Attention-based residual improved U-Net model for continuous blood pressure monitoring by using photoplethysmography signal
Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging task. In this paper, an attention-based residual improved U-Net (ARIU) model is proposed to improve the accuracy of continuous BP monitoring by...
Saved in:
Published in | Biomedical signal processing and control Vol. 75; p. 103581 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2022.103581 |
Cover
Abstract | Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging task. In this paper, an attention-based residual improved U-Net (ARIU) model is proposed to improve the accuracy of continuous BP monitoring by using the photoplethysmography (PPG) signal. This model consists of an improved U-Net employed to learn the high dimensional features from PPG signal, an attention module embedded in the skip connections to reduce redundancy of learning features, and a residual module replaced common convolution to prevent degradation problems and enhance generalization performance. The raw PPG signals and arterial BP download from the MIMIC-III database, the first and second derivatives of PPG signal are utilized as additional inputs to increase the multiform of input information, and a data input way of parallel-based fusion are adopted to improve the effectiveness of information mining. After data preprocessing, the dataset used in this study contains 150,000 samples, belonging to 100 subjects. The reliability of the proposed model is verified by the ablation experiments, and the advancement of the model is demonstrated by the comparison experiments with other state-of-art methods. The mean absolute error (MAE) and standard deviation (STD) of systolic blood pressure (SBP) predicted by the proposed model are 4.75 mmHg and 6.72 mmHg respectively, and that of diastolic blood pressure is 2.81 mmHg and 4.59 mmHg. The results meet the requirements of the Advancement of Medical Instrumentation (AAMI) and reach the “Grade A” of the British Hypertension Society (BHS) protocol. |
---|---|
AbstractList | Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging task. In this paper, an attention-based residual improved U-Net (ARIU) model is proposed to improve the accuracy of continuous BP monitoring by using the photoplethysmography (PPG) signal. This model consists of an improved U-Net employed to learn the high dimensional features from PPG signal, an attention module embedded in the skip connections to reduce redundancy of learning features, and a residual module replaced common convolution to prevent degradation problems and enhance generalization performance. The raw PPG signals and arterial BP download from the MIMIC-III database, the first and second derivatives of PPG signal are utilized as additional inputs to increase the multiform of input information, and a data input way of parallel-based fusion are adopted to improve the effectiveness of information mining. After data preprocessing, the dataset used in this study contains 150,000 samples, belonging to 100 subjects. The reliability of the proposed model is verified by the ablation experiments, and the advancement of the model is demonstrated by the comparison experiments with other state-of-art methods. The mean absolute error (MAE) and standard deviation (STD) of systolic blood pressure (SBP) predicted by the proposed model are 4.75 mmHg and 6.72 mmHg respectively, and that of diastolic blood pressure is 2.81 mmHg and 4.59 mmHg. The results meet the requirements of the Advancement of Medical Instrumentation (AAMI) and reach the “Grade A” of the British Hypertension Society (BHS) protocol. |
ArticleNumber | 103581 |
Author | Zhu, Jianmin Zhu, Yidan Huang, Zhiwen Zhou, Panyu Yu, Mingzheng |
Author_xml | – sequence: 1 givenname: Mingzheng surname: Yu fullname: Yu, Mingzheng organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China – sequence: 2 givenname: Zhiwen surname: Huang fullname: Huang, Zhiwen organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China – sequence: 3 givenname: Yidan surname: Zhu fullname: Zhu, Yidan organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China – sequence: 4 givenname: Panyu surname: Zhou fullname: Zhou, Panyu organization: Department of Orthopedics, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China – sequence: 5 givenname: Jianmin surname: Zhu fullname: Zhu, Jianmin email: jmzhu_usst@163.com organization: School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
BookMark | eNp9kE1qwzAUhEVpoUnaC3SlCziVZFtWoJsQ-geh3TRrIclyomBLRpIDppevTNpNF1m9YZjvwcwcXFtnNQAPGC0xwvTxuJShV0uCCElGXjJ8BWa4KmjGMGLXfxqtilswD-GIUMEqXMzA9zpGbaNxNpMi6Bp6HUw9iBaarvfulJxd9qEj7FytW9g4D5VLeTu4IUDZOlfDPjFh8DplrInOG7uHcoRDmER_cNH1rY6HMXRu70V_GGEweyvaO3DTiDbo-9-7ALuX56_NW7b9fH3frLeZyhGKWVOuiKSSYYaUoitV1oggRDCtFE5dGSolJYLkGBdYsqasSrlCucJUFZJSkecLwM5_lXcheN1wZaKYOkcvTMsx4tOI_MinEfk0Ij-PmFDyD-296YQfL0NPZ0inUiejPQ_KaKt0bbxWkdfOXMJ_AGMwj9M |
CitedBy_id | crossref_primary_10_1016_j_health_2022_100110 crossref_primary_10_1109_JBHI_2024_3422023 crossref_primary_10_1109_JIOT_2023_3265980 crossref_primary_10_3390_s24092721 crossref_primary_10_1109_JBHI_2023_3344187 crossref_primary_10_1016_j_bspc_2023_105067 crossref_primary_10_1016_j_bspc_2023_105144 crossref_primary_10_1016_j_bspc_2024_106860 crossref_primary_10_1016_j_bspc_2023_104972 crossref_primary_10_1016_j_bspc_2023_105354 crossref_primary_10_1016_j_bspc_2024_106378 crossref_primary_10_1109_ACCESS_2024_3391249 crossref_primary_10_1007_s11760_023_02646_4 crossref_primary_10_3390_mi13091438 crossref_primary_10_3390_mi14040804 crossref_primary_10_1016_j_bspc_2024_106070 crossref_primary_10_1145_3648469 crossref_primary_10_1364_BOE_514241 |
Cites_doi | 10.1016/j.bspc.2020.102301 10.1016/j.bspc.2020.102198 10.1016/j.compbiomed.2018.09.013 10.1016/j.wneu.2021.06.095 10.1002/clc.4960151403 10.1016/j.bspc.2018.12.006 10.1109/ACPR.2017.61 10.1213/ANE.0000000000000082 10.3389/fmed.2017.00231 10.3390/s19153420 10.1161/HYPERTENSIONAHA.119.14240 10.1016/j.automatica.2021.109865 10.1007/s13246-019-00813-x 10.3390/s21051867 10.1109/CVPR.2018.00745 10.1109/IEMBS.2003.1280811 10.1136/bmj.322.7285.531 10.1186/cc1489 10.1371/journal.pone.0076585 10.3390/jcm8070986 10.1109/TBME.1980.326616 10.3390/s20082338 10.1016/0021-9290(83)90037-4 10.1109/CVPR.2016.90 10.1016/j.bspc.2021.102813 10.1038/sdata.2016.35 10.1109/JSEN.2020.2990864 10.1186/s13054-014-0644-4 10.1016/j.irbm.2014.07.002 10.1213/01.ane.0000194873.52453.bd 10.1038/sdata.2018.76 10.1161/01.HYP.0000150859.47929.8e 10.1161/HYPERTENSIONAHA.117.10237 10.3390/s21092952 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.103581 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_103581 S1746809422001033 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c300t-f592b6b8180cc69c5d02002167c1103805b62a231141b8f575b903c16c4b66a33 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:01:31 EDT 2025 Wed Oct 01 02:17:53 EDT 2025 Fri Feb 23 02:39:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Attention mechanism Residual mechanism Photoplethysmography signal Blood pressure monitoring |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f592b6b8180cc69c5d02002167c1103805b62a231141b8f575b903c16c4b66a33 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2022_103581 crossref_primary_10_1016_j_bspc_2022_103581 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Scheer, Perel, Pfeiffer (b0040) 2002; 6 World Health Organization (b0005) 2016 Pickering, Hall, Appel (b0010) 2005; 45 Athaya, Choi (b0140) 2021; 21 Handlogten, Wilson, Clifford (b0035) 2014; 118 Romagnoli, Ricci, Quattrone (b0030) 2014; 18 Liang, Elgendi, Chen (b0085) 2018; 5 Bugarini, Young, Griessenauer (b0025) 2021; 153 Shimazaki, Kawanaka, Ishikawa (b0165) 2019 Elgendi, Norton, Brearley (b0185) 2013; 8 Lin, Chen, Geng (b0160) 2021; 63 El-Hajj, Kyriacou (b0115) 2021; 65 J. Wang, X. Zhang, P. Lv, et al. EAR-U-Net: EfficientNet and attention-based residual U-Net for automatic liver segmentation in CT. arXiv preprint arXiv:2110.01014 (2021). Rastegar, GholamHosseini, Lowe (b0065) 2020; 43 Zhang L, Ji Y, Lin X, et al. Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier gan[C]//2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2017: 506-511. Howard, Sandler, Chu (b0195) 2019 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. Attarpour, Mahnam, Aminitabar (b0080) 2019; 49 Zadi, Alex, Zhang (b0095) 2018; 102 Moody, B., Moody, G., Villarroel, M., Clifford, G., & Silva, I. (2020). MIMIC-III Waveform Database (version 1.0). Owais, Arsalan, Choi (b0205) 2019; 8 Shimazaki, Bhuiyan, Kawanaka (b0120) 2018 Pickering (b0050) 1992; 15 Kurylyak, Lamonaca, Grimaldi (b0105) 2013 Johnson, Pollard, Shen, Lehman, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b0175) 2016; 3 Li, Laleg-Kirati (b0100) 2020 Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. Harfiya, Chang, Li (b0130) 2021; 21 Slapničar, Mlakar, Luštrek (b0125) 2019; 19 X. Chen, L. Yao, Y. Zhang. Residual attention u-net for automated multi-class segmentation of covid-19 chest ct images. arXiv preprint arXiv:2004.05645 (2020). . Niedźwiecki, Ciołek, Gańcza (b0180) 2021; 133 Ronneberger, Fischer, Brox (b0135) 2015 Teng XF, Zhang YT. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439). IEEE, 2003, 4: 3153-3156. Panwar, Gautam, Biswas (b0215) 2020; 20 Stergiou, Alpert, Mieke (b0225) 2018; 71 Drzewiecki, Melbin, Noordergraaf (b0075) 1983; 16 Fuchs, Whelton (b0015) 2020; 75 Meidert, Saugel (b0020) 2018; 4 Martinez-Ríos, Montesinos, Alfaro-Ponce (b0110) 2021; 68 Verberk, Kroon, de Leeuw (b0055) 2008; 152 Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141. Obrien, Waeber, Parati (b0230) 2001; 322 Peter, Noury, Cerny (b0060) 2014; 35 Janelle, Gravenstein (b0070) 2006; 102 Yamakoshi, Shimazu, Togawa (b0045) 1980; 3 Eom, Lee, Han (b0220) 2020; 20 Meidert (10.1016/j.bspc.2022.103581_b0020) 2018; 4 Martinez-Ríos (10.1016/j.bspc.2022.103581_b0110) 2021; 68 Ronneberger (10.1016/j.bspc.2022.103581_b0135) 2015 Rastegar (10.1016/j.bspc.2022.103581_b0065) 2020; 43 Verberk (10.1016/j.bspc.2022.103581_b0055) 2008; 152 Eom (10.1016/j.bspc.2022.103581_b0220) 2020; 20 10.1016/j.bspc.2022.103581_b0170 10.1016/j.bspc.2022.103581_b0150 Johnson (10.1016/j.bspc.2022.103581_b0175) 2016; 3 Fuchs (10.1016/j.bspc.2022.103581_b0015) 2020; 75 Stergiou (10.1016/j.bspc.2022.103581_b0225) 2018; 71 Zadi (10.1016/j.bspc.2022.103581_b0095) 2018; 102 World Health Organization (10.1016/j.bspc.2022.103581_b0005) 2016 10.1016/j.bspc.2022.103581_b0190 Peter (10.1016/j.bspc.2022.103581_b0060) 2014; 35 10.1016/j.bspc.2022.103581_b0090 El-Hajj (10.1016/j.bspc.2022.103581_b0115) 2021; 65 10.1016/j.bspc.2022.103581_b0145 10.1016/j.bspc.2022.103581_b0200 Yamakoshi (10.1016/j.bspc.2022.103581_b0045) 1980; 3 Janelle (10.1016/j.bspc.2022.103581_b0070) 2006; 102 Athaya (10.1016/j.bspc.2022.103581_b0140) 2021; 21 Niedźwiecki (10.1016/j.bspc.2022.103581_b0180) 2021; 133 Bugarini (10.1016/j.bspc.2022.103581_b0025) 2021; 153 Romagnoli (10.1016/j.bspc.2022.103581_b0030) 2014; 18 Handlogten (10.1016/j.bspc.2022.103581_b0035) 2014; 118 Howard (10.1016/j.bspc.2022.103581_b0195) 2019 Attarpour (10.1016/j.bspc.2022.103581_b0080) 2019; 49 Panwar (10.1016/j.bspc.2022.103581_b0215) 2020; 20 Shimazaki (10.1016/j.bspc.2022.103581_b0120) 2018 Elgendi (10.1016/j.bspc.2022.103581_b0185) 2013; 8 Pickering (10.1016/j.bspc.2022.103581_b0050) 1992; 15 Slapničar (10.1016/j.bspc.2022.103581_b0125) 2019; 19 Obrien (10.1016/j.bspc.2022.103581_b0230) 2001; 322 Shimazaki (10.1016/j.bspc.2022.103581_b0165) 2019 10.1016/j.bspc.2022.103581_b0155 10.1016/j.bspc.2022.103581_b0210 Drzewiecki (10.1016/j.bspc.2022.103581_b0075) 1983; 16 Liang (10.1016/j.bspc.2022.103581_b0085) 2018; 5 Lin (10.1016/j.bspc.2022.103581_b0160) 2021; 63 Kurylyak (10.1016/j.bspc.2022.103581_b0105) 2013 Scheer (10.1016/j.bspc.2022.103581_b0040) 2002; 6 Owais (10.1016/j.bspc.2022.103581_b0205) 2019; 8 Pickering (10.1016/j.bspc.2022.103581_b0010) 2005; 45 Li (10.1016/j.bspc.2022.103581_b0100) 2020 Harfiya (10.1016/j.bspc.2022.103581_b0130) 2021; 21 |
References_xml | – volume: 18 start-page: 1 year: 2014 end-page: 11 ident: b0030 article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study publication-title: Crit. Care – reference: Zhang L, Ji Y, Lin X, et al. Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier gan[C]//2017 4th IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2017: 506-511. – reference: X. Chen, L. Yao, Y. Zhang. Residual attention u-net for automated multi-class segmentation of covid-19 chest ct images. arXiv preprint arXiv:2004.05645 (2020). – reference: He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. – volume: 63 start-page: 102198 year: 2021 ident: b0160 article-title: Towards accurate estimation of cuffless and continuous blood pressure using multi-order derivative and multivariate photoplethysmogram features publication-title: Biomed. Signal Process. Control – volume: 322 start-page: 531 year: 2001 end-page: 536 ident: b0230 article-title: Blood pressure measuring devices: recommendations of the European Society of Hypertension publication-title: BMJ-Br. Med. J. – volume: 4 start-page: 231 year: 2018 ident: b0020 article-title: Techniques for non-invasive monitoring of arterial blood pressure publication-title: Front. Med. – start-page: 2857 year: 2018 end-page: 2860 ident: b0120 article-title: Features extraction for cuffless blood pressure estimation by autoencoder from photoplethysmography[C]//2018 40Th annual international conference of the IEEE engineering in medicine and biology society (EMBC) publication-title: IEEE – volume: 20 start-page: 2338 year: 2020 ident: b0220 article-title: End-to-end deep learning structure for continuous blood pressure estimation using attention mechanism publication-title: Sensors – reference: Moody, B., Moody, G., Villarroel, M., Clifford, G., & Silva, I. (2020). MIMIC-III Waveform Database (version 1.0). – volume: 45 start-page: 142 year: 2005 end-page: 161 ident: b0010 article-title: Recommendations for blood pressure measurement in humans and experimental animals-part 1: blood pressure measurement in humans – A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research publication-title: Hypertension – start-page: 234 year: 2015 end-page: 241 ident: b0135 article-title: U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention – reference: Teng XF, Zhang YT. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439). IEEE, 2003, 4: 3153-3156. – volume: 21 start-page: 2952 year: 2021 ident: b0130 article-title: Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation publication-title: Sensors – start-page: 1314 year: 2019 end-page: 1324 ident: b0195 article-title: Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF publication-title: International Conference on Computer Vision – volume: 43 start-page: 11 year: 2020 end-page: 28 ident: b0065 article-title: Non-invasive continuous blood pressure monitoring systems: Current and proposed technology issues and challenges publication-title: Phys. Eng. Sci. Med. – volume: 3 year: 2016 ident: b0175 article-title: MIMIC-III, a freely accessible critical care database publication-title: Sci. Data – volume: 15 start-page: 3 year: 1992 end-page: 5 ident: b0050 article-title: Ambulatory blood pressure monitoring: an historical perspective publication-title: Clin. Cardiol. – volume: 71 start-page: 368 year: 2018 end-page: 374 ident: b0225 article-title: A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement publication-title: Hypertension – volume: 68 year: 2021 ident: b0110 article-title: A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data publication-title: Biomed. Signal Process. Control – reference: Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. – reference: Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141. – volume: 152 start-page: 546 year: 2008 end-page: 549 ident: b0055 article-title: Practical questions related to self-measurement of blood pressure publication-title: Ned. Tijdschr. Geneeskd. – volume: 65 year: 2021 ident: b0115 article-title: Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism publication-title: Biomed. Signal Process. Control – start-page: 5042 year: 2019 end-page: 5045 ident: b0165 publication-title: Cuffless blood pressure estimation from only the waveform of photoplethysmography using CNN[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 19 start-page: 3420 year: 2019 ident: b0125 article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network publication-title: Sensors – volume: 35 start-page: 271 year: 2014 end-page: 282 ident: b0060 article-title: A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising? publication-title: Irbm – volume: 21 start-page: 1867 year: 2021 ident: b0140 article-title: An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net structure-based approach publication-title: Sensors – volume: 153 start-page: e195 year: 2021 end-page: e203 ident: b0025 article-title: Perioperative continuous noninvasive arterial pressure monitoring for neuroendovascular interventions: prospective study for evaluation of the vascular unloading technique publication-title: World Neurosurg. – start-page: 2683 year: 2020 end-page: 2686 ident: b0100 article-title: Schrödinger Spectrum Based PPG Features for the Estimation of the Arterial Blood Pressure[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) publication-title: IEEE – reference: . – year: 2016 ident: b0005 article-title: World health statistics 2016: monitoring health for the SDGs sustainable development goals – volume: 118 start-page: 288 year: 2014 end-page: 295 ident: b0035 article-title: Brachial artery catheterization: an assessment of use patterns and associated complications publication-title: Anesth. Analg. – volume: 6 start-page: 1 year: 2002 end-page: 7 ident: b0040 article-title: Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine publication-title: Crit. Care – volume: 49 start-page: 212 year: 2019 end-page: 220 ident: b0080 article-title: Cuff-less continuous measurement of blood pressure using wrist and fingertip photo-plethysmograms: Evaluation and feature analysis publication-title: Biomed. Signal Process. Control – volume: 133 year: 2021 ident: b0180 article-title: Application of regularized Savitzky-Golay filters to identification of time-varying systems✩ publication-title: Automatica – volume: 20 start-page: 10000 year: 2020 end-page: 10011 ident: b0215 article-title: PP-Net: A deep learning framework for PPG-based blood pressure and heart rate estimation publication-title: IEEE Sens. J. – volume: 75 start-page: 285 year: 2020 end-page: 292 ident: b0015 article-title: High blood pressure and cardiovascular disease publication-title: Hypertension – volume: 16 start-page: 141 year: 1983 end-page: 152 ident: b0075 article-title: Arterial tonometry: review and analysis publication-title: J. Biomech. – volume: 8 year: 2013 ident: b0185 article-title: Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions publication-title: PLoS ONE – volume: 102 start-page: 104 year: 2018 end-page: 111 ident: b0095 article-title: Arterial blood pressure feature estimation using photoplethysmography publication-title: Comput. Biol. Med. – volume: 8 start-page: 986 year: 2019 ident: b0205 article-title: Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis publication-title: J. Clin. Med. – volume: 3 start-page: 150 year: 1980 end-page: 155 ident: b0045 article-title: Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique publication-title: IEEE Trans. Biomed. Eng. – volume: 5 start-page: 1 year: 2018 end-page: 12 ident: b0085 article-title: An optimal filter for short photoplethysmogram signals publication-title: Sci. Data – reference: J. Wang, X. Zhang, P. Lv, et al. EAR-U-Net: EfficientNet and attention-based residual U-Net for automatic liver segmentation in CT. arXiv preprint arXiv:2110.01014 (2021). – reference: . – volume: 102 start-page: 484 year: 2006 end-page: 490 ident: b0070 article-title: An accuracy evaluation of the T-Line (R) Tensymeter (continuous noninvasive blood pressure management device) versus conventional invasive radial artery monitoring in surgical patients publication-title: Anesth. Analg. – start-page: 280 year: 2013 end-page: 283 ident: b0105 article-title: A Neural Network-based method for continuous blood pressure estimation from a PPG signal[C]//2013 IEEE International instrumentation and measurement technology conference (I2MTC) publication-title: IEEE – volume: 65 year: 2021 ident: 10.1016/j.bspc.2022.103581_b0115 article-title: Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102301 – volume: 63 start-page: 102198 year: 2021 ident: 10.1016/j.bspc.2022.103581_b0160 article-title: Towards accurate estimation of cuffless and continuous blood pressure using multi-order derivative and multivariate photoplethysmogram features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102198 – volume: 102 start-page: 104 year: 2018 ident: 10.1016/j.bspc.2022.103581_b0095 article-title: Arterial blood pressure feature estimation using photoplethysmography publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.09.013 – start-page: 5042 year: 2019 ident: 10.1016/j.bspc.2022.103581_b0165 – volume: 153 start-page: e195 year: 2021 ident: 10.1016/j.bspc.2022.103581_b0025 article-title: Perioperative continuous noninvasive arterial pressure monitoring for neuroendovascular interventions: prospective study for evaluation of the vascular unloading technique publication-title: World Neurosurg. doi: 10.1016/j.wneu.2021.06.095 – start-page: 234 year: 2015 ident: 10.1016/j.bspc.2022.103581_b0135 – volume: 15 start-page: 3 issue: S2 year: 1992 ident: 10.1016/j.bspc.2022.103581_b0050 article-title: Ambulatory blood pressure monitoring: an historical perspective publication-title: Clin. Cardiol. doi: 10.1002/clc.4960151403 – volume: 49 start-page: 212 year: 2019 ident: 10.1016/j.bspc.2022.103581_b0080 article-title: Cuff-less continuous measurement of blood pressure using wrist and fingertip photo-plethysmograms: Evaluation and feature analysis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.12.006 – ident: 10.1016/j.bspc.2022.103581_b0145 doi: 10.1109/ACPR.2017.61 – volume: 118 start-page: 288 issue: 2 year: 2014 ident: 10.1016/j.bspc.2022.103581_b0035 article-title: Brachial artery catheterization: an assessment of use patterns and associated complications publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000000082 – volume: 4 start-page: 231 year: 2018 ident: 10.1016/j.bspc.2022.103581_b0020 article-title: Techniques for non-invasive monitoring of arterial blood pressure publication-title: Front. Med. doi: 10.3389/fmed.2017.00231 – start-page: 2857 year: 2018 ident: 10.1016/j.bspc.2022.103581_b0120 article-title: Features extraction for cuffless blood pressure estimation by autoencoder from photoplethysmography[C]//2018 40Th annual international conference of the IEEE engineering in medicine and biology society (EMBC) publication-title: IEEE – volume: 19 start-page: 3420 issue: 15 year: 2019 ident: 10.1016/j.bspc.2022.103581_b0125 article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network publication-title: Sensors doi: 10.3390/s19153420 – volume: 75 start-page: 285 issue: 2 year: 2020 ident: 10.1016/j.bspc.2022.103581_b0015 article-title: High blood pressure and cardiovascular disease publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.14240 – start-page: 2683 year: 2020 ident: 10.1016/j.bspc.2022.103581_b0100 article-title: Schrödinger Spectrum Based PPG Features for the Estimation of the Arterial Blood Pressure[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) publication-title: IEEE – ident: 10.1016/j.bspc.2022.103581_b0150 – volume: 133 year: 2021 ident: 10.1016/j.bspc.2022.103581_b0180 article-title: Application of regularized Savitzky-Golay filters to identification of time-varying systems✩ publication-title: Automatica doi: 10.1016/j.automatica.2021.109865 – volume: 43 start-page: 11 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.103581_b0065 article-title: Non-invasive continuous blood pressure monitoring systems: Current and proposed technology issues and challenges publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-019-00813-x – year: 2016 ident: 10.1016/j.bspc.2022.103581_b0005 – volume: 21 start-page: 1867 issue: 5 year: 2021 ident: 10.1016/j.bspc.2022.103581_b0140 article-title: An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net structure-based approach publication-title: Sensors doi: 10.3390/s21051867 – ident: 10.1016/j.bspc.2022.103581_b0190 doi: 10.1109/CVPR.2018.00745 – ident: 10.1016/j.bspc.2022.103581_b0090 doi: 10.1109/IEMBS.2003.1280811 – volume: 322 start-page: 531 issue: 7285 year: 2001 ident: 10.1016/j.bspc.2022.103581_b0230 article-title: Blood pressure measuring devices: recommendations of the European Society of Hypertension publication-title: BMJ-Br. Med. J. doi: 10.1136/bmj.322.7285.531 – volume: 6 start-page: 1 issue: 3 year: 2002 ident: 10.1016/j.bspc.2022.103581_b0040 article-title: Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine publication-title: Crit. Care doi: 10.1186/cc1489 – volume: 8 issue: 10 year: 2013 ident: 10.1016/j.bspc.2022.103581_b0185 article-title: Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions publication-title: PLoS ONE doi: 10.1371/journal.pone.0076585 – volume: 8 start-page: 986 issue: 7 year: 2019 ident: 10.1016/j.bspc.2022.103581_b0205 article-title: Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis publication-title: J. Clin. Med. doi: 10.3390/jcm8070986 – ident: 10.1016/j.bspc.2022.103581_b0170 – volume: 3 start-page: 150 year: 1980 ident: 10.1016/j.bspc.2022.103581_b0045 article-title: Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1980.326616 – volume: 20 start-page: 2338 issue: 8 year: 2020 ident: 10.1016/j.bspc.2022.103581_b0220 article-title: End-to-end deep learning structure for continuous blood pressure estimation using attention mechanism publication-title: Sensors doi: 10.3390/s20082338 – volume: 16 start-page: 141 issue: 2 year: 1983 ident: 10.1016/j.bspc.2022.103581_b0075 article-title: Arterial tonometry: review and analysis publication-title: J. Biomech. doi: 10.1016/0021-9290(83)90037-4 – ident: 10.1016/j.bspc.2022.103581_b0200 doi: 10.1109/CVPR.2016.90 – volume: 68 year: 2021 ident: 10.1016/j.bspc.2022.103581_b0110 article-title: A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102813 – volume: 3 year: 2016 ident: 10.1016/j.bspc.2022.103581_b0175 article-title: MIMIC-III, a freely accessible critical care database publication-title: Sci. Data doi: 10.1038/sdata.2016.35 – volume: 20 start-page: 10000 issue: 17 year: 2020 ident: 10.1016/j.bspc.2022.103581_b0215 article-title: PP-Net: A deep learning framework for PPG-based blood pressure and heart rate estimation publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2990864 – volume: 18 start-page: 1 issue: 6 year: 2014 ident: 10.1016/j.bspc.2022.103581_b0030 article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study publication-title: Crit. Care doi: 10.1186/s13054-014-0644-4 – volume: 35 start-page: 271 issue: 5 year: 2014 ident: 10.1016/j.bspc.2022.103581_b0060 article-title: A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising? publication-title: Irbm doi: 10.1016/j.irbm.2014.07.002 – ident: 10.1016/j.bspc.2022.103581_b0155 – volume: 152 start-page: 546 issue: 10 year: 2008 ident: 10.1016/j.bspc.2022.103581_b0055 article-title: Practical questions related to self-measurement of blood pressure publication-title: Ned. Tijdschr. Geneeskd. – volume: 102 start-page: 484 issue: 2 year: 2006 ident: 10.1016/j.bspc.2022.103581_b0070 article-title: An accuracy evaluation of the T-Line (R) Tensymeter (continuous noninvasive blood pressure management device) versus conventional invasive radial artery monitoring in surgical patients publication-title: Anesth. Analg. doi: 10.1213/01.ane.0000194873.52453.bd – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.bspc.2022.103581_b0085 article-title: An optimal filter for short photoplethysmogram signals publication-title: Sci. Data doi: 10.1038/sdata.2018.76 – volume: 45 start-page: 142 issue: 1 year: 2005 ident: 10.1016/j.bspc.2022.103581_b0010 publication-title: Hypertension doi: 10.1161/01.HYP.0000150859.47929.8e – start-page: 1314 year: 2019 ident: 10.1016/j.bspc.2022.103581_b0195 article-title: Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF publication-title: International Conference on Computer Vision – ident: 10.1016/j.bspc.2022.103581_b0210 – start-page: 280 year: 2013 ident: 10.1016/j.bspc.2022.103581_b0105 article-title: A Neural Network-based method for continuous blood pressure estimation from a PPG signal[C]//2013 IEEE International instrumentation and measurement technology conference (I2MTC) publication-title: IEEE – volume: 71 start-page: 368 issue: 3 year: 2018 ident: 10.1016/j.bspc.2022.103581_b0225 article-title: A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.117.10237 – volume: 21 start-page: 2952 issue: 9 year: 2021 ident: 10.1016/j.bspc.2022.103581_b0130 article-title: Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation publication-title: Sensors doi: 10.3390/s21092952 |
SSID | ssj0048714 |
Score | 2.3976367 |
Snippet | Blood pressure (BP) is an important clinical indicator for cardiovascular health assessment, and accurate monitoring of continuous BP is still a challenging... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103581 |
SubjectTerms | Attention mechanism Blood pressure monitoring Deep learning Photoplethysmography signal Residual mechanism |
Title | Attention-based residual improved U-Net model for continuous blood pressure monitoring by using photoplethysmography signal |
URI | https://dx.doi.org/10.1016/j.bspc.2022.103581 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4k7j0I2lzHMMxFXfRwW4lSVudzK7M7iCCf7t5aSoTZAePDS-lvHy8X5rf-z2ELkUEGi9SEBFzRUAC3ay5NCA6llLkVHqZVbx5GPPRJLybsmkLDZpcGKBVur2_3tPtbu1aes6bvXI26z0aLM1jczrxfVusABQ_Qf3LzOnrrx-ah8HjVt8bjAlYu8SZmuOl3kuQMfR9yD1nsfd3cFoLOMM9tOuQIu7XH7OPWllxgHbW9AMP0We_qmq6IoFolGJzdrbJVXhm_xWYlgkZZxW29W6wwacYqOmzYmXO-9hy1rElwq6WmbGB1Q0vxuoDAx_-GZcviwoY5jCab07cGgPlQ86P0GR48zQYEVdNgeiA0orkTPiKK8jt1poLzVJqCRo80h6opFOmuC8N3PNCT8W5gXFK0EB7XIeKcxkEx6hdLIrsBGE_TxWTISjB8JBlgaRw-cjDNIpyTUXaQV7jxkQ7qXGoeDFPGk7ZawKuT8D1Se36Drr66VPWQhsbrVkzOsmv6ZKYSLCh3-k_-52hbXiqmY7nqF0tV9mFQSOV6trp1kVb_dv70fgbogne6w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwc2ZDUvu8lYVVSFPhZaqVtkOwkUlbYq6YD48_gcBxUJdWBNfFF0tu8-J999B3AXNVHjRUQ0CrmkKIGu91ziUxUKEWWOcFOjeDMY8u44eJqwSQXaZS0M0ipt7C9iuonW9krDerOxnE4bzxpL81CfTjzPNCvwd6AWMB2Tq1BrPfa6wzIga0huJL5xPEUDWztT0LzkxxKVDD0Py89Z6P6dnzZyTucQDixYJK3ifY6gks6PYX9DQvAEvlp5XjAWKSakhOjjs6mvIlPzuUBfGdNhmhPT8oZoiEqQnT6dr_WRnxjaOjFc2PUq1WNwg-ODifwkSIl_IcvXRY4kc5zQd6tvTZD1IWanMO48jNpdahsqUOU7Tk4zFnmSSyzvVopHiiWO4WjwpnJRKN1hkntCIz43cGWYaSQnI8dXLleB5Fz4_hlU54t5eg7EyxLJRIBiMDxgqS8c_P_Ig6TZzJQTJXVwSzfGyqqNY9OLWVzSyt5idH2Mro8L19fh_sdmWWhtbB3NytmJf62YWCeDLXYX_7S7hd3uaNCP-4_D3iXs4Z2C-HgF1Xy1Tq81OMnljV183z7F4ZY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+residual+improved+U-Net+model+for+continuous+blood+pressure+monitoring+by+using+photoplethysmography+signal&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Yu%2C+Mingzheng&rft.au=Huang%2C+Zhiwen&rft.au=Zhu%2C+Yidan&rft.au=Zhou%2C+Panyu&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=75&rft_id=info:doi/10.1016%2Fj.bspc.2022.103581&rft.externalDocID=S1746809422001033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |