A fast and efficient clustering based fuzzy time series algorithm (FEFTS) for regression and classification
[Display omitted] •A fast and efficient clustering based fuzzy time series algorithm (FEFTS) is introduced to handle the regression, and classification problems.•The efficiency of FEFTS algorithm over other FTS algorithms is confirmed by applying the algorithm to various benchmark datasets.•The pres...
Saved in:
| Published in | Applied soft computing Vol. 61; pp. 1088 - 1097 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2017.09.023 |
Cover
| Abstract | [Display omitted]
•A fast and efficient clustering based fuzzy time series algorithm (FEFTS) is introduced to handle the regression, and classification problems.•The efficiency of FEFTS algorithm over other FTS algorithms is confirmed by applying the algorithm to various benchmark datasets.•The presented algorithm is faster and more accurate than the conventional algorithms.
Forecasting fuzzy time series (FTS) methods are generally divided into two categories, one is based on intervals of universal set and the other is based on clustering algorithms. Since there are some challenging problems with the interval based algorithms such as the ideal interval length, clustering based FTS algorithms are preferred. Fuzzy Logical Relationships (FLRs) are usually used to establish relationships between input and output data in both interval based and clustering based FTS algorithms. Modeling complicated systems demands high number of FLRs that incurs high runtime to train FTS algorithms. In this study, a fast and efficient clustering based fuzzy time series algorithm (FEFTS) is introduced to handle the regression, and classification problems. Superiority of FEFTS algorithm over other FTS algorithms in terms of runtime and training and testing errors is confirmed by applying the algorithm to various benchmark datasets available on the web. It is shown that FEFTS reduces testing RMSE for regression data up to 40% with the least runtime. Also, FEFTS with the same accuracy as compared to Fuzzy-Firefly classification method, diminishes runtime moderately from 324.33s to 0.0055s. |
|---|---|
| AbstractList | [Display omitted]
•A fast and efficient clustering based fuzzy time series algorithm (FEFTS) is introduced to handle the regression, and classification problems.•The efficiency of FEFTS algorithm over other FTS algorithms is confirmed by applying the algorithm to various benchmark datasets.•The presented algorithm is faster and more accurate than the conventional algorithms.
Forecasting fuzzy time series (FTS) methods are generally divided into two categories, one is based on intervals of universal set and the other is based on clustering algorithms. Since there are some challenging problems with the interval based algorithms such as the ideal interval length, clustering based FTS algorithms are preferred. Fuzzy Logical Relationships (FLRs) are usually used to establish relationships between input and output data in both interval based and clustering based FTS algorithms. Modeling complicated systems demands high number of FLRs that incurs high runtime to train FTS algorithms. In this study, a fast and efficient clustering based fuzzy time series algorithm (FEFTS) is introduced to handle the regression, and classification problems. Superiority of FEFTS algorithm over other FTS algorithms in terms of runtime and training and testing errors is confirmed by applying the algorithm to various benchmark datasets available on the web. It is shown that FEFTS reduces testing RMSE for regression data up to 40% with the least runtime. Also, FEFTS with the same accuracy as compared to Fuzzy-Firefly classification method, diminishes runtime moderately from 324.33s to 0.0055s. |
| Author | Hatami, Farzad Saberi, Hossein Rahai, Alireza |
| Author_xml | – sequence: 1 givenname: Hossein surname: Saberi fullname: Saberi, Hossein – sequence: 2 givenname: Alireza surname: Rahai fullname: Rahai, Alireza – sequence: 3 givenname: Farzad surname: Hatami fullname: Hatami, Farzad email: hatami@aut.ac.ir |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2DyCEOCnaRJLLFUVQtIlRgos3W1z8UlTZBtkNpfj9MyMXS6D-l5dfeMyKDtWiTklrOUM14-bFPwnUozxquUiZRl-QUZ8rrKElHWfBD7SVknhSjKKzLyfssiJLJ6SD6n1IAPFFpN0RirLLaBqubbB3S23dA1eNTUfB8OexrsDqmPe_QUmk3nbPjY0bvFfLF6u6emc9ThxqH3tmuPiaqBOMRUCHF1TS4NNB5v_uqYvC_mq9lzsnx9eplNl4nKGQuJqSoxwTwHLAA4qLxQDLQGzkWGsIYaDJRFPLYCIXSGTCFnalLrglWlAsjHpD7lKtd579BIZcPxguDANpIz2UuTW9lLk700yYSM0iKa_UO_nN2B25-HHk8Qxqd-LDrpe40KtXWogtSdPYf_AhQSi0I |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2021_106991 crossref_primary_10_1002_int_22583 crossref_primary_10_1016_j_asoc_2018_09_032 crossref_primary_10_1109_TCYB_2022_3190705 crossref_primary_10_1016_j_asoc_2020_106679 crossref_primary_10_1016_j_ins_2024_120939 crossref_primary_10_1109_ACCESS_2023_3273010 crossref_primary_10_1016_j_eswa_2021_116153 crossref_primary_10_3390_cancers14143442 crossref_primary_10_1016_j_asoc_2023_110284 |
| Cites_doi | 10.1016/j.eswa.2014.09.036 10.1016/j.eswa.2009.05.081 10.1109/TPEL.2002.1004250 10.1016/j.asoc.2010.04.012 10.1080/019697202753306479 10.1016/j.eswa.2010.12.127 10.1016/0165-0114(95)00220-0 10.1016/j.eswa.2009.06.106 10.1016/j.asoc.2010.12.015 10.1109/91.227387 10.1109/TFUZZ.2014.2300134 10.1016/j.asoc.2014.03.028 10.1016/j.asoc.2015.06.028 10.1016/j.asoc.2006.01.009 10.1037/0033-2909.124.1.54 10.1109/TSMCB.2005.857093 10.1016/0098-3004(84)90020-7 10.1016/j.eswa.2008.07.043 10.1016/j.neucom.2016.09.025 10.1016/0165-0114(94)90067-1 10.1016/j.eswa.2012.01.051 10.1016/j.asoc.2014.11.043 10.1109/TFUZZ.2004.840099 10.1016/j.asoc.2006.01.002 10.1016/j.asoc.2015.01.039 10.1016/j.asoc.2013.07.024 10.1016/j.asoc.2014.08.011 10.1016/0165-0114(93)90372-O 10.1016/j.asoc.2016.12.049 10.1016/j.eswa.2012.01.023 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2017.09.023 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 1097 |
| ExternalDocumentID | 10_1016_j_asoc_2017_09_023 S1568494617305628 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-f7795e33ae4aa1ac34c0adda1192eaba8afa64eff7a99d2e0ce10c58d4076caa3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 23:07:00 EDT 2025 Wed Oct 01 02:32:10 EDT 2025 Fri Feb 23 02:24:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fuzzy time series Fuzzy clustering Fuzzy regression Classification Least square estimation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-f7795e33ae4aa1ac34c0adda1192eaba8afa64eff7a99d2e0ce10c58d4076caa3 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2017_09_023 crossref_primary_10_1016_j_asoc_2017_09_023 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_09_023 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2017 2017-12-00 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wong, Tu, Wang (bib0080) 2010; 37 Pedrycz, Izakian (bib0170) 2014; 22 Efendi, Ismail, Deris (bib0095) 2015; 28 Pal, Pal, Keller, Bezdek (bib0130) 2005; 13 Maddala (bib0020) 1996 Ouellette, Wood (bib0005) 1998; 124 Aladag, Yolcu, Egrioglu, Bas (bib0165) 2014; 22 Garg, Beg, Ansari (bib0085) 2012 Bibian, Jin (bib0010) 2002; 17 Qiu, Liu, Wang (bib0075) 2012; 39 Song, Chissom (bib0030) 1993; 54 Askari, Montazerin, Fazel Zarandi, Hakimi (bib0120) 2017; 219 Kuo, Horng, Kao, Lin, Lee, Pan (bib0100) 2009; 36 Chen, Chen (bib0160) 2014; 14 Chen (bib0040) 1996; 81 Melin, Mancilla, Lopez, Mendoza (bib0025) 2007; 7 Eslamloueyan (bib0150) 2011; 11 Askari, Montazerin, Fazel Zarandi (bib0135) 2017; 53 Domanska, Wojtylak (bib0110) 2012; 39 Krishnapuram, Keller (bib0125) 1993; 1 Song, Chissom (bib0035) 1994; 62 Huang, Horng, He, Fan, Kao, Khan, Lai, Kuo (bib0105) 2011; 38 Bezdek, Ehrlich, Full (bib0115) 1984; 10 Zhao, Liu, Fan (bib0140) 2015; 30 Huarng, Yu (bib0065) 2006; 36 Park, Lee, Song, Chun (bib0070) 2010; 37 Li, Kuo, Cheng, Chen (bib0060) 2011; 11 Chen (bib0045) 2002; 33 Agrawal, Panda, Dora (bib0145) 2014; 24 Garg, Beg, Ansari, Imran (bib0090) 2011; 141 Askari, Montazerin, Fazel Zarandi (bib0155) 2015; 35 Bacardit (bib0180) 2004 Jilani, Burney, Ardil (bib0050) 2007; 4 Zhang, Wan (bib0015) 2007; 7 Askari, Montazerin (bib0055) 2015; 42 Pouyan, Yousefi, Ostadabbas, Nourani (bib0175) 2014 Garg (10.1016/j.asoc.2017.09.023_bib0090) 2011; 141 Bacardit (10.1016/j.asoc.2017.09.023_bib0180) 2004 Eslamloueyan (10.1016/j.asoc.2017.09.023_bib0150) 2011; 11 Pedrycz (10.1016/j.asoc.2017.09.023_bib0170) 2014; 22 Maddala (10.1016/j.asoc.2017.09.023_bib0020) 1996 Pal (10.1016/j.asoc.2017.09.023_bib0130) 2005; 13 Askari (10.1016/j.asoc.2017.09.023_bib0055) 2015; 42 Chen (10.1016/j.asoc.2017.09.023_bib0160) 2014; 14 Domanska (10.1016/j.asoc.2017.09.023_bib0110) 2012; 39 Song (10.1016/j.asoc.2017.09.023_bib0030) 1993; 54 Garg (10.1016/j.asoc.2017.09.023_bib0085) 2012 Melin (10.1016/j.asoc.2017.09.023_bib0025) 2007; 7 Jilani (10.1016/j.asoc.2017.09.023_bib0050) 2007; 4 Aladag (10.1016/j.asoc.2017.09.023_bib0165) 2014; 22 Pouyan (10.1016/j.asoc.2017.09.023_bib0175) 2014 Qiu (10.1016/j.asoc.2017.09.023_bib0075) 2012; 39 Askari (10.1016/j.asoc.2017.09.023_bib0120) 2017; 219 Bibian (10.1016/j.asoc.2017.09.023_bib0010) 2002; 17 Bezdek (10.1016/j.asoc.2017.09.023_bib0115) 1984; 10 Agrawal (10.1016/j.asoc.2017.09.023_bib0145) 2014; 24 Huarng (10.1016/j.asoc.2017.09.023_bib0065) 2006; 36 Wong (10.1016/j.asoc.2017.09.023_bib0080) 2010; 37 Kuo (10.1016/j.asoc.2017.09.023_bib0100) 2009; 36 Krishnapuram (10.1016/j.asoc.2017.09.023_bib0125) 1993; 1 Ouellette (10.1016/j.asoc.2017.09.023_bib0005) 1998; 124 Li (10.1016/j.asoc.2017.09.023_bib0060) 2011; 11 Chen (10.1016/j.asoc.2017.09.023_bib0045) 2002; 33 Efendi (10.1016/j.asoc.2017.09.023_bib0095) 2015; 28 Park (10.1016/j.asoc.2017.09.023_bib0070) 2010; 37 Zhao (10.1016/j.asoc.2017.09.023_bib0140) 2015; 30 Song (10.1016/j.asoc.2017.09.023_bib0035) 1994; 62 Zhang (10.1016/j.asoc.2017.09.023_bib0015) 2007; 7 Chen (10.1016/j.asoc.2017.09.023_bib0040) 1996; 81 Askari (10.1016/j.asoc.2017.09.023_bib0135) 2017; 53 Huang (10.1016/j.asoc.2017.09.023_bib0105) 2011; 38 Askari (10.1016/j.asoc.2017.09.023_bib0155) 2015; 35 |
| References_xml | – year: 2004 ident: bib0180 article-title: Pittsburgh genetic-based machine learning in the data mining era: representations, generalization, and run-time publication-title: PhD Thesis – volume: 219 start-page: 186 year: 2017 end-page: 202 ident: bib0120 article-title: Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof publication-title: Neurocomputing – volume: 35 start-page: 151 year: 2015 end-page: 160 ident: bib0155 article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables publication-title: Appl. Soft Comput. – volume: 7 start-page: 1149 year: 2007 end-page: 1156 ident: bib0015 article-title: Statistical fuzzy interval neural networks for currency exchange rate time series prediction publication-title: Appl. Soft Comput. – volume: 28 start-page: 422 year: 2015 end-page: 430 ident: bib0095 article-title: A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand publication-title: Appl. Soft Comput – volume: 13 start-page: 517 year: 2005 end-page: 530 ident: bib0130 article-title: A possibilistic fuzzy c-means clustering algorithm publication-title: IEEE Trans. Fuzzy Syst. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: bib0115 article-title: FCM, The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – volume: 36 start-page: 328 year: 2006 end-page: 340 ident: bib0065 article-title: Ratio-based lengths of intervals to improve fuzzy time series forecasting publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 17 start-page: 420 year: 2002 end-page: 427 ident: bib0010 article-title: High performance predictive dead-beat digital controller for DC power supplies publication-title: IEEE Trans. Power Electron. – volume: 39 start-page: 7673 year: 2012 end-page: 7679 ident: bib0110 article-title: Application of fuzzy time series models for forecasting pollution concentrations publication-title: Expert Syst. Appl. – volume: 11 start-page: 3125 year: 2011 end-page: 3134 ident: bib0060 article-title: A vector forecasting model for fuzzy time series publication-title: Appl. Soft Comput. – volume: 53 start-page: 262 year: 2017 end-page: 283 ident: bib0135 article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data publication-title: Appl. Soft Comput. – volume: 1 start-page: 98 year: 1993 end-page: 110 ident: bib0125 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. – year: 1996 ident: bib0020 article-title: Introduction to Econometrics – volume: 4 start-page: 15 year: 2007 end-page: 20 ident: bib0050 article-title: Multivariate high order fuzzy time series forecasting for car road accidents publication-title: Int. J. Comput. Intell. – volume: 36 start-page: 6108 year: 2009 end-page: 6117 ident: bib0100 article-title: An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. – volume: 14 start-page: 156 year: 2014 end-page: 166 ident: bib0160 article-title: Online fuzzy time series analysis based on entropy discretization and a Fast Fourier Transform publication-title: Appl. Soft Comput. – volume: 141 start-page: 221 year: 2011 end-page: 232 ident: bib0090 article-title: Soft computing model to predict average length of stay of patient publication-title: Communications in Computer and Information Science – volume: 124 start-page: 54 year: 1998 ident: bib0005 article-title: Habit and intention in everyday life: the multiple processes by which past behavior predicts future behavior publication-title: Psychol. Bull. – volume: 37 start-page: 959 year: 2010 end-page: 967 ident: bib0070 article-title: TAIFEX and KOSPI 200 forecasting based on two-factor high-order fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. – volume: 22 start-page: 465 year: 2014 end-page: 473 ident: bib0165 article-title: Fuzzy lagged variable selection in fuzzy time series with genetic algorithms publication-title: Appl. Soft Comput. – volume: 33 start-page: 1 year: 2002 end-page: 16 ident: bib0045 article-title: Forecasting enrollments based on high order fuzzy time series publication-title: Int. J. Cybern. Syst. – volume: 37 start-page: 1465 year: 2010 end-page: 1470 ident: bib0080 article-title: Application of fuzzy time series models for forecasting the amount of Taiwan export publication-title: Expert Syst. Appl. – volume: 42 start-page: 2121 year: 2015 end-page: 2135 ident: bib0055 article-title: A high-order multi-variable Fuzzy Time Series fore- casting algorithm based on fuzzy clustering publication-title: Expert Syst. Appl. – volume: 38 start-page: 8014 year: 2011 end-page: 8023 ident: bib0105 article-title: A hybrid forecasting model for enrollments based on aggregated fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. – year: 2014 ident: bib0175 article-title: A hybrid fuzzy-Firefly approach for rule-Based classification publication-title: FLAIRS Conference – volume: 54 start-page: 269 year: 1993 end-page: 277 ident: bib0030 article-title: Fuzzy time series and its models publication-title: Fuzzy Sets Syst. – volume: 39 start-page: 7680 year: 2012 end-page: 7689 ident: bib0075 article-title: Forecasting shanghai composite index based on fuzzy time series and improved C-fuzzy decision trees publication-title: Expert Syst. Appl. – volume: 11 start-page: 1407 year: 2011 end-page: 1415 ident: bib0150 article-title: Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process publication-title: Appl. Soft Comput. – volume: 22 start-page: 1585 year: 2014 end-page: 1597 ident: bib0170 article-title: Cluster-centric fuzzy modeling publication-title: IEEE Trans. Fuzzy Syst. – volume: 62 start-page: 1 year: 1994 end-page: 8 ident: bib0035 article-title: Forecasting enrollments with fuzzy time series: part II publication-title: Fuzzy Sets Syst. – volume: 7 start-page: 1217 year: 2007 end-page: 1226 ident: bib0025 article-title: A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting publication-title: Appl. Soft Comput. – start-page: 1 year: 2012 end-page: 6 ident: bib0085 article-title: A new computational fuzzy time series model to forecast number of outpatient visits publication-title: Proc. 31 St Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS 2012) – volume: 30 start-page: 48 year: 2015 end-page: 57 ident: bib0140 article-title: A multiobjective spatial fuzzy clustering algorithm for image segmentation publication-title: Appl. Soft Comput. – volume: 24 start-page: 522 year: 2014 end-page: 533 ident: bib0145 article-title: A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches publication-title: Appl. Soft Comput. – volume: 81 start-page: 311 year: 1996 end-page: 319 ident: bib0040 article-title: Forecasting enrollments based on fuzzy time series publication-title: Fuzzy Sets Syst. – volume: 42 start-page: 2121 issue: 4 year: 2015 ident: 10.1016/j.asoc.2017.09.023_bib0055 article-title: A high-order multi-variable Fuzzy Time Series fore- casting algorithm based on fuzzy clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.09.036 – volume: 37 start-page: 959 issue: 2 year: 2010 ident: 10.1016/j.asoc.2017.09.023_bib0070 article-title: TAIFEX and KOSPI 200 forecasting based on two-factor high-order fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.081 – volume: 17 start-page: 420 year: 2002 ident: 10.1016/j.asoc.2017.09.023_bib0010 article-title: High performance predictive dead-beat digital controller for DC power supplies publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2002.1004250 – volume: 11 start-page: 1407 year: 2011 ident: 10.1016/j.asoc.2017.09.023_bib0150 article-title: Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.012 – volume: 33 start-page: 1 year: 2002 ident: 10.1016/j.asoc.2017.09.023_bib0045 article-title: Forecasting enrollments based on high order fuzzy time series publication-title: Int. J. Cybern. Syst. doi: 10.1080/019697202753306479 – volume: 38 start-page: 8014 issue: 7 year: 2011 ident: 10.1016/j.asoc.2017.09.023_bib0105 article-title: A hybrid forecasting model for enrollments based on aggregated fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.127 – volume: 4 start-page: 15 year: 2007 ident: 10.1016/j.asoc.2017.09.023_bib0050 article-title: Multivariate high order fuzzy time series forecasting for car road accidents publication-title: Int. J. Comput. Intell. – volume: 81 start-page: 311 year: 1996 ident: 10.1016/j.asoc.2017.09.023_bib0040 article-title: Forecasting enrollments based on fuzzy time series publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(95)00220-0 – volume: 37 start-page: 1465 issue: 2 year: 2010 ident: 10.1016/j.asoc.2017.09.023_bib0080 article-title: Application of fuzzy time series models for forecasting the amount of Taiwan export publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.06.106 – volume: 11 start-page: 3125 issue: 3 year: 2011 ident: 10.1016/j.asoc.2017.09.023_bib0060 article-title: A vector forecasting model for fuzzy time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.12.015 – volume: 1 start-page: 98 issue: 2 year: 1993 ident: 10.1016/j.asoc.2017.09.023_bib0125 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.227387 – volume: 22 start-page: 1585 issue: 6 year: 2014 ident: 10.1016/j.asoc.2017.09.023_bib0170 article-title: Cluster-centric fuzzy modeling publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2014.2300134 – volume: 22 start-page: 465 year: 2014 ident: 10.1016/j.asoc.2017.09.023_bib0165 article-title: Fuzzy lagged variable selection in fuzzy time series with genetic algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.03.028 – year: 2004 ident: 10.1016/j.asoc.2017.09.023_bib0180 article-title: Pittsburgh genetic-based machine learning in the data mining era: representations, generalization, and run-time – volume: 35 start-page: 151 year: 2015 ident: 10.1016/j.asoc.2017.09.023_bib0155 article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.06.028 – volume: 7 start-page: 1217 issue: 4 year: 2007 ident: 10.1016/j.asoc.2017.09.023_bib0025 article-title: A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2006.01.009 – volume: 124 start-page: 54 year: 1998 ident: 10.1016/j.asoc.2017.09.023_bib0005 article-title: Habit and intention in everyday life: the multiple processes by which past behavior predicts future behavior publication-title: Psychol. Bull. doi: 10.1037/0033-2909.124.1.54 – volume: 36 start-page: 328 issue: 2 year: 2006 ident: 10.1016/j.asoc.2017.09.023_bib0065 article-title: Ratio-based lengths of intervals to improve fuzzy time series forecasting publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. doi: 10.1109/TSMCB.2005.857093 – volume: 10 start-page: 191 issue: 2-3 year: 1984 ident: 10.1016/j.asoc.2017.09.023_bib0115 article-title: FCM, The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 36 start-page: 6108 issue: 3 year: 2009 ident: 10.1016/j.asoc.2017.09.023_bib0100 article-title: An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.07.043 – volume: 219 start-page: 186 year: 2017 ident: 10.1016/j.asoc.2017.09.023_bib0120 article-title: Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.025 – volume: 62 start-page: 1 year: 1994 ident: 10.1016/j.asoc.2017.09.023_bib0035 article-title: Forecasting enrollments with fuzzy time series: part II publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90067-1 – volume: 39 start-page: 7680 issue: 9 year: 2012 ident: 10.1016/j.asoc.2017.09.023_bib0075 article-title: Forecasting shanghai composite index based on fuzzy time series and improved C-fuzzy decision trees publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.051 – volume: 28 start-page: 422 year: 2015 ident: 10.1016/j.asoc.2017.09.023_bib0095 article-title: A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2014.11.043 – volume: 13 start-page: 517 issue: 4 year: 2005 ident: 10.1016/j.asoc.2017.09.023_bib0130 article-title: A possibilistic fuzzy c-means clustering algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2004.840099 – volume: 7 start-page: 1149 year: 2007 ident: 10.1016/j.asoc.2017.09.023_bib0015 article-title: Statistical fuzzy interval neural networks for currency exchange rate time series prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2006.01.002 – start-page: 1 year: 2012 ident: 10.1016/j.asoc.2017.09.023_bib0085 article-title: A new computational fuzzy time series model to forecast number of outpatient visits – volume: 30 start-page: 48 year: 2015 ident: 10.1016/j.asoc.2017.09.023_bib0140 article-title: A multiobjective spatial fuzzy clustering algorithm for image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.039 – year: 2014 ident: 10.1016/j.asoc.2017.09.023_bib0175 article-title: A hybrid fuzzy-Firefly approach for rule-Based classification publication-title: FLAIRS Conference – volume: 14 start-page: 156 year: 2014 ident: 10.1016/j.asoc.2017.09.023_bib0160 article-title: Online fuzzy time series analysis based on entropy discretization and a Fast Fourier Transform publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.07.024 – volume: 24 start-page: 522 year: 2014 ident: 10.1016/j.asoc.2017.09.023_bib0145 article-title: A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.011 – volume: 54 start-page: 269 year: 1993 ident: 10.1016/j.asoc.2017.09.023_bib0030 article-title: Fuzzy time series and its models publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90372-O – volume: 53 start-page: 262 year: 2017 ident: 10.1016/j.asoc.2017.09.023_bib0135 article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.049 – year: 1996 ident: 10.1016/j.asoc.2017.09.023_bib0020 – volume: 141 start-page: 221 year: 2011 ident: 10.1016/j.asoc.2017.09.023_bib0090 article-title: Soft computing model to predict average length of stay of patient – volume: 39 start-page: 7673 issue: 9 year: 2012 ident: 10.1016/j.asoc.2017.09.023_bib0110 article-title: Application of fuzzy time series models for forecasting pollution concentrations publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.023 |
| SSID | ssj0016928 |
| Score | 2.2601826 |
| Snippet | [Display omitted]
•A fast and efficient clustering based fuzzy time series algorithm (FEFTS) is introduced to handle the regression, and classification... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1088 |
| SubjectTerms | Classification Fuzzy clustering Fuzzy regression Fuzzy time series Least square estimation |
| Title | A fast and efficient clustering based fuzzy time series algorithm (FEFTS) for regression and classification |
| URI | https://dx.doi.org/10.1016/j.asoc.2017.09.023 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL158i_VR9uBBkdgku3kdS2mpT8RW8Bamk91aranU9GAP_nZ38igK4sFTSJgNYWYy3-zyzQxjxyH6WoNwrcRgnyW9EC0QHlqBQgOAKgwQ6UD_5tbvPsjLR-9xibWqWhiiVZaxv4jpebQunzRKbTbeRqNGz-w8QhlJA8GUBrtU8CtlQFMMzj8XNA_Hj_L5qiRskXRZOFNwvMBogOhdQd7r1BW_g9M3wOlssLUyU-TN4mM22ZJKt9h6NYWBlz_lNntpcg3vGYc04SpvCGFwhON4Ri0QDDBxAqqE69l8_sFplDwnr1PvHMbDyXSUPb3yk0670--dcpPA8qkaFtTYNH8jUnZNdKLcgjvsodPut7pWOULBQmHbmaWDIPKUEKAkgAMoJNomooFjEjsFAwhBgzGJ1gFEUeIqG5VjoxcmZp_nI4DYZcvpJFV7jIdSE5yjJ4WWkfDDyHXQiLuurQdOADXmVLqLsewvTmMuxnFFJHuOSd8x6Tu2o9jou8bOFmveiu4af0p7lUniHz4Sm_D_x7r9f647YKt0V5BXDtlyNp2pI5OCZIN67mN1ttJs3V_f0fXiqnv7BUNp3n0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI54DLDwRrzJwABC5dombdMRIU7Hc-GQ2CKfmxwHR0FHb4CB307cBwIJMbC2dlXZrj-7-mIztqcwthZE6GUO-zwZKfRAROglBh0AGpUg0g_9q-u4cyvP76K7CXbSnIUhWmWd-6ucXmbr-kqrtmbrZTBo3bjOQ8lUOgimMjhUk2xaRmFCHdjRxxfPI4jTcsEqSXskXp-cqUhe4ExA_K6kHHYait_R6RvitBfYXF0q8uPqbRbZhMmX2HyzhoHXX-UyezzmFl4LDnnGTTkRwgEJx-GYZiA4ZOKEVBm34_f3N0675DmFnXnlMOw_jwbF_RPfb5-2uzcH3FWwfGT6FTc2L5-IVF4Tn6h04Qq7bZ92TzpevUPBQ-H7hWeTJI2MEGAkQAAoJPoupUHgKjsDPVBgwfnE2gTSNAuNjybwMVKZa_RiBBCrbCp_zs0a40pawnOMpLAyFbFKwwCdeBj6thcksM6CxnYa6wHjtOdiqBsm2YMme2uyt_ZT7ey9zg6_dF6q8Rp_SkeNS_SPINEu__-ht_FPvV020-leXerLs-uLTTZLdyomyxabKkZjs-3qkaK3U8bbJ5Bk3n0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+and+efficient+clustering+based+fuzzy+time+series+algorithm+%28FEFTS%29+for+regression+and+classification&rft.jtitle=Applied+soft+computing&rft.au=Saberi%2C+Hossein&rft.au=Rahai%2C+Alireza&rft.au=Hatami%2C+Farzad&rft.date=2017-12-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=61&rft.spage=1088&rft.epage=1097&rft_id=info:doi/10.1016%2Fj.asoc.2017.09.023&rft.externalDocID=S1568494617305628 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |