Randomized approximation algorithms for monotone k-submodular function maximization with constraints

In recent years, k -submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial optimization Vol. 49; no. 4; p. 64
Main Authors Li, Yuying, Li, Min, Zhou, Yang, Niu, Shuxian, Liu, Qian
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1382-6905
1573-2886
DOI10.1007/s10878-025-01299-y

Cover

Abstract In recent years, k -submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize the spread of information, while sensor placement focuses on optimizing the locations of sensors to maximize coverage or detection efficiency. This paper first proposes two randomized algorithms aimed at improving the approximation ratio for maximizing monotone k -submodular functions under matroid constraints and individual size constraints. Under the matroid constraints, we design a randomized algorithm with an approximation ratio of nk 2 n k - 1 and a complexity of O ( r n ( RO + k EO ) ) , where n represents the total number of elements in the ground set, k represents the number of disjoint sets in a k -submodular function, r denotes the size of the largest independent set, RO indicates the time required for the matroid’s independence oracle, and EO denotes the time required for the evaluation oracle of the k -submodular function.Meanwhile, under the individual size constraints, we achieve an approximation factor of nk 3 n k - 2 with a complexity of O ( knB ), where n is the total count of elements in the ground set, and B is the upper bound on the total size of the k disjoint subsets, belonging to Z + . Additionally, this paper designs two double randomized algorithms to accelerate the algorithm’s running speed while maintaining the same approximation ratio, with success probabilities of ( 1 - δ ), where δ is a positive parameter input by the algorithms. Under the matroid constraint, the complexity is reduced to O ( n log r log r δ ( RO + k EO ) ) . Under the individual size constraint, the complexity becomes O ( k 2 n log B k log B δ ) .
AbstractList In recent years, k -submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize the spread of information, while sensor placement focuses on optimizing the locations of sensors to maximize coverage or detection efficiency. This paper first proposes two randomized algorithms aimed at improving the approximation ratio for maximizing monotone k -submodular functions under matroid constraints and individual size constraints. Under the matroid constraints, we design a randomized algorithm with an approximation ratio of nk 2 n k - 1 and a complexity of O ( r n ( RO + k EO ) ) , where n represents the total number of elements in the ground set, k represents the number of disjoint sets in a k -submodular function, r denotes the size of the largest independent set, RO indicates the time required for the matroid’s independence oracle, and EO denotes the time required for the evaluation oracle of the k -submodular function.Meanwhile, under the individual size constraints, we achieve an approximation factor of nk 3 n k - 2 with a complexity of O ( knB ), where n is the total count of elements in the ground set, and B is the upper bound on the total size of the k disjoint subsets, belonging to Z + . Additionally, this paper designs two double randomized algorithms to accelerate the algorithm’s running speed while maintaining the same approximation ratio, with success probabilities of ( 1 - δ ), where δ is a positive parameter input by the algorithms. Under the matroid constraint, the complexity is reduced to O ( n log r log r δ ( RO + k EO ) ) . Under the individual size constraint, the complexity becomes O ( k 2 n log B k log B δ ) .
In recent years, k-submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical applications, such as influence maximization and sensor placement. Influence maximization involves selecting a set of nodes in a network to maximize the spread of information, while sensor placement focuses on optimizing the locations of sensors to maximize coverage or detection efficiency. This paper first proposes two randomized algorithms aimed at improving the approximation ratio for maximizing monotone k-submodular functions under matroid constraints and individual size constraints. Under the matroid constraints, we design a randomized algorithm with an approximation ratio of nk2nk-1 and a complexity of O(rn(RO+kEO)), where n represents the total number of elements in the ground set, k represents the number of disjoint sets in a k-submodular function, r denotes the size of the largest independent set, RO indicates the time required for the matroid’s independence oracle, and EO denotes the time required for the evaluation oracle of the k-submodular function.Meanwhile, under the individual size constraints, we achieve an approximation factor of nk3nk-2 with a complexity of O(knB), where n is the total count of elements in the ground set, and B is the upper bound on the total size of the k disjoint subsets, belonging to Z+. Additionally, this paper designs two double randomized algorithms to accelerate the algorithm’s running speed while maintaining the same approximation ratio, with success probabilities of (1-δ), where δ is a positive parameter input by the algorithms. Under the matroid constraint, the complexity is reduced to O(nlogrlogrδ(RO+kEO)). Under the individual size constraint, the complexity becomes O(k2nlogBklogBδ).
ArticleNumber 64
Author Li, Min
Li, Yuying
Zhou, Yang
Liu, Qian
Niu, Shuxian
Author_xml – sequence: 1
  givenname: Yuying
  surname: Li
  fullname: Li, Yuying
  organization: School of Mathematics and Statistics, Shandong Normal University
– sequence: 2
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: School of Mathematics and Statistics, Shandong Normal University
– sequence: 3
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: School of Mathematics and Statistics, Shandong Normal University
– sequence: 4
  givenname: Shuxian
  surname: Niu
  fullname: Niu, Shuxian
  organization: School of Mathematics and Statistics, Shandong Normal University
– sequence: 5
  givenname: Qian
  orcidid: 0000-0001-6038-4219
  surname: Liu
  fullname: Liu, Qian
  email: lq_qsh@163.com
  organization: School of Mathematics and Statistics, Shandong Normal University
BookMark eNp9kF1LwzAUhoNMcJv-Aa8KXkdPkqZNL2X4BQNB9DqkbTo712QmLbr9eo-r4N0gkHPxPOfjnZGJ884ScsngmgHkN5GByhUFLikwXhR0d0KmTOaCcqWyCdZCcZoVIM_ILMY1AGCdTkn9Ylztu3Zv68Rst8F_t53pW-8Ss1n50PbvXUwaH5LOO9_j0OSDxqHsfD1sTEiawVUHujMotvtR_UItqbyLfTCt6-M5OW3MJtqLv39O3u7vXhePdPn88LS4XdJKAPTU2lTxVFmlpACb1gqflXmDi5bclI3IC2UrXqaggLE8E3hTWWWVKiyH2ggxJ1djX7zjc7Cx12s_BIcjteAyTSXPJD9OgeBCFDkgxUeqCj7GYBu9DRhN2GkG-jdzPWauMXN9yFzvUBKjFBF2Kxv-Wx-xfgDx_YhE
Cites_doi 10.1007/978-3-642-32147-4_40
10.1007/978-3-319-78825-8_8
10.1016/j.disopt.2017.01.003
10.1137/080733991
10.1137/130929205
10.1145/2850419
10.1007/978-3-031-39344-0_9
10.1016/S0167-6377(03)00062-2
10.1137/1.9781611974331.ch30
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10878-025-01299-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
ExternalDocumentID 10_1007_s10878_025_01299_y
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021MA100
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: No. 12371099; Nos. ZR2024MA015
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ABRTQ
ID FETCH-LOGICAL-c300t-ee48248e88530e4d84d8e57f054b2abf3798ec2b408011763382bc6c89e20da33
IEDL.DBID U2A
ISSN 1382-6905
IngestDate Sun Sep 28 14:46:20 EDT 2025
Thu Sep 18 00:05:21 EDT 2025
Tue Jul 01 04:48:06 EDT 2025
Sat May 24 01:16:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Submodular function
Randomized algorithms
Approximation algorithms
Matroid constraints
Individual size constraints
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ee48248e88530e4d84d8e57f054b2abf3798ec2b408011763382bc6c89e20da33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6038-4219
PQID 3203233970
PQPubID 2043856
ParticipantIDs proquest_journals_3254452652
proquest_journals_3203233970
crossref_primary_10_1007_s10878_025_01299_y
springer_journals_10_1007_s10878_025_01299_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References N Buchbinder (1299_CR1) 2015; 44
1299_CR3
M Sviridenko (1299_CR11) 2004; 32
1299_CR4
J Ward (1299_CR12) 2016; 12
S Sakaue (1299_CR9) 2017; 23
1299_CR10
1299_CR5
1299_CR6
1299_CR7
G Calinescu (1299_CR2) 2011; 40
1299_CR8
References_xml – ident: 1299_CR3
  doi: 10.1007/978-3-642-32147-4_40
– ident: 1299_CR8
  doi: 10.1007/978-3-319-78825-8_8
– volume: 23
  start-page: 105
  year: 2017
  ident: 1299_CR9
  publication-title: Discrete Optim
  doi: 10.1016/j.disopt.2017.01.003
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 1299_CR2
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– volume: 44
  start-page: 1384
  issue: 5
  year: 2015
  ident: 1299_CR1
  publication-title: SIAM J Comput
  doi: 10.1137/130929205
– ident: 1299_CR10
– volume: 12
  start-page: 47:1
  issue: 4
  year: 2016
  ident: 1299_CR12
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2850419
– ident: 1299_CR5
  doi: 10.1007/978-3-031-39344-0_9
– ident: 1299_CR7
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 1299_CR11
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(03)00062-2
– ident: 1299_CR6
– ident: 1299_CR4
  doi: 10.1137/1.9781611974331.ch30
SSID ssj0009054
Score 2.3696387
Snippet In recent years, k -submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical...
In recent years, k-submodular functions have garnered significant attention due to their natural extension of submodular functions and their practical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 64
SubjectTerms Algorithms
Approximation
Combinatorics
Complexity
Constraints
Convex and Discrete Geometry
Guarantees
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maximization
Operations Research/Decision Theory
Optimization
Placement
Sensors
Theory of Computation
Upper bounds
Title Randomized approximation algorithms for monotone k-submodular function maximization with constraints
URI https://link.springer.com/article/10.1007/s10878-025-01299-y
https://www.proquest.com/docview/3203233970
https://www.proquest.com/docview/3254452652
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuJ0jhy8aSBL0i47DtkcyjyIg3kqSZrq0K2yVnD-9b70w05xB6GXkrQNv7zm_fLxfg-hc2kiqqWvCLWKEiFYRJTWIZFtqlzKKxFpt94xuvOHY3Ez8SZFUFhSnnYvtySzkXol2E06NVjmDpvBIEqWm6juOT0psOIx61VSu9TLU9kCd4S5n1eEyvz9jp_uqOKYv7ZFM28z2EU7BU3Evbxf99CGne-j7RXxQLgbfSuuJgcovFfzMJ5NP22IM53wj2kelIjV61O8mKbPswQDQcVgdrET4MYvJAFfGIfuHCp27i2rPVPwYBGbid0iLTaOQbpEEmlyiMaD_sPVkBQZFIjhlKbEWiGZkFaCU6ZWhBIu63UiQEgzpSPe6UprmBbAG9ttGGoAM218I7uW0VBxfoRqc2jSMcICqFykuK9k2wgTSZgmweTSyc9z39iu10AXJZDBWy6UEVSSyA72AGAPMtiDZQM1S6yD4qdJAu6yuXMgSHRNsRMOYr7HGuiy7J6qeP3HTv5X_RRtscxCnJE0US1dvNszYB6pbqF67_rxtt_KDO4LBsTTNQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UD-rB-DOiqD140yal60Y5EiNBBQ4GEm5L23VKFDBsJuJf73tjEzRyMNllWfcjX9_6vtf2fY-QS2VjblSgGXeaMylFzLQxEVNVrrHklYwNznd0ukGrL-8H_iBPCkuK3e7FkmQ2Ui8luylUgxW42QwGUTZbJxu4zIghV180FlK73J-XsgXuCLGfn6fK_P2Mn-5owTF_LYtm3qa5S3Zymkgb837dI2tuvE-2l8QD4azzrbiaHJDoUY-jyWj46SKa6YR_DOdJiVS_Pk2mw_R5lFAgqBTMboIC3PSFJeALJxHuQ6Xo3rLWIw035rmZFCdpqUUGiYUk0uSQ9Ju3vZsWyysoMOtxnjLnpBJSOQVOmTsZKTicX4sBISO0ib1aXTkrjATeWK3CUAOYGRtYVXeCR9rzjkhpDJ90TKgEKhdrL9CqaqWNFYRJEFyi_LwXWFf3y-SqADJ8mwtlhAtJZIQ9BNjDDPZwViaVAusw_2mS0MNq7h4QJL7iMgoHicAXZXJddM_i8uqXnfyv-QXZbPU67bB91304JVsisxY0mAoppdN3dwYsJDXnmdF9AVZJ1IQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPQgPnF11Ry8aTCbpt3scVEX34i44K0kaaqLbivbCuqvd6bt2lX0IPRSmj74Ms18SWa-IWRP2ZgbFWjGneZMShEzbUzEVItrLHklY4PrHVfXwWlfnt_79xNZ_EW0-3hLssxpQJWmJD98ieLDicQ3hcqwAgPPYEBl79NkVoKvxqCuvujWsrvcL8vaAo-EeaBfpc38_ozvrqnmmz-2SAvP01siixVlpN2yj5fJlEtWyMKEkCCcXX2pr2arJLrVSZQOBx8uooVm-NugTFCk-vkhHQ3yx2FGgaxSMMEUxbjpE8vAL6YRxqRSdHVF66GGG6s8TYoLttQim8SiEnm2Rvq9k7ujU1ZVU2DW4zxnzkklpHIKHDR3MlJwOL8dA0JGaBN77Y5yVhgJHLLVgmEHMDM2sKrjBI-0562TmQQ-aYNQCbQu1l6gVctKGyuYMsFEE6XovcC6jt8g-2Mgw5dSNCOs5ZER9hBgDwvYw_cGaY6xDqsfKAs9rOzuAVnif1xGESER-KJBDsbdU1_--2Wb_2u-S-Zujnvh5dn1xRaZF4WxoL00yUw-enXbQEhys1PY3CfBwtjJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+approximation+algorithms+for+monotone+k-submodular+function+maximization+with+constraints&rft.jtitle=Journal+of+combinatorial+optimization&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=49&rft.issue=4&rft_id=info:doi/10.1007%2Fs10878-025-01299-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon