019; 180
Song, Fan, Mao, Xu (b0005) 2018; 178
Sun JP, Gao M, Li YL. Fault prediction method research of the power plant fan. Adv Mater Res 2012;580:99-104.
Xu, Liu, Zhu, Wang (b0035) 2016; 374
Holland (b0115) 1975; 6
Huang (b0205) 2015; 7
Yao, Liu (b0185) 1999; 3
Chen, Gryllias, Li (b0100) 2019; 133
Pang, Yang, Zhang, Lin (b0110) 2020; 98
Laha D, Behera DK. An improved cuckoo search algorithm for parallel machine scheduling. International Conference on Swarm, Evolutionary, and Memetic Computing (pp.788-800) Springer International Publishing(2014).
Lou, Loparo (b0195) 2004; 18
Pahuja, Mamidala (b0190) 2020; 48
Mao, He, Yan, Wang (b0095) 2017; 83
Jiang, He, Xie, Tang (b0085) 2017; 66
Booker, Goldberg, Holland (b0175) 1989; 40
Li, Kong, He, Liu (b0050) 2013; 46
You, Huang, Lu (b0105) 2016; 214
Nguyen, Truong (b0145) 2015; 68
Lei, Lin, He, Zuo (b0065) 2013; 35
Xu, Wang, Liu (b0040) 2013; 33
Poli, Kennedy, Blackwell (b0120) 2007; 1
Huang, Zhu, Siew (b0170) 2006; 70
Zhang, Chen, Wang, Chen (b0140) 2015; 167
Hu, Yang, Tan, Yi (b0055) 2007; 6
Zhu, Xiong, Liang (b0135) 2018; 6
Yang XS, Deb S. Cuckoo search via levy flights. World Congress on Nature & Biologically Inspired Computing (pp.210-214) IEEE(2009).
Lei, He, Zi (b0080) 2009; 36
Kiatpanichagij, Afzulpurkar (b0200) 2009; 4
Huang (10.1016/j.seta.2020.100975_b0170) 2006; 70
Nguyen (10.1016/j.seta.2020.100975_b0145) 2015; 68
Jing (10.1016/j.seta.2020.100975_b0015) 2019; 180
Zhang (10.1016/j.seta.2020.100975_b0025) 2019; 170
Morawski (10.1016/j.seta.2020.100975_b0045) 2007; 40
Lei (10.1016/j.seta.2020.100975_b0080) 2009; 36
Booker (10.1016/j.seta.2020.100975_b0175) 1989; 40
Zhu (10.1016/j.seta.2020.100975_b0135) 2018; 6
Xu (10.1016/j.seta.2020.100975_b0020) 2021; 216
Lou (10.1016/j.seta.2020.100975_b0195) 2004; 18
Mao (10.1016/j.seta.2020.100975_b0095) 2017; 83
Chen (10.1016/j.seta.2020.100975_b0100) 2019; 133
10.1016/j.seta.2020.100975_b0155
Song (10.1016/j.seta.2020.100975_b0005) 2018; 178
Pang (10.1016/j.seta.2020.100975_b0110) 2020; 98
Hu (10.1016/j.seta.2020.100975_b0055) 2007; 6
Holland (10.1016/j.seta.2020.100975_b0115) 1975; 6
10.1016/j.seta.2020.100975_b0030
10.1016/j.seta.2020.100975_b0075
Jian (10.1016/j.seta.2020.100975_b0130) 2019; 56
10.1016/j.seta.2020.100975_b0070
Xu (10.1016/j.seta.2020.100975_b0040) 2013; 33
Xu (10.1016/j.seta.2020.100975_b0035) 2016; 374
Lei (10.1016/j.seta.2020.100975_b0065) 2013; 35
Pahuja (10.1016/j.seta.2020.100975_b0190) 2020; 48
Jiang (10.1016/j.seta.2020.100975_b0085) 2017; 66
You (10.1016/j.seta.2020.100975_b0105) 2016; 214
Mohanty (10.1016/j.seta.2020.100975_b0160) 2016; 28
Yao (10.1016/j.seta.2020.100975_b0185) 1999; 3
Poli (10.1016/j.seta.2020.100975_b0120) 2007; 1
Li (10.1016/j.seta.2020.100975_b0050) 2013; 46
Zhang (10.1016/j.seta.2020.100975_b0140) 2015; 167
10.1016/j.seta.2020.100975_b0125
Zhang (10.1016/j.seta.2020.100975_b0165) 2018; 34
Xu (10.1016/j.seta.2020.100975_b0010) 2019; 191
Junsheng (10.1016/j.seta.2020.100975_b0060) 2007; 21
10.1016/j.seta.2020.100975_b0180
Herazo (10.1016/j.seta.2020.100975_b0150) 2016
Lan (10.1016/j.seta.2020.100975_b0090) 2018; 124
Huang (10.1016/j.seta.2020.100975_b0205) 2015; 7
Kiatpanichagij (10.1016/j.seta.2020.100975_b0200) 2009; 4
References_xml – volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: b0120
  article-title: Particle swarm optimization: An overview
  publication-title: Swarm Intell
– volume: 36
  start-page: 9941
  year: 2009
  end-page: 9948
  ident: b0080
  article-title: Application of an intelligent classification method to mechanical fault diagnosis
  publication-title: Expert Syst Appl
– volume: 167
  start-page: 260
  year: 2015
  end-page: 279
  ident: b0140
  article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
  publication-title: Neurocomputing
– volume: 68
  start-page: 233
  year: 2015
  end-page: 242
  ident: b0145
  article-title: Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 374
  start-page: 297
  year: 2016
  end-page: 311
  ident: b0035
  article-title: Fan fault diagnosis based on symmetrized dot pattern analysis and image matching
  publication-title: J Sound Vib
– volume: 34
  start-page: 301
  year: 2018
  end-page: 309
  ident: b0165
  article-title: Improved decomposition-based multi-objective cuckoo search algorithm for spectrum allocation in cognitive vehicular network
  publication-title: Phys Commun
– volume: 4
  start-page: 127
  year: 2009
  end-page: 138
  ident: b0200
  article-title: Use of supervised discretization with PCA in wavelet packet transformation-based surface electromyogram classification
  publication-title: Biomed Signal Process Control
– volume: 21
  start-page: 668
  year: 2007
  end-page: 677
  ident: b0060
  article-title: The application of energy operator demodulation approach based on EMD in machinery fault diagnosis
  publication-title: Mech Syst Sig Process
– reference: Sun JP, Gao M, Li YL. Fault prediction method research of the power plant fan. Adv Mater Res 2012;580:99-104.
– volume: 214
  start-page: 1038
  year: 2016
  end-page: 1045
  ident: b0105
  article-title: Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition
  publication-title: Neurocomputing
– volume: 191
  start-page: 164
  year: 2019
  end-page: 173
  ident: b0010
  article-title: Experimental and theoretical study on an air-source heat pump water heater for northern China in cold winter: Effects of environment temperature and switch of operating modes
  publication-title: Energy Build
– volume: 66
  start-page: 2391
  year: 2017
  end-page: 2402
  ident: b0085
  article-title: Stacked Multilevel-Denoising Autoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b0185
  article-title: Evolutionary programming made faster
  publication-title: Trans Evolution Comput
– volume: 18
  start-page: 1077
  year: 2004
  end-page: 1095
  ident: b0195
  article-title: Bearing fault diagnosis based on wavelet transform and fuzzy inference
  publication-title: Mech Syst Sig Process
– volume: 178
  start-page: 26
  year: 2018
  end-page: 37
  ident: b0005
  article-title: An experimental study on time-based start defrosting control strategy optimization for an air source heat pump unit with frost evenly distributed and melted frost locally drained
  publication-title: Energy Build
– volume: 124
  start-page: 378
  year: 2018
  end-page: 385
  ident: b0090
  article-title: Fault diagnosis on slipper abrasion of axial piston pump based on Extreme Learning Machine
  publication-title: Measurement
– reference: Laha D, Behera DK. An improved cuckoo search algorithm for parallel machine scheduling. International Conference on Swarm, Evolutionary, and Memetic Computing (pp.788-800) Springer International Publishing(2014).
– volume: 6
  start-page: 33583
  year: 2018
  end-page: 33588
  ident: b0135
  article-title: Fault Diagnosis of Rotation Machinery Based on Support Vector Machine Optimized by Quantum Genetic Algorithm
  publication-title: IEEE Access
– volume: 56
  start-page: 203
  year: 2019
  end-page: 212
  ident: b0130
  article-title: Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm
  publication-title: Cognit Syst Res
– volume: 28
  start-page: 35
  year: 2016
  end-page: 52
  ident: b0160
  article-title: Optimal path planning for a mobile robot using cuckoo search algorithm
  publication-title: J Exp Theor Artif Intell
– volume: 133
  start-page: 106272
  year: 2019
  ident: b0100
  article-title: Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine
  publication-title: Mech Syst Sig Process
– reference: Cao G, Lei X, Luo C. Research of a fan fault diagnosis system based on wavelet and neural network. In 3rd International Conference on Power Electronics Systems and Applications (pp.1-6) IEEE(2009).
– volume: 83
  start-page: 450
  year: 2017
  end-page: 473
  ident: b0095
  article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
  publication-title: Mech Syst Sig Process
– volume: 7
  start-page: 263
  year: 2015
  end-page: 278
  ident: b0205
  article-title: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle
  publication-title: Cognit Comput
– volume: 40
  start-page: 235
  year: 1989
  end-page: 282
  ident: b0175
  article-title: Classifier systems and genetic algorithms
  publication-title: Artif Intell
– volume: 180
  start-page: 889
  year: 2019
  end-page: 903
  ident: b0015
  article-title: Exergoeconomic design criterion of solar absorption-subcooled compression hybrid cooling system based on the variable working conditions
  publication-title: Energy Convers Manage
– reference: Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science 1995: 39-43.
– reference: Yang XS, Deb S. Cuckoo search via levy flights. World Congress on Nature & Biologically Inspired Computing (pp.210-214) IEEE(2009).
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0170
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 216
  start-page: 119232
  year: 2021
  ident: b0020
  article-title: Performance evaluation and multi-objective optimization of a low-temperature CO
  publication-title: Energy
– volume: 40
  start-page: 213
  year: 2007
  end-page: 223
  ident: b0045
  article-title: On teaching measurement applications of digital signal processing
  publication-title: Measurement
– volume: 46
  start-page: 497
  year: 2013
  end-page: 505
  ident: b0050
  article-title: Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis
  publication-title: Measurement
– volume: 170
  start-page: 305
  year: 2019
  end-page: 325
  ident: b0025
  article-title: Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions
  publication-title: Energy
– year: 2016
  ident: b0150
  article-title: Optimal power distribution network reconfiguration using Cuckoo Search
  publication-title: International Conference on Electric Power & Energy Conversion Systems IEEE
– volume: 6
  start-page: 126
  year: 1975
  end-page: 137
  ident: b0115
  article-title: Adaptation in natural and artificial systems
  publication-title: Ann Arbor
– volume: 33
  start-page: 606
  year: 2013
  end-page: 612
  ident: b0040
  article-title: Mechanical fault diagnosis of fan based on wavelet packet energy analysis and improved support vector machine
  publication-title: Chin J Power Eng
– volume: 35
  start-page: 108
  year: 2013
  end-page: 126
  ident: b0065
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech Syst Sig Process
– volume: 48
  start-page: 388
  year: 2020
  end-page: 399
  ident: b0190
  article-title: Quality monitoring in milling of unidirectional CFRP through wavelet packet transform of force signals
  publication-title: Procedia Manuf
– reference: Miao Q, Azarian M, Pecht M. Cooling fan bearing fault identification using vibration measurement. Conference on Prognostics and Health Management (pp.1-5) IEEE(2011).
– volume: 6
  start-page: 28
  year: 2007
  ident: b0055
  article-title: Sintering fan faults diagnosis based on wavelet analysis
  publication-title: J Cent South Univers (Sci Technol)
– volume: 98
  start-page: 320
  year: 2020
  end-page: 337
  ident: b0110
  article-title: Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features
  publication-title: ISA Trans
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.seta.2020.100975_b0185
  article-title: Evolutionary programming made faster
  publication-title: Trans Evolution Comput
  doi: 10.1109/4235.771163
– volume: 40
  start-page: 213
  issue: 2
  year: 2007
  ident: 10.1016/j.seta.2020.100975_b0045
  article-title: On teaching measurement applications of digital signal processing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2006.06.015
– volume: 35
  start-page: 108
  issue: 1-2
  year: 2013
  ident: 10.1016/j.seta.2020.100975_b0065
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2012.09.015
– volume: 98
  start-page: 320
  year: 2020
  ident: 10.1016/j.seta.2020.100975_b0110
  article-title: Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.053
– volume: 180
  start-page: 889
  year: 2019
  ident: 10.1016/j.seta.2020.100975_b0015
  article-title: Exergoeconomic design criterion of solar absorption-subcooled compression hybrid cooling system based on the variable working conditions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.11.004
– volume: 6
  start-page: 28
  year: 2007
  ident: 10.1016/j.seta.2020.100975_b0055
  article-title: Sintering fan faults diagnosis based on wavelet analysis
  publication-title: J Cent South Univers (Sci Technol)
– volume: 36
  start-page: 9941
  issue: 6
  year: 2009
  ident: 10.1016/j.seta.2020.100975_b0080
  article-title: Application of an intelligent classification method to mechanical fault diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.065
– volume: 40
  start-page: 235
  issue: 1–3
  year: 1989
  ident: 10.1016/j.seta.2020.100975_b0175
  article-title: Classifier systems and genetic algorithms
  publication-title: Artif Intell
  doi: 10.1016/0004-3702(89)90050-7
– volume: 28
  start-page: 35
  issue: 1–2
  year: 2016
  ident: 10.1016/j.seta.2020.100975_b0160
  article-title: Optimal path planning for a mobile robot using cuckoo search algorithm
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2014.971442
– ident: 10.1016/j.seta.2020.100975_b0125
– ident: 10.1016/j.seta.2020.100975_b0155
  doi: 10.1007/978-3-319-20294-5_67
– volume: 48
  start-page: 388
  year: 2020
  ident: 10.1016/j.seta.2020.100975_b0190
  article-title: Quality monitoring in milling of unidirectional CFRP through wavelet packet transform of force signals
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2020.05.061
– volume: 4
  start-page: 127
  issue: 2
  year: 2009
  ident: 10.1016/j.seta.2020.100975_b0200
  article-title: Use of supervised discretization with PCA in wavelet packet transformation-based surface electromyogram classification
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2009.02.004
– volume: 170
  start-page: 305
  year: 2019
  ident: 10.1016/j.seta.2020.100975_b0025
  article-title: Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.125
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.seta.2020.100975_b0120
  article-title: Particle swarm optimization: An overview
  publication-title: Swarm Intell
  doi: 10.1007/s11721-007-0002-0
– volume: 68
  start-page: 233
  year: 2015
  ident: 10.1016/j.seta.2020.100975_b0145
  article-title: Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.12.075
– volume: 178
  start-page: 26
  year: 2018
  ident: 10.1016/j.seta.2020.100975_b0005
  article-title: An experimental study on time-based start defrosting control strategy optimization for an air source heat pump unit with frost evenly distributed and melted frost locally drained
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.08.027
– volume: 133
  start-page: 106272
  year: 2019
  ident: 10.1016/j.seta.2020.100975_b0100
  article-title: Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2019.106272
– volume: 18
  start-page: 1077
  issue: 5
  year: 2004
  ident: 10.1016/j.seta.2020.100975_b0195
  article-title: Bearing fault diagnosis based on wavelet transform and fuzzy inference
  publication-title: Mech Syst Sig Process
  doi: 10.1016/S0888-3270(03)00077-3
– ident: 10.1016/j.seta.2020.100975_b0070
  doi: 10.1109/ICPHM.2011.6024350
– volume: 56
  start-page: 203
  year: 2019
  ident: 10.1016/j.seta.2020.100975_b0130
  article-title: Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm
  publication-title: Cognit Syst Res
  doi: 10.1016/j.cogsys.2018.12.014
– volume: 34
  start-page: 301
  year: 2018
  ident: 10.1016/j.seta.2020.100975_b0165
  article-title: Improved decomposition-based multi-objective cuckoo search algorithm for spectrum allocation in cognitive vehicular network
  publication-title: Phys Commun
  doi: 10.1016/j.phycom.2018.06.003
– volume: 6
  start-page: 33583
  year: 2018
  ident: 10.1016/j.seta.2020.100975_b0135
  article-title: Fault Diagnosis of Rotation Machinery Based on Support Vector Machine Optimized by Quantum Genetic Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789933
– volume: 124
  start-page: 378
  year: 2018
  ident: 10.1016/j.seta.2020.100975_b0090
  article-title: Fault diagnosis on slipper abrasion of axial piston pump based on Extreme Learning Machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.03.050
– ident: 10.1016/j.seta.2020.100975_b0075
– year: 2016
  ident: 10.1016/j.seta.2020.100975_b0150
  article-title: Optimal power distribution network reconfiguration using Cuckoo Search
– ident: 10.1016/j.seta.2020.100975_b0180
  doi: 10.1109/NABIC.2009.5393690
– volume: 374
  start-page: 297
  year: 2016
  ident: 10.1016/j.seta.2020.100975_b0035
  article-title: Fan fault diagnosis based on symmetrized dot pattern analysis and image matching
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2016.03.030
– volume: 66
  start-page: 2391
  issue: 9
  year: 2017
  ident: 10.1016/j.seta.2020.100975_b0085
  article-title: Stacked Multilevel-Denoising Autoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2017.2698738
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.seta.2020.100975_b0170
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 6
  start-page: 126
  issue: 2
  year: 1975
  ident: 10.1016/j.seta.2020.100975_b0115
  article-title: Adaptation in natural and artificial systems
  publication-title: Ann Arbor
– volume: 167
  start-page: 260
  year: 2015
  ident: 10.1016/j.seta.2020.100975_b0140
  article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.069
– volume: 83
  start-page: 450
  year: 2017
  ident: 10.1016/j.seta.2020.100975_b0095
  article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2016.06.024
– ident: 10.1016/j.seta.2020.100975_b0030
  doi: 10.4028/www.scientific.net/AMR.580.99
– volume: 33
  start-page: 606
  issue: 8
  year: 2013
  ident: 10.1016/j.seta.2020.100975_b0040
  article-title: Mechanical fault diagnosis of fan based on wavelet packet energy analysis and improved support vector machine
  publication-title: Chin J Power Eng
– volume: 191
  start-page: 164
  year: 2019
  ident: 10.1016/j.seta.2020.100975_b0010
  article-title: Experimental and theoretical study on an air-source heat pump water heater for northern China in cold winter: Effects of environment temperature and switch of operating modes
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.03.028
– volume: 46
  start-page: 497
  issue: 1
  year: 2013
  ident: 10.1016/j.seta.2020.100975_b0050
  article-title: Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.08.007
– volume: 214
  start-page: 1038
  year: 2016
  ident: 10.1016/j.seta.2020.100975_b0105
  article-title: Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.069
– volume: 7
  start-page: 263
  issue: 3
  year: 2015
  ident: 10.1016/j.seta.2020.100975_b0205
  article-title: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle
  publication-title: Cognit Comput
  doi: 10.1007/s12559-015-9333-0
– volume: 216
  start-page: 119232
  year: 2021
  ident: 10.1016/j.seta.2020.100975_b0020
  article-title: Performance evaluation and multi-objective optimization of a low-temperature CO2 heat pump water heater based on artificial neural network and new economic analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119232
– volume: 21
  start-page: 668
  issue: 2
  year: 2007
  ident: 10.1016/j.seta.2020.100975_b0060
  article-title: The application of energy operator demodulation approach based on EMD in machinery fault diagnosis
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2005.10.005
SSID ssj0001361410
Score 2.3481872
Snippet •A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100975
SubjectTerms Building energy
Cuckoo search algorithm
Extreme learning machine
Fan
Fault diagnosis
Title Proposal and experimental case study on building ventilating fan fault diagnosis based on cuckoo search algorithm optimized extreme learning machine
URI https://dx.doi.org/10.1016/j.seta.2020.100975
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2213-1388
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001361410
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  issn: 2213-1388
  databaseCode: ACRLP
  dateStart: 20130301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001361410
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 2213-1388
  databaseCode: .~1
  dateStart: 20130301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001361410
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 2213-1388
  databaseCode: AIKHN
  dateStart: 20130301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001361410
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2213-1388
  databaseCode: AKRWK
  dateStart: 20130301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001361410
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_hmD94kNtkkm91jKZaqKIIKvYXsoxptk9KmFw_-Cn-wM8lWK4gHD4El7JCws5mZLN98HyGnSjMmhTVeYIWBHxQ_9mTMuCcV50xk0kqLjcI3t7z3GF314_4S6cx7YRBW6WJ_E9PraO3utNxqtsZ53rpnLAiDECpEZGD3wz52sEcJqhicvwff5ywhRygjaszBfKTcE653poF5TW2F9EOsxgtIhBv-lp8Wck53g6y7YpG2m_fZJEu22CJrCxSC2-TjDmUOpjArKwxd5OunGhIUreljaVlQ5fSvaQ1wRAQcjAdZAddsWFHTQO7yKcW8ZtBCz_RrWdLmW6DZ8Kmc5NXziJYQZUb5m8XHVXi8SJ30xBMd1dBMu0MeuxcPnZ7nlBY8Hfp-5Q2k8QdcxUmWaK0HjGUi4EwyWJdIQYo3sZBCGab8KPPBgVaJSEGpBEOoD6FG3CXLRVnYPUKNUhEPwBp_xMIoVEmILGBJopiVPBP7JJivb6odDTmqYQzTOd7sJUWfpOiTtPHJPjn7shk3JBx_zo7nbkt_bKUUssQfdgf_tDskqwyBLvXRzBFZriYzewyVSqVO6q14Qlbal9e920--a-mL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uB_UgrjiuOXiTOm3apslRRBlXBBXmVppltDrTitO5ePBX-IN9r83oCOLBQyGUPFrykrfx5XuE7CvNmBTWeIEVBhIUP_ZkzLgnFedMZNJKixeFr6555z4678bdKXI8vguDsEpn-xubXltr96btVrP9kuftW8aCMAghQkQGdj_sTpPZKGYJZmCH78F3oSXkiGXEJnMggJx7wl2eaXBeQ1sh_xCrAQMS8Ya_OagJp3O6RBZdtEiPmh9aJlO2WCELExyCq-TjBvscDGFWVhg6SdhPNXgoWvPH0rKgyjXApjXCESFwMO5lBTyjfkVNg7nLhxQdm0EJPdLPZUmbw0Cz_kP5mlePA1qCmRnkbxY_V2F9kbreEw90UGMz7Rq5Pz25O-54rtWCp0Pfr7yeNH6PqzjJEq11j7FMBJxJBusSKfDxJhZSKMOUH2U-aNAqESmIlWAIASIEietkpigLu0GoUSriAUhjJhZGoUpCpAFLEsWs5JlokWC8vql2POTYDqOfjgFnTynqJEWdpI1OWuTgS-alYeH4c3Y8Vlv6Yy-l4Cb-kNv8p9wemevcXV2ml2fXF1tkniHqpa7TbJOZ6nVkdyBsqdRuvS0_ATOU6yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposal+and+experimental+case+study+on+building+ventilating+fan+fault+diagnosis+based+on+cuckoo+search+algorithm+optimized+extreme+learning+machine&rft.jtitle=Sustainable+energy+technologies+and+assessments&rft.au=Xu%2C+Yingjie&rft.au=Chen%2C+Ning&rft.au=Shen%2C+Xi&rft.au=Xu%2C+Liangfeng&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=2213-1388&rft.volume=45&rft_id=info:doi/10.1016%2Fj.seta.2020.100975&rft.externalDocID=S221313882031403X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1388&client=summon