An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation
Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b) skull stripping simulated brain image, (c) manual segmented CSF, GM and WM images, (d) IIFCM algorithm, (e) IFCM algorithm, (f) FLICM algori...
Saved in:
Published in | Applied soft computing Vol. 46; pp. 543 - 557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2015.12.022 |
Cover
Abstract | Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b) skull stripping simulated brain image, (c) manual segmented CSF, GM and WM images, (d) IIFCM algorithm, (e) IFCM algorithm, (f) FLICM algorithm, (g) EnFCM algorithm, (h) FGFCM algorithm, (i) FCM_S1 algorithm, (j) FCM_S2 algorithm, (k) ImFCM algorithm.
The segmentation of brain magnetic resonance (MR) images plays an important role in the computer-aided diagnosis and clinical research. However, due to presence of noise and uncertainty on the boundary between different tissues in the brain image, the segmentation of brain image is a challenging task. Many variants of standard fuzzy c-means (FCM) algorithm have been proposed to handle the noise. Intuitionistic fuzzy c-means (IFCM) algorithm, one of the variants of FCM, is found suitable for image segmentation. It incorporates the advantage of intuitionistic fuzzy sets theory. The IFCM successfully handles the uncertainty but it is sensitive to noise as it does not incorporate any local spatial information. In this paper, we have presented a novel approach, named an improved intuitionistic fuzzy c-means (IIFCM), which considers the local spatial information in an intuitionistic fuzzy way. The IIFCM preserves the image details, is insensitive to noise, and is free of requirement of any parameter tuning. The obtained segmentation results on synthetic square image, real and simulated MRI brain image demonstrate the efficacy of the IIFCM algorithm and superior performance in comparison to existing segmentation methods. A nonparametric statistical analysis is also carried out to show the significant performance of the IIFCM algorithm in comparison to other existing segmentation algorithms. |
---|---|
AbstractList | Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b) skull stripping simulated brain image, (c) manual segmented CSF, GM and WM images, (d) IIFCM algorithm, (e) IFCM algorithm, (f) FLICM algorithm, (g) EnFCM algorithm, (h) FGFCM algorithm, (i) FCM_S1 algorithm, (j) FCM_S2 algorithm, (k) ImFCM algorithm.
The segmentation of brain magnetic resonance (MR) images plays an important role in the computer-aided diagnosis and clinical research. However, due to presence of noise and uncertainty on the boundary between different tissues in the brain image, the segmentation of brain image is a challenging task. Many variants of standard fuzzy c-means (FCM) algorithm have been proposed to handle the noise. Intuitionistic fuzzy c-means (IFCM) algorithm, one of the variants of FCM, is found suitable for image segmentation. It incorporates the advantage of intuitionistic fuzzy sets theory. The IFCM successfully handles the uncertainty but it is sensitive to noise as it does not incorporate any local spatial information. In this paper, we have presented a novel approach, named an improved intuitionistic fuzzy c-means (IIFCM), which considers the local spatial information in an intuitionistic fuzzy way. The IIFCM preserves the image details, is insensitive to noise, and is free of requirement of any parameter tuning. The obtained segmentation results on synthetic square image, real and simulated MRI brain image demonstrate the efficacy of the IIFCM algorithm and superior performance in comparison to existing segmentation methods. A nonparametric statistical analysis is also carried out to show the significant performance of the IIFCM algorithm in comparison to other existing segmentation algorithms. |
Author | Verma, Hanuman Sharan, Aditi Agrawal, R.K. |
Author_xml | – sequence: 1 givenname: Hanuman surname: Verma fullname: Verma, Hanuman email: hv4231@gmail.com – sequence: 2 givenname: R.K. surname: Agrawal fullname: Agrawal, R.K. email: rkajnu@gmail.com – sequence: 3 givenname: Aditi surname: Sharan fullname: Sharan, Aditi email: aditisharan@mail.jnu.ac.in |
BookMark | eNp9kE1qwzAQhUVJoUnaC3SlC9iV5MSWoZsQ-geBbtq1kKVRqmBLQVICyekrN1110dUMM3xv3rwZmjjvAKF7SkpKaP2wK2X0qmSELkvKSsLYFZpS3rCirTmd5H5Z82LRLuobNItxRzLUMj5F55XDdtgHfwSNrUsHm6x3NiarsDmczyesigGki1j1h5ggWLfFst_6YNPXkAnlw94HmcZ575Xs88z4MMhRB-cOd0Ha8YjcAo6wHcCln-Utujayj3D3W-fo8_npY_1abN5f3tarTaEqQlJhaGv4wnDeQNOpplKSL5Vc1pS0wAg3nHG90IppWrNGd11TtVJL1siOGK0NqeaIX3RV8DEGMELZi4OUnfWCEjFmKHZizFCMGQrKRM4wo-wPug_5kXD6H3q8QJCfOloIIioLToG2AVQS2tv_8G_okZI3 |
CitedBy_id | crossref_primary_10_1016_j_compeleceng_2017_01_017 crossref_primary_10_1109_ACCESS_2019_2924957 crossref_primary_10_1007_s40747_024_01459_3 crossref_primary_10_3390_s21030696 crossref_primary_10_1016_j_asoc_2019_02_032 crossref_primary_10_1007_s41066_021_00259_1 crossref_primary_10_1109_TFUZZ_2020_3044253 crossref_primary_10_1109_TCYB_2019_2925130 crossref_primary_10_1007_s00034_022_02175_4 crossref_primary_10_1080_13675567_2020_1870674 crossref_primary_10_1049_iet_ipr_2018_5597 crossref_primary_10_1007_s00500_023_09379_z crossref_primary_10_5004_dwt_2018_22085 crossref_primary_10_1109_JSTARS_2018_2846603 crossref_primary_10_1007_s11265_019_01497_y crossref_primary_10_1080_01605682_2017_1421849 crossref_primary_10_1155_2021_6664439 crossref_primary_10_1007_s11517_022_02688_9 crossref_primary_10_1038_s41598_024_56922_5 crossref_primary_10_1007_s10278_023_00899_6 crossref_primary_10_1007_s41095_021_0239_3 crossref_primary_10_1016_j_asoc_2022_109718 crossref_primary_10_1109_JBHI_2018_2884208 crossref_primary_10_1016_j_asoc_2021_107435 crossref_primary_10_1155_2022_3814252 crossref_primary_10_1049_ipr2_12064 crossref_primary_10_1088_1742_6596_1577_1_012014 crossref_primary_10_1007_s10489_022_04315_4 crossref_primary_10_1007_s11042_023_14512_z crossref_primary_10_3233_JIFS_190440 crossref_primary_10_1007_s13132_022_00972_5 crossref_primary_10_1016_j_matcom_2025_02_012 crossref_primary_10_3390_app12157385 crossref_primary_10_1002_jemt_24413 crossref_primary_10_1016_j_asoc_2024_111355 crossref_primary_10_1080_03772063_2019_1604176 crossref_primary_10_1109_ACCESS_2021_3070044 crossref_primary_10_1007_s00500_019_04169_y crossref_primary_10_1007_s11042_022_13959_w crossref_primary_10_1109_TFUZZ_2018_2852289 crossref_primary_10_1007_s11063_021_10441_w crossref_primary_10_1016_j_eswa_2022_117728 crossref_primary_10_2174_1573405615666190808105746 crossref_primary_10_1007_s11042_018_6005_6 crossref_primary_10_2174_1573405614666180718122353 crossref_primary_10_1049_iet_ipr_2017_0399 crossref_primary_10_1016_j_asoc_2019_105928 crossref_primary_10_1155_2022_6450469 crossref_primary_10_1016_j_neucom_2018_05_116 crossref_primary_10_3390_rs14153713 crossref_primary_10_1016_j_asoc_2020_106318 crossref_primary_10_1016_j_ins_2017_03_001 crossref_primary_10_1016_j_bspc_2023_105348 crossref_primary_10_1007_s10462_022_10236_y crossref_primary_10_3390_info11070351 crossref_primary_10_7717_peerj_cs_654 crossref_primary_10_1016_j_bspc_2023_104925 crossref_primary_10_4018_JCIT_302244 crossref_primary_10_1007_s40815_023_01644_5 crossref_primary_10_3390_math10214056 crossref_primary_10_1016_j_knosys_2021_107432 crossref_primary_10_1007_s11831_018_9257_4 crossref_primary_10_3233_JIFS_221990 crossref_primary_10_1016_j_measurement_2022_110954 crossref_primary_10_4018_IJFSA_2019100101 crossref_primary_10_1007_s42979_023_01701_8 crossref_primary_10_3233_JIFS_192005 crossref_primary_10_1007_s11042_022_12336_x crossref_primary_10_3103_S0146411622010047 crossref_primary_10_1016_j_neucom_2019_01_042 crossref_primary_10_1007_s00500_018_3359_7 crossref_primary_10_1007_s12652_021_03390_8 crossref_primary_10_1016_j_ins_2024_121205 crossref_primary_10_1016_j_neucom_2021_05_073 crossref_primary_10_1109_ACCESS_2020_2969806 crossref_primary_10_1109_ACCESS_2018_2885440 crossref_primary_10_1002_ima_22211 crossref_primary_10_2139_ssrn_4158293 crossref_primary_10_1049_iet_ipr_2016_0891 crossref_primary_10_3390_en15217863 crossref_primary_10_1007_s42235_021_0049_4 crossref_primary_10_3233_JIFS_201178 crossref_primary_10_1007_s00521_016_2786_6 crossref_primary_10_1016_j_asoc_2021_107119 crossref_primary_10_1049_iet_ipr_2017_0760 crossref_primary_10_3390_rs14051117 crossref_primary_10_1016_j_eswa_2024_126239 crossref_primary_10_1007_s11760_021_01979_2 crossref_primary_10_1016_j_eswa_2021_115216 crossref_primary_10_1109_TSUSC_2024_3387727 crossref_primary_10_3233_JIFS_179579 crossref_primary_10_1109_ACCESS_2021_3125052 crossref_primary_10_1155_2020_1386839 crossref_primary_10_1109_TCYB_2020_2994235 crossref_primary_10_1109_ACCESS_2019_2896635 crossref_primary_10_1109_TSMC_2019_2931699 crossref_primary_10_1016_j_asoc_2021_107245 crossref_primary_10_1016_j_engappai_2021_104209 crossref_primary_10_1016_j_asoc_2018_04_014 crossref_primary_10_1109_TFUZZ_2020_3037972 crossref_primary_10_3233_IDA_216058 crossref_primary_10_3233_JIFS_182750 crossref_primary_10_1016_j_asoc_2017_05_025 crossref_primary_10_1109_ACCESS_2022_3155869 crossref_primary_10_1007_s00500_021_06259_2 crossref_primary_10_1155_2020_1645479 crossref_primary_10_1007_s11042_020_09320_8 crossref_primary_10_1016_j_asoc_2016_08_020 crossref_primary_10_1016_j_asoc_2022_109939 crossref_primary_10_1016_j_eswa_2020_114329 crossref_primary_10_1016_j_compbiomed_2020_103776 crossref_primary_10_1088_2631_8695_acffa7 crossref_primary_10_1007_s00500_022_07269_4 crossref_primary_10_3390_math7010036 crossref_primary_10_1007_s00371_021_02319_8 crossref_primary_10_1007_s11760_021_02043_9 crossref_primary_10_1371_journal_pone_0282364 crossref_primary_10_1016_j_eswa_2019_04_050 crossref_primary_10_1007_s11042_018_5954_0 crossref_primary_10_1016_j_bspc_2021_102615 crossref_primary_10_3233_JIFS_200197 crossref_primary_10_1016_j_jfranklin_2022_11_017 crossref_primary_10_3390_e19110578 crossref_primary_10_1016_j_bbe_2018_12_003 crossref_primary_10_1007_s10462_024_11103_8 crossref_primary_10_1016_j_asoc_2018_05_034 crossref_primary_10_1080_2150704X_2019_1576949 crossref_primary_10_1109_TFUZZ_2019_2917809 |
Cites_doi | 10.1109/42.650887 10.1109/42.996338 10.1016/j.patcog.2006.07.011 10.1049/ip-vis:20000218 10.1016/j.mcm.2005.04.002 10.1109/42.650883 10.1016/0165-0114(95)00365-7 10.1080/03610928008827904 10.1109/TITB.2005.847500 10.1109/TSMCB.2004.831165 10.1016/S0019-9958(80)90156-4 10.1148/radiology.178.1.1984287 10.1016/j.swevo.2011.02.002 10.1109/TITB.2012.2185852 10.1016/j.neuroimage.2003.11.010 10.1016/S0165-0114(86)80034-3 10.1016/0895-6111(91)90081-6 10.3969/j.issn.1004-4132.2010.04.009 10.1109/42.511747 10.1016/S0165-0114(98)00244-9 10.1109/3468.668967 10.1504/IJBIDM.2008.017975 10.1007/s10700-007-9004-z 10.1016/0165-0114(94)90113-9 10.1006/cviu.2001.0951 10.1109/TIP.2010.2040763 10.1080/03081077908547452 10.1109/TIP.2011.2146190 10.1016/S0019-9958(65)90241-X 10.1016/j.neuroimage.2003.11.011 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2015.12.022 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 557 |
ExternalDocumentID | 10_1016_j_asoc_2015_12_022 S1568494615008017 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c300t-f19f84f887e7bc73ca85ca56109e208f828d4dc2d1627dbb739ada27ab0fddf03 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Wed Oct 01 02:32:05 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 23 02:24:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Intuitionistic fuzzy sets Image segmentation Magnetic resonance imaging Intuitionistic fuzzy c-means Fuzzy c-means |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f19f84f887e7bc73ca85ca56109e208f828d4dc2d1627dbb739ada27ab0fddf03 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2015_12_022 crossref_primary_10_1016_j_asoc_2015_12_022 elsevier_sciencedirect_doi_10_1016_j_asoc_2015_12_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 2016-09-00 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Suzuki, Toriwaki (bib0225) 1991; 15 Reddick, Glass, Cook, Elkin, Deaton (bib0235) 1997; 16 Liew, Leung, Lau (bib0275) 2000; 147 MacQueen (bib0255) 1967; 1 Vlachos, Sergiadis (bib0360) 2005 Atanassov (bib0305) 1986; 20 Xu (bib0340) 2007; 6 Rusinek, de Leon, George, Stylopoulos, Chandra, Smith, Rand, Mourino, Kowalski (bib0215) 1991; 178 Tolias, Panas (bib0265) 1998; 28 BrainWeb [online], available Hyung, Song, Lee (bib0345) 1994; 62 Cai, Chen, Zhang (bib0295) 2007; 40 Derrac, García, Molina, Herrera (bib0390) 2011; 1 Gupta, Agrawal, Kaur (bib0395) 2014 Wang (bib0350) 1997; 85 Szmidt, Kacprzyk (bib0365) 2000; 114 Zadeh (bib0320) 1965; 8 Ahmed, Yamany, Mohamed, Farag, Moriarty (bib0280) 2002; 21 Ji, Xia, Sun, Chen, Xia, Feng (bib0205) 2012; 16 Yager (bib0335) 1979; 44 Internet Brain Segmentation Repository (IBSR)[online], available Li, Huang, Ding, Gatenby, Metaxas, Gore (bib0245) 2011; 20 Pelekis, Iakovidis, Kotsifakos, Kopanakis (bib0310) 2008; 3 Brain Extraction Tool (BET) [online], available Shen, Sandham, Granat, Sterr (bib0210) 2005; 9 Pham (bib0270) 2001; 84 Narr, Thompson, Szeszko, Robinson, Jang, Woods, Kim, Hayashi, Asunction, Toga, Bilder (bib0220) 2004; 21 Yager (bib0330) 1979 Bezdek (bib0260) 1981 Xu, Wu (bib0315) 2010; 21 Wells, Grimson, Kikinis, Jolesz (bib0250) 1996; 15 Szilagyi, Benyo, Szilagyi, Adam (bib0290) 2003; 1 . Iman, Davenport (bib0400) 1980; 9 Chen, Zhang (bib0285) 2004; 34 Krinidis, Chatzis (bib0300) 2010; 19 Liu (bib0355) 2005; 42 Zijdenbos, Dawant (bib0370) 1994; 22 Sugeno (bib0325) 1977 Rohlfing, Brandt, Menzel, Maurer (bib0230) 2004; 21 Held, Kops, Krause, Wells, Kikinis, Muller-Gartner (bib0240) 1997; 16 Narr (10.1016/j.asoc.2015.12.022_bib0220) 2004; 21 Xu (10.1016/j.asoc.2015.12.022_bib0315) 2010; 21 Zijdenbos (10.1016/j.asoc.2015.12.022_bib0370) 1994; 22 Gupta (10.1016/j.asoc.2015.12.022_bib0395) 2014 Liew (10.1016/j.asoc.2015.12.022_bib0275) 2000; 147 MacQueen (10.1016/j.asoc.2015.12.022_bib0255) 1967; 1 Pham (10.1016/j.asoc.2015.12.022_bib0270) 2001; 84 Vlachos (10.1016/j.asoc.2015.12.022_bib0360) 2005 10.1016/j.asoc.2015.12.022_bib0380 Rusinek (10.1016/j.asoc.2015.12.022_bib0215) 1991; 178 Rohlfing (10.1016/j.asoc.2015.12.022_bib0230) 2004; 21 Li (10.1016/j.asoc.2015.12.022_bib0245) 2011; 20 Szilagyi (10.1016/j.asoc.2015.12.022_bib0290) 2003; 1 10.1016/j.asoc.2015.12.022_bib0375 Ahmed (10.1016/j.asoc.2015.12.022_bib0280) 2002; 21 Chen (10.1016/j.asoc.2015.12.022_bib0285) 2004; 34 Suzuki (10.1016/j.asoc.2015.12.022_bib0225) 1991; 15 Sugeno (10.1016/j.asoc.2015.12.022_bib0325) 1977 Atanassov (10.1016/j.asoc.2015.12.022_bib0305) 1986; 20 Cai (10.1016/j.asoc.2015.12.022_bib0295) 2007; 40 Wells (10.1016/j.asoc.2015.12.022_bib0250) 1996; 15 Derrac (10.1016/j.asoc.2015.12.022_bib0390) 2011; 1 Tolias (10.1016/j.asoc.2015.12.022_bib0265) 1998; 28 Krinidis (10.1016/j.asoc.2015.12.022_bib0300) 2010; 19 Xu (10.1016/j.asoc.2015.12.022_bib0340) 2007; 6 Hyung (10.1016/j.asoc.2015.12.022_bib0345) 1994; 62 Bezdek (10.1016/j.asoc.2015.12.022_bib0260) 1981 Iman (10.1016/j.asoc.2015.12.022_bib0400) 1980; 9 Liu (10.1016/j.asoc.2015.12.022_bib0355) 2005; 42 Zadeh (10.1016/j.asoc.2015.12.022_bib0320) 1965; 8 Ji (10.1016/j.asoc.2015.12.022_bib0205) 2012; 16 Reddick (10.1016/j.asoc.2015.12.022_bib0235) 1997; 16 Pelekis (10.1016/j.asoc.2015.12.022_bib0310) 2008; 3 Shen (10.1016/j.asoc.2015.12.022_bib0210) 2005; 9 Wang (10.1016/j.asoc.2015.12.022_bib0350) 1997; 85 10.1016/j.asoc.2015.12.022_bib0385 Yager (10.1016/j.asoc.2015.12.022_bib0335) 1979; 44 Yager (10.1016/j.asoc.2015.12.022_bib0330) 1979 Held (10.1016/j.asoc.2015.12.022_bib0240) 1997; 16 Szmidt (10.1016/j.asoc.2015.12.022_bib0365) 2000; 114 |
References_xml | – volume: 40 start-page: 825 year: 2007 end-page: 838 ident: bib0295 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit. – volume: 20 start-page: 2007 year: 2011 end-page: 2016 ident: bib0245 article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI publication-title: IEEE Trans. Image Process. – year: 1977 ident: bib0325 article-title: Fuzzy Measures and Fuzzy Integrals – A Survey – volume: 42 start-page: 61 year: 2005 end-page: 70 ident: bib0355 article-title: New similarity measures between intuitionistic fuzzy sets and between elements publication-title: Math. Comput. Modell. – start-page: 2 year: 2005 end-page: 7 ident: bib0360 article-title: Towards intuitionistic fuzzy image processing publication-title: International Conference on CIMCA-IAWTIC – volume: 21 start-page: 1428 year: 2004 end-page: 1442 ident: bib0230 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains publication-title: Neuroimage – volume: 28 start-page: 359 year: 1998 end-page: 369 ident: bib0265 article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 221 year: 1979 end-page: 229 ident: bib0330 article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval publication-title: Int. J. Gen. Syst. – volume: 22 start-page: 401 year: 1994 end-page: 465 ident: bib0370 article-title: Brain segmentation and white matter lesion detection in MR images publication-title: Crit. Rev. Biomed. Eng. – volume: 16 start-page: 911 year: 1997 end-page: 918 ident: bib0235 article-title: Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks publication-title: IEEE Trans. Med. Imaging – volume: 85 start-page: 305 year: 1997 end-page: 309 ident: bib0350 article-title: New similarity measures on fuzzy sets and on elements publication-title: Fuzzy Sets Syst. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: bib0280 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: bib0285 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. – volume: 147 start-page: 185 year: 2000 end-page: 192 ident: bib0275 article-title: Fuzzy image clustering incorporating spatial continuity publication-title: IEE Proc. Vis. Image Signal Process. – volume: 114 start-page: 505 year: 2000 end-page: 518 ident: bib0365 article-title: Distances between intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. – start-page: 1 year: 2014 end-page: 14 ident: bib0395 article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods publication-title: Soft Comput. – volume: 20 start-page: 87 year: 1986 end-page: 96 ident: bib0305 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib0320 article-title: Fuzzy sets publication-title: Inf. Control – volume: 62 start-page: 291 year: 1994 end-page: 293 ident: bib0345 article-title: Similarity measure between fuzzy sets and between elements publication-title: Fuzzy Sets Syst. – volume: 15 start-page: 233 year: 1991 end-page: 240 ident: bib0225 article-title: Automatic segmentation of head MRI images by knowledge guided thresholding publication-title: Comput. Med. Imaging Graph. – volume: 1 start-page: 281 year: 1967 end-page: 297 ident: bib0255 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability – volume: 1 start-page: 724 year: 2003 end-page: 726 ident: bib0290 article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm publication-title: Annu. Int. Conf. IEEE EMB – reference: BrainWeb [online], available: – reference: Internet Brain Segmentation Repository (IBSR)[online], available: – volume: 9 start-page: 571 year: 1980 end-page: 595 ident: bib0400 article-title: Approximations of the critical region of the Friedman statistic publication-title: Commun. Stat. Theory Methods – volume: 178 start-page: 109 year: 1991 end-page: 114 ident: bib0215 article-title: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging publication-title: Radiology – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: bib0300 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. – volume: 21 start-page: 580 year: 2010 end-page: 590 ident: bib0315 article-title: Intuitionistic fuzzy c-means clustering algorithms publication-title: J. Syst. Eng. Electron. – volume: 6 start-page: 109 year: 2007 end-page: 121 ident: bib0340 article-title: Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making publication-title: Fuzzy Optim. Decis. Mak. – volume: 84 start-page: 285 year: 2001 end-page: 297 ident: bib0270 article-title: Spatial models for fuzzy clustering publication-title: Comput. Vision Image Underst. – volume: 9 start-page: 459 year: 2005 end-page: 467 ident: bib0210 article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: . – volume: 44 start-page: 236 year: 1979 end-page: 260 ident: bib0335 article-title: On the measure of fuzziness and negation. Part II: Lattices publication-title: Inf. Control – volume: 16 start-page: 878 year: 1997 end-page: 886 ident: bib0240 article-title: Markov random field segmentation of brain MR images publication-title: IEEE Trans. Med. Imaging – volume: 3 start-page: 45 year: 2008 end-page: 65 ident: bib0310 article-title: Fuzzy clustering of intuitionistic fuzzy data publication-title: Int. J. Bus. Intell. Data Min. – volume: 21 start-page: 1563 year: 2004 end-page: 1575 ident: bib0220 article-title: Regional specificity of hippocampal volume reductions in first-episode schizophrenia publication-title: Neuroimage – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0390 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – year: 1981 ident: bib0260 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – reference: Brain Extraction Tool (BET) [online], available: – volume: 15 start-page: 429 year: 1996 end-page: 442 ident: bib0250 article-title: Adaptive segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 16 start-page: 339 year: 2012 end-page: 347 ident: bib0205 article-title: Fuzzy local Gaussian mixture model for brain MR image segmentation publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 16 start-page: 911 issue: 6 year: 1997 ident: 10.1016/j.asoc.2015.12.022_bib0235 article-title: Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.650887 – volume: 21 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.asoc.2015.12.022_bib0280 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 40 start-page: 825 issue: 3 year: 2007 ident: 10.1016/j.asoc.2015.12.022_bib0295 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.07.011 – volume: 147 start-page: 185 issue: 2 year: 2000 ident: 10.1016/j.asoc.2015.12.022_bib0275 article-title: Fuzzy image clustering incorporating spatial continuity publication-title: IEE Proc. Vis. Image Signal Process. doi: 10.1049/ip-vis:20000218 – ident: 10.1016/j.asoc.2015.12.022_bib0385 – volume: 42 start-page: 61 issue: 1 year: 2005 ident: 10.1016/j.asoc.2015.12.022_bib0355 article-title: New similarity measures between intuitionistic fuzzy sets and between elements publication-title: Math. Comput. Modell. doi: 10.1016/j.mcm.2005.04.002 – volume: 16 start-page: 878 issue: 6 year: 1997 ident: 10.1016/j.asoc.2015.12.022_bib0240 article-title: Markov random field segmentation of brain MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.650883 – volume: 22 start-page: 401 issue: 5-6 year: 1994 ident: 10.1016/j.asoc.2015.12.022_bib0370 article-title: Brain segmentation and white matter lesion detection in MR images publication-title: Crit. Rev. Biomed. Eng. – volume: 85 start-page: 305 issue: 3 year: 1997 ident: 10.1016/j.asoc.2015.12.022_bib0350 article-title: New similarity measures on fuzzy sets and on elements publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(95)00365-7 – volume: 9 start-page: 571 issue: 6 year: 1980 ident: 10.1016/j.asoc.2015.12.022_bib0400 article-title: Approximations of the critical region of the Friedman statistic publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610928008827904 – volume: 9 start-page: 459 issue: 3 year: 2005 ident: 10.1016/j.asoc.2015.12.022_bib0210 article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2005.847500 – year: 1981 ident: 10.1016/j.asoc.2015.12.022_bib0260 – volume: 34 start-page: 1907 issue: 4 year: 2004 ident: 10.1016/j.asoc.2015.12.022_bib0285 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2004.831165 – volume: 44 start-page: 236 issue: 3 year: 1979 ident: 10.1016/j.asoc.2015.12.022_bib0335 article-title: On the measure of fuzziness and negation. Part II: Lattices publication-title: Inf. Control doi: 10.1016/S0019-9958(80)90156-4 – volume: 178 start-page: 109 issue: 1 year: 1991 ident: 10.1016/j.asoc.2015.12.022_bib0215 article-title: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging publication-title: Radiology doi: 10.1148/radiology.178.1.1984287 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.asoc.2015.12.022_bib0390 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 16 start-page: 339 issue: 3 year: 2012 ident: 10.1016/j.asoc.2015.12.022_bib0205 article-title: Fuzzy local Gaussian mixture model for brain MR image segmentation publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2185852 – volume: 21 start-page: 1428 issue: 4 year: 2004 ident: 10.1016/j.asoc.2015.12.022_bib0230 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.11.010 – volume: 20 start-page: 87 issue: 1 year: 1986 ident: 10.1016/j.asoc.2015.12.022_bib0305 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(86)80034-3 – ident: 10.1016/j.asoc.2015.12.022_bib0380 – volume: 15 start-page: 233 issue: 4 year: 1991 ident: 10.1016/j.asoc.2015.12.022_bib0225 article-title: Automatic segmentation of head MRI images by knowledge guided thresholding publication-title: Comput. Med. Imaging Graph. doi: 10.1016/0895-6111(91)90081-6 – volume: 1 start-page: 724 year: 2003 ident: 10.1016/j.asoc.2015.12.022_bib0290 article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm publication-title: Annu. Int. Conf. IEEE EMB – start-page: 1 year: 2014 ident: 10.1016/j.asoc.2015.12.022_bib0395 article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods publication-title: Soft Comput. – volume: 21 start-page: 580 issue: 4 year: 2010 ident: 10.1016/j.asoc.2015.12.022_bib0315 article-title: Intuitionistic fuzzy c-means clustering algorithms publication-title: J. Syst. Eng. Electron. doi: 10.3969/j.issn.1004-4132.2010.04.009 – volume: 15 start-page: 429 issue: 4 year: 1996 ident: 10.1016/j.asoc.2015.12.022_bib0250 article-title: Adaptive segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.511747 – year: 1977 ident: 10.1016/j.asoc.2015.12.022_bib0325 – volume: 114 start-page: 505 issue: 3 year: 2000 ident: 10.1016/j.asoc.2015.12.022_bib0365 article-title: Distances between intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(98)00244-9 – volume: 28 start-page: 359 issue: 3 year: 1998 ident: 10.1016/j.asoc.2015.12.022_bib0265 article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/3468.668967 – volume: 3 start-page: 45 issue: 1 year: 2008 ident: 10.1016/j.asoc.2015.12.022_bib0310 article-title: Fuzzy clustering of intuitionistic fuzzy data publication-title: Int. J. Bus. Intell. Data Min. doi: 10.1504/IJBIDM.2008.017975 – volume: 6 start-page: 109 issue: 2 year: 2007 ident: 10.1016/j.asoc.2015.12.022_bib0340 article-title: Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making publication-title: Fuzzy Optim. Decis. Mak. doi: 10.1007/s10700-007-9004-z – volume: 62 start-page: 291 issue: 3 year: 1994 ident: 10.1016/j.asoc.2015.12.022_bib0345 article-title: Similarity measure between fuzzy sets and between elements publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90113-9 – volume: 84 start-page: 285 issue: 2 year: 2001 ident: 10.1016/j.asoc.2015.12.022_bib0270 article-title: Spatial models for fuzzy clustering publication-title: Comput. Vision Image Underst. doi: 10.1006/cviu.2001.0951 – start-page: 2 year: 2005 ident: 10.1016/j.asoc.2015.12.022_bib0360 article-title: Towards intuitionistic fuzzy image processing publication-title: International Conference on CIMCA-IAWTIC – ident: 10.1016/j.asoc.2015.12.022_bib0375 – volume: 1 start-page: 281 issue: 14 year: 1967 ident: 10.1016/j.asoc.2015.12.022_bib0255 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability – volume: 19 start-page: 1328 issue: 5 year: 2010 ident: 10.1016/j.asoc.2015.12.022_bib0300 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2040763 – start-page: 221 year: 1979 ident: 10.1016/j.asoc.2015.12.022_bib0330 article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval publication-title: Int. J. Gen. Syst. doi: 10.1080/03081077908547452 – volume: 20 start-page: 2007 issue: 7 year: 2011 ident: 10.1016/j.asoc.2015.12.022_bib0245 article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2146190 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 10.1016/j.asoc.2015.12.022_bib0320 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 21 start-page: 1563 issue: 4 year: 2004 ident: 10.1016/j.asoc.2015.12.022_bib0220 article-title: Regional specificity of hippocampal volume reductions in first-episode schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.11.011 |
SSID | ssj0016928 |
Score | 2.5297806 |
Snippet | Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 543 |
SubjectTerms | Fuzzy c-means Image segmentation Intuitionistic fuzzy c-means Intuitionistic fuzzy sets Magnetic resonance imaging |
Title | An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation |
URI | https://dx.doi.org/10.1016/j.asoc.2015.12.022 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCd-mSpI-gTtuAQ7eCtUg9KI2GUcN9GUUTA94EPl0Ftmy49hAP_e29kyijBQoPmSQRR0k4ne6OxHffEfLOxJnlPFPMS-8ZpNSOqbxImBTe6IznTnmsHf42zSaz5PM8nZ-RUVcLg7DK4Ptbn9546zAyCNocbKpqcAsrjzwpEmQ0h7SHY0U5sn-BTX_4fYR58Kxo-quiMEPpUDjTYrwUaADhXWmzJSjE_4PTXwFnfEnOQ6ZIh-3LPCNnrn5OLrouDDT8lC_IYVjTqtkacJZWEEIaEFbDv0z9_nB4oIatHEQkapZ7pEWAYEXVcrHeVrufK4rsDC2ZMY43oY0GNlW8D4UzqrGPBDwEfA_95RarUK9UvySz8ce70YSFjgrMxFG0Y54XPk88OBYntZGxUXlqFKZQhRNR7mH5ZRNrhOWZkFZrGRfKKiGVjry1PoqvSK9e1-4VoYVJjbG-SBX3idRaRypNbWa8kGAVOu4T3qmyNIFuHLteLMsOV3ZfovpLVH_JRQnq75P3xzmblmzjpHTafaHyH5MpIRqcmHf9yHmvyVO4ylqA2RvS22337i1kJDt905jcDXkyHP34-h2Pn75Mpn8AETTneQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UAvLS1UpS3UB27I2tiJ4-S4QkXLay-AxM3yk6baDYjuHrq_vuPEQa2EOHCLHE8STSbzjZ2ZbwAObV46xkpNgwyBYkjtqa7qgkoerClZ5XWItcOXs3J6U5zditsNOB5qYWJaZfL9vU_vvHUaGSdtjh-aZnyFK4-qqIvIaI5hD5NvYLMQ6JNHsDk5PZ_Onn4mlHXXYjXOp1Eg1c70aV4alRAzvES3K8j58_j0D-acbMO7FCySSf88H2DDtx_h_dCIgaTvcgfWk5Y03e6Ad6RBFOnysDoKZhJW6_UfYunCIygRO19FZgTEK6Lnd_ePzfLngkSChp7POI536EYSoWq8DsEjYmIrCbwJuh_y298tUslSuws3Jz-uj6c0NVWgNs-yJQ2sDlUR0Ld4aazMra6E1TGKqj3PqoArMFc4yx0ruXTGyLzWTnOpTRacC1n-CUbtfes_A6mtsNaFWmgWCmmMybQQrrSBSzQMk-8BG1SpbGIcj40v5mpILfulovpVVL9iXKH69-DoSeah59t4cbYY3pD6z2oUAsILcl9eKfcdtqbXlxfq4nR2_hXe4pmyzzf7BqPl48rvY4CyNAfJAP8CqQzojw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+intuitionistic+fuzzy+c-means+clustering+algorithm+incorporating+local+information+for+brain+image+segmentation&rft.jtitle=Applied+soft+computing&rft.au=Verma%2C+Hanuman&rft.au=Agrawal%2C+R.K.&rft.au=Sharan%2C+Aditi&rft.date=2016-09-01&rft.issn=1568-4946&rft.volume=46&rft.spage=543&rft.epage=557&rft_id=info:doi/10.1016%2Fj.asoc.2015.12.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2015_12_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |