Randomized approximation algorithms for monotone k-submodular function maximization with constraints
In recent years, k -submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize...
Saved in:
Published in | Journal of combinatorial optimization Vol. 49; no. 4; p. 64 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1382-6905 1573-2886 |
DOI | 10.1007/s10878-025-01299-y |
Cover
Abstract | In recent years,
k
-submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize the spread of information, while sensor placement focuses on optimizing the locations of sensors to maximize coverage or detection efficiency. This paper first proposes two randomized algorithms aimed at improving the approximation ratio for maximizing monotone
k
-submodular functions under matroid constraints and individual size constraints. Under the matroid constraints, we design a randomized algorithm with an approximation ratio of
nk
2
n
k
-
1
and a complexity of
O
(
r
n
(
RO
+
k
EO
)
)
, where
n
represents the total number of elements in the ground set,
k
represents the number of disjoint sets in a
k
-submodular function,
r
denotes the size of the largest independent set,
RO
indicates the time required for the matroid’s independence oracle, and
EO
denotes the time required for the evaluation oracle of the
k
-submodular function.Meanwhile, under the individual size constraints, we achieve an approximation factor of
nk
3
n
k
-
2
with a complexity of
O
(
knB
), where
n
is the total count of elements in the ground set, and
B
is the upper bound on the total size of the
k
disjoint subsets, belonging to
Z
+
. Additionally, this paper designs two double randomized algorithms to accelerate the algorithm’s running speed while maintaining the same approximation ratio, with success probabilities of (
1
-
δ
), where
δ
is a positive parameter input by the algorithms. Under the matroid constraint, the complexity is reduced to
O
(
n
log
r
log
r
δ
(
RO
+
k
EO
)
)
. Under the individual size constraint, the complexity becomes
O
(
k
2
n
log
B
k
log
B
δ
)
. |
---|---|
AbstractList | In recent years,
k
-submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize the spread of information, while sensor placement focuses on optimizing the locations of sensors to maximize coverage or detection efficiency. This paper first proposes two randomized algorithms aimed at improving the approximation ratio for maximizing monotone
k
-submodular functions under matroid constraints and individual size constraints. Under the matroid constraints, we design a randomized algorithm with an approximation ratio of
nk
2
n
k
-
1
and a complexity of
O
(
r
n
(
RO
+
k
EO
)
)
, where
n
represents the total number of elements in the ground set,
k
represents the number of disjoint sets in a
k
-submodular function,
r
denotes the size of the largest independent set,
RO
indicates the time required for the matroid’s independence oracle, and
EO
denotes the time required for the evaluation oracle of the
k
-submodular function.Meanwhile, under the individual size constraints, we achieve an approximation factor of
nk
3
n
k
-
2
with a complexity of
O
(
knB
), where
n
is the total count of elements in the ground set, and
B
is the upper bound on the total size of the
k
disjoint subsets, belonging to
Z
+
. Additionally, this paper designs two double randomized algorithms to accelerate the algorithm’s running speed while maintaining the same approximation ratio, with success probabilities of (
1
-
δ
), where
δ
is a positive parameter input by the algorithms. Under the matroid constraint, the complexity is reduced to
O
(
n
log
r
log
r
δ
(
RO
+
k
EO
)
)
. Under the individual size constraint, the complexity becomes
O
(
k
2
n
log
B
k
log
B
δ
)
. In recent years, k-submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize the spread of information, while sensor placement focuses on optimizing the locations of sensors to maximize coverage or detection efficiency. This paper first proposes two randomized algorithms aimed at improving the approximation ratio for maximizing monotone k-submodular functions under matroid constraints and individual size constraints. Under the matroid constraints, we design a randomized algorithm with an approximation ratio of nk2nk-1 and a complexity of O(rn(RO+kEO)), where n represents the total number of elements in the ground set, k represents the number of disjoint sets in a k-submodular function, r denotes the size of the largest independent set, RO indicates the time required for the matroid’s independence oracle, and EO denotes the time required for the evaluation oracle of the k-submodular function.Meanwhile, under the individual size constraints, we achieve an approximation factor of nk3nk-2 with a complexity of O(knB), where n is the total count of elements in the ground set, and B is the upper bound on the total size of the k disjoint subsets, belonging to Z+. Additionally, this paper designs two double randomized algorithms to accelerate the algorithm’s running speed while maintaining the same approximation ratio, with success probabilities of (1-δ), where δ is a positive parameter input by the algorithms. Under the matroid constraint, the complexity is reduced to O(nlogrlogrδ(RO+kEO)). Under the individual size constraint, the complexity becomes O(k2nlogBklogBδ). |
ArticleNumber | 64 |
Author | Li, Min Li, Yuying Zhou, Yang Liu, Qian Niu, Shuxian |
Author_xml | – sequence: 1 givenname: Yuying surname: Li fullname: Li, Yuying organization: School of Mathematics and Statistics, Shandong Normal University – sequence: 2 givenname: Min surname: Li fullname: Li, Min organization: School of Mathematics and Statistics, Shandong Normal University – sequence: 3 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: School of Mathematics and Statistics, Shandong Normal University – sequence: 4 givenname: Shuxian surname: Niu fullname: Niu, Shuxian organization: School of Mathematics and Statistics, Shandong Normal University – sequence: 5 givenname: Qian orcidid: 0000-0001-6038-4219 surname: Liu fullname: Liu, Qian email: lq_qsh@163.com organization: School of Mathematics and Statistics, Shandong Normal University |
BookMark | eNp9kF1LwzAUhoNMcJv-Aa8KXkdPkqZNL2X4BQNB9DqkbTo712QmLbr9eo-r4N0gkHPxPOfjnZGJ884ScsngmgHkN5GByhUFLikwXhR0d0KmTOaCcqWyCdZCcZoVIM_ILMY1AGCdTkn9Ylztu3Zv68Rst8F_t53pW-8Ss1n50PbvXUwaH5LOO9_j0OSDxqHsfD1sTEiawVUHujMotvtR_UItqbyLfTCt6-M5OW3MJtqLv39O3u7vXhePdPn88LS4XdJKAPTU2lTxVFmlpACb1gqflXmDi5bclI3IC2UrXqaggLE8E3hTWWWVKiyH2ggxJ1djX7zjc7Cx12s_BIcjteAyTSXPJD9OgeBCFDkgxUeqCj7GYBu9DRhN2GkG-jdzPWauMXN9yFzvUBKjFBF2Kxv-Wx-xfgDx_YhE |
Cites_doi | 10.1007/978-3-642-32147-4_40 10.1007/978-3-319-78825-8_8 10.1016/j.disopt.2017.01.003 10.1137/080733991 10.1137/130929205 10.1145/2850419 10.1007/978-3-031-39344-0_9 10.1016/S0167-6377(03)00062-2 10.1137/1.9781611974331.ch30 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10878-025-01299-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1573-2886 |
ExternalDocumentID | 10_1007_s10878_025_01299_y |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021MA100 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: National Natural Science Foundation of China grantid: No. 12371099; Nos. ZR2024MA015 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION ABRTQ |
ID | FETCH-LOGICAL-c300t-ee48248e88530e4d84d8e57f054b2abf3798ec2b408011763382bc6c89e20da33 |
IEDL.DBID | U2A |
ISSN | 1382-6905 |
IngestDate | Sun Sep 28 14:46:20 EDT 2025 Thu Sep 18 00:05:21 EDT 2025 Tue Jul 01 04:48:06 EDT 2025 Sat May 24 01:16:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Submodular function Randomized algorithms Approximation algorithms Matroid constraints Individual size constraints |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ee48248e88530e4d84d8e57f054b2abf3798ec2b408011763382bc6c89e20da33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6038-4219 |
PQID | 3203233970 |
PQPubID | 2043856 |
ParticipantIDs | proquest_journals_3254452652 proquest_journals_3203233970 crossref_primary_10_1007_s10878_025_01299_y springer_journals_10_1007_s10878_025_01299_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Journal of combinatorial optimization |
PublicationTitleAbbrev | J Comb Optim |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | N Buchbinder (1299_CR1) 2015; 44 1299_CR3 M Sviridenko (1299_CR11) 2004; 32 1299_CR4 J Ward (1299_CR12) 2016; 12 S Sakaue (1299_CR9) 2017; 23 1299_CR10 1299_CR5 1299_CR6 1299_CR7 G Calinescu (1299_CR2) 2011; 40 1299_CR8 |
References_xml | – ident: 1299_CR3 doi: 10.1007/978-3-642-32147-4_40 – ident: 1299_CR8 doi: 10.1007/978-3-319-78825-8_8 – volume: 23 start-page: 105 year: 2017 ident: 1299_CR9 publication-title: Discrete Optim doi: 10.1016/j.disopt.2017.01.003 – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 1299_CR2 publication-title: SIAM J Comput doi: 10.1137/080733991 – volume: 44 start-page: 1384 issue: 5 year: 2015 ident: 1299_CR1 publication-title: SIAM J Comput doi: 10.1137/130929205 – ident: 1299_CR10 – volume: 12 start-page: 47:1 issue: 4 year: 2016 ident: 1299_CR12 publication-title: ACM Trans. Algorithms doi: 10.1145/2850419 – ident: 1299_CR5 doi: 10.1007/978-3-031-39344-0_9 – ident: 1299_CR7 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: 1299_CR11 publication-title: Oper Res Lett doi: 10.1016/S0167-6377(03)00062-2 – ident: 1299_CR6 – ident: 1299_CR4 doi: 10.1137/1.9781611974331.ch30 |
SSID | ssj0009054 |
Score | 2.3696387 |
Snippet | In recent years,
k
-submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical... In recent years, k-submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 64 |
SubjectTerms | Algorithms Approximation Combinatorics Complexity Constraints Convex and Discrete Geometry Guarantees Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Maximization Operations Research/Decision Theory Optimization Placement Sensors Theory of Computation Upper bounds |
Title | Randomized approximation algorithms for monotone k-submodular function maximization with constraints |
URI | https://link.springer.com/article/10.1007/s10878-025-01299-y https://www.proquest.com/docview/3203233970 https://www.proquest.com/docview/3254452652 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuJ0jhy8aSBL0i47DtkcyjyIg3kqSZrq0K2yVnD-9b70w05xB6GXkrQNv7zm_fLxfg-hc2kiqqWvCLWKEiFYRJTWIZFtqlzKKxFpt94xuvOHY3Ez8SZFUFhSnnYvtySzkXol2E06NVjmDpvBIEqWm6juOT0psOIx61VSu9TLU9kCd4S5n1eEyvz9jp_uqOKYv7ZFM28z2EU7BU3Evbxf99CGne-j7RXxQLgbfSuuJgcovFfzMJ5NP22IM53wj2kelIjV61O8mKbPswQDQcVgdrET4MYvJAFfGIfuHCp27i2rPVPwYBGbid0iLTaOQbpEEmlyiMaD_sPVkBQZFIjhlKbEWiGZkFaCU6ZWhBIu63UiQEgzpSPe6UprmBbAG9ttGGoAM218I7uW0VBxfoRqc2jSMcICqFykuK9k2wgTSZgmweTSyc9z39iu10AXJZDBWy6UEVSSyA72AGAPMtiDZQM1S6yD4qdJAu6yuXMgSHRNsRMOYr7HGuiy7J6qeP3HTv5X_RRtscxCnJE0US1dvNszYB6pbqF67_rxtt_KDO4LBsTTNQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rB-DOiqD140yal60Y5EiNBBQ4GEm5L23VKFDBsJuJf73tjEzRyMNllWfcjX9_6vtf2fY-QS2VjblSgGXeaMylFzLQxEVNVrrHklYwNznd0ukGrL-8H_iBPCkuK3e7FkmQ2Ui8luylUgxW42QwGUTZbJxu4zIghV180FlK73J-XsgXuCLGfn6fK_P2Mn-5owTF_LYtm3qa5S3Zymkgb837dI2tuvE-2l8QD4azzrbiaHJDoUY-jyWj46SKa6YR_DOdJiVS_Pk2mw_R5lFAgqBTMboIC3PSFJeALJxHuQ6Xo3rLWIw035rmZFCdpqUUGiYUk0uSQ9Ju3vZsWyysoMOtxnjLnpBJSOQVOmTsZKTicX4sBISO0ib1aXTkrjATeWK3CUAOYGRtYVXeCR9rzjkhpDJ90TKgEKhdrL9CqaqWNFYRJEFyi_LwXWFf3y-SqADJ8mwtlhAtJZIQ9BNjDDPZwViaVAusw_2mS0MNq7h4QJL7iMgoHicAXZXJddM_i8uqXnfyv-QXZbPU67bB91304JVsisxY0mAoppdN3dwYsJDXnmdF9AVZJ1IQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF11Ry8aTCbpt3scVEX34i44K0kaaqLbivbCuqvd6bt2lX0IPRSmj74Ms18SWa-IWRP2ZgbFWjGneZMShEzbUzEVItrLHklY4PrHVfXwWlfnt_79xNZ_EW0-3hLssxpQJWmJD98ieLDicQ3hcqwAgPPYEBl79NkVoKvxqCuvujWsrvcL8vaAo-EeaBfpc38_ozvrqnmmz-2SAvP01siixVlpN2yj5fJlEtWyMKEkCCcXX2pr2arJLrVSZQOBx8uooVm-NugTFCk-vkhHQ3yx2FGgaxSMMEUxbjpE8vAL6YRxqRSdHVF66GGG6s8TYoLttQim8SiEnm2Rvq9k7ujU1ZVU2DW4zxnzkklpHIKHDR3MlJwOL8dA0JGaBN77Y5yVhgJHLLVgmEHMDM2sKrjBI-0562TmQQ-aYNQCbQu1l6gVctKGyuYMsFEE6XovcC6jt8g-2Mgw5dSNCOs5ZER9hBgDwvYw_cGaY6xDqsfKAs9rOzuAVnif1xGESER-KJBDsbdU1_--2Wb_2u-S-Zujnvh5dn1xRaZF4WxoL00yUw-enXbQEhys1PY3CfBwtjJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+approximation+algorithms+for+monotone+k-submodular+function+maximization+with+constraints&rft.jtitle=Journal+of+combinatorial+optimization&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=49&rft.issue=4&rft_id=info:doi/10.1007%2Fs10878-025-01299-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |