Robust optimization using Bayesian optimization algorithm: Early detection of non-robust solutions

[Display omitted] •We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness evaluation.•The Bayesian networks are used to identify the non-robust solutions.•The non-robust solutions are detected and evaluation of their fitne...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 61; pp. 1125 - 1138
Main Authors Kaedi, Marjan, Ahn, Chang Wook
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2017
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2017.03.042

Cover

Abstract [Display omitted] •We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness evaluation.•The Bayesian networks are used to identify the non-robust solutions.•The non-robust solutions are detected and evaluation of their fitness is omitted.•Our method reduces the number of fitness evaluations and improves the robustness. Probabilistic robustness evaluation is a promising approach to evolutionary robust optimization; however, high computational time arises. In this paper, we apply this approach to the Bayesian optimization algorithm (BOA) with a view to improving its computational time. To this end, we analyze the Bayesian networks constructed in BOA in order to extract the patterns of non-robust solutions. In each generation, the solutions that match the extracted patterns are detected and then discarded from the process of evaluation; therefore, the computational time in discovering the robust solutions decreases. The experimental results demonstrate that our proposed method reduces computational time, while increasing the robustness of solutions.
AbstractList [Display omitted] •We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness evaluation.•The Bayesian networks are used to identify the non-robust solutions.•The non-robust solutions are detected and evaluation of their fitness is omitted.•Our method reduces the number of fitness evaluations and improves the robustness. Probabilistic robustness evaluation is a promising approach to evolutionary robust optimization; however, high computational time arises. In this paper, we apply this approach to the Bayesian optimization algorithm (BOA) with a view to improving its computational time. To this end, we analyze the Bayesian networks constructed in BOA in order to extract the patterns of non-robust solutions. In each generation, the solutions that match the extracted patterns are detected and then discarded from the process of evaluation; therefore, the computational time in discovering the robust solutions decreases. The experimental results demonstrate that our proposed method reduces computational time, while increasing the robustness of solutions.
Author Ahn, Chang Wook
Kaedi, Marjan
Author_xml – sequence: 1
  givenname: Marjan
  surname: Kaedi
  fullname: Kaedi, Marjan
  email: kaedi@eng.ui.ac.ir
  organization: Faculty of Computer Engineering, University of Isfahan, Hezar-Jerib Ave., Isfahan 81746-73441, Iran
– sequence: 2
  givenname: Chang Wook
  orcidid: 0000-0002-9902-5966
  surname: Ahn
  fullname: Ahn, Chang Wook
  email: cwan@gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
BookMark eNp9kE1LAzEQhoNUsK3-AU_7B3bNV7NZ8aKlfkBBED2H2Wy2pmw3JUmF-uvNtl700NMM8_IMM88EjXrXG4SuCS4IJuJmXUBwuqCYlAVmBeb0DI2JLGleCUlGqZ8JmfOKiws0CWGNE1RROUb1m6t3IWZuG-3GfkO0rs92wfar7AH2Jljo_2bQrZy38XNzmy3Ad_usMdHoQ-TaLJ2V--PG4LrdMA6X6LyFLpir3zpFH4-L9_lzvnx9epnfL3PNMI55S0tc1mUpONFsBqQRHDMKNWuqmmFomZE1AUM4YCEFQMNkyUG0jJMZl6ZiU0SPe7V3IXjTqq23G_B7RbAaLKm1GiypwZLCTCVLCZL_IG3j4dPowXan0bsjatJTX9Z4FbQ1vTaN9cmIapw9hf8AODmHrg
CitedBy_id crossref_primary_10_1088_1757_899X_434_1_012040
crossref_primary_10_1109_TII_2020_3019572
crossref_primary_10_1109_TSMC_2021_3067785
crossref_primary_10_1016_j_swevo_2018_04_002
Cites_doi 10.1007/s00500-010-0547-5
10.1007/s12293-012-0090-2
10.2514/2.2114
10.1007/BF01894765
10.1109/TEVC.2005.859465
10.1016/j.swevo.2011.05.001
10.1115/1.4003918
10.1007/BFb0056855
10.1007/s00158-013-1010-x
10.1007/s11390-012-1274-4
10.1007/978-3-642-23857-4_39
10.1364/AO.35.005477
10.1162/EVCO_a_00079
10.1109/4235.738986
10.1016/j.ins.2015.11.030
10.1109/TMAG.2011.2175438
10.1093/biomet/75.2.383
10.1007/s11432-013-4829-2
10.1115/1.4004807
10.1007/s00158-012-0816-2
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.03.042
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 1138
ExternalDocumentID 10_1016_j_asoc_2017_03_042
S1568494617301667
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
SSH
~HD
ID FETCH-LOGICAL-c300t-f2707b77641c35a1d64032ab3d9b30af3e8b1ae14a0686aad3874a6f341548e93
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:09 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 23 02:24:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Robust optimization
Probabilistic robustness evaluation
Bayesian networks
Bayesian optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f2707b77641c35a1d64032ab3d9b30af3e8b1ae14a0686aad3874a6f341548e93
ORCID 0000-0002-9902-5966
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_asoc_2017_03_042
crossref_citationtrail_10_1016_j_asoc_2017_03_042
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_03_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Salomon, Avigad, Fleming, Purshouse (bib0045) 2014
Jin (bib0145) 2011; 1
Hommel (bib0195) 1986; 33
Ling, Wu, Wang (bib0075) 2007
Lucas, Gámez, Salmerón (bib0170) 2007
Ho, Yang (bib0005) 2012; 48
Hommel (bib0200) 1988; 75
Maturana, Vergara (bib0090) 2011; 6943
Ferreira, Fonseca, Covas, Gaspar-Cunha (bib0070) 2008
Avigad, Brank (bib0030) 2008
Thompson (bib0100) 1998
Pelikan (bib0165) 2005
Weise, Chiong, Tang (bib0060) 2012; 27
Loughlin, Ranjithan (bib0115) 2001
Peng, Gao, Yang (bib0190) 2011; 15
Wiesmann, Hammel, Back (bib0085) 1998; 2
Le, Ong, Menzel, Jin, Sendhoff (bib0140) 2013; 21
Loughlin, Ranjithan (bib0110) 1999
Goh, Tan (bib0035) 2009
Greiner (bib0080) 1996; 35
Anthony, Keane (bib0105) 2003; 41
Deb, Horn, Goldberg (bib0175) 1993; 7
Yang, Ong, Jin (bib0010) 2007
Jin, Tang, Yu, Sendhoff, Yao (bib0135) 2013; 5
Hu, Li, Azarm, Almansoori (bib0150) 2011; 133
Branke (bib0065) 1998; 1498
Saha, Ray (bib0120) 2011; 133
Keong Goh, Tan (bib0020) 2007
Paenke, Branke, Jin (bib0055) 2006; 10
Pelikan (bib0160) 2002
Branke (bib0130) 2002
Kaedi, Gh Ahaee, Ahn (bib0180) 2013; 56
Barrico, Henggeler Antunes (bib0050) 2007
Kaedi, Gh Ahaee, Ahn (bib0185) 2016; 334–335
Branke, Avigad, Moshaiov (bib0025) 2013
Sebald, Fogel (bib0095) 1992
Hu, Azarm, Almansoori (bib0155) 2013; 47
Lim, Ong, Lim, Jin (bib0015) 2007
Gaspar-Cunha, Ferreira, Recio (bib0040) 2014; 49
Saha, Ray, Smith (bib0125) 2011
Barrico (10.1016/j.asoc.2017.03.042_bib0050) 2007
Branke (10.1016/j.asoc.2017.03.042_bib0065) 1998; 1498
Ferreira (10.1016/j.asoc.2017.03.042_bib0070) 2008
Lim (10.1016/j.asoc.2017.03.042_bib0015) 2007
Gaspar-Cunha (10.1016/j.asoc.2017.03.042_bib0040) 2014; 49
Jin (10.1016/j.asoc.2017.03.042_bib0145) 2011; 1
Lucas (10.1016/j.asoc.2017.03.042_bib0170) 2007
Branke (10.1016/j.asoc.2017.03.042_bib0025) 2013
Kaedi (10.1016/j.asoc.2017.03.042_bib0185) 2016; 334–335
Keong Goh (10.1016/j.asoc.2017.03.042_bib0020) 2007
Hommel (10.1016/j.asoc.2017.03.042_bib0200) 1988; 75
Weise (10.1016/j.asoc.2017.03.042_bib0060) 2012; 27
Loughlin (10.1016/j.asoc.2017.03.042_bib0110) 1999
Ling (10.1016/j.asoc.2017.03.042_bib0075) 2007
Salomon (10.1016/j.asoc.2017.03.042_bib0045) 2014
Hommel (10.1016/j.asoc.2017.03.042_bib0195) 1986; 33
Avigad (10.1016/j.asoc.2017.03.042_bib0030) 2008
Loughlin (10.1016/j.asoc.2017.03.042_bib0115) 2001
Hu (10.1016/j.asoc.2017.03.042_bib0155) 2013; 47
Greiner (10.1016/j.asoc.2017.03.042_bib0080) 1996; 35
Saha (10.1016/j.asoc.2017.03.042_bib0120) 2011; 133
Thompson (10.1016/j.asoc.2017.03.042_bib0100) 1998
Ho (10.1016/j.asoc.2017.03.042_bib0005) 2012; 48
Hu (10.1016/j.asoc.2017.03.042_bib0150) 2011; 133
Pelikan (10.1016/j.asoc.2017.03.042_bib0160) 2002
Pelikan (10.1016/j.asoc.2017.03.042_bib0165) 2005
Branke (10.1016/j.asoc.2017.03.042_bib0130) 2002
Jin (10.1016/j.asoc.2017.03.042_bib0135) 2013; 5
Sebald (10.1016/j.asoc.2017.03.042_bib0095) 1992
Maturana (10.1016/j.asoc.2017.03.042_bib0090) 2011; 6943
Anthony (10.1016/j.asoc.2017.03.042_bib0105) 2003; 41
Yang (10.1016/j.asoc.2017.03.042_bib0010) 2007
Deb (10.1016/j.asoc.2017.03.042_bib0175) 1993; 7
Goh (10.1016/j.asoc.2017.03.042_bib0035) 2009
Le (10.1016/j.asoc.2017.03.042_bib0140) 2013; 21
Peng (10.1016/j.asoc.2017.03.042_bib0190) 2011; 15
Paenke (10.1016/j.asoc.2017.03.042_bib0055) 2006; 10
Wiesmann (10.1016/j.asoc.2017.03.042_bib0085) 1998; 2
Kaedi (10.1016/j.asoc.2017.03.042_bib0180) 2013; 56
Saha (10.1016/j.asoc.2017.03.042_bib0125) 2011
References_xml – start-page: 229
  year: 2009
  end-page: 247
  ident: bib0035
  article-title: Evolving robust routes
  publication-title: Evolutionary Multi-Objective Optimization in Uncertain Environments, Studies in Computational Intelligence
– volume: 334–335
  start-page: 44
  year: 2016
  end-page: 64
  ident: bib0185
  article-title: Biasing the transition of Bayesian optimization algorithm between Markov chain states in dynamic environments
  publication-title: Inf. Sci.
– volume: 41
  start-page: 1601
  year: 2003
  end-page: 1604
  ident: bib0105
  article-title: Robust-optimal design of a lightweight space structure using a genetic algorithm
  publication-title: AIAA J.
– year: 2002
  ident: bib0130
  article-title: Searching for robust solutions
  publication-title: Evolutionary Optimization in Dynamic Environments
– volume: 56
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib0180
  article-title: Holographic memory-based Bayesian optimization algorithm (HM-BOA) in dynamic environments
  publication-title: Sci. China Inf. Sci.
– volume: 5
  start-page: 3
  year: 2013
  end-page: 18
  ident: bib0135
  article-title: A framework for finding robust optimal solutions over time
  publication-title: Memet. Comput.
– volume: 7
  start-page: 131
  year: 1993
  end-page: 153
  ident: bib0175
  article-title: Multimodal deceptive functions
  publication-title: Complex Syst.
– volume: 1
  start-page: 61
  year: 2011
  end-page: 70
  ident: bib0145
  article-title: Surrogate-assisted evolutionary computation: recent advances and future challenge
  publication-title: Swarm Evol. Comput.
– volume: 49
  start-page: 771
  year: 2014
  end-page: 793
  ident: bib0040
  article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems
  publication-title: Struct. Multidiscip. Optim.
– volume: 35
  start-page: 5477
  year: 1996
  end-page: 5483
  ident: bib0080
  article-title: Robust optical coating design with evolution strategies
  publication-title: Appl. Opt.
– volume: 48
  start-page: 259
  year: 2012
  end-page: 262
  ident: bib0005
  article-title: A fast robust optimization methodology based on polynomial chaos and evolutionary algorithm for inverse problems
  publication-title: IEEE Trans. Magn.
– volume: 2
  start-page: 162
  year: 1998
  end-page: 167
  ident: bib0085
  article-title: Robustdesign of multilayer optical coatings by means of evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 33
  start-page: 321
  year: 1986
  end-page: 336
  ident: bib0195
  article-title: Multiple test procedures for arbitrary dependence structures
  publication-title: Metrika
– year: 2007
  ident: bib0015
  article-title: Single/multi-objective inverse robust evolutionary design methodology in the presence of uncertainty
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence
– volume: 27
  start-page: 907
  year: 2012
  end-page: 936
  ident: bib0060
  article-title: Evolutionary optimization: pitfalls and booby traps
  publication-title: J. Comput. Sci. Technol.
– start-page: 369
  year: 1999
  end-page: 376
  ident: bib0110
  article-title: Chance-constrained genetic algorithms
  publication-title: GECCO-99
– volume: 10
  year: 2006
  ident: bib0055
  article-title: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 75
  start-page: 383
  year: 1988
  end-page: 386
  ident: bib0200
  article-title: A stagewise rejective multiple test procedure based on a modified Bonferroni test
  publication-title: Biometrika
– year: 2008
  ident: bib0070
  article-title: Evolutionary multi-objective robust optimization
  publication-title: Advances in Evolutionary Algorithms
– year: 2007
  ident: bib0075
  article-title: Deterministic robust optimal design based on standard crowding genetic algorithm
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence
– year: 2008
  ident: bib0030
  article-title: Embedded evolutionary multi-objective optimization for worst case robustness
  publication-title: GECCO’08
– start-page: 1
  year: 2014
  end-page: 11
  ident: bib0045
  article-title: Active robust optimization: enhancing robustness to uncertain environments
  publication-title: IEEE Trans. Cybern.
– start-page: 2123
  year: 2011
  end-page: 2130
  ident: bib0125
  article-title: Towards practical evolutionary robust multi-objective optimization
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 21
  start-page: 13
  year: 2013
  end-page: 40
  ident: bib0140
  article-title: Evolution by adapting surrogates
  publication-title: Evol. Comput.
– volume: 6943
  start-page: 404
  year: 2011
  end-page: 415
  ident: bib0090
  article-title: Robust optimization by means of vegetative reproduction, lecture notes in computer science
  publication-title: Adapt. Intell. Syst.
– year: 2005
  ident: bib0165
  article-title: Hierarchical Bayesian Optimization Algorithm, Toward a New Generation of Evolutionary Algorithms
– volume: 133
  start-page: 2
  year: 2011
  end-page: 9
  ident: bib0150
  article-title: Multi-objective robust optimization under interval uncertainty using online approximation and constraint cuts
  publication-title: J. Mech. Des.
– year: 2001
  ident: bib0115
  article-title: Chance-constrained optimization using genetic algorithms: an application in air quality management
  publication-title: World Water Congress
– year: 2007
  ident: bib0050
  article-title: An evolutionary approach for assessing the degree of robustness of solutions to multi-objective models
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence
– year: 2007
  ident: bib0020
  article-title: Evolving the tradeoffs between Pareto-optimality and robustness in multi-objective evolutionary algorithms
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence
– start-page: 90
  year: 1992
  end-page: 99
  ident: bib0095
  article-title: Design of fault tolerant neural networks for pattern classification
  publication-title: First Annual Conference on Evolutionary Programming, Evolutionary Programming Society
– volume: 133
  year: 2011
  ident: bib0120
  article-title: Practical robust design optimization using evolutionary algorithms
  publication-title: J. Mech. Des.
– year: 2013
  ident: bib0025
  article-title: Multi-objective worst case optimization by means of evolutionary algorithms
  publication-title: Technical Report
– year: 2007
  ident: bib0170
  article-title: Advances in Probabilistic Graphical Models
– year: 2007
  ident: bib0010
  article-title: Evolutionary Computation in Dynamic and Uncertain Environments
– year: 2002
  ident: bib0160
  article-title: Bayesian Optimization Algorithm: From Single Level to Hierarchy
– volume: 1498
  start-page: 119
  year: 1998
  end-page: 128
  ident: bib0065
  article-title: Creating robust solutions by means of an evolutionary algorithm, parallel problem solving from nature-PPSN V
  publication-title: Lect. Notes Comput. Sci.
– volume: 47
  start-page: 19
  year: 2013
  end-page: 35
  ident: bib0155
  article-title: New approximation assisted multi-objective collaborative robust optimization (new AA-McRO) under interval uncertainty
  publication-title: Struct. Multidiscip. Optim.
– start-page: 13
  year: 1998
  end-page: 24
  ident: bib0100
  article-title: On the automatic design of robust electronics through artificial evolution
  publication-title: International Conference on Evolvable Systems: From Biology to Hardware
– volume: 15
  start-page: 311
  year: 2011
  end-page: 326
  ident: bib0190
  article-title: Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments
  publication-title: Soft Comput.
– volume: 7
  start-page: 131
  year: 1993
  ident: 10.1016/j.asoc.2017.03.042_bib0175
  article-title: Multimodal deceptive functions
  publication-title: Complex Syst.
– year: 2008
  ident: 10.1016/j.asoc.2017.03.042_bib0030
  article-title: Embedded evolutionary multi-objective optimization for worst case robustness
– year: 2008
  ident: 10.1016/j.asoc.2017.03.042_bib0070
  article-title: Evolutionary multi-objective robust optimization
– volume: 15
  start-page: 311
  year: 2011
  ident: 10.1016/j.asoc.2017.03.042_bib0190
  article-title: Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0547-5
– volume: 5
  start-page: 3
  year: 2013
  ident: 10.1016/j.asoc.2017.03.042_bib0135
  article-title: A framework for finding robust optimal solutions over time
  publication-title: Memet. Comput.
  doi: 10.1007/s12293-012-0090-2
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2017.03.042_bib0045
  article-title: Active robust optimization: enhancing robustness to uncertain environments
  publication-title: IEEE Trans. Cybern.
– volume: 41
  start-page: 1601
  year: 2003
  ident: 10.1016/j.asoc.2017.03.042_bib0105
  article-title: Robust-optimal design of a lightweight space structure using a genetic algorithm
  publication-title: AIAA J.
  doi: 10.2514/2.2114
– volume: 33
  start-page: 321
  issue: 1
  year: 1986
  ident: 10.1016/j.asoc.2017.03.042_bib0195
  article-title: Multiple test procedures for arbitrary dependence structures
  publication-title: Metrika
  doi: 10.1007/BF01894765
– start-page: 2123
  year: 2011
  ident: 10.1016/j.asoc.2017.03.042_bib0125
  article-title: Towards practical evolutionary robust multi-objective optimization
– year: 2007
  ident: 10.1016/j.asoc.2017.03.042_bib0170
– year: 2007
  ident: 10.1016/j.asoc.2017.03.042_bib0050
  article-title: An evolutionary approach for assessing the degree of robustness of solutions to multi-objective models
– year: 2007
  ident: 10.1016/j.asoc.2017.03.042_bib0020
  article-title: Evolving the tradeoffs between Pareto-optimality and robustness in multi-objective evolutionary algorithms
– volume: 10
  year: 2006
  ident: 10.1016/j.asoc.2017.03.042_bib0055
  article-title: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.859465
– year: 2007
  ident: 10.1016/j.asoc.2017.03.042_bib0075
  article-title: Deterministic robust optimal design based on standard crowding genetic algorithm
– start-page: 13
  year: 1998
  ident: 10.1016/j.asoc.2017.03.042_bib0100
  article-title: On the automatic design of robust electronics through artificial evolution
– volume: 1
  start-page: 61
  year: 2011
  ident: 10.1016/j.asoc.2017.03.042_bib0145
  article-title: Surrogate-assisted evolutionary computation: recent advances and future challenge
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.05.001
– volume: 133
  start-page: 2
  year: 2011
  ident: 10.1016/j.asoc.2017.03.042_bib0150
  article-title: Multi-objective robust optimization under interval uncertainty using online approximation and constraint cuts
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4003918
– year: 2001
  ident: 10.1016/j.asoc.2017.03.042_bib0115
  article-title: Chance-constrained optimization using genetic algorithms: an application in air quality management
– year: 2002
  ident: 10.1016/j.asoc.2017.03.042_bib0160
– year: 2007
  ident: 10.1016/j.asoc.2017.03.042_bib0015
  article-title: Single/multi-objective inverse robust evolutionary design methodology in the presence of uncertainty
– volume: 1498
  start-page: 119
  year: 1998
  ident: 10.1016/j.asoc.2017.03.042_bib0065
  article-title: Creating robust solutions by means of an evolutionary algorithm, parallel problem solving from nature-PPSN V
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/BFb0056855
– start-page: 229
  year: 2009
  ident: 10.1016/j.asoc.2017.03.042_bib0035
  article-title: Evolving robust routes
– volume: 49
  start-page: 771
  year: 2014
  ident: 10.1016/j.asoc.2017.03.042_bib0040
  article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-1010-x
– volume: 27
  start-page: 907
  year: 2012
  ident: 10.1016/j.asoc.2017.03.042_bib0060
  article-title: Evolutionary optimization: pitfalls and booby traps
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-012-1274-4
– volume: 6943
  start-page: 404
  year: 2011
  ident: 10.1016/j.asoc.2017.03.042_bib0090
  article-title: Robust optimization by means of vegetative reproduction, lecture notes in computer science
  publication-title: Adapt. Intell. Syst.
  doi: 10.1007/978-3-642-23857-4_39
– year: 2002
  ident: 10.1016/j.asoc.2017.03.042_bib0130
  article-title: Searching for robust solutions
– volume: 35
  start-page: 5477
  year: 1996
  ident: 10.1016/j.asoc.2017.03.042_bib0080
  article-title: Robust optical coating design with evolution strategies
  publication-title: Appl. Opt.
  doi: 10.1364/AO.35.005477
– volume: 21
  start-page: 13
  year: 2013
  ident: 10.1016/j.asoc.2017.03.042_bib0140
  article-title: Evolution by adapting surrogates
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00079
– volume: 2
  start-page: 162
  year: 1998
  ident: 10.1016/j.asoc.2017.03.042_bib0085
  article-title: Robustdesign of multilayer optical coatings by means of evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.738986
– start-page: 90
  year: 1992
  ident: 10.1016/j.asoc.2017.03.042_bib0095
  article-title: Design of fault tolerant neural networks for pattern classification
– volume: 334–335
  start-page: 44
  year: 2016
  ident: 10.1016/j.asoc.2017.03.042_bib0185
  article-title: Biasing the transition of Bayesian optimization algorithm between Markov chain states in dynamic environments
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.11.030
– volume: 48
  start-page: 259
  year: 2012
  ident: 10.1016/j.asoc.2017.03.042_bib0005
  article-title: A fast robust optimization methodology based on polynomial chaos and evolutionary algorithm for inverse problems
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2175438
– volume: 75
  start-page: 383
  issue: 2
  year: 1988
  ident: 10.1016/j.asoc.2017.03.042_bib0200
  article-title: A stagewise rejective multiple test procedure based on a modified Bonferroni test
  publication-title: Biometrika
  doi: 10.1093/biomet/75.2.383
– year: 2013
  ident: 10.1016/j.asoc.2017.03.042_bib0025
  article-title: Multi-objective worst case optimization by means of evolutionary algorithms
– volume: 56
  start-page: 1
  year: 2013
  ident: 10.1016/j.asoc.2017.03.042_bib0180
  article-title: Holographic memory-based Bayesian optimization algorithm (HM-BOA) in dynamic environments
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-013-4829-2
– start-page: 369
  year: 1999
  ident: 10.1016/j.asoc.2017.03.042_bib0110
  article-title: Chance-constrained genetic algorithms
– year: 2007
  ident: 10.1016/j.asoc.2017.03.042_bib0010
– year: 2005
  ident: 10.1016/j.asoc.2017.03.042_bib0165
– volume: 133
  year: 2011
  ident: 10.1016/j.asoc.2017.03.042_bib0120
  article-title: Practical robust design optimization using evolutionary algorithms
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4004807
– volume: 47
  start-page: 19
  year: 2013
  ident: 10.1016/j.asoc.2017.03.042_bib0155
  article-title: New approximation assisted multi-objective collaborative robust optimization (new AA-McRO) under interval uncertainty
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0816-2
SSID ssj0016928
Score 2.2420924
Snippet [Display omitted] •We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1125
SubjectTerms Bayesian networks
Bayesian optimization algorithm
Probabilistic robustness evaluation
Robust optimization
Title Robust optimization using Bayesian optimization algorithm: Early detection of non-robust solutions
URI https://dx.doi.org/10.1016/j.asoc.2017.03.042
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw7cUFjbpEnLbUxM4zWhwaTdoqRNxtBeGt2BC7-dpE0nJqEdOFVt7aayHTuWPtsAXCpMUyXTEMUsDBBJA40EkyHytVE4jhNN83E-z13a6ZOHQTiogFZZC2Nhlc73Fz4999buScNJszEfjRqvJvOISExMCDZGSqmtKCeE2SkG198rmIdP43y-qiVGltoVzhQYL2EkYOFdLG90SoK_g9OvgNPeAzvupAibxc_sg4qaHoDdcgoDdJvyEMjeTC4_Mzgzm3_iqiqhhbMP4a34UrZIcv2dGA9ni1H2PrmBeXtjmKosB2QZOg2nsylaFF9cmeUR6Lfv3lod5CYnoAR7XoZ0wDwmGaPET3Ao_JQSDwdC4jSW2BMaq0j6QvlE2AoRIVIcMSKoNiHNZDAqxsegapZTJwASqqgMgjhNqDKpo9GrwgnTkVBK6zgiNeCXIuOJaytup1uMeYkf--BWzNyKmXuYGzHXwNWKZ1401dhIHZaa4GumwY3X38B3-k--M7Bt7wrMyjmoZoulujAnj0zWc9Oqg61mq_f0Yq_3j53uD-E13Bc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZME9uxEzaoQOXRDkAlNstO7FJUmqqkAwu_HTtxKiohBtb4nETfne980nd3AJxqwjKtsgglPMKIZtggyVWEQmMVTpLUsHKcT6fL2j169xK9LIBWXQvjaJXe91c-vfTW_knTo9kcDwbNJ5t5xDShNgRbI2WML4IlGmHuMrDzrxnPI2RJOWDVSSMn7itnKpKXtBA4fhcvO51S_Ht0-hFxbtbBqr8qwsvqbzbAgh5tgrV6DAP0p3ILqMdcTT8KmNvT_-7LKqHjs_fhlfzUrkpyfk0O-_lkULy-X8CyvzHMdFEysqycgaN8hCbVG2d2uQ16N9fPrTbyoxNQSoKgQAbzgCvOGQ1TEskwYzQgWCqSJYoE0hAdq1DqkEpXIiJlRmJOJTM2ptkURidkBzTs5_QugJRppjBOspRpmztaxWqSchNLrY1JYroHwhoykfq-4m68xVDUBLI34WAWDmYREGFh3gNnsz3jqqvGn9JRrQkxZxvCuv0_9u3_c98JWG4_dx7Ew233_gCsuJWKwHIIGsVkqo_sNaRQx6WZfQM1ntwX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimization+using+Bayesian+optimization+algorithm%3A+Early+detection+of+non-robust+solutions&rft.jtitle=Applied+soft+computing&rft.au=Kaedi%2C+Marjan&rft.au=Ahn%2C+Chang+Wook&rft.date=2017-12-01&rft.issn=1568-4946&rft.volume=61&rft.spage=1125&rft.epage=1138&rft_id=info:doi/10.1016%2Fj.asoc.2017.03.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_03_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon