An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation

Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b) skull stripping simulated brain image, (c) manual segmented CSF, GM and WM images, (d) IIFCM algorithm, (e) IFCM algorithm, (f) FLICM algori...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 46; pp. 543 - 557
Main Authors Verma, Hanuman, Agrawal, R.K., Sharan, Aditi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2015.12.022

Cover

Abstract Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b) skull stripping simulated brain image, (c) manual segmented CSF, GM and WM images, (d) IIFCM algorithm, (e) IFCM algorithm, (f) FLICM algorithm, (g) EnFCM algorithm, (h) FGFCM algorithm, (i) FCM_S1 algorithm, (j) FCM_S2 algorithm, (k) ImFCM algorithm. The segmentation of brain magnetic resonance (MR) images plays an important role in the computer-aided diagnosis and clinical research. However, due to presence of noise and uncertainty on the boundary between different tissues in the brain image, the segmentation of brain image is a challenging task. Many variants of standard fuzzy c-means (FCM) algorithm have been proposed to handle the noise. Intuitionistic fuzzy c-means (IFCM) algorithm, one of the variants of FCM, is found suitable for image segmentation. It incorporates the advantage of intuitionistic fuzzy sets theory. The IFCM successfully handles the uncertainty but it is sensitive to noise as it does not incorporate any local spatial information. In this paper, we have presented a novel approach, named an improved intuitionistic fuzzy c-means (IIFCM), which considers the local spatial information in an intuitionistic fuzzy way. The IIFCM preserves the image details, is insensitive to noise, and is free of requirement of any parameter tuning. The obtained segmentation results on synthetic square image, real and simulated MRI brain image demonstrate the efficacy of the IIFCM algorithm and superior performance in comparison to existing segmentation methods. A nonparametric statistical analysis is also carried out to show the significant performance of the IIFCM algorithm in comparison to other existing segmentation algorithms.
AbstractList Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b) skull stripping simulated brain image, (c) manual segmented CSF, GM and WM images, (d) IIFCM algorithm, (e) IFCM algorithm, (f) FLICM algorithm, (g) EnFCM algorithm, (h) FGFCM algorithm, (i) FCM_S1 algorithm, (j) FCM_S2 algorithm, (k) ImFCM algorithm. The segmentation of brain magnetic resonance (MR) images plays an important role in the computer-aided diagnosis and clinical research. However, due to presence of noise and uncertainty on the boundary between different tissues in the brain image, the segmentation of brain image is a challenging task. Many variants of standard fuzzy c-means (FCM) algorithm have been proposed to handle the noise. Intuitionistic fuzzy c-means (IFCM) algorithm, one of the variants of FCM, is found suitable for image segmentation. It incorporates the advantage of intuitionistic fuzzy sets theory. The IFCM successfully handles the uncertainty but it is sensitive to noise as it does not incorporate any local spatial information. In this paper, we have presented a novel approach, named an improved intuitionistic fuzzy c-means (IIFCM), which considers the local spatial information in an intuitionistic fuzzy way. The IIFCM preserves the image details, is insensitive to noise, and is free of requirement of any parameter tuning. The obtained segmentation results on synthetic square image, real and simulated MRI brain image demonstrate the efficacy of the IIFCM algorithm and superior performance in comparison to existing segmentation methods. A nonparametric statistical analysis is also carried out to show the significant performance of the IIFCM algorithm in comparison to other existing segmentation algorithms.
Author Verma, Hanuman
Sharan, Aditi
Agrawal, R.K.
Author_xml – sequence: 1
  givenname: Hanuman
  surname: Verma
  fullname: Verma, Hanuman
  email: hv4231@gmail.com
– sequence: 2
  givenname: R.K.
  surname: Agrawal
  fullname: Agrawal, R.K.
  email: rkajnu@gmail.com
– sequence: 3
  givenname: Aditi
  surname: Sharan
  fullname: Sharan, Aditi
  email: aditisharan@mail.jnu.ac.in
BookMark eNp9kE1qwzAQhUVJoUnaC3SlC9iV5MSWoZsQ-geBbtq1kKVRqmBLQVICyekrN1110dUMM3xv3rwZmjjvAKF7SkpKaP2wK2X0qmSELkvKSsLYFZpS3rCirTmd5H5Z82LRLuobNItxRzLUMj5F55XDdtgHfwSNrUsHm6x3NiarsDmczyesigGki1j1h5ggWLfFst_6YNPXkAnlw94HmcZ575Xs88z4MMhRB-cOd0Ha8YjcAo6wHcCln-Utujayj3D3W-fo8_npY_1abN5f3tarTaEqQlJhaGv4wnDeQNOpplKSL5Vc1pS0wAg3nHG90IppWrNGd11TtVJL1siOGK0NqeaIX3RV8DEGMELZi4OUnfWCEjFmKHZizFCMGQrKRM4wo-wPug_5kXD6H3q8QJCfOloIIioLToG2AVQS2tv_8G_okZI3
CitedBy_id crossref_primary_10_1016_j_compeleceng_2017_01_017
crossref_primary_10_1109_ACCESS_2019_2924957
crossref_primary_10_1007_s40747_024_01459_3
crossref_primary_10_3390_s21030696
crossref_primary_10_1016_j_asoc_2019_02_032
crossref_primary_10_1007_s41066_021_00259_1
crossref_primary_10_1109_TFUZZ_2020_3044253
crossref_primary_10_1109_TCYB_2019_2925130
crossref_primary_10_1007_s00034_022_02175_4
crossref_primary_10_1080_13675567_2020_1870674
crossref_primary_10_1049_iet_ipr_2018_5597
crossref_primary_10_1007_s00500_023_09379_z
crossref_primary_10_5004_dwt_2018_22085
crossref_primary_10_1109_JSTARS_2018_2846603
crossref_primary_10_1007_s11265_019_01497_y
crossref_primary_10_1080_01605682_2017_1421849
crossref_primary_10_1155_2021_6664439
crossref_primary_10_1007_s11517_022_02688_9
crossref_primary_10_1038_s41598_024_56922_5
crossref_primary_10_1007_s10278_023_00899_6
crossref_primary_10_1007_s41095_021_0239_3
crossref_primary_10_1016_j_asoc_2022_109718
crossref_primary_10_1109_JBHI_2018_2884208
crossref_primary_10_1016_j_asoc_2021_107435
crossref_primary_10_1155_2022_3814252
crossref_primary_10_1049_ipr2_12064
crossref_primary_10_1088_1742_6596_1577_1_012014
crossref_primary_10_1007_s10489_022_04315_4
crossref_primary_10_1007_s11042_023_14512_z
crossref_primary_10_3233_JIFS_190440
crossref_primary_10_1007_s13132_022_00972_5
crossref_primary_10_1016_j_matcom_2025_02_012
crossref_primary_10_3390_app12157385
crossref_primary_10_1002_jemt_24413
crossref_primary_10_1016_j_asoc_2024_111355
crossref_primary_10_1080_03772063_2019_1604176
crossref_primary_10_1109_ACCESS_2021_3070044
crossref_primary_10_1007_s00500_019_04169_y
crossref_primary_10_1007_s11042_022_13959_w
crossref_primary_10_1109_TFUZZ_2018_2852289
crossref_primary_10_1007_s11063_021_10441_w
crossref_primary_10_1016_j_eswa_2022_117728
crossref_primary_10_2174_1573405615666190808105746
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_2174_1573405614666180718122353
crossref_primary_10_1049_iet_ipr_2017_0399
crossref_primary_10_1016_j_asoc_2019_105928
crossref_primary_10_1155_2022_6450469
crossref_primary_10_1016_j_neucom_2018_05_116
crossref_primary_10_3390_rs14153713
crossref_primary_10_1016_j_asoc_2020_106318
crossref_primary_10_1016_j_ins_2017_03_001
crossref_primary_10_1016_j_bspc_2023_105348
crossref_primary_10_1007_s10462_022_10236_y
crossref_primary_10_3390_info11070351
crossref_primary_10_7717_peerj_cs_654
crossref_primary_10_1016_j_bspc_2023_104925
crossref_primary_10_4018_JCIT_302244
crossref_primary_10_1007_s40815_023_01644_5
crossref_primary_10_3390_math10214056
crossref_primary_10_1016_j_knosys_2021_107432
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_3233_JIFS_221990
crossref_primary_10_1016_j_measurement_2022_110954
crossref_primary_10_4018_IJFSA_2019100101
crossref_primary_10_1007_s42979_023_01701_8
crossref_primary_10_3233_JIFS_192005
crossref_primary_10_1007_s11042_022_12336_x
crossref_primary_10_3103_S0146411622010047
crossref_primary_10_1016_j_neucom_2019_01_042
crossref_primary_10_1007_s00500_018_3359_7
crossref_primary_10_1007_s12652_021_03390_8
crossref_primary_10_1016_j_ins_2024_121205
crossref_primary_10_1016_j_neucom_2021_05_073
crossref_primary_10_1109_ACCESS_2020_2969806
crossref_primary_10_1109_ACCESS_2018_2885440
crossref_primary_10_1002_ima_22211
crossref_primary_10_2139_ssrn_4158293
crossref_primary_10_1049_iet_ipr_2016_0891
crossref_primary_10_3390_en15217863
crossref_primary_10_1007_s42235_021_0049_4
crossref_primary_10_3233_JIFS_201178
crossref_primary_10_1007_s00521_016_2786_6
crossref_primary_10_1016_j_asoc_2021_107119
crossref_primary_10_1049_iet_ipr_2017_0760
crossref_primary_10_3390_rs14051117
crossref_primary_10_1016_j_eswa_2024_126239
crossref_primary_10_1007_s11760_021_01979_2
crossref_primary_10_1016_j_eswa_2021_115216
crossref_primary_10_1109_TSUSC_2024_3387727
crossref_primary_10_3233_JIFS_179579
crossref_primary_10_1109_ACCESS_2021_3125052
crossref_primary_10_1155_2020_1386839
crossref_primary_10_1109_TCYB_2020_2994235
crossref_primary_10_1109_ACCESS_2019_2896635
crossref_primary_10_1109_TSMC_2019_2931699
crossref_primary_10_1016_j_asoc_2021_107245
crossref_primary_10_1016_j_engappai_2021_104209
crossref_primary_10_1016_j_asoc_2018_04_014
crossref_primary_10_1109_TFUZZ_2020_3037972
crossref_primary_10_3233_IDA_216058
crossref_primary_10_3233_JIFS_182750
crossref_primary_10_1016_j_asoc_2017_05_025
crossref_primary_10_1109_ACCESS_2022_3155869
crossref_primary_10_1007_s00500_021_06259_2
crossref_primary_10_1155_2020_1645479
crossref_primary_10_1007_s11042_020_09320_8
crossref_primary_10_1016_j_asoc_2016_08_020
crossref_primary_10_1016_j_asoc_2022_109939
crossref_primary_10_1016_j_eswa_2020_114329
crossref_primary_10_1016_j_compbiomed_2020_103776
crossref_primary_10_1088_2631_8695_acffa7
crossref_primary_10_1007_s00500_022_07269_4
crossref_primary_10_3390_math7010036
crossref_primary_10_1007_s00371_021_02319_8
crossref_primary_10_1007_s11760_021_02043_9
crossref_primary_10_1371_journal_pone_0282364
crossref_primary_10_1016_j_eswa_2019_04_050
crossref_primary_10_1007_s11042_018_5954_0
crossref_primary_10_1016_j_bspc_2021_102615
crossref_primary_10_3233_JIFS_200197
crossref_primary_10_1016_j_jfranklin_2022_11_017
crossref_primary_10_3390_e19110578
crossref_primary_10_1016_j_bbe_2018_12_003
crossref_primary_10_1007_s10462_024_11103_8
crossref_primary_10_1016_j_asoc_2018_05_034
crossref_primary_10_1080_2150704X_2019_1576949
crossref_primary_10_1109_TFUZZ_2019_2917809
Cites_doi 10.1109/42.650887
10.1109/42.996338
10.1016/j.patcog.2006.07.011
10.1049/ip-vis:20000218
10.1016/j.mcm.2005.04.002
10.1109/42.650883
10.1016/0165-0114(95)00365-7
10.1080/03610928008827904
10.1109/TITB.2005.847500
10.1109/TSMCB.2004.831165
10.1016/S0019-9958(80)90156-4
10.1148/radiology.178.1.1984287
10.1016/j.swevo.2011.02.002
10.1109/TITB.2012.2185852
10.1016/j.neuroimage.2003.11.010
10.1016/S0165-0114(86)80034-3
10.1016/0895-6111(91)90081-6
10.3969/j.issn.1004-4132.2010.04.009
10.1109/42.511747
10.1016/S0165-0114(98)00244-9
10.1109/3468.668967
10.1504/IJBIDM.2008.017975
10.1007/s10700-007-9004-z
10.1016/0165-0114(94)90113-9
10.1006/cviu.2001.0951
10.1109/TIP.2010.2040763
10.1080/03081077908547452
10.1109/TIP.2011.2146190
10.1016/S0019-9958(65)90241-X
10.1016/j.neuroimage.2003.11.011
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2015.12.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 557
ExternalDocumentID 10_1016_j_asoc_2015_12_022
S1568494615008017
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-f19f84f887e7bc73ca85ca56109e208f828d4dc2d1627dbb739ada27ab0fddf03
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:05 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 23 02:24:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intuitionistic fuzzy sets
Image segmentation
Magnetic resonance imaging
Intuitionistic fuzzy c-means
Fuzzy c-means
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f19f84f887e7bc73ca85ca56109e208f828d4dc2d1627dbb739ada27ab0fddf03
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2015_12_022
crossref_primary_10_1016_j_asoc_2015_12_022
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_12_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Suzuki, Toriwaki (bib0225) 1991; 15
Reddick, Glass, Cook, Elkin, Deaton (bib0235) 1997; 16
Liew, Leung, Lau (bib0275) 2000; 147
MacQueen (bib0255) 1967; 1
Vlachos, Sergiadis (bib0360) 2005
Atanassov (bib0305) 1986; 20
Xu (bib0340) 2007; 6
Rusinek, de Leon, George, Stylopoulos, Chandra, Smith, Rand, Mourino, Kowalski (bib0215) 1991; 178
Tolias, Panas (bib0265) 1998; 28
BrainWeb [online], available
Hyung, Song, Lee (bib0345) 1994; 62
Cai, Chen, Zhang (bib0295) 2007; 40
Derrac, García, Molina, Herrera (bib0390) 2011; 1
Gupta, Agrawal, Kaur (bib0395) 2014
Wang (bib0350) 1997; 85
Szmidt, Kacprzyk (bib0365) 2000; 114
Zadeh (bib0320) 1965; 8
Ahmed, Yamany, Mohamed, Farag, Moriarty (bib0280) 2002; 21
Ji, Xia, Sun, Chen, Xia, Feng (bib0205) 2012; 16
Yager (bib0335) 1979; 44
Internet Brain Segmentation Repository (IBSR)[online], available
Li, Huang, Ding, Gatenby, Metaxas, Gore (bib0245) 2011; 20
Pelekis, Iakovidis, Kotsifakos, Kopanakis (bib0310) 2008; 3
Brain Extraction Tool (BET) [online], available
Shen, Sandham, Granat, Sterr (bib0210) 2005; 9
Pham (bib0270) 2001; 84
Narr, Thompson, Szeszko, Robinson, Jang, Woods, Kim, Hayashi, Asunction, Toga, Bilder (bib0220) 2004; 21
Yager (bib0330) 1979
Bezdek (bib0260) 1981
Xu, Wu (bib0315) 2010; 21
Wells, Grimson, Kikinis, Jolesz (bib0250) 1996; 15
Szilagyi, Benyo, Szilagyi, Adam (bib0290) 2003; 1
.
Iman, Davenport (bib0400) 1980; 9
Chen, Zhang (bib0285) 2004; 34
Krinidis, Chatzis (bib0300) 2010; 19
Liu (bib0355) 2005; 42
Zijdenbos, Dawant (bib0370) 1994; 22
Sugeno (bib0325) 1977
Rohlfing, Brandt, Menzel, Maurer (bib0230) 2004; 21
Held, Kops, Krause, Wells, Kikinis, Muller-Gartner (bib0240) 1997; 16
Narr (10.1016/j.asoc.2015.12.022_bib0220) 2004; 21
Xu (10.1016/j.asoc.2015.12.022_bib0315) 2010; 21
Zijdenbos (10.1016/j.asoc.2015.12.022_bib0370) 1994; 22
Gupta (10.1016/j.asoc.2015.12.022_bib0395) 2014
Liew (10.1016/j.asoc.2015.12.022_bib0275) 2000; 147
MacQueen (10.1016/j.asoc.2015.12.022_bib0255) 1967; 1
Pham (10.1016/j.asoc.2015.12.022_bib0270) 2001; 84
Vlachos (10.1016/j.asoc.2015.12.022_bib0360) 2005
10.1016/j.asoc.2015.12.022_bib0380
Rusinek (10.1016/j.asoc.2015.12.022_bib0215) 1991; 178
Rohlfing (10.1016/j.asoc.2015.12.022_bib0230) 2004; 21
Li (10.1016/j.asoc.2015.12.022_bib0245) 2011; 20
Szilagyi (10.1016/j.asoc.2015.12.022_bib0290) 2003; 1
10.1016/j.asoc.2015.12.022_bib0375
Ahmed (10.1016/j.asoc.2015.12.022_bib0280) 2002; 21
Chen (10.1016/j.asoc.2015.12.022_bib0285) 2004; 34
Suzuki (10.1016/j.asoc.2015.12.022_bib0225) 1991; 15
Sugeno (10.1016/j.asoc.2015.12.022_bib0325) 1977
Atanassov (10.1016/j.asoc.2015.12.022_bib0305) 1986; 20
Cai (10.1016/j.asoc.2015.12.022_bib0295) 2007; 40
Wells (10.1016/j.asoc.2015.12.022_bib0250) 1996; 15
Derrac (10.1016/j.asoc.2015.12.022_bib0390) 2011; 1
Tolias (10.1016/j.asoc.2015.12.022_bib0265) 1998; 28
Krinidis (10.1016/j.asoc.2015.12.022_bib0300) 2010; 19
Xu (10.1016/j.asoc.2015.12.022_bib0340) 2007; 6
Hyung (10.1016/j.asoc.2015.12.022_bib0345) 1994; 62
Bezdek (10.1016/j.asoc.2015.12.022_bib0260) 1981
Iman (10.1016/j.asoc.2015.12.022_bib0400) 1980; 9
Liu (10.1016/j.asoc.2015.12.022_bib0355) 2005; 42
Zadeh (10.1016/j.asoc.2015.12.022_bib0320) 1965; 8
Ji (10.1016/j.asoc.2015.12.022_bib0205) 2012; 16
Reddick (10.1016/j.asoc.2015.12.022_bib0235) 1997; 16
Pelekis (10.1016/j.asoc.2015.12.022_bib0310) 2008; 3
Shen (10.1016/j.asoc.2015.12.022_bib0210) 2005; 9
Wang (10.1016/j.asoc.2015.12.022_bib0350) 1997; 85
10.1016/j.asoc.2015.12.022_bib0385
Yager (10.1016/j.asoc.2015.12.022_bib0335) 1979; 44
Yager (10.1016/j.asoc.2015.12.022_bib0330) 1979
Held (10.1016/j.asoc.2015.12.022_bib0240) 1997; 16
Szmidt (10.1016/j.asoc.2015.12.022_bib0365) 2000; 114
References_xml – volume: 40
  start-page: 825
  year: 2007
  end-page: 838
  ident: bib0295
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit.
– volume: 20
  start-page: 2007
  year: 2011
  end-page: 2016
  ident: bib0245
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans. Image Process.
– year: 1977
  ident: bib0325
  article-title: Fuzzy Measures and Fuzzy Integrals – A Survey
– volume: 42
  start-page: 61
  year: 2005
  end-page: 70
  ident: bib0355
  article-title: New similarity measures between intuitionistic fuzzy sets and between elements
  publication-title: Math. Comput. Modell.
– start-page: 2
  year: 2005
  end-page: 7
  ident: bib0360
  article-title: Towards intuitionistic fuzzy image processing
  publication-title: International Conference on CIMCA-IAWTIC
– volume: 21
  start-page: 1428
  year: 2004
  end-page: 1442
  ident: bib0230
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: Neuroimage
– volume: 28
  start-page: 359
  year: 1998
  end-page: 369
  ident: bib0265
  article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 221
  year: 1979
  end-page: 229
  ident: bib0330
  article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval
  publication-title: Int. J. Gen. Syst.
– volume: 22
  start-page: 401
  year: 1994
  end-page: 465
  ident: bib0370
  article-title: Brain segmentation and white matter lesion detection in MR images
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 16
  start-page: 911
  year: 1997
  end-page: 918
  ident: bib0235
  article-title: Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 85
  start-page: 305
  year: 1997
  end-page: 309
  ident: bib0350
  article-title: New similarity measures on fuzzy sets and on elements
  publication-title: Fuzzy Sets Syst.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: bib0280
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  ident: bib0285
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 147
  start-page: 185
  year: 2000
  end-page: 192
  ident: bib0275
  article-title: Fuzzy image clustering incorporating spatial continuity
  publication-title: IEE Proc. Vis. Image Signal Process.
– volume: 114
  start-page: 505
  year: 2000
  end-page: 518
  ident: bib0365
  article-title: Distances between intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
– start-page: 1
  year: 2014
  end-page: 14
  ident: bib0395
  article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods
  publication-title: Soft Comput.
– volume: 20
  start-page: 87
  year: 1986
  end-page: 96
  ident: bib0305
  article-title: Intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib0320
  article-title: Fuzzy sets
  publication-title: Inf. Control
– volume: 62
  start-page: 291
  year: 1994
  end-page: 293
  ident: bib0345
  article-title: Similarity measure between fuzzy sets and between elements
  publication-title: Fuzzy Sets Syst.
– volume: 15
  start-page: 233
  year: 1991
  end-page: 240
  ident: bib0225
  article-title: Automatic segmentation of head MRI images by knowledge guided thresholding
  publication-title: Comput. Med. Imaging Graph.
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: bib0255
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 1
  start-page: 724
  year: 2003
  end-page: 726
  ident: bib0290
  article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm
  publication-title: Annu. Int. Conf. IEEE EMB
– reference: BrainWeb [online], available:
– reference: Internet Brain Segmentation Repository (IBSR)[online], available:
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: bib0400
  article-title: Approximations of the critical region of the Friedman statistic
  publication-title: Commun. Stat. Theory Methods
– volume: 178
  start-page: 109
  year: 1991
  end-page: 114
  ident: bib0215
  article-title: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging
  publication-title: Radiology
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: bib0300
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 21
  start-page: 580
  year: 2010
  end-page: 590
  ident: bib0315
  article-title: Intuitionistic fuzzy c-means clustering algorithms
  publication-title: J. Syst. Eng. Electron.
– volume: 6
  start-page: 109
  year: 2007
  end-page: 121
  ident: bib0340
  article-title: Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 84
  start-page: 285
  year: 2001
  end-page: 297
  ident: bib0270
  article-title: Spatial models for fuzzy clustering
  publication-title: Comput. Vision Image Underst.
– volume: 9
  start-page: 459
  year: 2005
  end-page: 467
  ident: bib0210
  article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– reference: .
– volume: 44
  start-page: 236
  year: 1979
  end-page: 260
  ident: bib0335
  article-title: On the measure of fuzziness and negation. Part II: Lattices
  publication-title: Inf. Control
– volume: 16
  start-page: 878
  year: 1997
  end-page: 886
  ident: bib0240
  article-title: Markov random field segmentation of brain MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 3
  start-page: 45
  year: 2008
  end-page: 65
  ident: bib0310
  article-title: Fuzzy clustering of intuitionistic fuzzy data
  publication-title: Int. J. Bus. Intell. Data Min.
– volume: 21
  start-page: 1563
  year: 2004
  end-page: 1575
  ident: bib0220
  article-title: Regional specificity of hippocampal volume reductions in first-episode schizophrenia
  publication-title: Neuroimage
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0390
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– year: 1981
  ident: bib0260
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– reference: Brain Extraction Tool (BET) [online], available:
– volume: 15
  start-page: 429
  year: 1996
  end-page: 442
  ident: bib0250
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  start-page: 339
  year: 2012
  end-page: 347
  ident: bib0205
  article-title: Fuzzy local Gaussian mixture model for brain MR image segmentation
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 16
  start-page: 911
  issue: 6
  year: 1997
  ident: 10.1016/j.asoc.2015.12.022_bib0235
  article-title: Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.650887
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.asoc.2015.12.022_bib0280
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 40
  start-page: 825
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2015.12.022_bib0295
  article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.07.011
– volume: 147
  start-page: 185
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2015.12.022_bib0275
  article-title: Fuzzy image clustering incorporating spatial continuity
  publication-title: IEE Proc. Vis. Image Signal Process.
  doi: 10.1049/ip-vis:20000218
– ident: 10.1016/j.asoc.2015.12.022_bib0385
– volume: 42
  start-page: 61
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2015.12.022_bib0355
  article-title: New similarity measures between intuitionistic fuzzy sets and between elements
  publication-title: Math. Comput. Modell.
  doi: 10.1016/j.mcm.2005.04.002
– volume: 16
  start-page: 878
  issue: 6
  year: 1997
  ident: 10.1016/j.asoc.2015.12.022_bib0240
  article-title: Markov random field segmentation of brain MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.650883
– volume: 22
  start-page: 401
  issue: 5-6
  year: 1994
  ident: 10.1016/j.asoc.2015.12.022_bib0370
  article-title: Brain segmentation and white matter lesion detection in MR images
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 85
  start-page: 305
  issue: 3
  year: 1997
  ident: 10.1016/j.asoc.2015.12.022_bib0350
  article-title: New similarity measures on fuzzy sets and on elements
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(95)00365-7
– volume: 9
  start-page: 571
  issue: 6
  year: 1980
  ident: 10.1016/j.asoc.2015.12.022_bib0400
  article-title: Approximations of the critical region of the Friedman statistic
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610928008827904
– volume: 9
  start-page: 459
  issue: 3
  year: 2005
  ident: 10.1016/j.asoc.2015.12.022_bib0210
  article-title: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2005.847500
– year: 1981
  ident: 10.1016/j.asoc.2015.12.022_bib0260
– volume: 34
  start-page: 1907
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2015.12.022_bib0285
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2004.831165
– volume: 44
  start-page: 236
  issue: 3
  year: 1979
  ident: 10.1016/j.asoc.2015.12.022_bib0335
  article-title: On the measure of fuzziness and negation. Part II: Lattices
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(80)90156-4
– volume: 178
  start-page: 109
  issue: 1
  year: 1991
  ident: 10.1016/j.asoc.2015.12.022_bib0215
  article-title: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging
  publication-title: Radiology
  doi: 10.1148/radiology.178.1.1984287
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2015.12.022_bib0390
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 16
  start-page: 339
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2015.12.022_bib0205
  article-title: Fuzzy local Gaussian mixture model for brain MR image segmentation
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2185852
– volume: 21
  start-page: 1428
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2015.12.022_bib0230
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.010
– volume: 20
  start-page: 87
  issue: 1
  year: 1986
  ident: 10.1016/j.asoc.2015.12.022_bib0305
  article-title: Intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(86)80034-3
– ident: 10.1016/j.asoc.2015.12.022_bib0380
– volume: 15
  start-page: 233
  issue: 4
  year: 1991
  ident: 10.1016/j.asoc.2015.12.022_bib0225
  article-title: Automatic segmentation of head MRI images by knowledge guided thresholding
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/0895-6111(91)90081-6
– volume: 1
  start-page: 724
  year: 2003
  ident: 10.1016/j.asoc.2015.12.022_bib0290
  article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm
  publication-title: Annu. Int. Conf. IEEE EMB
– start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2015.12.022_bib0395
  article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods
  publication-title: Soft Comput.
– volume: 21
  start-page: 580
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2015.12.022_bib0315
  article-title: Intuitionistic fuzzy c-means clustering algorithms
  publication-title: J. Syst. Eng. Electron.
  doi: 10.3969/j.issn.1004-4132.2010.04.009
– volume: 15
  start-page: 429
  issue: 4
  year: 1996
  ident: 10.1016/j.asoc.2015.12.022_bib0250
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.511747
– year: 1977
  ident: 10.1016/j.asoc.2015.12.022_bib0325
– volume: 114
  start-page: 505
  issue: 3
  year: 2000
  ident: 10.1016/j.asoc.2015.12.022_bib0365
  article-title: Distances between intuitionistic fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00244-9
– volume: 28
  start-page: 359
  issue: 3
  year: 1998
  ident: 10.1016/j.asoc.2015.12.022_bib0265
  article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/3468.668967
– volume: 3
  start-page: 45
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2015.12.022_bib0310
  article-title: Fuzzy clustering of intuitionistic fuzzy data
  publication-title: Int. J. Bus. Intell. Data Min.
  doi: 10.1504/IJBIDM.2008.017975
– volume: 6
  start-page: 109
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2015.12.022_bib0340
  article-title: Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1007/s10700-007-9004-z
– volume: 62
  start-page: 291
  issue: 3
  year: 1994
  ident: 10.1016/j.asoc.2015.12.022_bib0345
  article-title: Similarity measure between fuzzy sets and between elements
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(94)90113-9
– volume: 84
  start-page: 285
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2015.12.022_bib0270
  article-title: Spatial models for fuzzy clustering
  publication-title: Comput. Vision Image Underst.
  doi: 10.1006/cviu.2001.0951
– start-page: 2
  year: 2005
  ident: 10.1016/j.asoc.2015.12.022_bib0360
  article-title: Towards intuitionistic fuzzy image processing
  publication-title: International Conference on CIMCA-IAWTIC
– ident: 10.1016/j.asoc.2015.12.022_bib0375
– volume: 1
  start-page: 281
  issue: 14
  year: 1967
  ident: 10.1016/j.asoc.2015.12.022_bib0255
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2015.12.022_bib0300
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
– start-page: 221
  year: 1979
  ident: 10.1016/j.asoc.2015.12.022_bib0330
  article-title: On the measure of fuzziness and negation. Part I: Membership in the unit interval
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081077908547452
– volume: 20
  start-page: 2007
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2015.12.022_bib0245
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2146190
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 10.1016/j.asoc.2015.12.022_bib0320
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 21
  start-page: 1563
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2015.12.022_bib0220
  article-title: Regional specificity of hippocampal volume reductions in first-episode schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.011
SSID ssj0016928
Score 2.5297806
Snippet Original and segmented simulated brain image by different algorithms: (a) axial view of original simulated T1-weighted brain image with INU=0 and 1% noise, (b)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 543
SubjectTerms Fuzzy c-means
Image segmentation
Intuitionistic fuzzy c-means
Intuitionistic fuzzy sets
Magnetic resonance imaging
Title An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation
URI https://dx.doi.org/10.1016/j.asoc.2015.12.022
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYCd-mSpI-gTtuAQ7eCtUg9KI2GUcN9GUUTA94EPl0Ftmy49hAP_e29kyijBQoPmSQRR0k4ne6OxHffEfLOxJnlPFPMS-8ZpNSOqbxImBTe6IznTnmsHf42zSaz5PM8nZ-RUVcLg7DK4Ptbn9546zAyCNocbKpqcAsrjzwpEmQ0h7SHY0U5sn-BTX_4fYR58Kxo-quiMEPpUDjTYrwUaADhXWmzJSjE_4PTXwFnfEnOQ6ZIh-3LPCNnrn5OLrouDDT8lC_IYVjTqtkacJZWEEIaEFbDv0z9_nB4oIatHEQkapZ7pEWAYEXVcrHeVrufK4rsDC2ZMY43oY0GNlW8D4UzqrGPBDwEfA_95RarUK9UvySz8ce70YSFjgrMxFG0Y54XPk88OBYntZGxUXlqFKZQhRNR7mH5ZRNrhOWZkFZrGRfKKiGVjry1PoqvSK9e1-4VoYVJjbG-SBX3idRaRypNbWa8kGAVOu4T3qmyNIFuHLteLMsOV3ZfovpLVH_JRQnq75P3xzmblmzjpHTafaHyH5MpIRqcmHf9yHmvyVO4ylqA2RvS22337i1kJDt905jcDXkyHP34-h2Pn75Mpn8AETTneQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UAvLS1UpS3UB27I2tiJ4-S4QkXLay-AxM3yk6baDYjuHrq_vuPEQa2EOHCLHE8STSbzjZ2ZbwAObV46xkpNgwyBYkjtqa7qgkoerClZ5XWItcOXs3J6U5zditsNOB5qYWJaZfL9vU_vvHUaGSdtjh-aZnyFK4-qqIvIaI5hD5NvYLMQ6JNHsDk5PZ_Onn4mlHXXYjXOp1Eg1c70aV4alRAzvES3K8j58_j0D-acbMO7FCySSf88H2DDtx_h_dCIgaTvcgfWk5Y03e6Ad6RBFOnysDoKZhJW6_UfYunCIygRO19FZgTEK6Lnd_ePzfLngkSChp7POI536EYSoWq8DsEjYmIrCbwJuh_y298tUslSuws3Jz-uj6c0NVWgNs-yJQ2sDlUR0Ld4aazMra6E1TGKqj3PqoArMFc4yx0ruXTGyLzWTnOpTRacC1n-CUbtfes_A6mtsNaFWmgWCmmMybQQrrSBSzQMk-8BG1SpbGIcj40v5mpILfulovpVVL9iXKH69-DoSeah59t4cbYY3pD6z2oUAsILcl9eKfcdtqbXlxfq4nR2_hXe4pmyzzf7BqPl48rvY4CyNAfJAP8CqQzojw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+intuitionistic+fuzzy+c-means+clustering+algorithm+incorporating+local+information+for+brain+image+segmentation&rft.jtitle=Applied+soft+computing&rft.au=Verma%2C+Hanuman&rft.au=Agrawal%2C+R.K.&rft.au=Sharan%2C+Aditi&rft.date=2016-09-01&rft.issn=1568-4946&rft.volume=46&rft.spage=543&rft.epage=557&rft_id=info:doi/10.1016%2Fj.asoc.2015.12.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2015_12_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon