Robust optimization using Bayesian optimization algorithm: Early detection of non-robust solutions
[Display omitted] •We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness evaluation.•The Bayesian networks are used to identify the non-robust solutions.•The non-robust solutions are detected and evaluation of their fitne...
Saved in:
| Published in | Applied soft computing Vol. 61; pp. 1125 - 1138 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2017.03.042 |
Cover
| Abstract | [Display omitted]
•We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness evaluation.•The Bayesian networks are used to identify the non-robust solutions.•The non-robust solutions are detected and evaluation of their fitness is omitted.•Our method reduces the number of fitness evaluations and improves the robustness.
Probabilistic robustness evaluation is a promising approach to evolutionary robust optimization; however, high computational time arises. In this paper, we apply this approach to the Bayesian optimization algorithm (BOA) with a view to improving its computational time. To this end, we analyze the Bayesian networks constructed in BOA in order to extract the patterns of non-robust solutions. In each generation, the solutions that match the extracted patterns are detected and then discarded from the process of evaluation; therefore, the computational time in discovering the robust solutions decreases. The experimental results demonstrate that our proposed method reduces computational time, while increasing the robustness of solutions. |
|---|---|
| AbstractList | [Display omitted]
•We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness evaluation.•The Bayesian networks are used to identify the non-robust solutions.•The non-robust solutions are detected and evaluation of their fitness is omitted.•Our method reduces the number of fitness evaluations and improves the robustness.
Probabilistic robustness evaluation is a promising approach to evolutionary robust optimization; however, high computational time arises. In this paper, we apply this approach to the Bayesian optimization algorithm (BOA) with a view to improving its computational time. To this end, we analyze the Bayesian networks constructed in BOA in order to extract the patterns of non-robust solutions. In each generation, the solutions that match the extracted patterns are detected and then discarded from the process of evaluation; therefore, the computational time in discovering the robust solutions decreases. The experimental results demonstrate that our proposed method reduces computational time, while increasing the robustness of solutions. |
| Author | Ahn, Chang Wook Kaedi, Marjan |
| Author_xml | – sequence: 1 givenname: Marjan surname: Kaedi fullname: Kaedi, Marjan email: kaedi@eng.ui.ac.ir organization: Faculty of Computer Engineering, University of Isfahan, Hezar-Jerib Ave., Isfahan 81746-73441, Iran – sequence: 2 givenname: Chang Wook orcidid: 0000-0002-9902-5966 surname: Ahn fullname: Ahn, Chang Wook email: cwan@gist.ac.kr organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU_7B3bNV7NZ8aKlfkBBED2H2Wy2pmw3JUmF-uvNtl700NMM8_IMM88EjXrXG4SuCS4IJuJmXUBwuqCYlAVmBeb0DI2JLGleCUlGqZ8JmfOKiws0CWGNE1RROUb1m6t3IWZuG-3GfkO0rs92wfar7AH2Jljo_2bQrZy38XNzmy3Ad_usMdHoQ-TaLJ2V--PG4LrdMA6X6LyFLpir3zpFH4-L9_lzvnx9epnfL3PNMI55S0tc1mUpONFsBqQRHDMKNWuqmmFomZE1AUM4YCEFQMNkyUG0jJMZl6ZiU0SPe7V3IXjTqq23G_B7RbAaLKm1GiypwZLCTCVLCZL_IG3j4dPowXan0bsjatJTX9Z4FbQ1vTaN9cmIapw9hf8AODmHrg |
| CitedBy_id | crossref_primary_10_1088_1757_899X_434_1_012040 crossref_primary_10_1109_TII_2020_3019572 crossref_primary_10_1109_TSMC_2021_3067785 crossref_primary_10_1016_j_swevo_2018_04_002 |
| Cites_doi | 10.1007/s00500-010-0547-5 10.1007/s12293-012-0090-2 10.2514/2.2114 10.1007/BF01894765 10.1109/TEVC.2005.859465 10.1016/j.swevo.2011.05.001 10.1115/1.4003918 10.1007/BFb0056855 10.1007/s00158-013-1010-x 10.1007/s11390-012-1274-4 10.1007/978-3-642-23857-4_39 10.1364/AO.35.005477 10.1162/EVCO_a_00079 10.1109/4235.738986 10.1016/j.ins.2015.11.030 10.1109/TMAG.2011.2175438 10.1093/biomet/75.2.383 10.1007/s11432-013-4829-2 10.1115/1.4004807 10.1007/s00158-012-0816-2 |
| ContentType | Journal Article |
| Copyright | 2017 |
| Copyright_xml | – notice: 2017 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2017.03.042 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| EndPage | 1138 |
| ExternalDocumentID | 10_1016_j_asoc_2017_03_042 S1568494617301667 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS SSH ~HD |
| ID | FETCH-LOGICAL-c300t-f2707b77641c35a1d64032ab3d9b30af3e8b1ae14a0686aad3874a6f341548e93 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 01 02:32:09 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 23 02:24:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Robust optimization Probabilistic robustness evaluation Bayesian networks Bayesian optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-f2707b77641c35a1d64032ab3d9b30af3e8b1ae14a0686aad3874a6f341548e93 |
| ORCID | 0000-0002-9902-5966 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2017_03_042 crossref_citationtrail_10_1016_j_asoc_2017_03_042 elsevier_sciencedirect_doi_10_1016_j_asoc_2017_03_042 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2017 2017-12-00 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Salomon, Avigad, Fleming, Purshouse (bib0045) 2014 Jin (bib0145) 2011; 1 Hommel (bib0195) 1986; 33 Ling, Wu, Wang (bib0075) 2007 Lucas, Gámez, Salmerón (bib0170) 2007 Ho, Yang (bib0005) 2012; 48 Hommel (bib0200) 1988; 75 Maturana, Vergara (bib0090) 2011; 6943 Ferreira, Fonseca, Covas, Gaspar-Cunha (bib0070) 2008 Avigad, Brank (bib0030) 2008 Thompson (bib0100) 1998 Pelikan (bib0165) 2005 Weise, Chiong, Tang (bib0060) 2012; 27 Loughlin, Ranjithan (bib0115) 2001 Peng, Gao, Yang (bib0190) 2011; 15 Wiesmann, Hammel, Back (bib0085) 1998; 2 Le, Ong, Menzel, Jin, Sendhoff (bib0140) 2013; 21 Loughlin, Ranjithan (bib0110) 1999 Goh, Tan (bib0035) 2009 Greiner (bib0080) 1996; 35 Anthony, Keane (bib0105) 2003; 41 Deb, Horn, Goldberg (bib0175) 1993; 7 Yang, Ong, Jin (bib0010) 2007 Jin, Tang, Yu, Sendhoff, Yao (bib0135) 2013; 5 Hu, Li, Azarm, Almansoori (bib0150) 2011; 133 Branke (bib0065) 1998; 1498 Saha, Ray (bib0120) 2011; 133 Keong Goh, Tan (bib0020) 2007 Paenke, Branke, Jin (bib0055) 2006; 10 Pelikan (bib0160) 2002 Branke (bib0130) 2002 Kaedi, Gh Ahaee, Ahn (bib0180) 2013; 56 Barrico, Henggeler Antunes (bib0050) 2007 Kaedi, Gh Ahaee, Ahn (bib0185) 2016; 334–335 Branke, Avigad, Moshaiov (bib0025) 2013 Sebald, Fogel (bib0095) 1992 Hu, Azarm, Almansoori (bib0155) 2013; 47 Lim, Ong, Lim, Jin (bib0015) 2007 Gaspar-Cunha, Ferreira, Recio (bib0040) 2014; 49 Saha, Ray, Smith (bib0125) 2011 Barrico (10.1016/j.asoc.2017.03.042_bib0050) 2007 Branke (10.1016/j.asoc.2017.03.042_bib0065) 1998; 1498 Ferreira (10.1016/j.asoc.2017.03.042_bib0070) 2008 Lim (10.1016/j.asoc.2017.03.042_bib0015) 2007 Gaspar-Cunha (10.1016/j.asoc.2017.03.042_bib0040) 2014; 49 Jin (10.1016/j.asoc.2017.03.042_bib0145) 2011; 1 Lucas (10.1016/j.asoc.2017.03.042_bib0170) 2007 Branke (10.1016/j.asoc.2017.03.042_bib0025) 2013 Kaedi (10.1016/j.asoc.2017.03.042_bib0185) 2016; 334–335 Keong Goh (10.1016/j.asoc.2017.03.042_bib0020) 2007 Hommel (10.1016/j.asoc.2017.03.042_bib0200) 1988; 75 Weise (10.1016/j.asoc.2017.03.042_bib0060) 2012; 27 Loughlin (10.1016/j.asoc.2017.03.042_bib0110) 1999 Ling (10.1016/j.asoc.2017.03.042_bib0075) 2007 Salomon (10.1016/j.asoc.2017.03.042_bib0045) 2014 Hommel (10.1016/j.asoc.2017.03.042_bib0195) 1986; 33 Avigad (10.1016/j.asoc.2017.03.042_bib0030) 2008 Loughlin (10.1016/j.asoc.2017.03.042_bib0115) 2001 Hu (10.1016/j.asoc.2017.03.042_bib0155) 2013; 47 Greiner (10.1016/j.asoc.2017.03.042_bib0080) 1996; 35 Saha (10.1016/j.asoc.2017.03.042_bib0120) 2011; 133 Thompson (10.1016/j.asoc.2017.03.042_bib0100) 1998 Ho (10.1016/j.asoc.2017.03.042_bib0005) 2012; 48 Hu (10.1016/j.asoc.2017.03.042_bib0150) 2011; 133 Pelikan (10.1016/j.asoc.2017.03.042_bib0160) 2002 Pelikan (10.1016/j.asoc.2017.03.042_bib0165) 2005 Branke (10.1016/j.asoc.2017.03.042_bib0130) 2002 Jin (10.1016/j.asoc.2017.03.042_bib0135) 2013; 5 Sebald (10.1016/j.asoc.2017.03.042_bib0095) 1992 Maturana (10.1016/j.asoc.2017.03.042_bib0090) 2011; 6943 Anthony (10.1016/j.asoc.2017.03.042_bib0105) 2003; 41 Yang (10.1016/j.asoc.2017.03.042_bib0010) 2007 Deb (10.1016/j.asoc.2017.03.042_bib0175) 1993; 7 Goh (10.1016/j.asoc.2017.03.042_bib0035) 2009 Le (10.1016/j.asoc.2017.03.042_bib0140) 2013; 21 Peng (10.1016/j.asoc.2017.03.042_bib0190) 2011; 15 Paenke (10.1016/j.asoc.2017.03.042_bib0055) 2006; 10 Wiesmann (10.1016/j.asoc.2017.03.042_bib0085) 1998; 2 Kaedi (10.1016/j.asoc.2017.03.042_bib0180) 2013; 56 Saha (10.1016/j.asoc.2017.03.042_bib0125) 2011 |
| References_xml | – start-page: 229 year: 2009 end-page: 247 ident: bib0035 article-title: Evolving robust routes publication-title: Evolutionary Multi-Objective Optimization in Uncertain Environments, Studies in Computational Intelligence – volume: 334–335 start-page: 44 year: 2016 end-page: 64 ident: bib0185 article-title: Biasing the transition of Bayesian optimization algorithm between Markov chain states in dynamic environments publication-title: Inf. Sci. – volume: 41 start-page: 1601 year: 2003 end-page: 1604 ident: bib0105 article-title: Robust-optimal design of a lightweight space structure using a genetic algorithm publication-title: AIAA J. – year: 2002 ident: bib0130 article-title: Searching for robust solutions publication-title: Evolutionary Optimization in Dynamic Environments – volume: 56 start-page: 1 year: 2013 end-page: 17 ident: bib0180 article-title: Holographic memory-based Bayesian optimization algorithm (HM-BOA) in dynamic environments publication-title: Sci. China Inf. Sci. – volume: 5 start-page: 3 year: 2013 end-page: 18 ident: bib0135 article-title: A framework for finding robust optimal solutions over time publication-title: Memet. Comput. – volume: 7 start-page: 131 year: 1993 end-page: 153 ident: bib0175 article-title: Multimodal deceptive functions publication-title: Complex Syst. – volume: 1 start-page: 61 year: 2011 end-page: 70 ident: bib0145 article-title: Surrogate-assisted evolutionary computation: recent advances and future challenge publication-title: Swarm Evol. Comput. – volume: 49 start-page: 771 year: 2014 end-page: 793 ident: bib0040 article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems publication-title: Struct. Multidiscip. Optim. – volume: 35 start-page: 5477 year: 1996 end-page: 5483 ident: bib0080 article-title: Robust optical coating design with evolution strategies publication-title: Appl. Opt. – volume: 48 start-page: 259 year: 2012 end-page: 262 ident: bib0005 article-title: A fast robust optimization methodology based on polynomial chaos and evolutionary algorithm for inverse problems publication-title: IEEE Trans. Magn. – volume: 2 start-page: 162 year: 1998 end-page: 167 ident: bib0085 article-title: Robustdesign of multilayer optical coatings by means of evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 33 start-page: 321 year: 1986 end-page: 336 ident: bib0195 article-title: Multiple test procedures for arbitrary dependence structures publication-title: Metrika – year: 2007 ident: bib0015 article-title: Single/multi-objective inverse robust evolutionary design methodology in the presence of uncertainty publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence – volume: 27 start-page: 907 year: 2012 end-page: 936 ident: bib0060 article-title: Evolutionary optimization: pitfalls and booby traps publication-title: J. Comput. Sci. Technol. – start-page: 369 year: 1999 end-page: 376 ident: bib0110 article-title: Chance-constrained genetic algorithms publication-title: GECCO-99 – volume: 10 year: 2006 ident: bib0055 article-title: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation publication-title: IEEE Trans. Evol. Comput. – volume: 75 start-page: 383 year: 1988 end-page: 386 ident: bib0200 article-title: A stagewise rejective multiple test procedure based on a modified Bonferroni test publication-title: Biometrika – year: 2008 ident: bib0070 article-title: Evolutionary multi-objective robust optimization publication-title: Advances in Evolutionary Algorithms – year: 2007 ident: bib0075 article-title: Deterministic robust optimal design based on standard crowding genetic algorithm publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence – year: 2008 ident: bib0030 article-title: Embedded evolutionary multi-objective optimization for worst case robustness publication-title: GECCO’08 – start-page: 1 year: 2014 end-page: 11 ident: bib0045 article-title: Active robust optimization: enhancing robustness to uncertain environments publication-title: IEEE Trans. Cybern. – start-page: 2123 year: 2011 end-page: 2130 ident: bib0125 article-title: Towards practical evolutionary robust multi-objective optimization publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 21 start-page: 13 year: 2013 end-page: 40 ident: bib0140 article-title: Evolution by adapting surrogates publication-title: Evol. Comput. – volume: 6943 start-page: 404 year: 2011 end-page: 415 ident: bib0090 article-title: Robust optimization by means of vegetative reproduction, lecture notes in computer science publication-title: Adapt. Intell. Syst. – year: 2005 ident: bib0165 article-title: Hierarchical Bayesian Optimization Algorithm, Toward a New Generation of Evolutionary Algorithms – volume: 133 start-page: 2 year: 2011 end-page: 9 ident: bib0150 article-title: Multi-objective robust optimization under interval uncertainty using online approximation and constraint cuts publication-title: J. Mech. Des. – year: 2001 ident: bib0115 article-title: Chance-constrained optimization using genetic algorithms: an application in air quality management publication-title: World Water Congress – year: 2007 ident: bib0050 article-title: An evolutionary approach for assessing the degree of robustness of solutions to multi-objective models publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence – year: 2007 ident: bib0020 article-title: Evolving the tradeoffs between Pareto-optimality and robustness in multi-objective evolutionary algorithms publication-title: Evolutionary Computation in Dynamic and Uncertain Environments, Studies in Computational Intelligence – start-page: 90 year: 1992 end-page: 99 ident: bib0095 article-title: Design of fault tolerant neural networks for pattern classification publication-title: First Annual Conference on Evolutionary Programming, Evolutionary Programming Society – volume: 133 year: 2011 ident: bib0120 article-title: Practical robust design optimization using evolutionary algorithms publication-title: J. Mech. Des. – year: 2013 ident: bib0025 article-title: Multi-objective worst case optimization by means of evolutionary algorithms publication-title: Technical Report – year: 2007 ident: bib0170 article-title: Advances in Probabilistic Graphical Models – year: 2007 ident: bib0010 article-title: Evolutionary Computation in Dynamic and Uncertain Environments – year: 2002 ident: bib0160 article-title: Bayesian Optimization Algorithm: From Single Level to Hierarchy – volume: 1498 start-page: 119 year: 1998 end-page: 128 ident: bib0065 article-title: Creating robust solutions by means of an evolutionary algorithm, parallel problem solving from nature-PPSN V publication-title: Lect. Notes Comput. Sci. – volume: 47 start-page: 19 year: 2013 end-page: 35 ident: bib0155 article-title: New approximation assisted multi-objective collaborative robust optimization (new AA-McRO) under interval uncertainty publication-title: Struct. Multidiscip. Optim. – start-page: 13 year: 1998 end-page: 24 ident: bib0100 article-title: On the automatic design of robust electronics through artificial evolution publication-title: International Conference on Evolvable Systems: From Biology to Hardware – volume: 15 start-page: 311 year: 2011 end-page: 326 ident: bib0190 article-title: Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments publication-title: Soft Comput. – volume: 7 start-page: 131 year: 1993 ident: 10.1016/j.asoc.2017.03.042_bib0175 article-title: Multimodal deceptive functions publication-title: Complex Syst. – year: 2008 ident: 10.1016/j.asoc.2017.03.042_bib0030 article-title: Embedded evolutionary multi-objective optimization for worst case robustness – year: 2008 ident: 10.1016/j.asoc.2017.03.042_bib0070 article-title: Evolutionary multi-objective robust optimization – volume: 15 start-page: 311 year: 2011 ident: 10.1016/j.asoc.2017.03.042_bib0190 article-title: Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments publication-title: Soft Comput. doi: 10.1007/s00500-010-0547-5 – volume: 5 start-page: 3 year: 2013 ident: 10.1016/j.asoc.2017.03.042_bib0135 article-title: A framework for finding robust optimal solutions over time publication-title: Memet. Comput. doi: 10.1007/s12293-012-0090-2 – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2017.03.042_bib0045 article-title: Active robust optimization: enhancing robustness to uncertain environments publication-title: IEEE Trans. Cybern. – volume: 41 start-page: 1601 year: 2003 ident: 10.1016/j.asoc.2017.03.042_bib0105 article-title: Robust-optimal design of a lightweight space structure using a genetic algorithm publication-title: AIAA J. doi: 10.2514/2.2114 – volume: 33 start-page: 321 issue: 1 year: 1986 ident: 10.1016/j.asoc.2017.03.042_bib0195 article-title: Multiple test procedures for arbitrary dependence structures publication-title: Metrika doi: 10.1007/BF01894765 – start-page: 2123 year: 2011 ident: 10.1016/j.asoc.2017.03.042_bib0125 article-title: Towards practical evolutionary robust multi-objective optimization – year: 2007 ident: 10.1016/j.asoc.2017.03.042_bib0170 – year: 2007 ident: 10.1016/j.asoc.2017.03.042_bib0050 article-title: An evolutionary approach for assessing the degree of robustness of solutions to multi-objective models – year: 2007 ident: 10.1016/j.asoc.2017.03.042_bib0020 article-title: Evolving the tradeoffs between Pareto-optimality and robustness in multi-objective evolutionary algorithms – volume: 10 year: 2006 ident: 10.1016/j.asoc.2017.03.042_bib0055 article-title: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.859465 – year: 2007 ident: 10.1016/j.asoc.2017.03.042_bib0075 article-title: Deterministic robust optimal design based on standard crowding genetic algorithm – start-page: 13 year: 1998 ident: 10.1016/j.asoc.2017.03.042_bib0100 article-title: On the automatic design of robust electronics through artificial evolution – volume: 1 start-page: 61 year: 2011 ident: 10.1016/j.asoc.2017.03.042_bib0145 article-title: Surrogate-assisted evolutionary computation: recent advances and future challenge publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.05.001 – volume: 133 start-page: 2 year: 2011 ident: 10.1016/j.asoc.2017.03.042_bib0150 article-title: Multi-objective robust optimization under interval uncertainty using online approximation and constraint cuts publication-title: J. Mech. Des. doi: 10.1115/1.4003918 – year: 2001 ident: 10.1016/j.asoc.2017.03.042_bib0115 article-title: Chance-constrained optimization using genetic algorithms: an application in air quality management – year: 2002 ident: 10.1016/j.asoc.2017.03.042_bib0160 – year: 2007 ident: 10.1016/j.asoc.2017.03.042_bib0015 article-title: Single/multi-objective inverse robust evolutionary design methodology in the presence of uncertainty – volume: 1498 start-page: 119 year: 1998 ident: 10.1016/j.asoc.2017.03.042_bib0065 article-title: Creating robust solutions by means of an evolutionary algorithm, parallel problem solving from nature-PPSN V publication-title: Lect. Notes Comput. Sci. doi: 10.1007/BFb0056855 – start-page: 229 year: 2009 ident: 10.1016/j.asoc.2017.03.042_bib0035 article-title: Evolving robust routes – volume: 49 start-page: 771 year: 2014 ident: 10.1016/j.asoc.2017.03.042_bib0040 article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-1010-x – volume: 27 start-page: 907 year: 2012 ident: 10.1016/j.asoc.2017.03.042_bib0060 article-title: Evolutionary optimization: pitfalls and booby traps publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-012-1274-4 – volume: 6943 start-page: 404 year: 2011 ident: 10.1016/j.asoc.2017.03.042_bib0090 article-title: Robust optimization by means of vegetative reproduction, lecture notes in computer science publication-title: Adapt. Intell. Syst. doi: 10.1007/978-3-642-23857-4_39 – year: 2002 ident: 10.1016/j.asoc.2017.03.042_bib0130 article-title: Searching for robust solutions – volume: 35 start-page: 5477 year: 1996 ident: 10.1016/j.asoc.2017.03.042_bib0080 article-title: Robust optical coating design with evolution strategies publication-title: Appl. Opt. doi: 10.1364/AO.35.005477 – volume: 21 start-page: 13 year: 2013 ident: 10.1016/j.asoc.2017.03.042_bib0140 article-title: Evolution by adapting surrogates publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00079 – volume: 2 start-page: 162 year: 1998 ident: 10.1016/j.asoc.2017.03.042_bib0085 article-title: Robustdesign of multilayer optical coatings by means of evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.738986 – start-page: 90 year: 1992 ident: 10.1016/j.asoc.2017.03.042_bib0095 article-title: Design of fault tolerant neural networks for pattern classification – volume: 334–335 start-page: 44 year: 2016 ident: 10.1016/j.asoc.2017.03.042_bib0185 article-title: Biasing the transition of Bayesian optimization algorithm between Markov chain states in dynamic environments publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.11.030 – volume: 48 start-page: 259 year: 2012 ident: 10.1016/j.asoc.2017.03.042_bib0005 article-title: A fast robust optimization methodology based on polynomial chaos and evolutionary algorithm for inverse problems publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2175438 – volume: 75 start-page: 383 issue: 2 year: 1988 ident: 10.1016/j.asoc.2017.03.042_bib0200 article-title: A stagewise rejective multiple test procedure based on a modified Bonferroni test publication-title: Biometrika doi: 10.1093/biomet/75.2.383 – year: 2013 ident: 10.1016/j.asoc.2017.03.042_bib0025 article-title: Multi-objective worst case optimization by means of evolutionary algorithms – volume: 56 start-page: 1 year: 2013 ident: 10.1016/j.asoc.2017.03.042_bib0180 article-title: Holographic memory-based Bayesian optimization algorithm (HM-BOA) in dynamic environments publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-013-4829-2 – start-page: 369 year: 1999 ident: 10.1016/j.asoc.2017.03.042_bib0110 article-title: Chance-constrained genetic algorithms – year: 2007 ident: 10.1016/j.asoc.2017.03.042_bib0010 – year: 2005 ident: 10.1016/j.asoc.2017.03.042_bib0165 – volume: 133 year: 2011 ident: 10.1016/j.asoc.2017.03.042_bib0120 article-title: Practical robust design optimization using evolutionary algorithms publication-title: J. Mech. Des. doi: 10.1115/1.4004807 – volume: 47 start-page: 19 year: 2013 ident: 10.1016/j.asoc.2017.03.042_bib0155 article-title: New approximation assisted multi-objective collaborative robust optimization (new AA-McRO) under interval uncertainty publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-012-0816-2 |
| SSID | ssj0016928 |
| Score | 2.2420924 |
| Snippet | [Display omitted]
•We focus on Bayesian optimization algorithm (BOA) for robust optimization.•We adopt BOA for speeding up the probabilistic robustness... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1125 |
| SubjectTerms | Bayesian networks Bayesian optimization algorithm Probabilistic robustness evaluation Robust optimization |
| Title | Robust optimization using Bayesian optimization algorithm: Early detection of non-robust solutions |
| URI | https://dx.doi.org/10.1016/j.asoc.2017.03.042 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw7cUFjbpEnLbUxM4zWhwaTdoqRNxtBeGt2BC7-dpE0nJqEdOFVt7aayHTuWPtsAXCpMUyXTEMUsDBBJA40EkyHytVE4jhNN83E-z13a6ZOHQTiogFZZC2Nhlc73Fz4999buScNJszEfjRqvJvOISExMCDZGSqmtKCeE2SkG198rmIdP43y-qiVGltoVzhQYL2EkYOFdLG90SoK_g9OvgNPeAzvupAibxc_sg4qaHoDdcgoDdJvyEMjeTC4_Mzgzm3_iqiqhhbMP4a34UrZIcv2dGA9ni1H2PrmBeXtjmKosB2QZOg2nsylaFF9cmeUR6Lfv3lod5CYnoAR7XoZ0wDwmGaPET3Ao_JQSDwdC4jSW2BMaq0j6QvlE2AoRIVIcMSKoNiHNZDAqxsegapZTJwASqqgMgjhNqDKpo9GrwgnTkVBK6zgiNeCXIuOJaytup1uMeYkf--BWzNyKmXuYGzHXwNWKZ1401dhIHZaa4GumwY3X38B3-k--M7Bt7wrMyjmoZoulujAnj0zWc9Oqg61mq_f0Yq_3j53uD-E13Bc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZME9uxEzaoQOXRDkAlNstO7FJUmqqkAwu_HTtxKiohBtb4nETfne980nd3AJxqwjKtsgglPMKIZtggyVWEQmMVTpLUsHKcT6fL2j169xK9LIBWXQvjaJXe91c-vfTW_knTo9kcDwbNJ5t5xDShNgRbI2WML4IlGmHuMrDzrxnPI2RJOWDVSSMn7itnKpKXtBA4fhcvO51S_Ht0-hFxbtbBqr8qwsvqbzbAgh5tgrV6DAP0p3ILqMdcTT8KmNvT_-7LKqHjs_fhlfzUrkpyfk0O-_lkULy-X8CyvzHMdFEysqycgaN8hCbVG2d2uQ16N9fPrTbyoxNQSoKgQAbzgCvOGQ1TEskwYzQgWCqSJYoE0hAdq1DqkEpXIiJlRmJOJTM2ptkURidkBzTs5_QugJRppjBOspRpmztaxWqSchNLrY1JYroHwhoykfq-4m68xVDUBLI34WAWDmYREGFh3gNnsz3jqqvGn9JRrQkxZxvCuv0_9u3_c98JWG4_dx7Ew233_gCsuJWKwHIIGsVkqo_sNaRQx6WZfQM1ntwX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimization+using+Bayesian+optimization+algorithm%3A+Early+detection+of+non-robust+solutions&rft.jtitle=Applied+soft+computing&rft.au=Kaedi%2C+Marjan&rft.au=Ahn%2C+Chang+Wook&rft.date=2017-12-01&rft.issn=1568-4946&rft.volume=61&rft.spage=1125&rft.epage=1138&rft_id=info:doi/10.1016%2Fj.asoc.2017.03.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_03_042 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |