Proposal and experimental case study on building ventilating fan fault diagnosis based on cuckoo search algorithm optimized extreme learning machine
•A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established rig.•The recognition rate of the CS-ELM is raised by 21.49% at most, reaching about 93%.•The training time, testing time and stability are a...
Saved in:
| Published in | Sustainable energy technologies and assessments Vol. 45; p. 100975 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2213-1388 |
| DOI | 10.1016/j.seta.2020.100975 |
Cover
| Abstract | •A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established rig.•The recognition rate of the CS-ELM is raised by 21.49% at most, reaching about 93%.•The training time, testing time and stability are also improved by proposed method.
As the necessary auxiliary equipment in the fields of building energy system, the fan's healthy condition is very important for energy saving and public safety. Machine-learning fault diagnosis can improve fan performance and bring benefits of energy, economy, and safety. However, the vibration signal of the fan is particularly susceptible to interference from other factors, which brings great trouble to the existing machine-learning fault diagnosis Therefore, in order to learn useful fault features more effectively, a fan fault diagnosis method based on cuckoo search (CS) algorithm optimized extreme learning machine (ELM) is proposed in this paper. Firstly, wavelet packet extracts the original signal features. Secondly, with the help of the powerful search ability of the CS algorithm, the ELM model parameters are optimized to fully learn the signal features. Finally, the optimized ELM is tested through two cases. The experimental fault data of two types of fan are collected and employed to verify the effectiveness of this method, and the superiority compared with other existing methods. The results show that the proposed method can increase total recognition rate by at least 2.25% and at most 21.49%, indicating good progress and application potential. |
|---|---|
| AbstractList | •A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established rig.•The recognition rate of the CS-ELM is raised by 21.49% at most, reaching about 93%.•The training time, testing time and stability are also improved by proposed method.
As the necessary auxiliary equipment in the fields of building energy system, the fan's healthy condition is very important for energy saving and public safety. Machine-learning fault diagnosis can improve fan performance and bring benefits of energy, economy, and safety. However, the vibration signal of the fan is particularly susceptible to interference from other factors, which brings great trouble to the existing machine-learning fault diagnosis Therefore, in order to learn useful fault features more effectively, a fan fault diagnosis method based on cuckoo search (CS) algorithm optimized extreme learning machine (ELM) is proposed in this paper. Firstly, wavelet packet extracts the original signal features. Secondly, with the help of the powerful search ability of the CS algorithm, the ELM model parameters are optimized to fully learn the signal features. Finally, the optimized ELM is tested through two cases. The experimental fault data of two types of fan are collected and employed to verify the effectiveness of this method, and the superiority compared with other existing methods. The results show that the proposed method can increase total recognition rate by at least 2.25% and at most 21.49%, indicating good progress and application potential. |
| ArticleNumber | 100975 |
| Author | Xu, Yingjie Chen, Ning Pan, Fan Xu, Liangfeng Shen, Xi Pan, Zhongyu |
| Author_xml | – sequence: 1 givenname: Yingjie surname: Xu fullname: Xu, Yingjie organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 2 givenname: Ning surname: Chen fullname: Chen, Ning organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 3 givenname: Xi surname: Shen fullname: Shen, Xi email: SX@zjut.edu.cn organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 4 givenname: Liangfeng surname: Xu fullname: Xu, Liangfeng organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 5 givenname: Zhongyu surname: Pan fullname: Pan, Zhongyu organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 6 givenname: Fan surname: Pan fullname: Pan, Fan organization: Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China |
| BookMark | eNp9kM9OAyEQhznUxKp9AU-8QCuw2-1u4sU0_kua6EHPZBZmW-ouNEAb9Tl8YCH15KEHwmTgm8nvuyAj6ywScs3ZjDNe3WxnASPMBBO5wZrFfETGQvBiyou6PieTELaMMV5UvORsTH5evdu5AD0Fqyl-7tCbAW1MDQUBaYh7_UWdpe3e9NrYNT2kV9NDzHUHNp19H6k2sLYumEDbhOlMqL36cI4GBK82FPq18yZuBup20QzmG_O66HFA2qcvNs8bQG2MxSty1kEfcPJ3X5L3h_u35dN09fL4vLxbTVXBWJx2jWZd1c4XsFBKdUJAzSvRiBS-bEs-1_O6qVstWlYCgwaxrcu2YrkUBW9EcUnEca7yLgSPndyl9OC_JGcy65RbmXXKrFMedSao_gcpE5MOZ6MH059Gb48oplAHg14GZdAq1MajilI7cwr_BcDdmJc |
| CitedBy_id | crossref_primary_10_1080_10407790_2023_2280208 crossref_primary_10_1177_10775463241313018 crossref_primary_10_32604_cmc_2023_030784 crossref_primary_10_1080_23744731_2024_2416368 crossref_primary_10_1049_rpg2_12444 crossref_primary_10_1088_1361_6501_ac97ff crossref_primary_10_1002_for_2785 crossref_primary_10_1177_01423312231153258 crossref_primary_10_1088_1361_6501_ad05a3 crossref_primary_10_3389_fenrg_2021_755649 crossref_primary_10_1155_2022_4981022 |
| Cites_doi | 10.1109/4235.771163 10.1016/j.measurement.2006.06.015 10.1016/j.ymssp.2012.09.015 10.1016/j.isatra.2019.08.053 10.1016/j.enconman.2018.11.004 10.1016/j.eswa.2009.01.065 10.1016/0004-3702(89)90050-7 10.1080/0952813X.2014.971442 10.1007/978-3-319-20294-5_67 10.1016/j.promfg.2020.05.061 10.1016/j.bspc.2009.02.004 10.1016/j.energy.2018.12.125 10.1007/s11721-007-0002-0 10.1016/j.ijepes.2014.12.075 10.1016/j.enbuild.2018.08.027 10.1016/j.ymssp.2019.106272 10.1016/S0888-3270(03)00077-3 10.1109/ICPHM.2011.6024350 10.1016/j.cogsys.2018.12.014 10.1016/j.phycom.2018.06.003 10.1109/ACCESS.2018.2789933 10.1016/j.measurement.2018.03.050 10.1109/NABIC.2009.5393690 10.1016/j.jsv.2016.03.030 10.1109/TIM.2017.2698738 10.1016/j.neucom.2005.12.126 10.1016/j.neucom.2015.04.069 10.1016/j.ymssp.2016.06.024 10.4028/www.scientific.net/AMR.580.99 10.1016/j.enbuild.2019.03.028 10.1016/j.measurement.2012.08.007 10.1016/j.neucom.2016.06.069 10.1007/s12559-015-9333-0 10.1016/j.energy.2020.119232 10.1016/j.ymssp.2005.10.005 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.seta.2020.100975 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_seta_2020_100975 S221313882031403X |
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-f9d0f6b57a7cccf22a8162922024b415d5898bd2b04a0a9eeb84b600a9e231923 |
| IEDL.DBID | .~1 |
| ISSN | 2213-1388 |
| IngestDate | Wed Oct 01 04:03:10 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Fri Feb 23 02:43:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Fan Cuckoo search algorithm Extreme learning machine Building energy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-f9d0f6b57a7cccf22a8162922024b415d5898bd2b04a0a9eeb84b600a9e231923 |
| ParticipantIDs | crossref_primary_10_1016_j_seta_2020_100975 crossref_citationtrail_10_1016_j_seta_2020_100975 elsevier_sciencedirect_doi_10_1016_j_seta_2020_100975 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Sustainable energy technologies and assessments |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Morawski (b0045) 2007; 40 Cao G, Lei X, Luo C. Research of a fan fault diagnosis system based on wavelet and neural network. In 3rd International Conference on Power Electronics Systems and Applications (pp.1-6) IEEE(2009). Herazo, Quintero, Candelo, Soto, Guerrero (b0150) 2016 Junsheng, Dejie, Yu (b0060) 2007; 21 Miao Q, Azarian M, Pecht M. Cooling fan bearing fault identification using vibration measurement. Conference on Prognostics and Health Management (pp.1-5) IEEE(2011). Zhang, Jiang, Li (b0165) 2018; 34 Jian, Li (b0130) 2019; 56 Zhang, He, Wang, Zhang, Wang (b0025) 2019; 170 Xu, Mao, Huang, Shen, Xu, Chen (b0020) 2021; 216 Lan, Hu, Huang, Niu, Zeng, Xiong, Wu (b0090) 2018; 124 Mohanty, Parhi (b0160) 2016; 28 Xu, Huang, Jiang, Song, Xie, Xu (b0010) 2019; 191 Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science 1995: 39-43. Jing, Li, Chen, Lu, Lv (b0015) 2019; 180 Song, Fan, Mao, Xu (b0005) 2018; 178 Sun JP, Gao M, Li YL. Fault prediction method research of the power plant fan. Adv Mater Res 2012;580:99-104. Xu, Liu, Zhu, Wang (b0035) 2016; 374 Holland (b0115) 1975; 6 Huang (b0205) 2015; 7 Yao, Liu (b0185) 1999; 3 Chen, Gryllias, Li (b0100) 2019; 133 Pang, Yang, Zhang, Lin (b0110) 2020; 98 Laha D, Behera DK. An improved cuckoo search algorithm for parallel machine scheduling. International Conference on Swarm, Evolutionary, and Memetic Computing (pp.788-800) Springer International Publishing(2014). Lou, Loparo (b0195) 2004; 18 Pahuja, Mamidala (b0190) 2020; 48 Mao, He, Yan, Wang (b0095) 2017; 83 Jiang, He, Xie, Tang (b0085) 2017; 66 Booker, Goldberg, Holland (b0175) 1989; 40 Li, Kong, He, Liu (b0050) 2013; 46 You, Huang, Lu (b0105) 2016; 214 Nguyen, Truong (b0145) 2015; 68 Lei, Lin, He, Zuo (b0065) 2013; 35 Xu, Wang, Liu (b0040) 2013; 33 Poli, Kennedy, Blackwell (b0120) 2007; 1 Huang, Zhu, Siew (b0170) 2006; 70 Zhang, Chen, Wang, Chen (b0140) 2015; 167 Hu, Yang, Tan, Yi (b0055) 2007; 6 Zhu, Xiong, Liang (b0135) 2018; 6 Yang XS, Deb S. Cuckoo search via levy flights. World Congress on Nature & Biologically Inspired Computing (pp.210-214) IEEE(2009). Lei, He, Zi (b0080) 2009; 36 Kiatpanichagij, Afzulpurkar (b0200) 2009; 4 Huang (10.1016/j.seta.2020.100975_b0170) 2006; 70 Nguyen (10.1016/j.seta.2020.100975_b0145) 2015; 68 Jing (10.1016/j.seta.2020.100975_b0015) 2019; 180 Zhang (10.1016/j.seta.2020.100975_b0025) 2019; 170 Morawski (10.1016/j.seta.2020.100975_b0045) 2007; 40 Lei (10.1016/j.seta.2020.100975_b0080) 2009; 36 Booker (10.1016/j.seta.2020.100975_b0175) 1989; 40 Zhu (10.1016/j.seta.2020.100975_b0135) 2018; 6 Xu (10.1016/j.seta.2020.100975_b0020) 2021; 216 Lou (10.1016/j.seta.2020.100975_b0195) 2004; 18 Mao (10.1016/j.seta.2020.100975_b0095) 2017; 83 Chen (10.1016/j.seta.2020.100975_b0100) 2019; 133 10.1016/j.seta.2020.100975_b0155 Song (10.1016/j.seta.2020.100975_b0005) 2018; 178 Pang (10.1016/j.seta.2020.100975_b0110) 2020; 98 Hu (10.1016/j.seta.2020.100975_b0055) 2007; 6 Holland (10.1016/j.seta.2020.100975_b0115) 1975; 6 10.1016/j.seta.2020.100975_b0030 10.1016/j.seta.2020.100975_b0075 Jian (10.1016/j.seta.2020.100975_b0130) 2019; 56 10.1016/j.seta.2020.100975_b0070 Xu (10.1016/j.seta.2020.100975_b0040) 2013; 33 Xu (10.1016/j.seta.2020.100975_b0035) 2016; 374 Lei (10.1016/j.seta.2020.100975_b0065) 2013; 35 Pahuja (10.1016/j.seta.2020.100975_b0190) 2020; 48 Jiang (10.1016/j.seta.2020.100975_b0085) 2017; 66 You (10.1016/j.seta.2020.100975_b0105) 2016; 214 Mohanty (10.1016/j.seta.2020.100975_b0160) 2016; 28 Yao (10.1016/j.seta.2020.100975_b0185) 1999; 3 Poli (10.1016/j.seta.2020.100975_b0120) 2007; 1 Li (10.1016/j.seta.2020.100975_b0050) 2013; 46 Zhang (10.1016/j.seta.2020.100975_b0140) 2015; 167 10.1016/j.seta.2020.100975_b0125 Zhang (10.1016/j.seta.2020.100975_b0165) 2018; 34 Xu (10.1016/j.seta.2020.100975_b0010) 2019; 191 Junsheng (10.1016/j.seta.2020.100975_b0060) 2007; 21 10.1016/j.seta.2020.100975_b0180 Herazo (10.1016/j.seta.2020.100975_b0150) 2016 Lan (10.1016/j.seta.2020.100975_b0090) 2018; 124 Huang (10.1016/j.seta.2020.100975_b0205) 2015; 7 Kiatpanichagij (10.1016/j.seta.2020.100975_b0200) 2009; 4 |
| References_xml | – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: b0120 article-title: Particle swarm optimization: An overview publication-title: Swarm Intell – volume: 36 start-page: 9941 year: 2009 end-page: 9948 ident: b0080 article-title: Application of an intelligent classification method to mechanical fault diagnosis publication-title: Expert Syst Appl – volume: 167 start-page: 260 year: 2015 end-page: 279 ident: b0140 article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization publication-title: Neurocomputing – volume: 68 start-page: 233 year: 2015 end-page: 242 ident: b0145 article-title: Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm publication-title: Int J Electr Power Energy Syst – volume: 374 start-page: 297 year: 2016 end-page: 311 ident: b0035 article-title: Fan fault diagnosis based on symmetrized dot pattern analysis and image matching publication-title: J Sound Vib – volume: 34 start-page: 301 year: 2018 end-page: 309 ident: b0165 article-title: Improved decomposition-based multi-objective cuckoo search algorithm for spectrum allocation in cognitive vehicular network publication-title: Phys Commun – volume: 4 start-page: 127 year: 2009 end-page: 138 ident: b0200 article-title: Use of supervised discretization with PCA in wavelet packet transformation-based surface electromyogram classification publication-title: Biomed Signal Process Control – volume: 21 start-page: 668 year: 2007 end-page: 677 ident: b0060 article-title: The application of energy operator demodulation approach based on EMD in machinery fault diagnosis publication-title: Mech Syst Sig Process – reference: Sun JP, Gao M, Li YL. Fault prediction method research of the power plant fan. Adv Mater Res 2012;580:99-104. – volume: 214 start-page: 1038 year: 2016 end-page: 1045 ident: b0105 article-title: Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition publication-title: Neurocomputing – volume: 191 start-page: 164 year: 2019 end-page: 173 ident: b0010 article-title: Experimental and theoretical study on an air-source heat pump water heater for northern China in cold winter: Effects of environment temperature and switch of operating modes publication-title: Energy Build – volume: 66 start-page: 2391 year: 2017 end-page: 2402 ident: b0085 article-title: Stacked Multilevel-Denoising Autoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis publication-title: IEEE Trans Instrum Meas – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b0185 article-title: Evolutionary programming made faster publication-title: Trans Evolution Comput – volume: 18 start-page: 1077 year: 2004 end-page: 1095 ident: b0195 article-title: Bearing fault diagnosis based on wavelet transform and fuzzy inference publication-title: Mech Syst Sig Process – volume: 178 start-page: 26 year: 2018 end-page: 37 ident: b0005 article-title: An experimental study on time-based start defrosting control strategy optimization for an air source heat pump unit with frost evenly distributed and melted frost locally drained publication-title: Energy Build – volume: 124 start-page: 378 year: 2018 end-page: 385 ident: b0090 article-title: Fault diagnosis on slipper abrasion of axial piston pump based on Extreme Learning Machine publication-title: Measurement – reference: Laha D, Behera DK. An improved cuckoo search algorithm for parallel machine scheduling. International Conference on Swarm, Evolutionary, and Memetic Computing (pp.788-800) Springer International Publishing(2014). – volume: 6 start-page: 33583 year: 2018 end-page: 33588 ident: b0135 article-title: Fault Diagnosis of Rotation Machinery Based on Support Vector Machine Optimized by Quantum Genetic Algorithm publication-title: IEEE Access – volume: 56 start-page: 203 year: 2019 end-page: 212 ident: b0130 article-title: Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm publication-title: Cognit Syst Res – volume: 28 start-page: 35 year: 2016 end-page: 52 ident: b0160 article-title: Optimal path planning for a mobile robot using cuckoo search algorithm publication-title: J Exp Theor Artif Intell – volume: 133 start-page: 106272 year: 2019 ident: b0100 article-title: Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine publication-title: Mech Syst Sig Process – reference: Cao G, Lei X, Luo C. Research of a fan fault diagnosis system based on wavelet and neural network. In 3rd International Conference on Power Electronics Systems and Applications (pp.1-6) IEEE(2009). – volume: 83 start-page: 450 year: 2017 end-page: 473 ident: b0095 article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine publication-title: Mech Syst Sig Process – volume: 7 start-page: 263 year: 2015 end-page: 278 ident: b0205 article-title: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle publication-title: Cognit Comput – volume: 40 start-page: 235 year: 1989 end-page: 282 ident: b0175 article-title: Classifier systems and genetic algorithms publication-title: Artif Intell – volume: 180 start-page: 889 year: 2019 end-page: 903 ident: b0015 article-title: Exergoeconomic design criterion of solar absorption-subcooled compression hybrid cooling system based on the variable working conditions publication-title: Energy Convers Manage – reference: Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science 1995: 39-43. – reference: Yang XS, Deb S. Cuckoo search via levy flights. World Congress on Nature & Biologically Inspired Computing (pp.210-214) IEEE(2009). – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0170 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 216 start-page: 119232 year: 2021 ident: b0020 article-title: Performance evaluation and multi-objective optimization of a low-temperature CO publication-title: Energy – volume: 40 start-page: 213 year: 2007 end-page: 223 ident: b0045 article-title: On teaching measurement applications of digital signal processing publication-title: Measurement – volume: 46 start-page: 497 year: 2013 end-page: 505 ident: b0050 article-title: Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis publication-title: Measurement – volume: 170 start-page: 305 year: 2019 end-page: 325 ident: b0025 article-title: Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions publication-title: Energy – year: 2016 ident: b0150 article-title: Optimal power distribution network reconfiguration using Cuckoo Search publication-title: International Conference on Electric Power & Energy Conversion Systems IEEE – volume: 6 start-page: 126 year: 1975 end-page: 137 ident: b0115 article-title: Adaptation in natural and artificial systems publication-title: Ann Arbor – volume: 33 start-page: 606 year: 2013 end-page: 612 ident: b0040 article-title: Mechanical fault diagnosis of fan based on wavelet packet energy analysis and improved support vector machine publication-title: Chin J Power Eng – volume: 35 start-page: 108 year: 2013 end-page: 126 ident: b0065 article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery publication-title: Mech Syst Sig Process – volume: 48 start-page: 388 year: 2020 end-page: 399 ident: b0190 article-title: Quality monitoring in milling of unidirectional CFRP through wavelet packet transform of force signals publication-title: Procedia Manuf – reference: Miao Q, Azarian M, Pecht M. Cooling fan bearing fault identification using vibration measurement. Conference on Prognostics and Health Management (pp.1-5) IEEE(2011). – volume: 6 start-page: 28 year: 2007 ident: b0055 article-title: Sintering fan faults diagnosis based on wavelet analysis publication-title: J Cent South Univers (Sci Technol) – volume: 98 start-page: 320 year: 2020 end-page: 337 ident: b0110 article-title: Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features publication-title: ISA Trans – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.seta.2020.100975_b0185 article-title: Evolutionary programming made faster publication-title: Trans Evolution Comput doi: 10.1109/4235.771163 – volume: 40 start-page: 213 issue: 2 year: 2007 ident: 10.1016/j.seta.2020.100975_b0045 article-title: On teaching measurement applications of digital signal processing publication-title: Measurement doi: 10.1016/j.measurement.2006.06.015 – volume: 35 start-page: 108 issue: 1-2 year: 2013 ident: 10.1016/j.seta.2020.100975_b0065 article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2012.09.015 – volume: 98 start-page: 320 year: 2020 ident: 10.1016/j.seta.2020.100975_b0110 article-title: Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features publication-title: ISA Trans doi: 10.1016/j.isatra.2019.08.053 – volume: 180 start-page: 889 year: 2019 ident: 10.1016/j.seta.2020.100975_b0015 article-title: Exergoeconomic design criterion of solar absorption-subcooled compression hybrid cooling system based on the variable working conditions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.11.004 – volume: 6 start-page: 28 year: 2007 ident: 10.1016/j.seta.2020.100975_b0055 article-title: Sintering fan faults diagnosis based on wavelet analysis publication-title: J Cent South Univers (Sci Technol) – volume: 36 start-page: 9941 issue: 6 year: 2009 ident: 10.1016/j.seta.2020.100975_b0080 article-title: Application of an intelligent classification method to mechanical fault diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.01.065 – volume: 40 start-page: 235 issue: 1–3 year: 1989 ident: 10.1016/j.seta.2020.100975_b0175 article-title: Classifier systems and genetic algorithms publication-title: Artif Intell doi: 10.1016/0004-3702(89)90050-7 – volume: 28 start-page: 35 issue: 1–2 year: 2016 ident: 10.1016/j.seta.2020.100975_b0160 article-title: Optimal path planning for a mobile robot using cuckoo search algorithm publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2014.971442 – ident: 10.1016/j.seta.2020.100975_b0125 – ident: 10.1016/j.seta.2020.100975_b0155 doi: 10.1007/978-3-319-20294-5_67 – volume: 48 start-page: 388 year: 2020 ident: 10.1016/j.seta.2020.100975_b0190 article-title: Quality monitoring in milling of unidirectional CFRP through wavelet packet transform of force signals publication-title: Procedia Manuf doi: 10.1016/j.promfg.2020.05.061 – volume: 4 start-page: 127 issue: 2 year: 2009 ident: 10.1016/j.seta.2020.100975_b0200 article-title: Use of supervised discretization with PCA in wavelet packet transformation-based surface electromyogram classification publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2009.02.004 – volume: 170 start-page: 305 year: 2019 ident: 10.1016/j.seta.2020.100975_b0025 article-title: Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions publication-title: Energy doi: 10.1016/j.energy.2018.12.125 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.seta.2020.100975_b0120 article-title: Particle swarm optimization: An overview publication-title: Swarm Intell doi: 10.1007/s11721-007-0002-0 – volume: 68 start-page: 233 year: 2015 ident: 10.1016/j.seta.2020.100975_b0145 article-title: Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.12.075 – volume: 178 start-page: 26 year: 2018 ident: 10.1016/j.seta.2020.100975_b0005 article-title: An experimental study on time-based start defrosting control strategy optimization for an air source heat pump unit with frost evenly distributed and melted frost locally drained publication-title: Energy Build doi: 10.1016/j.enbuild.2018.08.027 – volume: 133 start-page: 106272 year: 2019 ident: 10.1016/j.seta.2020.100975_b0100 article-title: Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2019.106272 – volume: 18 start-page: 1077 issue: 5 year: 2004 ident: 10.1016/j.seta.2020.100975_b0195 article-title: Bearing fault diagnosis based on wavelet transform and fuzzy inference publication-title: Mech Syst Sig Process doi: 10.1016/S0888-3270(03)00077-3 – ident: 10.1016/j.seta.2020.100975_b0070 doi: 10.1109/ICPHM.2011.6024350 – volume: 56 start-page: 203 year: 2019 ident: 10.1016/j.seta.2020.100975_b0130 article-title: Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm publication-title: Cognit Syst Res doi: 10.1016/j.cogsys.2018.12.014 – volume: 34 start-page: 301 year: 2018 ident: 10.1016/j.seta.2020.100975_b0165 article-title: Improved decomposition-based multi-objective cuckoo search algorithm for spectrum allocation in cognitive vehicular network publication-title: Phys Commun doi: 10.1016/j.phycom.2018.06.003 – volume: 6 start-page: 33583 year: 2018 ident: 10.1016/j.seta.2020.100975_b0135 article-title: Fault Diagnosis of Rotation Machinery Based on Support Vector Machine Optimized by Quantum Genetic Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2789933 – volume: 124 start-page: 378 year: 2018 ident: 10.1016/j.seta.2020.100975_b0090 article-title: Fault diagnosis on slipper abrasion of axial piston pump based on Extreme Learning Machine publication-title: Measurement doi: 10.1016/j.measurement.2018.03.050 – ident: 10.1016/j.seta.2020.100975_b0075 – year: 2016 ident: 10.1016/j.seta.2020.100975_b0150 article-title: Optimal power distribution network reconfiguration using Cuckoo Search – ident: 10.1016/j.seta.2020.100975_b0180 doi: 10.1109/NABIC.2009.5393690 – volume: 374 start-page: 297 year: 2016 ident: 10.1016/j.seta.2020.100975_b0035 article-title: Fan fault diagnosis based on symmetrized dot pattern analysis and image matching publication-title: J Sound Vib doi: 10.1016/j.jsv.2016.03.030 – volume: 66 start-page: 2391 issue: 9 year: 2017 ident: 10.1016/j.seta.2020.100975_b0085 article-title: Stacked Multilevel-Denoising Autoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2017.2698738 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.seta.2020.100975_b0170 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 6 start-page: 126 issue: 2 year: 1975 ident: 10.1016/j.seta.2020.100975_b0115 article-title: Adaptation in natural and artificial systems publication-title: Ann Arbor – volume: 167 start-page: 260 year: 2015 ident: 10.1016/j.seta.2020.100975_b0140 article-title: Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.069 – volume: 83 start-page: 450 year: 2017 ident: 10.1016/j.seta.2020.100975_b0095 article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2016.06.024 – ident: 10.1016/j.seta.2020.100975_b0030 doi: 10.4028/www.scientific.net/AMR.580.99 – volume: 33 start-page: 606 issue: 8 year: 2013 ident: 10.1016/j.seta.2020.100975_b0040 article-title: Mechanical fault diagnosis of fan based on wavelet packet energy analysis and improved support vector machine publication-title: Chin J Power Eng – volume: 191 start-page: 164 year: 2019 ident: 10.1016/j.seta.2020.100975_b0010 article-title: Experimental and theoretical study on an air-source heat pump water heater for northern China in cold winter: Effects of environment temperature and switch of operating modes publication-title: Energy Build doi: 10.1016/j.enbuild.2019.03.028 – volume: 46 start-page: 497 issue: 1 year: 2013 ident: 10.1016/j.seta.2020.100975_b0050 article-title: Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis publication-title: Measurement doi: 10.1016/j.measurement.2012.08.007 – volume: 214 start-page: 1038 year: 2016 ident: 10.1016/j.seta.2020.100975_b0105 article-title: Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.069 – volume: 7 start-page: 263 issue: 3 year: 2015 ident: 10.1016/j.seta.2020.100975_b0205 article-title: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle publication-title: Cognit Comput doi: 10.1007/s12559-015-9333-0 – volume: 216 start-page: 119232 year: 2021 ident: 10.1016/j.seta.2020.100975_b0020 article-title: Performance evaluation and multi-objective optimization of a low-temperature CO2 heat pump water heater based on artificial neural network and new economic analysis publication-title: Energy doi: 10.1016/j.energy.2020.119232 – volume: 21 start-page: 668 issue: 2 year: 2007 ident: 10.1016/j.seta.2020.100975_b0060 article-title: The application of energy operator demodulation approach based on EMD in machinery fault diagnosis publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2005.10.005 |
| SSID | ssj0001361410 |
| Score | 2.3481872 |
| Snippet | •A CS-ELM based fault diagnosis method is proposed for building ventilation fan.•Fault diagnosis experiment of two different fans is carried out on established... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100975 |
| SubjectTerms | Building energy Cuckoo search algorithm Extreme learning machine Fan Fault diagnosis |
| Title | Proposal and experimental case study on building ventilating fan fault diagnosis based on cuckoo search algorithm optimized extreme learning machine |
| URI | https://dx.doi.org/10.1016/j.seta.2020.100975 |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 2213-1388 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001361410 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) issn: 2213-1388 databaseCode: ACRLP dateStart: 20130301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001361410 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 2213-1388 databaseCode: .~1 dateStart: 20130301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001361410 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 2213-1388 databaseCode: AIKHN dateStart: 20130301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001361410 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2213-1388 databaseCode: AKRWK dateStart: 20130301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001361410 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_hmD94kNtkkm91jKZaqKIIKvYXsoxptk9KmFw_-Cn-wM8lWK4gHD4El7JCws5mZLN98HyGnSjMmhTVeYIWBHxQ_9mTMuCcV50xk0kqLjcI3t7z3GF314_4S6cx7YRBW6WJ_E9PraO3utNxqtsZ53rpnLAiDECpEZGD3wz52sEcJqhicvwff5ywhRygjaszBfKTcE653poF5TW2F9EOsxgtIhBv-lp8Wck53g6y7YpG2m_fZJEu22CJrCxSC2-TjDmUOpjArKwxd5OunGhIUreljaVlQ5fSvaQ1wRAQcjAdZAddsWFHTQO7yKcW8ZtBCz_RrWdLmW6DZ8Kmc5NXziJYQZUb5m8XHVXi8SJ30xBMd1dBMu0MeuxcPnZ7nlBY8Hfp-5Q2k8QdcxUmWaK0HjGUi4EwyWJdIQYo3sZBCGab8KPPBgVaJSEGpBEOoD6FG3CXLRVnYPUKNUhEPwBp_xMIoVEmILGBJopiVPBP7JJivb6odDTmqYQzTOd7sJUWfpOiTtPHJPjn7shk3JBx_zo7nbkt_bKUUssQfdgf_tDskqwyBLvXRzBFZriYzewyVSqVO6q14Qlbal9e920--a-mL |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uB_UgrjiuOXiTOm3apslRRBlXBBXmVppltDrTitO5ePBX-IN9r83oCOLBQyGUPFrykrfx5XuE7CvNmBTWeIEVBhIUP_ZkzLgnFedMZNJKixeFr6555z4678bdKXI8vguDsEpn-xubXltr96btVrP9kuftW8aCMAghQkQGdj_sTpPZKGYJZmCH78F3oSXkiGXEJnMggJx7wl2eaXBeQ1sh_xCrAQMS8Ya_OagJp3O6RBZdtEiPmh9aJlO2WCELExyCq-TjBvscDGFWVhg6SdhPNXgoWvPH0rKgyjXApjXCESFwMO5lBTyjfkVNg7nLhxQdm0EJPdLPZUmbw0Cz_kP5mlePA1qCmRnkbxY_V2F9kbreEw90UGMz7Rq5Pz25O-54rtWCp0Pfr7yeNH6PqzjJEq11j7FMBJxJBusSKfDxJhZSKMOUH2U-aNAqESmIlWAIASIEietkpigLu0GoUSriAUhjJhZGoUpCpAFLEsWs5JlokWC8vql2POTYDqOfjgFnTynqJEWdpI1OWuTgS-alYeH4c3Y8Vlv6Yy-l4Cb-kNv8p9wemevcXV2ml2fXF1tkniHqpa7TbJOZ6nVkdyBsqdRuvS0_ATOU6yA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposal+and+experimental+case+study+on+building+ventilating+fan+fault+diagnosis+based+on+cuckoo+search+algorithm+optimized+extreme+learning+machine&rft.jtitle=Sustainable+energy+technologies+and+assessments&rft.au=Xu%2C+Yingjie&rft.au=Chen%2C+Ning&rft.au=Shen%2C+Xi&rft.au=Xu%2C+Liangfeng&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=2213-1388&rft.volume=45&rft_id=info:doi/10.1016%2Fj.seta.2020.100975&rft.externalDocID=S221313882031403X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1388&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1388&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1388&client=summon |