Many-objective coevolutionary learning algorithm with extreme learning machine auto-encoder for ensemble classifier of feedforward neural networks

In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity. Learning from data is often seen as a tradeoff between these two risks. Additionally, balancing training error and validation error can overco...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 246; p. 123186
Main Authors Li, Hong, Bai, Lixia, Gao, Weifeng, Xie, Jin, Huang, Lingling
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2024
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2024.123186

Cover

Abstract In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity. Learning from data is often seen as a tradeoff between these two risks. Additionally, balancing training error and validation error can overcome the overfitting problem to some extent. It is known that the network performance is also related to regularization term. In order to consider four factors, i.e. training error, validation error, network complexity and regularization term simultaneously in the training process of a single-hidden layer feedforword neural network (SLFN), a many-objective coevolutionary learning algorithm (MOCELA) integrated with extreme learning machine auto-encoder (ELMAE), called MOCELA-ELMAE is presented. In MOCELA, the non-dominated sorting genetic algorithm III (NSGA-III) is improved for handling the many-objective optimization model with hybrid variables, where binary coding is used for structure learning and real coding is utilized for representing input parameters, referring to all input weights and hidden biases of the AE network. Output parameters of AE, i.e. output weights are analytically calculated by the non-iterative learning rule. The network structure and connection parameters of SLFN are determined based on those of AE. A set of Pareto optimal solutions are eventually collected by the MOCELA-ELMAE, which represents multiple optimal SLFNs. To make the final decision, three best SLFNs with minimum validation errors are selected as the base classifiers for selective ensemble learning. Extensive experiments are implemented on the benchmark classification data sets of UCI machine learning repository, and obvious improvements have been observed when the proposed MOCELA-ELMAE is compared with the NSGA-III based on hybrid coding and completely non-iterative learning of SLFN respectively. The experimental results also illustrate that the MOCELA-ELMAE performs much better than other state-of-the-art learning algorithms on many data sets. •Many-objective optimization training model is constructed for a SLFN.•The NSGA-III with new genetic operators is utilized to handle the hybrid variables.•The improved NSGA-III is proposed to optimize structure and input parameters of AE.•A selective neural network ensemble learning is used to improve the output result.
AbstractList In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity. Learning from data is often seen as a tradeoff between these two risks. Additionally, balancing training error and validation error can overcome the overfitting problem to some extent. It is known that the network performance is also related to regularization term. In order to consider four factors, i.e. training error, validation error, network complexity and regularization term simultaneously in the training process of a single-hidden layer feedforword neural network (SLFN), a many-objective coevolutionary learning algorithm (MOCELA) integrated with extreme learning machine auto-encoder (ELMAE), called MOCELA-ELMAE is presented. In MOCELA, the non-dominated sorting genetic algorithm III (NSGA-III) is improved for handling the many-objective optimization model with hybrid variables, where binary coding is used for structure learning and real coding is utilized for representing input parameters, referring to all input weights and hidden biases of the AE network. Output parameters of AE, i.e. output weights are analytically calculated by the non-iterative learning rule. The network structure and connection parameters of SLFN are determined based on those of AE. A set of Pareto optimal solutions are eventually collected by the MOCELA-ELMAE, which represents multiple optimal SLFNs. To make the final decision, three best SLFNs with minimum validation errors are selected as the base classifiers for selective ensemble learning. Extensive experiments are implemented on the benchmark classification data sets of UCI machine learning repository, and obvious improvements have been observed when the proposed MOCELA-ELMAE is compared with the NSGA-III based on hybrid coding and completely non-iterative learning of SLFN respectively. The experimental results also illustrate that the MOCELA-ELMAE performs much better than other state-of-the-art learning algorithms on many data sets. •Many-objective optimization training model is constructed for a SLFN.•The NSGA-III with new genetic operators is utilized to handle the hybrid variables.•The improved NSGA-III is proposed to optimize structure and input parameters of AE.•A selective neural network ensemble learning is used to improve the output result.
ArticleNumber 123186
Author Li, Hong
Bai, Lixia
Huang, Lingling
Xie, Jin
Gao, Weifeng
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0001-8709-5839
  surname: Li
  fullname: Li, Hong
  email: lihong@mail.xidian.edu.cn
– sequence: 2
  givenname: Lixia
  surname: Bai
  fullname: Bai, Lixia
  email: bailixia@stu.xidian.edu.cn
– sequence: 3
  givenname: Weifeng
  surname: Gao
  fullname: Gao, Weifeng
  email: gfw@xidian.edu.cn
– sequence: 4
  givenname: Jin
  surname: Xie
  fullname: Xie, Jin
  email: jxie@xidian.edu.cn
– sequence: 5
  givenname: Lingling
  surname: Huang
  fullname: Huang, Lingling
  email: huangll@xidian.edu.cn
BookMark eNp9kM9q4zAQh0XpwqbpvsCe9AJOR7ZjWdBLKf0HLXvZPYuxPE6U2lKRlKR9jX3iKqRQ6KGXGZjffAPznbFT5x0x9lvAQoBoLjYLintclFDWC1FWom1O2Ey0sioaqapTNgO1lEUtZP2TncW4ARASQM7Y_yd0b4XvNmSS3RE3nnZ-3CbrHYY3PhIGZ92K47jywab1xPe5cnpNgSb6zCc0a-uI4zb5gpzxPQU--MDJRZq6MV8eMUY72Dz3Ax-I-hzvMfTc0TbgmFva-_Acz9mPAcdIvz76nP27vfl7fV88_rl7uL56LEwFkAoiITqp2raBEpcKmwqBmiXIvlQgy2VLjWoUGFWrSolBQNfXA0CPnZJ51VRz1h7vmuBjDDRoYxMePk8B7agF6INbvdEHt_rgVh_dZrT8gr4EO2Vh30OXR4jyU7vsQUdjsyrqbcj2de_td_g7tKyZVA
CitedBy_id crossref_primary_10_3390_sym16070866
crossref_primary_10_3390_molecules29153699
crossref_primary_10_1155_atr_6851139
crossref_primary_10_1002_cpe_8210
crossref_primary_10_1016_j_asoc_2024_112310
Cites_doi 10.1016/j.eswa.2014.06.041
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2018.07.060
10.1109/TEVC.2018.2865931
10.1016/j.eswa.2023.120937
10.1016/j.knosys.2023.110817
10.1016/j.neucom.2017.08.040
10.1016/j.asoc.2019.02.040
10.1111/j.1467-8640.2009.00332.x
10.1016/j.eswa.2023.121609
10.1109/TSMCB.2011.2168604
10.1016/j.engappai.2023.106411
10.1016/j.neunet.2015.10.006
10.1016/j.neunet.2021.01.014
10.1016/j.engappai.2020.103968
10.1109/TEVC.2007.892759
10.1109/2.144401
10.1109/CEC.2013.6557743
10.1016/j.ins.2021.04.011
10.1109/4235.996017
10.1016/j.eswa.2022.119080
10.1214/aos/1016218223
10.1016/j.neucom.2020.12.087
10.1109/LSP.2010.2053356
10.1016/j.neucom.2016.12.027
10.1007/s10462-016-9535-1
10.1016/j.ins.2020.05.004
10.1016/j.neucom.2018.07.080
10.1016/j.ejor.2006.08.008
10.1162/evco.2010.18.1.18105
10.1023/A:1018046112532
10.1109/TIE.2022.3170631
10.1109/TNNLS.2019.2919699
10.1016/j.eswa.2019.113163
10.1016/j.engappai.2020.103910
10.1109/IJCNN.2017.7966387
10.1109/TEVC.2008.2011743
10.1016/0893-6080(91)90033-2
10.1016/j.neucom.2023.126618
10.1109/TEVC.2013.2281535
10.1109/TNN.2009.2036259
10.1016/j.eswa.2020.114041
10.1016/j.neucom.2019.10.053
10.1016/j.neucom.2021.03.110
10.1007/978-981-10-7179-9_32
10.1109/TNNLS.2019.2957730
10.1016/j.eswa.2021.115949
10.1016/j.ins.2014.01.038
10.1023/A:1018054314350
10.1109/ICEEOT.2016.7755105
10.1016/j.patcog.2021.108191
10.1016/S0004-3702(02)00190-X
10.1016/j.ins.2023.119031
10.1016/j.neunet.2019.12.005
10.1016/j.engappai.2017.01.013
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.123186
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2024_123186
S0957417424000514
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c300t-ee11b7988602a59a63a0e6507d2907258e69690c949391f10bd4f00dab973a0c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sat Oct 25 05:30:10 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Sat Apr 06 16:25:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Many-objective learning algorithm
Ensemble learning
Structure optimization
Extreme learning machine auto-encoder
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ee11b7988602a59a63a0e6507d2907258e69690c949391f10bd4f00dab973a0c3
ORCID 0000-0001-8709-5839
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2024_123186
crossref_primary_10_1016_j_eswa_2024_123186
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123186
PublicationCentury 2000
PublicationDate 2024-07-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, Jiang, Ling, Su (b23) 2019; 335
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In
Li, Zhao (b36) 2020; 96
Heris (b25) 2016
Cao, Wang, Ming, Gao (b8) 2018; 275
Raimundo, Drumond, Marques, Lyra, Zuben (b47) 2021; 435
Adra, Dodd, Griffin, Fleming (b1) 2009; 13
Ribeiro, Reynoso-Meza, Siqueira (b48) 2020; 95
Zhou, Wu, Tang (b64) 2002; 137
Jiao, Zeng, Li, Yang, Ong (b32) 2020; 99
Ouyang (b45) 2021; 448
Sietsma, Dow (b51) 1991; 4
Deng, Ong, Zheng (b13) 2016; 76
Kasun, Zhou, Huang, Vong (b33) 2013; 28
Wu, Zhang, Liu, Cai, Cai (b57) 2018; 317
(pp. 4202–4207). 2017.
Schmidt, Kraaijveld, Duin (b50) 1992
Pao, Takefuji (b46) 1992; 25
Zhang, Li (b61) 2007; 11
Huang, Sun, Huang (b26) 2020; 378
Choudhary, Shukla (b9) 2021; 164
He, Xu, Huang (b24) 2022; 121
Miettinen (b42) 1999
Anandhakumar, Sakthivel Murugan, Kumaresan (b2) 2024; 238
Bao, Gao, Gu, Xu, Goodman (b3) 2023; 213
Yang, Jiao, Gong (b59) 2009; 25
Miche, Sorjamaa, Bas, Simula, Jutten, Lendasse (b41) 2010; 21
Demšar (b12) 2006; 7
Du, Leung, Kwong (b17) 2014; 41
Mehmood, Cheema, Tahir, Tariq, Milyani, Elavarasan (b40) 2021; 33
Huérfano-Maldonado, Mora, Vilches, Hernández-García, Gutiérrez, Vera (b30) 2023; 556
Wdaa (b54) 2008
(pp. 243–247). 2016.
Dutta, Sil, Dutta (b19) 2020; 146
Wang, Bi (b53) 2022; 187
Yi, Xu, Shang, Li, Wu (b60) 2022; 70
(pp. 1523–1530). 2013.
Huang, Zhou, Ding, Zhang (b27) 2012; 42
Huang, Zhu, Siew (b29) 2006; 70
Zhu, Jin (b65) 2020; 31
Deb, Pratap, Agarwal, Meyarivan (b11) 2002; 6
Rocha, Costa, Braga (b49) 2020; 31
Echanobe, J., Campo, I. D., Martnez, V., & Basterretxea, K. (2017). Genetic algorithm-based optimization of ELM for on-line hyperspectral image classification. In
Dong, Huang (b16) 2021; 137
Wu, Li, Kwong, Zhang, Zhang (b55) 2019; 23
Breiman (b5) 1996; 24
Zhou, Kang, Guo (b63) 2020; 532
Li, Wang, Ding (b35) 2018; 49
Mane, S., Sonawani, S. S., & Sakhare, S. (2016). Classification problem solving using multi-objective optimization approach and local search. In
(pp. 420–435). 2017.
Friedman, Hastie, Tibshirani (b22) 2000; 28
Deb, Jain (b10) 2014; 18
(pp. 985–990). 2004.
Jiang, Han, Ling, Wang, Li, Han (b31) 2020; 123
Wu, Xu, Yan, Wang, Lin, Zhou (b56) 2023; 123
Liu, Li, Tan, Song (b37) 2021; 569
Beume, Naujoks, Emmerich (b4) 2007; 181
Li, Gao, Xie, Yen (b34) 2023; 642
Breiman (b6) 1996; 24
Dua, Graff (b18) 2019
Xiong, Xie, Yuan, Fu (b58) 2023; 233
Liu, Wang (b38) 2010; 17
Mirjalili, Mirjalili, Lewis (b43) 2014; 269
Cai, Y. M., Liu, X. B., Wu, Y., Hu, P., Wang, R. L., Wu, B., & Cai, Z. H. (2017). Extreme learning machine based on evolutionary multi-objective optimization. In
Elhossini, Areibi, Dony (b21) 2014; 18
Ding, Dong, He, Li (b15) 2019; 78
Sun, Zhang, Zhang, Hu (b52) 2017; 230
Zhang, Tsang, He, Guo (b62) 2023; 278
Díaz-Manríquez, A., Toscano-Pulido, G., Coello, C. A. C., & Landa-Becerra, R. (2013). A ranking method based on the R2 indicator for many-objective optimization. In
Ojha, Abraham, Snášel (b44) 2017; 60
Dua (10.1016/j.eswa.2024.123186_b18) 2019
Zhou (10.1016/j.eswa.2024.123186_b64) 2002; 137
Li (10.1016/j.eswa.2024.123186_b36) 2020; 96
Bao (10.1016/j.eswa.2024.123186_b3) 2023; 213
Breiman (10.1016/j.eswa.2024.123186_b6) 1996; 24
Anandhakumar (10.1016/j.eswa.2024.123186_b2) 2024; 238
Elhossini (10.1016/j.eswa.2024.123186_b21) 2014; 18
Friedman (10.1016/j.eswa.2024.123186_b22) 2000; 28
Beume (10.1016/j.eswa.2024.123186_b4) 2007; 181
Li (10.1016/j.eswa.2024.123186_b34) 2023; 642
Demšar (10.1016/j.eswa.2024.123186_b12) 2006; 7
Rocha (10.1016/j.eswa.2024.123186_b49) 2020; 31
Dong (10.1016/j.eswa.2024.123186_b16) 2021; 137
Han (10.1016/j.eswa.2024.123186_b23) 2019; 335
Miche (10.1016/j.eswa.2024.123186_b41) 2010; 21
Huérfano-Maldonado (10.1016/j.eswa.2024.123186_b30) 2023; 556
He (10.1016/j.eswa.2024.123186_b24) 2022; 121
Wang (10.1016/j.eswa.2024.123186_b53) 2022; 187
Xiong (10.1016/j.eswa.2024.123186_b58) 2023; 233
Zhang (10.1016/j.eswa.2024.123186_b62) 2023; 278
Schmidt (10.1016/j.eswa.2024.123186_b50) 1992
Dutta (10.1016/j.eswa.2024.123186_b19) 2020; 146
10.1016/j.eswa.2024.123186_b39
Heris (10.1016/j.eswa.2024.123186_b25) 2016
Deb (10.1016/j.eswa.2024.123186_b11) 2002; 6
Liu (10.1016/j.eswa.2024.123186_b37) 2021; 569
Huang (10.1016/j.eswa.2024.123186_b26) 2020; 378
Sietsma (10.1016/j.eswa.2024.123186_b51) 1991; 4
Deng (10.1016/j.eswa.2024.123186_b13) 2016; 76
Mirjalili (10.1016/j.eswa.2024.123186_b43) 2014; 269
Li (10.1016/j.eswa.2024.123186_b35) 2018; 49
Zhu (10.1016/j.eswa.2024.123186_b65) 2020; 31
10.1016/j.eswa.2024.123186_b28
Deb (10.1016/j.eswa.2024.123186_b10) 2014; 18
Kasun (10.1016/j.eswa.2024.123186_b33) 2013; 28
Wu (10.1016/j.eswa.2024.123186_b55) 2019; 23
10.1016/j.eswa.2024.123186_b20
Yi (10.1016/j.eswa.2024.123186_b60) 2022; 70
Zhou (10.1016/j.eswa.2024.123186_b63) 2020; 532
Huang (10.1016/j.eswa.2024.123186_b27) 2012; 42
Ribeiro (10.1016/j.eswa.2024.123186_b48) 2020; 95
Cao (10.1016/j.eswa.2024.123186_b8) 2018; 275
Yang (10.1016/j.eswa.2024.123186_b59) 2009; 25
Zhang (10.1016/j.eswa.2024.123186_b61) 2007; 11
Choudhary (10.1016/j.eswa.2024.123186_b9) 2021; 164
Ding (10.1016/j.eswa.2024.123186_b15) 2019; 78
Ojha (10.1016/j.eswa.2024.123186_b44) 2017; 60
Liu (10.1016/j.eswa.2024.123186_b38) 2010; 17
Ouyang (10.1016/j.eswa.2024.123186_b45) 2021; 448
Breiman (10.1016/j.eswa.2024.123186_b5) 1996; 24
Wu (10.1016/j.eswa.2024.123186_b56) 2023; 123
Mehmood (10.1016/j.eswa.2024.123186_b40) 2021; 33
10.1016/j.eswa.2024.123186_b7
Huang (10.1016/j.eswa.2024.123186_b29) 2006; 70
Jiao (10.1016/j.eswa.2024.123186_b32) 2020; 99
Pao (10.1016/j.eswa.2024.123186_b46) 1992; 25
Du (10.1016/j.eswa.2024.123186_b17) 2014; 41
Jiang (10.1016/j.eswa.2024.123186_b31) 2020; 123
10.1016/j.eswa.2024.123186_b14
Adra (10.1016/j.eswa.2024.123186_b1) 2009; 13
Miettinen (10.1016/j.eswa.2024.123186_b42) 1999
Sun (10.1016/j.eswa.2024.123186_b52) 2017; 230
Wdaa (10.1016/j.eswa.2024.123186_b54) 2008
Raimundo (10.1016/j.eswa.2024.123186_b47) 2021; 435
Wu (10.1016/j.eswa.2024.123186_b57) 2018; 317
References_xml – volume: 49
  start-page: 455
  year: 2018
  end-page: 479
  ident: b35
  article-title: Research and development of neural network ensembles: a survey
  publication-title: Artificial Intelligence Review
– reference: (pp. 243–247). 2016.
– volume: 18
  start-page: 127
  year: 2014
  end-page: 156
  ident: b21
  article-title: Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization
  publication-title: Evolutionary Computation
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b61
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 31
  start-page: 1310
  year: 2020
  end-page: 1322
  ident: b65
  article-title: Multi-objective evolutionary federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 17
  start-page: 754
  year: 2010
  end-page: 757
  ident: b38
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Processing Letters
– year: 2008
  ident: b54
  article-title: Differential evolution for neural networks learning enhancement
– volume: 31
  start-page: 4761
  year: 2020
  end-page: 4775
  ident: b49
  article-title: Neural networks multiobjective learning with spherical representation of weights
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 25
  start-page: 76
  year: 1992
  end-page: 79
  ident: b46
  article-title: Functional-link net computing: theory, system architecture, and functionalities
  publication-title: Computer
– volume: 238
  year: 2024
  ident: b2
  article-title: Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery
  publication-title: Expert Systems with Applications
– volume: 569
  start-page: 430
  year: 2021
  end-page: 449
  ident: b37
  article-title: An incremental-learning model-based multiobjective estimation of distribution algorithm
  publication-title: Information Sciences
– volume: 335
  start-page: 261
  year: 2019
  end-page: 273
  ident: b23
  article-title: A survey on metaheuristic optimization for random single-hidden layer feedforward neural network
  publication-title: Neurocomputing
– volume: 99
  start-page: 1
  year: 2020
  end-page: 14
  ident: b32
  article-title: Handling constrained many-objective optimization problems via problem transformation
  publication-title: IEEE Transactions on Cybernetics
– volume: 28
  start-page: 31
  year: 2013
  end-page: 34
  ident: b33
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intelligent Systems
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b12
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 278
  year: 2023
  ident: b62
  article-title: Ensemble of kernel extreme learning machine based elimination optimization for multi-label classification
  publication-title: Knowledge-Based Systems
– reference: Echanobe, J., Campo, I. D., Martnez, V., & Basterretxea, K. (2017). Genetic algorithm-based optimization of ELM for on-line hyperspectral image classification. In
– reference: (pp. 985–990). 2004.
– volume: 378
  start-page: 260
  year: 2020
  end-page: 269
  ident: b26
  article-title: Deep neural networks compression learning based on multiobjective evolutionary algorithms
  publication-title: Neurocomputing
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b11
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 146
  year: 2020
  ident: b19
  article-title: A bi-phased multi-objective genetic algorithm based classifier
  publication-title: Expert Systems with Applications
– volume: 137
  start-page: 75
  year: 2021
  end-page: 84
  ident: b16
  article-title: A training algorithm with selectable search direction for complex-valued feedforward neural networks
  publication-title: Neural Networks
– reference: (pp. 4202–4207). 2017.
– volume: 556
  year: 2023
  ident: b30
  article-title: A comprehensive review of extreme learning machine on medical imaging
  publication-title: Neurocomputing
– reference: Mane, S., Sonawani, S. S., & Sakhare, S. (2016). Classification problem solving using multi-objective optimization approach and local search. In
– volume: 95
  year: 2020
  ident: b48
  article-title: Multi-objective ensembles of echo state networks and extreme learning machines for streamflow series forecasting
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 4
  start-page: 67
  year: 1991
  end-page: 79
  ident: b51
  article-title: Creating artificial neural networks that generalize
  publication-title: Neural Network
– volume: 70
  start-page: 2790
  year: 2022
  end-page: 2799
  ident: b60
  article-title: Genetic algorithm-based ensemble hybrid sparse ELM for grasp stability recognition with multimodal tactile signals
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 96
  year: 2020
  ident: b36
  article-title: Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 137
  start-page: 239
  year: 2002
  end-page: 263
  ident: b64
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artificial Intelligence
– volume: 121
  year: 2022
  ident: b24
  article-title: Creating synthetic minority class samples based on autoencoder extreme learning machine
  publication-title: Pattern Recognition
– year: 2016
  ident: b25
  article-title: NSGA-III: Non-dominated sorting genetic algorithm, the third version-MATLAB implementation
– volume: 187
  year: 2022
  ident: b53
  article-title: A predictive model for chinese children with developmental dyslexia-based on a genetic algorithm optimized back-propagation neural network
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 376
  year: 2019
  end-page: 390
  ident: b55
  article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 78
  start-page: 447
  year: 2019
  end-page: 464
  ident: b15
  article-title: A novel two-archive strategy for evolutionary many-objective optimization algorithm based on reference points
  publication-title: Applied Soft Computing
– volume: 435
  start-page: 307
  year: 2021
  end-page: 320
  ident: b47
  article-title: Exploring multiobjective training in multiclass classification
  publication-title: Neurocomputing
– volume: 448
  start-page: 82
  year: 2021
  end-page: 93
  ident: b45
  article-title: Feature learning for stacked ELM via low-rank matrix factorization
  publication-title: Neurocomputing
– year: 2019
  ident: b18
  article-title: UCI machine learning repository
– volume: 21
  start-page: 158
  year: 2010
  end-page: 162
  ident: b41
  article-title: OP-ELM: Optimally pruned extreme learning machine
  publication-title: IEEE Transactions on Neural Networks
– volume: 269
  start-page: 188
  year: 2014
  end-page: 209
  ident: b43
  article-title: Let a biogeography-based optimizer train your multilayer perceptron
  publication-title: Information Sciences
– volume: 317
  start-page: 88
  year: 2018
  end-page: 100
  ident: b57
  article-title: A multiobjective optimization-based sparse extreme learning machine algorithm
  publication-title: Neurocomputing
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b10
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 642
  year: 2023
  ident: b34
  article-title: Multiobjective bilevel programming model for multilayer perceptron neural networks
  publication-title: Information Sciences
– reference: Díaz-Manríquez, A., Toscano-Pulido, G., Coello, C. A. C., & Landa-Becerra, R. (2013). A ranking method based on the R2 indicator for many-objective optimization. In
– year: 1999
  ident: b42
  article-title: Nonlinear multiobjective optimization
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b4
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
– volume: 164
  year: 2021
  ident: b9
  article-title: A clustering based ensemble of weighted kernelized extreme learning machine for class imbalance learning
  publication-title: Expert Systems with Applications
– volume: 76
  start-page: 29
  year: 2016
  end-page: 38
  ident: b13
  article-title: A fast reduced kernel extreme learning machine
  publication-title: Neural Networks
– volume: 233
  year: 2023
  ident: b58
  article-title: Differential evolution-based optimized hierarchical extreme learning machines for fault section diagnosis of large-scale power systems
  publication-title: Expert Systems with Applications
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: b27
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B
– volume: 60
  start-page: 97
  year: 2017
  end-page: 116
  ident: b44
  article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 28
  start-page: 337
  year: 2000
  end-page: 374
  ident: b22
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: The Annals of Statistics
– volume: 33
  year: 2021
  ident: b40
  article-title: Short term power dispatch using neural network based ensemble classifier
  publication-title: Journal of Energy Storage
– reference: (pp. 420–435). 2017.
– reference: Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In
– volume: 123
  year: 2023
  ident: b56
  article-title: Error-distribution-free kernel extreme learning machine for traffic flow forecasting
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 275
  start-page: 278
  year: 2018
  end-page: 287
  ident: b8
  article-title: A review on neural networks with random weights
  publication-title: Neurocomputing
– volume: 13
  start-page: 825
  year: 2009
  end-page: 847
  ident: b1
  article-title: Convergence acceleration operator for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b5
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 123
  start-page: 305
  year: 2020
  end-page: 316
  ident: b31
  article-title: Efficient network architecture search via multiobjective particle swarm optimization based on decomposition
  publication-title: Neural Networks
– volume: 230
  start-page: 374
  year: 2017
  end-page: 381
  ident: b52
  article-title: Generalized extreme learning machine autoencoder and a new deep neural network
  publication-title: Neurocomputing
– volume: 41
  start-page: 8049
  year: 2014
  end-page: 8061
  ident: b17
  article-title: Time series forecasting by neural networks: a knee point-based multiobjective evolutionary algorithm approach
  publication-title: Expert Systems with Applications
– volume: 213
  year: 2023
  ident: b3
  article-title: A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 1992
  end-page: 4
  ident: b50
  article-title: Feedforward neural networks with random weights
  publication-title: Proceedings of the 11th IAPR international conference on pattern recognition, 1992. Vol. II. conference B: Pattern recognition methodology and systems
– volume: 24
  start-page: 49
  year: 1996
  end-page: 64
  ident: b6
  article-title: Stacked regressions
  publication-title: Machine Learning
– reference: Cai, Y. M., Liu, X. B., Wu, Y., Hu, P., Wang, R. L., Wu, B., & Cai, Z. H. (2017). Extreme learning machine based on evolutionary multi-objective optimization. In
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b29
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– reference: (pp. 1523–1530). 2013.
– volume: 532
  start-page: 91
  year: 2020
  end-page: 109
  ident: b63
  article-title: Many-objective optimization of feature selection based on two-level particle cooperation
  publication-title: Information Sciences
– volume: 25
  start-page: 84
  year: 2009
  end-page: 108
  ident: b59
  article-title: Adaptive multi-objective optimation based on nondominated solutions
  publication-title: Computational Intelligence
– volume: 41
  start-page: 8049
  issue: 18
  year: 2014
  ident: 10.1016/j.eswa.2024.123186_b17
  article-title: Time series forecasting by neural networks: a knee point-based multiobjective evolutionary algorithm approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.06.041
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2024.123186_b29
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 317
  start-page: 88
  year: 2018
  ident: 10.1016/j.eswa.2024.123186_b57
  article-title: A multiobjective optimization-based sparse extreme learning machine algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.060
– year: 2008
  ident: 10.1016/j.eswa.2024.123186_b54
– volume: 23
  start-page: 376
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2024.123186_b55
  article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2865931
– volume: 233
  year: 2023
  ident: 10.1016/j.eswa.2024.123186_b58
  article-title: Differential evolution-based optimized hierarchical extreme learning machines for fault section diagnosis of large-scale power systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120937
– volume: 278
  year: 2023
  ident: 10.1016/j.eswa.2024.123186_b62
  article-title: Ensemble of kernel extreme learning machine based elimination optimization for multi-label classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110817
– volume: 275
  start-page: 278
  year: 2018
  ident: 10.1016/j.eswa.2024.123186_b8
  article-title: A review on neural networks with random weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.040
– volume: 78
  start-page: 447
  year: 2019
  ident: 10.1016/j.eswa.2024.123186_b15
  article-title: A novel two-archive strategy for evolutionary many-objective optimization algorithm based on reference points
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.02.040
– volume: 25
  start-page: 84
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2024.123186_b59
  article-title: Adaptive multi-objective optimation based on nondominated solutions
  publication-title: Computational Intelligence
  doi: 10.1111/j.1467-8640.2009.00332.x
– volume: 238
  year: 2024
  ident: 10.1016/j.eswa.2024.123186_b2
  article-title: Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121609
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2024.123186_b12
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2024.123186_b27
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B
  doi: 10.1109/TSMCB.2011.2168604
– volume: 123
  year: 2023
  ident: 10.1016/j.eswa.2024.123186_b56
  article-title: Error-distribution-free kernel extreme learning machine for traffic flow forecasting
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.106411
– volume: 76
  start-page: 29
  year: 2016
  ident: 10.1016/j.eswa.2024.123186_b13
  article-title: A fast reduced kernel extreme learning machine
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.10.006
– volume: 137
  start-page: 75
  year: 2021
  ident: 10.1016/j.eswa.2024.123186_b16
  article-title: A training algorithm with selectable search direction for complex-valued feedforward neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.01.014
– year: 2019
  ident: 10.1016/j.eswa.2024.123186_b18
– volume: 96
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b36
  article-title: Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103968
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2024.123186_b61
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 25
  start-page: 76
  issue: 5
  year: 1992
  ident: 10.1016/j.eswa.2024.123186_b46
  article-title: Functional-link net computing: theory, system architecture, and functionalities
  publication-title: Computer
  doi: 10.1109/2.144401
– ident: 10.1016/j.eswa.2024.123186_b28
– ident: 10.1016/j.eswa.2024.123186_b14
  doi: 10.1109/CEC.2013.6557743
– volume: 569
  start-page: 430
  year: 2021
  ident: 10.1016/j.eswa.2024.123186_b37
  article-title: An incremental-learning model-based multiobjective estimation of distribution algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.04.011
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2024.123186_b11
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 213
  year: 2023
  ident: 10.1016/j.eswa.2024.123186_b3
  article-title: A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119080
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2024.123186_b22
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1016218223
– volume: 435
  start-page: 307
  year: 2021
  ident: 10.1016/j.eswa.2024.123186_b47
  article-title: Exploring multiobjective training in multiclass classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.087
– volume: 17
  start-page: 754
  issue: 8
  year: 2010
  ident: 10.1016/j.eswa.2024.123186_b38
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2010.2053356
– volume: 230
  start-page: 374
  year: 2017
  ident: 10.1016/j.eswa.2024.123186_b52
  article-title: Generalized extreme learning machine autoencoder and a new deep neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.027
– volume: 49
  start-page: 455
  year: 2018
  ident: 10.1016/j.eswa.2024.123186_b35
  article-title: Research and development of neural network ensembles: a survey
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-016-9535-1
– year: 2016
  ident: 10.1016/j.eswa.2024.123186_b25
– volume: 532
  start-page: 91
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b63
  article-title: Many-objective optimization of feature selection based on two-level particle cooperation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.05.004
– volume: 335
  start-page: 261
  year: 2019
  ident: 10.1016/j.eswa.2024.123186_b23
  article-title: A survey on metaheuristic optimization for random single-hidden layer feedforward neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.080
– start-page: 1
  year: 1992
  ident: 10.1016/j.eswa.2024.123186_b50
  article-title: Feedforward neural networks with random weights
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2024.123186_b4
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.008
– volume: 18
  start-page: 127
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2024.123186_b21
  article-title: Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2010.18.1.18105
– year: 1999
  ident: 10.1016/j.eswa.2024.123186_b42
– volume: 24
  start-page: 49
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2024.123186_b6
  article-title: Stacked regressions
  publication-title: Machine Learning
  doi: 10.1023/A:1018046112532
– volume: 70
  start-page: 2790
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2024.123186_b60
  article-title: Genetic algorithm-based ensemble hybrid sparse ELM for grasp stability recognition with multimodal tactile signals
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2022.3170631
– volume: 31
  start-page: 1310
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b65
  article-title: Multi-objective evolutionary federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2919699
– volume: 146
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b19
  article-title: A bi-phased multi-objective genetic algorithm based classifier
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113163
– volume: 95
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b48
  article-title: Multi-objective ensembles of echo state networks and extreme learning machines for streamflow series forecasting
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103910
– ident: 10.1016/j.eswa.2024.123186_b20
  doi: 10.1109/IJCNN.2017.7966387
– volume: 13
  start-page: 825
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2024.123186_b1
  article-title: Convergence acceleration operator for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.2011743
– volume: 4
  start-page: 67
  issue: 1
  year: 1991
  ident: 10.1016/j.eswa.2024.123186_b51
  article-title: Creating artificial neural networks that generalize
  publication-title: Neural Network
  doi: 10.1016/0893-6080(91)90033-2
– volume: 556
  year: 2023
  ident: 10.1016/j.eswa.2024.123186_b30
  article-title: A comprehensive review of extreme learning machine on medical imaging
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126618
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2024.123186_b10
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 99
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b32
  article-title: Handling constrained many-objective optimization problems via problem transformation
  publication-title: IEEE Transactions on Cybernetics
– volume: 21
  start-page: 158
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2024.123186_b41
  article-title: OP-ELM: Optimally pruned extreme learning machine
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2036259
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2024.123186_b33
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intelligent Systems
– volume: 164
  year: 2021
  ident: 10.1016/j.eswa.2024.123186_b9
  article-title: A clustering based ensemble of weighted kernelized extreme learning machine for class imbalance learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114041
– volume: 378
  start-page: 260
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b26
  article-title: Deep neural networks compression learning based on multiobjective evolutionary algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.053
– volume: 448
  start-page: 82
  year: 2021
  ident: 10.1016/j.eswa.2024.123186_b45
  article-title: Feature learning for stacked ELM via low-rank matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.110
– volume: 33
  issue: 18
  year: 2021
  ident: 10.1016/j.eswa.2024.123186_b40
  article-title: Short term power dispatch using neural network based ensemble classifier
  publication-title: Journal of Energy Storage
– ident: 10.1016/j.eswa.2024.123186_b7
  doi: 10.1007/978-981-10-7179-9_32
– volume: 31
  start-page: 4761
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b49
  article-title: Neural networks multiobjective learning with spherical representation of weights
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2957730
– volume: 187
  year: 2022
  ident: 10.1016/j.eswa.2024.123186_b53
  article-title: A predictive model for chinese children with developmental dyslexia-based on a genetic algorithm optimized back-propagation neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115949
– volume: 269
  start-page: 188
  year: 2014
  ident: 10.1016/j.eswa.2024.123186_b43
  article-title: Let a biogeography-based optimizer train your multilayer perceptron
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.01.038
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.eswa.2024.123186_b5
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1023/A:1018054314350
– ident: 10.1016/j.eswa.2024.123186_b39
  doi: 10.1109/ICEEOT.2016.7755105
– volume: 121
  year: 2022
  ident: 10.1016/j.eswa.2024.123186_b24
  article-title: Creating synthetic minority class samples based on autoencoder extreme learning machine
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108191
– volume: 137
  start-page: 239
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2024.123186_b64
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(02)00190-X
– volume: 642
  year: 2023
  ident: 10.1016/j.eswa.2024.123186_b34
  article-title: Multiobjective bilevel programming model for multilayer perceptron neural networks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.119031
– volume: 123
  start-page: 305
  year: 2020
  ident: 10.1016/j.eswa.2024.123186_b31
  article-title: Efficient network architecture search via multiobjective particle swarm optimization based on decomposition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.12.005
– volume: 60
  start-page: 97
  year: 2017
  ident: 10.1016/j.eswa.2024.123186_b44
  article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.01.013
SSID ssj0017007
Score 2.4960785
Snippet In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123186
SubjectTerms Classification
Ensemble learning
Extreme learning machine auto-encoder
Many-objective learning algorithm
Structure optimization
Title Many-objective coevolutionary learning algorithm with extreme learning machine auto-encoder for ensemble classifier of feedforward neural networks
URI https://dx.doi.org/10.1016/j.eswa.2024.123186
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EW95YEOmdurE9VhVVAUECyCxRXbiQFGbVG0KYuFH8Iu5SxweEmJgTGInls--h_Pdd4Qca7CxhicBM0ImTCINoXFRyKRxKrAm6qgqi__qOhrcyYv78H6B9JpcGIRVet1f6_RKW_s7LT-brclw2LoB5wDMIYR2snJEkBNUSoVVDE7fPmEeSD-nar49xbC1T5ypMV5u9oLcQ4E8BQUuMJ_6N-P0zeD018iK9xRptx7MOllw-QZZbaowUL8pN8n7FexnVtinWnXRpHDPfj2Z6Sv1ZSEeqBk9FNNh-TimePZKQSnj0eDX83EFq3TUzMuCIb1lCl8Bl5ZCoOvGdgRvRk97mMFYaZHRDOwePEbULUVWTBhrXmPKZ1vkrn922xswX2mBJW3OS-acEBaZyyIemFCbqG04SIyrNIDgOQg7LtIQRida6rYWmeA2lRnnqbFaQdOkvU0W8yJ3O4SmLtNpWP1BtFKptIOpt9qJlHNrVJjsEtFMcZx4GnKshjGKG7zZU4xiiVEscS2WXXLy2WdSk3D82TpsJBf_WEoxWIk_-u39s98-WcYrPPAV4QFZLKdzdwieSmmPqqV4RJa655eD6w_ereqG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZKOYzL2BgINrb5wG0ytVM7ro-oWtUB5UIrcYvsxIFUbYNK2LTL_oj9xbyXOGxIiAPX2E4sP_v9cL73PUKODNhYy9OIWSFTJpGG0PpYMWm9jpyNB7rO4p9cxOOZPL1SVx0ybHNhEFYZdH-j02ttHZ70wmr2bouidwnOAZhDCO1k7YjIDbIpVaQxAjv-84jzQP453RDuaYbdQ-ZMA_Lyd7-QfCiSx6DBBSZUP2ed_rM4o3fkbXAV6Ukzm_ek41c7ZLstw0DDqfxA_k7gQLPSzRvdRdPS_wwbyq5_01AX4praxXW5LqqbJcXLVwpaGe8G_7Uva1ylp_a-KhnyW2bwFfBpKUS6fukW8GZ0tYsc5krLnOZg-KAZYbcUaTFhrqsGVH63S2aj79PhmIVSCyztc14x74VwSF0W88gqY-O-5SAyrrMIoudIDXxsII5OjTR9I3LBXSZzzjPrjIauaX-PdFflyu8TmvncZKr-heik1tkAc2-NFxnnzmqVHhDRLnGSBh5yLIexSFrA2TxBsSQolqQRywH59jjmtmHheLG3aiWXPNlLCZiJF8Z9fOW4r-TNeDo5T85_XJx9IlvYgre_Qh2SbrW-95_Bbancl3pbPgBW7uwb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many-objective+coevolutionary+learning+algorithm+with+extreme+learning+machine+auto-encoder+for+ensemble+classifier+of+feedforward+neural+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Hong&rft.au=Bai%2C+Lixia&rft.au=Gao%2C+Weifeng&rft.au=Xie%2C+Jin&rft.date=2024-07-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=246&rft_id=info:doi/10.1016%2Fj.eswa.2024.123186&rft.externalDocID=S0957417424000514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon