Attention-based residual improved U-Net model for continuous blood pressure monitoring by using photoplethysmography signal

Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging task. In this paper, an attention-based residual improved U-Net (ARIU) model is proposed to improve the accuracy of continuous BP monitoring by...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 75; p. 103581
Main Authors Yu, Mingzheng, Huang, Zhiwen, Zhu, Yidan, Zhou, Panyu, Zhu, Jianmin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.103581

Cover

Abstract Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging task. In this paper, an attention-based residual improved U-Net (ARIU) model is proposed to improve the accuracy of continuous BP monitoring by using the photoplethysmography (PPG) signal. This model consists of an improved U-Net employed to learn the high dimensional features from PPG signal, an attention module embedded in the skip connections to reduce redundancy of learning features, and a residual module replaced common convolution to prevent degradation problems and enhance generalization performance. The raw PPG signals and arterial BP download from the MIMIC-III database, the first and second derivatives of PPG signal are utilized as additional inputs to increase the multiform of input information, and a data input way of parallel-based fusion are adopted to improve the effectiveness of information mining. After data preprocessing, the dataset used in this study contains 150,000 samples, belonging to 100 subjects. The reliability of the proposed model is verified by the ablation experiments, and the advancement of the model is demonstrated by the comparison experiments with other state-of-art methods. The mean absolute error (MAE) and standard deviation (STD) of systolic blood pressure (SBP) predicted by the proposed model are 4.75 mmHg and 6.72 mmHg respectively, and that of diastolic blood pressure is 2.81 mmHg and 4.59 mmHg. The results meet the requirements of the Advancement of Medical Instrumentation (AAMI) and reach the “Grade A” of the British Hypertension Society (BHS) protocol.
AbstractList Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging task. In this paper, an attention-based residual improved U-Net (ARIU) model is proposed to improve the accuracy of continuous BP monitoring by using the photoplethysmography (PPG) signal. This model consists of an improved U-Net employed to learn the high dimensional features from PPG signal, an attention module embedded in the skip connections to reduce redundancy of learning features, and a residual module replaced common convolution to prevent degradation problems and enhance generalization performance. The raw PPG signals and arterial BP download from the MIMIC-III database, the first and second derivatives of PPG signal are utilized as additional inputs to increase the multiform of input information, and a data input way of parallel-based fusion are adopted to improve the effectiveness of information mining. After data preprocessing, the dataset used in this study contains 150,000 samples, belonging to 100 subjects. The reliability of the proposed model is verified by the ablation experiments, and the advancement of the model is demonstrated by the comparison experiments with other state-of-art methods. The mean absolute error (MAE) and standard deviation (STD) of systolic blood pressure (SBP) predicted by the proposed model are 4.75 mmHg and 6.72 mmHg respectively, and that of diastolic blood pressure is 2.81 mmHg and 4.59 mmHg. The results meet the requirements of the Advancement of Medical Instrumentation (AAMI) and reach the “Grade A” of the British Hypertension Society (BHS) protocol.
ArticleNumber 103581
Author Zhu, Jianmin
Zhu, Yidan
Huang, Zhiwen
Zhou, Panyu
Yu, Mingzheng
Author_xml – sequence: 1
  givenname: Mingzheng
  surname: Yu
  fullname: Yu, Mingzheng
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
– sequence: 2
  givenname: Zhiwen
  surname: Huang
  fullname: Huang, Zhiwen
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
– sequence: 3
  givenname: Yidan
  surname: Zhu
  fullname: Zhu, Yidan
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
– sequence: 4
  givenname: Panyu
  surname: Zhou
  fullname: Zhou, Panyu
  organization: Department of Orthopedics, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
– sequence: 5
  givenname: Jianmin
  surname: Zhu
  fullname: Zhu, Jianmin
  email: jmzhu_usst@163.com
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
BookMark eNp9kE1qwzAUhEVpoUnaC3SlCziVZFtWoJsQ-geh3TRrIclyomBLRpIDppevTNpNF1m9YZjvwcwcXFtnNQAPGC0xwvTxuJShV0uCCElGXjJ8BWa4KmjGMGLXfxqtilswD-GIUMEqXMzA9zpGbaNxNpMi6Bp6HUw9iBaarvfulJxd9qEj7FytW9g4D5VLeTu4IUDZOlfDPjFh8DplrInOG7uHcoRDmER_cNH1rY6HMXRu70V_GGEweyvaO3DTiDbo-9-7ALuX56_NW7b9fH3frLeZyhGKWVOuiKSSYYaUoitV1oggRDCtFE5dGSolJYLkGBdYsqasSrlCucJUFZJSkecLwM5_lXcheN1wZaKYOkcvTMsx4tOI_MinEfk0Ij-PmFDyD-296YQfL0NPZ0inUiejPQ_KaKt0bbxWkdfOXMJ_AGMwj9M
CitedBy_id crossref_primary_10_1016_j_health_2022_100110
crossref_primary_10_1109_JBHI_2024_3422023
crossref_primary_10_1109_JIOT_2023_3265980
crossref_primary_10_3390_s24092721
crossref_primary_10_1109_JBHI_2023_3344187
crossref_primary_10_1016_j_bspc_2023_105067
crossref_primary_10_1016_j_bspc_2023_105144
crossref_primary_10_1016_j_bspc_2024_106860
crossref_primary_10_1016_j_bspc_2023_104972
crossref_primary_10_1016_j_bspc_2023_105354
crossref_primary_10_1016_j_bspc_2024_106378
crossref_primary_10_1109_ACCESS_2024_3391249
crossref_primary_10_1007_s11760_023_02646_4
crossref_primary_10_3390_mi13091438
crossref_primary_10_3390_mi14040804
crossref_primary_10_1016_j_bspc_2024_106070
crossref_primary_10_1145_3648469
crossref_primary_10_1364_BOE_514241
Cites_doi 10.1016/j.bspc.2020.102301
10.1016/j.bspc.2020.102198
10.1016/j.compbiomed.2018.09.013
10.1016/j.wneu.2021.06.095
10.1002/clc.4960151403
10.1016/j.bspc.2018.12.006
10.1109/ACPR.2017.61
10.1213/ANE.0000000000000082
10.3389/fmed.2017.00231
10.3390/s19153420
10.1161/HYPERTENSIONAHA.119.14240
10.1016/j.automatica.2021.109865
10.1007/s13246-019-00813-x
10.3390/s21051867
10.1109/CVPR.2018.00745
10.1109/IEMBS.2003.1280811
10.1136/bmj.322.7285.531
10.1186/cc1489
10.1371/journal.pone.0076585
10.3390/jcm8070986
10.1109/TBME.1980.326616
10.3390/s20082338
10.1016/0021-9290(83)90037-4
10.1109/CVPR.2016.90
10.1016/j.bspc.2021.102813
10.1038/sdata.2016.35
10.1109/JSEN.2020.2990864
10.1186/s13054-014-0644-4
10.1016/j.irbm.2014.07.002
10.1213/01.ane.0000194873.52453.bd
10.1038/sdata.2018.76
10.1161/01.HYP.0000150859.47929.8e
10.1161/HYPERTENSIONAHA.117.10237
10.3390/s21092952
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103581
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103581
S1746809422001033
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-f592b6b8180cc69c5d02002167c1103805b62a231141b8f575b903c16c4b66a33
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:01:31 EDT 2025
Wed Oct 01 02:17:53 EDT 2025
Fri Feb 23 02:39:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Attention mechanism
Residual mechanism
Photoplethysmography signal
Blood pressure monitoring
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f592b6b8180cc69c5d02002167c1103805b62a231141b8f575b903c16c4b66a33
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2022_103581
crossref_primary_10_1016_j_bspc_2022_103581
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Scheer, Perel, Pfeiffer (b0040) 2002; 6
World Health Organization (b0005) 2016
Pickering, Hall, Appel (b0010) 2005; 45
Athaya, Choi (b0140) 2021; 21
Handlogten, Wilson, Clifford (b0035) 2014; 118
Romagnoli, Ricci, Quattrone (b0030) 2014; 18
Liang, Elgendi, Chen (b0085) 2018; 5
Bugarini, Young, Griessenauer (b0025) 2021; 153
Shimazaki, Kawanaka, Ishikawa (b0165) 2019
Elgendi, Norton, Brearley (b0185) 2013; 8
Lin, Chen, Geng (b0160) 2021; 63
El-Hajj, Kyriacou (b0115) 2021; 65
J. Wang, X. Zhang, P. Lv, et al. EAR-U-Net: EfficientNet and attention-based residual U-Net for automatic liver segmentation in CT. arXiv preprint arXiv:2110.01014 (2021).
Rastegar, GholamHosseini, Lowe (b0065) 2020; 43
Zhang L, Ji Y, Lin X, et al. Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier gan[C]//2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2017: 506-511.
Howard, Sandler, Chu (b0195) 2019
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
Attarpour, Mahnam, Aminitabar (b0080) 2019; 49
Zadi, Alex, Zhang (b0095) 2018; 102
Moody, B., Moody, G., Villarroel, M., Clifford, G., & Silva, I. (2020). MIMIC-III Waveform Database (version 1.0).
Owais, Arsalan, Choi (b0205) 2019; 8
Shimazaki, Bhuiyan, Kawanaka (b0120) 2018
Pickering (b0050) 1992; 15
Kurylyak, Lamonaca, Grimaldi (b0105) 2013
Johnson, Pollard, Shen, Lehman, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b0175) 2016; 3
Li, Laleg-Kirati (b0100) 2020
Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Harfiya, Chang, Li (b0130) 2021; 21
Slapničar, Mlakar, Luštrek (b0125) 2019; 19
X. Chen, L. Yao, Y. Zhang. Residual attention u-net for automated multi-class segmentation of covid-19 chest ct images. arXiv preprint arXiv:2004.05645 (2020).
.
Niedźwiecki, Ciołek, Gańcza (b0180) 2021; 133
Ronneberger, Fischer, Brox (b0135) 2015
Teng XF, Zhang YT. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439). IEEE, 2003, 4: 3153-3156.
Panwar, Gautam, Biswas (b0215) 2020; 20
Stergiou, Alpert, Mieke (b0225) 2018; 71
Drzewiecki, Melbin, Noordergraaf (b0075) 1983; 16
Fuchs, Whelton (b0015) 2020; 75
Meidert, Saugel (b0020) 2018; 4
Martinez-Ríos, Montesinos, Alfaro-Ponce (b0110) 2021; 68
Verberk, Kroon, de Leeuw (b0055) 2008; 152
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
Obrien, Waeber, Parati (b0230) 2001; 322
Peter, Noury, Cerny (b0060) 2014; 35
Janelle, Gravenstein (b0070) 2006; 102
Yamakoshi, Shimazu, Togawa (b0045) 1980; 3
Eom, Lee, Han (b0220) 2020; 20
Meidert (10.1016/j.bspc.2022.103581_b0020) 2018; 4
Martinez-Ríos (10.1016/j.bspc.2022.103581_b0110) 2021; 68
Ronneberger (10.1016/j.bspc.2022.103581_b0135) 2015
Rastegar (10.1016/j.bspc.2022.103581_b0065) 2020; 43
Verberk (10.1016/j.bspc.2022.103581_b0055) 2008; 152
Eom (10.1016/j.bspc.2022.103581_b0220) 2020; 20
10.1016/j.bspc.2022.103581_b0170
10.1016/j.bspc.2022.103581_b0150
Johnson (10.1016/j.bspc.2022.103581_b0175) 2016; 3
Fuchs (10.1016/j.bspc.2022.103581_b0015) 2020; 75
Stergiou (10.1016/j.bspc.2022.103581_b0225) 2018; 71
Zadi (10.1016/j.bspc.2022.103581_b0095) 2018; 102
World Health Organization (10.1016/j.bspc.2022.103581_b0005) 2016
10.1016/j.bspc.2022.103581_b0190
Peter (10.1016/j.bspc.2022.103581_b0060) 2014; 35
10.1016/j.bspc.2022.103581_b0090
El-Hajj (10.1016/j.bspc.2022.103581_b0115) 2021; 65
10.1016/j.bspc.2022.103581_b0145
10.1016/j.bspc.2022.103581_b0200
Yamakoshi (10.1016/j.bspc.2022.103581_b0045) 1980; 3
Janelle (10.1016/j.bspc.2022.103581_b0070) 2006; 102
Athaya (10.1016/j.bspc.2022.103581_b0140) 2021; 21
Niedźwiecki (10.1016/j.bspc.2022.103581_b0180) 2021; 133
Bugarini (10.1016/j.bspc.2022.103581_b0025) 2021; 153
Romagnoli (10.1016/j.bspc.2022.103581_b0030) 2014; 18
Handlogten (10.1016/j.bspc.2022.103581_b0035) 2014; 118
Howard (10.1016/j.bspc.2022.103581_b0195) 2019
Attarpour (10.1016/j.bspc.2022.103581_b0080) 2019; 49
Panwar (10.1016/j.bspc.2022.103581_b0215) 2020; 20
Shimazaki (10.1016/j.bspc.2022.103581_b0120) 2018
Elgendi (10.1016/j.bspc.2022.103581_b0185) 2013; 8
Pickering (10.1016/j.bspc.2022.103581_b0050) 1992; 15
Slapničar (10.1016/j.bspc.2022.103581_b0125) 2019; 19
Obrien (10.1016/j.bspc.2022.103581_b0230) 2001; 322
Shimazaki (10.1016/j.bspc.2022.103581_b0165) 2019
10.1016/j.bspc.2022.103581_b0155
10.1016/j.bspc.2022.103581_b0210
Drzewiecki (10.1016/j.bspc.2022.103581_b0075) 1983; 16
Liang (10.1016/j.bspc.2022.103581_b0085) 2018; 5
Lin (10.1016/j.bspc.2022.103581_b0160) 2021; 63
Kurylyak (10.1016/j.bspc.2022.103581_b0105) 2013
Scheer (10.1016/j.bspc.2022.103581_b0040) 2002; 6
Owais (10.1016/j.bspc.2022.103581_b0205) 2019; 8
Pickering (10.1016/j.bspc.2022.103581_b0010) 2005; 45
Li (10.1016/j.bspc.2022.103581_b0100) 2020
Harfiya (10.1016/j.bspc.2022.103581_b0130) 2021; 21
References_xml – volume: 18
  start-page: 1
  year: 2014
  end-page: 11
  ident: b0030
  article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study
  publication-title: Crit. Care
– reference: Zhang L, Ji Y, Lin X, et al. Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier gan[C]//2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2017: 506-511.
– reference: X. Chen, L. Yao, Y. Zhang. Residual attention u-net for automated multi-class segmentation of covid-19 chest ct images. arXiv preprint arXiv:2004.05645 (2020).
– reference: He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
– volume: 63
  start-page: 102198
  year: 2021
  ident: b0160
  article-title: Towards accurate estimation of cuffless and continuous blood pressure using multi-order derivative and multivariate photoplethysmogram features
  publication-title: Biomed. Signal Process. Control
– volume: 322
  start-page: 531
  year: 2001
  end-page: 536
  ident: b0230
  article-title: Blood pressure measuring devices: recommendations of the European Society of Hypertension
  publication-title: BMJ-Br. Med. J.
– volume: 4
  start-page: 231
  year: 2018
  ident: b0020
  article-title: Techniques for non-invasive monitoring of arterial blood pressure
  publication-title: Front. Med.
– start-page: 2857
  year: 2018
  end-page: 2860
  ident: b0120
  article-title: Features extraction for cuffless blood pressure estimation by autoencoder from photoplethysmography[C]//2018 40Th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
  publication-title: IEEE
– volume: 20
  start-page: 2338
  year: 2020
  ident: b0220
  article-title: End-to-end deep learning structure for continuous blood pressure estimation using attention mechanism
  publication-title: Sensors
– reference: Moody, B., Moody, G., Villarroel, M., Clifford, G., & Silva, I. (2020). MIMIC-III Waveform Database (version 1.0).
– volume: 45
  start-page: 142
  year: 2005
  end-page: 161
  ident: b0010
  article-title: Recommendations for blood pressure measurement in humans and experimental animals-part 1: blood pressure measurement in humans – A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research
  publication-title: Hypertension
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0135
  article-title: U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention
– reference: Teng XF, Zhang YT. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439). IEEE, 2003, 4: 3153-3156.
– volume: 21
  start-page: 2952
  year: 2021
  ident: b0130
  article-title: Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation
  publication-title: Sensors
– start-page: 1314
  year: 2019
  end-page: 1324
  ident: b0195
  article-title: Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF
  publication-title: International Conference on Computer Vision
– volume: 43
  start-page: 11
  year: 2020
  end-page: 28
  ident: b0065
  article-title: Non-invasive continuous blood pressure monitoring systems: Current and proposed technology issues and challenges
  publication-title: Phys. Eng. Sci. Med.
– volume: 3
  year: 2016
  ident: b0175
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci. Data
– volume: 15
  start-page: 3
  year: 1992
  end-page: 5
  ident: b0050
  article-title: Ambulatory blood pressure monitoring: an historical perspective
  publication-title: Clin. Cardiol.
– volume: 71
  start-page: 368
  year: 2018
  end-page: 374
  ident: b0225
  article-title: A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement
  publication-title: Hypertension
– volume: 68
  year: 2021
  ident: b0110
  article-title: A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data
  publication-title: Biomed. Signal Process. Control
– reference: Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
– reference: Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
– volume: 152
  start-page: 546
  year: 2008
  end-page: 549
  ident: b0055
  article-title: Practical questions related to self-measurement of blood pressure
  publication-title: Ned. Tijdschr. Geneeskd.
– volume: 65
  year: 2021
  ident: b0115
  article-title: Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism
  publication-title: Biomed. Signal Process. Control
– start-page: 5042
  year: 2019
  end-page: 5045
  ident: b0165
  publication-title: Cuffless blood pressure estimation from only the waveform of photoplethysmography using CNN[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 19
  start-page: 3420
  year: 2019
  ident: b0125
  article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network
  publication-title: Sensors
– volume: 35
  start-page: 271
  year: 2014
  end-page: 282
  ident: b0060
  article-title: A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?
  publication-title: Irbm
– volume: 21
  start-page: 1867
  year: 2021
  ident: b0140
  article-title: An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net structure-based approach
  publication-title: Sensors
– volume: 153
  start-page: e195
  year: 2021
  end-page: e203
  ident: b0025
  article-title: Perioperative continuous noninvasive arterial pressure monitoring for neuroendovascular interventions: prospective study for evaluation of the vascular unloading technique
  publication-title: World Neurosurg.
– start-page: 2683
  year: 2020
  end-page: 2686
  ident: b0100
  article-title: Schrödinger Spectrum Based PPG Features for the Estimation of the Arterial Blood Pressure[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
  publication-title: IEEE
– reference: .
– year: 2016
  ident: b0005
  article-title: World health statistics 2016: monitoring health for the SDGs sustainable development goals
– volume: 118
  start-page: 288
  year: 2014
  end-page: 295
  ident: b0035
  article-title: Brachial artery catheterization: an assessment of use patterns and associated complications
  publication-title: Anesth. Analg.
– volume: 6
  start-page: 1
  year: 2002
  end-page: 7
  ident: b0040
  article-title: Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine
  publication-title: Crit. Care
– volume: 49
  start-page: 212
  year: 2019
  end-page: 220
  ident: b0080
  article-title: Cuff-less continuous measurement of blood pressure using wrist and fingertip photo-plethysmograms: Evaluation and feature analysis
  publication-title: Biomed. Signal Process. Control
– volume: 133
  year: 2021
  ident: b0180
  article-title: Application of regularized Savitzky-Golay filters to identification of time-varying systems✩
  publication-title: Automatica
– volume: 20
  start-page: 10000
  year: 2020
  end-page: 10011
  ident: b0215
  article-title: PP-Net: A deep learning framework for PPG-based blood pressure and heart rate estimation
  publication-title: IEEE Sens. J.
– volume: 75
  start-page: 285
  year: 2020
  end-page: 292
  ident: b0015
  article-title: High blood pressure and cardiovascular disease
  publication-title: Hypertension
– volume: 16
  start-page: 141
  year: 1983
  end-page: 152
  ident: b0075
  article-title: Arterial tonometry: review and analysis
  publication-title: J. Biomech.
– volume: 8
  year: 2013
  ident: b0185
  article-title: Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions
  publication-title: PLoS ONE
– volume: 102
  start-page: 104
  year: 2018
  end-page: 111
  ident: b0095
  article-title: Arterial blood pressure feature estimation using photoplethysmography
  publication-title: Comput. Biol. Med.
– volume: 8
  start-page: 986
  year: 2019
  ident: b0205
  article-title: Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis
  publication-title: J. Clin. Med.
– volume: 3
  start-page: 150
  year: 1980
  end-page: 155
  ident: b0045
  article-title: Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0085
  article-title: An optimal filter for short photoplethysmogram signals
  publication-title: Sci. Data
– reference: J. Wang, X. Zhang, P. Lv, et al. EAR-U-Net: EfficientNet and attention-based residual U-Net for automatic liver segmentation in CT. arXiv preprint arXiv:2110.01014 (2021).
– reference: .
– volume: 102
  start-page: 484
  year: 2006
  end-page: 490
  ident: b0070
  article-title: An accuracy evaluation of the T-Line (R) Tensymeter (continuous noninvasive blood pressure management device) versus conventional invasive radial artery monitoring in surgical patients
  publication-title: Anesth. Analg.
– start-page: 280
  year: 2013
  end-page: 283
  ident: b0105
  article-title: A Neural Network-based method for continuous blood pressure estimation from a PPG signal[C]//2013 IEEE International instrumentation and measurement technology conference (I2MTC)
  publication-title: IEEE
– volume: 65
  year: 2021
  ident: 10.1016/j.bspc.2022.103581_b0115
  article-title: Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102301
– volume: 63
  start-page: 102198
  year: 2021
  ident: 10.1016/j.bspc.2022.103581_b0160
  article-title: Towards accurate estimation of cuffless and continuous blood pressure using multi-order derivative and multivariate photoplethysmogram features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102198
– volume: 102
  start-page: 104
  year: 2018
  ident: 10.1016/j.bspc.2022.103581_b0095
  article-title: Arterial blood pressure feature estimation using photoplethysmography
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.013
– start-page: 5042
  year: 2019
  ident: 10.1016/j.bspc.2022.103581_b0165
– volume: 153
  start-page: e195
  year: 2021
  ident: 10.1016/j.bspc.2022.103581_b0025
  article-title: Perioperative continuous noninvasive arterial pressure monitoring for neuroendovascular interventions: prospective study for evaluation of the vascular unloading technique
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2021.06.095
– start-page: 234
  year: 2015
  ident: 10.1016/j.bspc.2022.103581_b0135
– volume: 15
  start-page: 3
  issue: S2
  year: 1992
  ident: 10.1016/j.bspc.2022.103581_b0050
  article-title: Ambulatory blood pressure monitoring: an historical perspective
  publication-title: Clin. Cardiol.
  doi: 10.1002/clc.4960151403
– volume: 49
  start-page: 212
  year: 2019
  ident: 10.1016/j.bspc.2022.103581_b0080
  article-title: Cuff-less continuous measurement of blood pressure using wrist and fingertip photo-plethysmograms: Evaluation and feature analysis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.006
– ident: 10.1016/j.bspc.2022.103581_b0145
  doi: 10.1109/ACPR.2017.61
– volume: 118
  start-page: 288
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2022.103581_b0035
  article-title: Brachial artery catheterization: an assessment of use patterns and associated complications
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000000082
– volume: 4
  start-page: 231
  year: 2018
  ident: 10.1016/j.bspc.2022.103581_b0020
  article-title: Techniques for non-invasive monitoring of arterial blood pressure
  publication-title: Front. Med.
  doi: 10.3389/fmed.2017.00231
– start-page: 2857
  year: 2018
  ident: 10.1016/j.bspc.2022.103581_b0120
  article-title: Features extraction for cuffless blood pressure estimation by autoencoder from photoplethysmography[C]//2018 40Th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
  publication-title: IEEE
– volume: 19
  start-page: 3420
  issue: 15
  year: 2019
  ident: 10.1016/j.bspc.2022.103581_b0125
  article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network
  publication-title: Sensors
  doi: 10.3390/s19153420
– volume: 75
  start-page: 285
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2022.103581_b0015
  article-title: High blood pressure and cardiovascular disease
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.119.14240
– start-page: 2683
  year: 2020
  ident: 10.1016/j.bspc.2022.103581_b0100
  article-title: Schrödinger Spectrum Based PPG Features for the Estimation of the Arterial Blood Pressure[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
  publication-title: IEEE
– ident: 10.1016/j.bspc.2022.103581_b0150
– volume: 133
  year: 2021
  ident: 10.1016/j.bspc.2022.103581_b0180
  article-title: Application of regularized Savitzky-Golay filters to identification of time-varying systems✩
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109865
– volume: 43
  start-page: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.103581_b0065
  article-title: Non-invasive continuous blood pressure monitoring systems: Current and proposed technology issues and challenges
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-019-00813-x
– year: 2016
  ident: 10.1016/j.bspc.2022.103581_b0005
– volume: 21
  start-page: 1867
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2022.103581_b0140
  article-title: An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net structure-based approach
  publication-title: Sensors
  doi: 10.3390/s21051867
– ident: 10.1016/j.bspc.2022.103581_b0190
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.bspc.2022.103581_b0090
  doi: 10.1109/IEMBS.2003.1280811
– volume: 322
  start-page: 531
  issue: 7285
  year: 2001
  ident: 10.1016/j.bspc.2022.103581_b0230
  article-title: Blood pressure measuring devices: recommendations of the European Society of Hypertension
  publication-title: BMJ-Br. Med. J.
  doi: 10.1136/bmj.322.7285.531
– volume: 6
  start-page: 1
  issue: 3
  year: 2002
  ident: 10.1016/j.bspc.2022.103581_b0040
  article-title: Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine
  publication-title: Crit. Care
  doi: 10.1186/cc1489
– volume: 8
  issue: 10
  year: 2013
  ident: 10.1016/j.bspc.2022.103581_b0185
  article-title: Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0076585
– volume: 8
  start-page: 986
  issue: 7
  year: 2019
  ident: 10.1016/j.bspc.2022.103581_b0205
  article-title: Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm8070986
– ident: 10.1016/j.bspc.2022.103581_b0170
– volume: 3
  start-page: 150
  year: 1980
  ident: 10.1016/j.bspc.2022.103581_b0045
  article-title: Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1980.326616
– volume: 20
  start-page: 2338
  issue: 8
  year: 2020
  ident: 10.1016/j.bspc.2022.103581_b0220
  article-title: End-to-end deep learning structure for continuous blood pressure estimation using attention mechanism
  publication-title: Sensors
  doi: 10.3390/s20082338
– volume: 16
  start-page: 141
  issue: 2
  year: 1983
  ident: 10.1016/j.bspc.2022.103581_b0075
  article-title: Arterial tonometry: review and analysis
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(83)90037-4
– ident: 10.1016/j.bspc.2022.103581_b0200
  doi: 10.1109/CVPR.2016.90
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2022.103581_b0110
  article-title: A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102813
– volume: 3
  year: 2016
  ident: 10.1016/j.bspc.2022.103581_b0175
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.35
– volume: 20
  start-page: 10000
  issue: 17
  year: 2020
  ident: 10.1016/j.bspc.2022.103581_b0215
  article-title: PP-Net: A deep learning framework for PPG-based blood pressure and heart rate estimation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2990864
– volume: 18
  start-page: 1
  issue: 6
  year: 2014
  ident: 10.1016/j.bspc.2022.103581_b0030
  article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study
  publication-title: Crit. Care
  doi: 10.1186/s13054-014-0644-4
– volume: 35
  start-page: 271
  issue: 5
  year: 2014
  ident: 10.1016/j.bspc.2022.103581_b0060
  article-title: A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?
  publication-title: Irbm
  doi: 10.1016/j.irbm.2014.07.002
– ident: 10.1016/j.bspc.2022.103581_b0155
– volume: 152
  start-page: 546
  issue: 10
  year: 2008
  ident: 10.1016/j.bspc.2022.103581_b0055
  article-title: Practical questions related to self-measurement of blood pressure
  publication-title: Ned. Tijdschr. Geneeskd.
– volume: 102
  start-page: 484
  issue: 2
  year: 2006
  ident: 10.1016/j.bspc.2022.103581_b0070
  article-title: An accuracy evaluation of the T-Line (R) Tensymeter (continuous noninvasive blood pressure management device) versus conventional invasive radial artery monitoring in surgical patients
  publication-title: Anesth. Analg.
  doi: 10.1213/01.ane.0000194873.52453.bd
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103581_b0085
  article-title: An optimal filter for short photoplethysmogram signals
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.76
– volume: 45
  start-page: 142
  issue: 1
  year: 2005
  ident: 10.1016/j.bspc.2022.103581_b0010
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000150859.47929.8e
– start-page: 1314
  year: 2019
  ident: 10.1016/j.bspc.2022.103581_b0195
  article-title: Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF
  publication-title: International Conference on Computer Vision
– ident: 10.1016/j.bspc.2022.103581_b0210
– start-page: 280
  year: 2013
  ident: 10.1016/j.bspc.2022.103581_b0105
  article-title: A Neural Network-based method for continuous blood pressure estimation from a PPG signal[C]//2013 IEEE International instrumentation and measurement technology conference (I2MTC)
  publication-title: IEEE
– volume: 71
  start-page: 368
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2022.103581_b0225
  article-title: A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.117.10237
– volume: 21
  start-page: 2952
  issue: 9
  year: 2021
  ident: 10.1016/j.bspc.2022.103581_b0130
  article-title: Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation
  publication-title: Sensors
  doi: 10.3390/s21092952
SSID ssj0048714
Score 2.3976367
Snippet Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103581
SubjectTerms Attention mechanism
Blood pressure monitoring
Deep learning
Photoplethysmography signal
Residual mechanism
Title Attention-based residual improved U-Net model for continuous blood pressure monitoring by using photoplethysmography signal
URI https://dx.doi.org/10.1016/j.bspc.2022.103581
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4k7j0I2lzHMMxFXfRwW4lSVudzK7M7iCCf7t5aSoTZAePDS-lvHy8X5rf-z2ELkUEGi9SEBFzRUAC3ay5NCA6llLkVHqZVbx5GPPRJLybsmkLDZpcGKBVur2_3tPtbu1aes6bvXI26z0aLM1jczrxfVusABQ_Qf3LzOnrrx-ah8HjVt8bjAlYu8SZmuOl3kuQMfR9yD1nsfd3cFoLOMM9tOuQIu7XH7OPWllxgHbW9AMP0We_qmq6IoFolGJzdrbJVXhm_xWYlgkZZxW29W6wwacYqOmzYmXO-9hy1rElwq6WmbGB1Q0vxuoDAx_-GZcviwoY5jCab07cGgPlQ86P0GR48zQYEVdNgeiA0orkTPiKK8jt1poLzVJqCRo80h6opFOmuC8N3PNCT8W5gXFK0EB7XIeKcxkEx6hdLIrsBGE_TxWTISjB8JBlgaRw-cjDNIpyTUXaQV7jxkQ7qXGoeDFPGk7ZawKuT8D1Se36Drr66VPWQhsbrVkzOsmv6ZKYSLCh3-k_-52hbXiqmY7nqF0tV9mFQSOV6trp1kVb_dv70fgbogne6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwc2ZDUvu8lYVVSFPhZaqVtkOwkUlbYq6YD48_gcBxUJdWBNfFF0tu8-J999B3AXNVHjRUQ0CrmkKIGu91ziUxUKEWWOcFOjeDMY8u44eJqwSQXaZS0M0ipt7C9iuonW9krDerOxnE4bzxpL81CfTjzPNCvwd6AWMB2Tq1BrPfa6wzIga0huJL5xPEUDWztT0LzkxxKVDD0Py89Z6P6dnzZyTucQDixYJK3ifY6gks6PYX9DQvAEvlp5XjAWKSakhOjjs6mvIlPzuUBfGdNhmhPT8oZoiEqQnT6dr_WRnxjaOjFc2PUq1WNwg-ODifwkSIl_IcvXRY4kc5zQd6tvTZD1IWanMO48jNpdahsqUOU7Tk4zFnmSSyzvVopHiiWO4WjwpnJRKN1hkntCIz43cGWYaSQnI8dXLleB5Fz4_hlU54t5eg7EyxLJRIBiMDxgqS8c_P_Ig6TZzJQTJXVwSzfGyqqNY9OLWVzSyt5idH2Mro8L19fh_sdmWWhtbB3NytmJf62YWCeDLXYX_7S7hd3uaNCP-4_D3iXs4Z2C-HgF1Xy1Tq81OMnljV183z7F4ZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+residual+improved+U-Net+model+for+continuous+blood+pressure+monitoring+by+using+photoplethysmography+signal&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yu%2C+Mingzheng&rft.au=Huang%2C+Zhiwen&rft.au=Zhu%2C+Yidan&rft.au=Zhou%2C+Panyu&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=75&rft_id=info:doi/10.1016%2Fj.bspc.2022.103581&rft.externalDocID=S1746809422001033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon