Many-objective coevolutionary learning algorithm with extreme learning machine auto-encoder for ensemble classifier of feedforward neural networks
In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity. Learning from data is often seen as a tradeoff between these two risks. Additionally, balancing training error and validation error can overco...
Saved in:
| Published in | Expert systems with applications Vol. 246; p. 123186 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2024.123186 |
Cover
| Abstract | In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity. Learning from data is often seen as a tradeoff between these two risks. Additionally, balancing training error and validation error can overcome the overfitting problem to some extent. It is known that the network performance is also related to regularization term. In order to consider four factors, i.e. training error, validation error, network complexity and regularization term simultaneously in the training process of a single-hidden layer feedforword neural network (SLFN), a many-objective coevolutionary learning algorithm (MOCELA) integrated with extreme learning machine auto-encoder (ELMAE), called MOCELA-ELMAE is presented. In MOCELA, the non-dominated sorting genetic algorithm III (NSGA-III) is improved for handling the many-objective optimization model with hybrid variables, where binary coding is used for structure learning and real coding is utilized for representing input parameters, referring to all input weights and hidden biases of the AE network. Output parameters of AE, i.e. output weights are analytically calculated by the non-iterative learning rule. The network structure and connection parameters of SLFN are determined based on those of AE. A set of Pareto optimal solutions are eventually collected by the MOCELA-ELMAE, which represents multiple optimal SLFNs. To make the final decision, three best SLFNs with minimum validation errors are selected as the base classifiers for selective ensemble learning. Extensive experiments are implemented on the benchmark classification data sets of UCI machine learning repository, and obvious improvements have been observed when the proposed MOCELA-ELMAE is compared with the NSGA-III based on hybrid coding and completely non-iterative learning of SLFN respectively. The experimental results also illustrate that the MOCELA-ELMAE performs much better than other state-of-the-art learning algorithms on many data sets.
•Many-objective optimization training model is constructed for a SLFN.•The NSGA-III with new genetic operators is utilized to handle the hybrid variables.•The improved NSGA-III is proposed to optimize structure and input parameters of AE.•A selective neural network ensemble learning is used to improve the output result. |
|---|---|
| AbstractList | In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity. Learning from data is often seen as a tradeoff between these two risks. Additionally, balancing training error and validation error can overcome the overfitting problem to some extent. It is known that the network performance is also related to regularization term. In order to consider four factors, i.e. training error, validation error, network complexity and regularization term simultaneously in the training process of a single-hidden layer feedforword neural network (SLFN), a many-objective coevolutionary learning algorithm (MOCELA) integrated with extreme learning machine auto-encoder (ELMAE), called MOCELA-ELMAE is presented. In MOCELA, the non-dominated sorting genetic algorithm III (NSGA-III) is improved for handling the many-objective optimization model with hybrid variables, where binary coding is used for structure learning and real coding is utilized for representing input parameters, referring to all input weights and hidden biases of the AE network. Output parameters of AE, i.e. output weights are analytically calculated by the non-iterative learning rule. The network structure and connection parameters of SLFN are determined based on those of AE. A set of Pareto optimal solutions are eventually collected by the MOCELA-ELMAE, which represents multiple optimal SLFNs. To make the final decision, three best SLFNs with minimum validation errors are selected as the base classifiers for selective ensemble learning. Extensive experiments are implemented on the benchmark classification data sets of UCI machine learning repository, and obvious improvements have been observed when the proposed MOCELA-ELMAE is compared with the NSGA-III based on hybrid coding and completely non-iterative learning of SLFN respectively. The experimental results also illustrate that the MOCELA-ELMAE performs much better than other state-of-the-art learning algorithms on many data sets.
•Many-objective optimization training model is constructed for a SLFN.•The NSGA-III with new genetic operators is utilized to handle the hybrid variables.•The improved NSGA-III is proposed to optimize structure and input parameters of AE.•A selective neural network ensemble learning is used to improve the output result. |
| ArticleNumber | 123186 |
| Author | Li, Hong Bai, Lixia Huang, Lingling Xie, Jin Gao, Weifeng |
| Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0001-8709-5839 surname: Li fullname: Li, Hong email: lihong@mail.xidian.edu.cn – sequence: 2 givenname: Lixia surname: Bai fullname: Bai, Lixia email: bailixia@stu.xidian.edu.cn – sequence: 3 givenname: Weifeng surname: Gao fullname: Gao, Weifeng email: gfw@xidian.edu.cn – sequence: 4 givenname: Jin surname: Xie fullname: Xie, Jin email: jxie@xidian.edu.cn – sequence: 5 givenname: Lingling surname: Huang fullname: Huang, Lingling email: huangll@xidian.edu.cn |
| BookMark | eNp9kM9q4zAQh0XpwqbpvsCe9AJOR7ZjWdBLKf0HLXvZPYuxPE6U2lKRlKR9jX3iKqRQ6KGXGZjffAPznbFT5x0x9lvAQoBoLjYLintclFDWC1FWom1O2Ey0sioaqapTNgO1lEUtZP2TncW4ARASQM7Y_yd0b4XvNmSS3RE3nnZ-3CbrHYY3PhIGZ92K47jywab1xPe5cnpNgSb6zCc0a-uI4zb5gpzxPQU--MDJRZq6MV8eMUY72Dz3Ax-I-hzvMfTc0TbgmFva-_Acz9mPAcdIvz76nP27vfl7fV88_rl7uL56LEwFkAoiITqp2raBEpcKmwqBmiXIvlQgy2VLjWoUGFWrSolBQNfXA0CPnZJ51VRz1h7vmuBjDDRoYxMePk8B7agF6INbvdEHt_rgVh_dZrT8gr4EO2Vh30OXR4jyU7vsQUdjsyrqbcj2de_td_g7tKyZVA |
| CitedBy_id | crossref_primary_10_3390_sym16070866 crossref_primary_10_3390_molecules29153699 crossref_primary_10_1155_atr_6851139 crossref_primary_10_1002_cpe_8210 crossref_primary_10_1016_j_asoc_2024_112310 |
| Cites_doi | 10.1016/j.eswa.2014.06.041 10.1016/j.neucom.2005.12.126 10.1016/j.neucom.2018.07.060 10.1109/TEVC.2018.2865931 10.1016/j.eswa.2023.120937 10.1016/j.knosys.2023.110817 10.1016/j.neucom.2017.08.040 10.1016/j.asoc.2019.02.040 10.1111/j.1467-8640.2009.00332.x 10.1016/j.eswa.2023.121609 10.1109/TSMCB.2011.2168604 10.1016/j.engappai.2023.106411 10.1016/j.neunet.2015.10.006 10.1016/j.neunet.2021.01.014 10.1016/j.engappai.2020.103968 10.1109/TEVC.2007.892759 10.1109/2.144401 10.1109/CEC.2013.6557743 10.1016/j.ins.2021.04.011 10.1109/4235.996017 10.1016/j.eswa.2022.119080 10.1214/aos/1016218223 10.1016/j.neucom.2020.12.087 10.1109/LSP.2010.2053356 10.1016/j.neucom.2016.12.027 10.1007/s10462-016-9535-1 10.1016/j.ins.2020.05.004 10.1016/j.neucom.2018.07.080 10.1016/j.ejor.2006.08.008 10.1162/evco.2010.18.1.18105 10.1023/A:1018046112532 10.1109/TIE.2022.3170631 10.1109/TNNLS.2019.2919699 10.1016/j.eswa.2019.113163 10.1016/j.engappai.2020.103910 10.1109/IJCNN.2017.7966387 10.1109/TEVC.2008.2011743 10.1016/0893-6080(91)90033-2 10.1016/j.neucom.2023.126618 10.1109/TEVC.2013.2281535 10.1109/TNN.2009.2036259 10.1016/j.eswa.2020.114041 10.1016/j.neucom.2019.10.053 10.1016/j.neucom.2021.03.110 10.1007/978-981-10-7179-9_32 10.1109/TNNLS.2019.2957730 10.1016/j.eswa.2021.115949 10.1016/j.ins.2014.01.038 10.1023/A:1018054314350 10.1109/ICEEOT.2016.7755105 10.1016/j.patcog.2021.108191 10.1016/S0004-3702(02)00190-X 10.1016/j.ins.2023.119031 10.1016/j.neunet.2019.12.005 10.1016/j.engappai.2017.01.013 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.123186 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2024_123186 S0957417424000514 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-ee11b7988602a59a63a0e6507d2907258e69690c949391f10bd4f00dab973a0c3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Sat Oct 25 05:30:10 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Sat Apr 06 16:25:34 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Many-objective learning algorithm Ensemble learning Structure optimization Extreme learning machine auto-encoder Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-ee11b7988602a59a63a0e6507d2907258e69690c949391f10bd4f00dab973a0c3 |
| ORCID | 0000-0001-8709-5839 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2024_123186 crossref_primary_10_1016_j_eswa_2024_123186 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123186 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-15 |
| PublicationDateYYYYMMDD | 2024-07-15 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Han, Jiang, Ling, Su (b23) 2019; 335 Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In Li, Zhao (b36) 2020; 96 Heris (b25) 2016 Cao, Wang, Ming, Gao (b8) 2018; 275 Raimundo, Drumond, Marques, Lyra, Zuben (b47) 2021; 435 Adra, Dodd, Griffin, Fleming (b1) 2009; 13 Ribeiro, Reynoso-Meza, Siqueira (b48) 2020; 95 Zhou, Wu, Tang (b64) 2002; 137 Jiao, Zeng, Li, Yang, Ong (b32) 2020; 99 Ouyang (b45) 2021; 448 Sietsma, Dow (b51) 1991; 4 Deng, Ong, Zheng (b13) 2016; 76 Kasun, Zhou, Huang, Vong (b33) 2013; 28 Wu, Zhang, Liu, Cai, Cai (b57) 2018; 317 (pp. 4202–4207). 2017. Schmidt, Kraaijveld, Duin (b50) 1992 Pao, Takefuji (b46) 1992; 25 Zhang, Li (b61) 2007; 11 Huang, Sun, Huang (b26) 2020; 378 Choudhary, Shukla (b9) 2021; 164 He, Xu, Huang (b24) 2022; 121 Miettinen (b42) 1999 Anandhakumar, Sakthivel Murugan, Kumaresan (b2) 2024; 238 Bao, Gao, Gu, Xu, Goodman (b3) 2023; 213 Yang, Jiao, Gong (b59) 2009; 25 Miche, Sorjamaa, Bas, Simula, Jutten, Lendasse (b41) 2010; 21 Demšar (b12) 2006; 7 Du, Leung, Kwong (b17) 2014; 41 Mehmood, Cheema, Tahir, Tariq, Milyani, Elavarasan (b40) 2021; 33 Huérfano-Maldonado, Mora, Vilches, Hernández-García, Gutiérrez, Vera (b30) 2023; 556 Wdaa (b54) 2008 (pp. 243–247). 2016. Dutta, Sil, Dutta (b19) 2020; 146 Wang, Bi (b53) 2022; 187 Yi, Xu, Shang, Li, Wu (b60) 2022; 70 (pp. 1523–1530). 2013. Huang, Zhou, Ding, Zhang (b27) 2012; 42 Huang, Zhu, Siew (b29) 2006; 70 Zhu, Jin (b65) 2020; 31 Deb, Pratap, Agarwal, Meyarivan (b11) 2002; 6 Rocha, Costa, Braga (b49) 2020; 31 Echanobe, J., Campo, I. D., Martnez, V., & Basterretxea, K. (2017). Genetic algorithm-based optimization of ELM for on-line hyperspectral image classification. In Dong, Huang (b16) 2021; 137 Wu, Li, Kwong, Zhang, Zhang (b55) 2019; 23 Breiman (b5) 1996; 24 Zhou, Kang, Guo (b63) 2020; 532 Li, Wang, Ding (b35) 2018; 49 Mane, S., Sonawani, S. S., & Sakhare, S. (2016). Classification problem solving using multi-objective optimization approach and local search. In (pp. 420–435). 2017. Friedman, Hastie, Tibshirani (b22) 2000; 28 Deb, Jain (b10) 2014; 18 (pp. 985–990). 2004. Jiang, Han, Ling, Wang, Li, Han (b31) 2020; 123 Wu, Xu, Yan, Wang, Lin, Zhou (b56) 2023; 123 Liu, Li, Tan, Song (b37) 2021; 569 Beume, Naujoks, Emmerich (b4) 2007; 181 Li, Gao, Xie, Yen (b34) 2023; 642 Breiman (b6) 1996; 24 Dua, Graff (b18) 2019 Xiong, Xie, Yuan, Fu (b58) 2023; 233 Liu, Wang (b38) 2010; 17 Mirjalili, Mirjalili, Lewis (b43) 2014; 269 Cai, Y. M., Liu, X. B., Wu, Y., Hu, P., Wang, R. L., Wu, B., & Cai, Z. H. (2017). Extreme learning machine based on evolutionary multi-objective optimization. In Elhossini, Areibi, Dony (b21) 2014; 18 Ding, Dong, He, Li (b15) 2019; 78 Sun, Zhang, Zhang, Hu (b52) 2017; 230 Zhang, Tsang, He, Guo (b62) 2023; 278 Díaz-Manríquez, A., Toscano-Pulido, G., Coello, C. A. C., & Landa-Becerra, R. (2013). A ranking method based on the R2 indicator for many-objective optimization. In Ojha, Abraham, Snášel (b44) 2017; 60 Dua (10.1016/j.eswa.2024.123186_b18) 2019 Zhou (10.1016/j.eswa.2024.123186_b64) 2002; 137 Li (10.1016/j.eswa.2024.123186_b36) 2020; 96 Bao (10.1016/j.eswa.2024.123186_b3) 2023; 213 Breiman (10.1016/j.eswa.2024.123186_b6) 1996; 24 Anandhakumar (10.1016/j.eswa.2024.123186_b2) 2024; 238 Elhossini (10.1016/j.eswa.2024.123186_b21) 2014; 18 Friedman (10.1016/j.eswa.2024.123186_b22) 2000; 28 Beume (10.1016/j.eswa.2024.123186_b4) 2007; 181 Li (10.1016/j.eswa.2024.123186_b34) 2023; 642 Demšar (10.1016/j.eswa.2024.123186_b12) 2006; 7 Rocha (10.1016/j.eswa.2024.123186_b49) 2020; 31 Dong (10.1016/j.eswa.2024.123186_b16) 2021; 137 Han (10.1016/j.eswa.2024.123186_b23) 2019; 335 Miche (10.1016/j.eswa.2024.123186_b41) 2010; 21 Huérfano-Maldonado (10.1016/j.eswa.2024.123186_b30) 2023; 556 He (10.1016/j.eswa.2024.123186_b24) 2022; 121 Wang (10.1016/j.eswa.2024.123186_b53) 2022; 187 Xiong (10.1016/j.eswa.2024.123186_b58) 2023; 233 Zhang (10.1016/j.eswa.2024.123186_b62) 2023; 278 Schmidt (10.1016/j.eswa.2024.123186_b50) 1992 Dutta (10.1016/j.eswa.2024.123186_b19) 2020; 146 10.1016/j.eswa.2024.123186_b39 Heris (10.1016/j.eswa.2024.123186_b25) 2016 Deb (10.1016/j.eswa.2024.123186_b11) 2002; 6 Liu (10.1016/j.eswa.2024.123186_b37) 2021; 569 Huang (10.1016/j.eswa.2024.123186_b26) 2020; 378 Sietsma (10.1016/j.eswa.2024.123186_b51) 1991; 4 Deng (10.1016/j.eswa.2024.123186_b13) 2016; 76 Mirjalili (10.1016/j.eswa.2024.123186_b43) 2014; 269 Li (10.1016/j.eswa.2024.123186_b35) 2018; 49 Zhu (10.1016/j.eswa.2024.123186_b65) 2020; 31 10.1016/j.eswa.2024.123186_b28 Deb (10.1016/j.eswa.2024.123186_b10) 2014; 18 Kasun (10.1016/j.eswa.2024.123186_b33) 2013; 28 Wu (10.1016/j.eswa.2024.123186_b55) 2019; 23 10.1016/j.eswa.2024.123186_b20 Yi (10.1016/j.eswa.2024.123186_b60) 2022; 70 Zhou (10.1016/j.eswa.2024.123186_b63) 2020; 532 Huang (10.1016/j.eswa.2024.123186_b27) 2012; 42 Ribeiro (10.1016/j.eswa.2024.123186_b48) 2020; 95 Cao (10.1016/j.eswa.2024.123186_b8) 2018; 275 Yang (10.1016/j.eswa.2024.123186_b59) 2009; 25 Zhang (10.1016/j.eswa.2024.123186_b61) 2007; 11 Choudhary (10.1016/j.eswa.2024.123186_b9) 2021; 164 Ding (10.1016/j.eswa.2024.123186_b15) 2019; 78 Ojha (10.1016/j.eswa.2024.123186_b44) 2017; 60 Liu (10.1016/j.eswa.2024.123186_b38) 2010; 17 Ouyang (10.1016/j.eswa.2024.123186_b45) 2021; 448 Breiman (10.1016/j.eswa.2024.123186_b5) 1996; 24 Wu (10.1016/j.eswa.2024.123186_b56) 2023; 123 Mehmood (10.1016/j.eswa.2024.123186_b40) 2021; 33 10.1016/j.eswa.2024.123186_b7 Huang (10.1016/j.eswa.2024.123186_b29) 2006; 70 Jiao (10.1016/j.eswa.2024.123186_b32) 2020; 99 Pao (10.1016/j.eswa.2024.123186_b46) 1992; 25 Du (10.1016/j.eswa.2024.123186_b17) 2014; 41 Jiang (10.1016/j.eswa.2024.123186_b31) 2020; 123 10.1016/j.eswa.2024.123186_b14 Adra (10.1016/j.eswa.2024.123186_b1) 2009; 13 Miettinen (10.1016/j.eswa.2024.123186_b42) 1999 Sun (10.1016/j.eswa.2024.123186_b52) 2017; 230 Wdaa (10.1016/j.eswa.2024.123186_b54) 2008 Raimundo (10.1016/j.eswa.2024.123186_b47) 2021; 435 Wu (10.1016/j.eswa.2024.123186_b57) 2018; 317 |
| References_xml | – volume: 49 start-page: 455 year: 2018 end-page: 479 ident: b35 article-title: Research and development of neural network ensembles: a survey publication-title: Artificial Intelligence Review – reference: (pp. 243–247). 2016. – volume: 18 start-page: 127 year: 2014 end-page: 156 ident: b21 article-title: Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization publication-title: Evolutionary Computation – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b61 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation – volume: 31 start-page: 1310 year: 2020 end-page: 1322 ident: b65 article-title: Multi-objective evolutionary federated learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 17 start-page: 754 year: 2010 end-page: 757 ident: b38 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Processing Letters – year: 2008 ident: b54 article-title: Differential evolution for neural networks learning enhancement – volume: 31 start-page: 4761 year: 2020 end-page: 4775 ident: b49 article-title: Neural networks multiobjective learning with spherical representation of weights publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 25 start-page: 76 year: 1992 end-page: 79 ident: b46 article-title: Functional-link net computing: theory, system architecture, and functionalities publication-title: Computer – volume: 238 year: 2024 ident: b2 article-title: Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery publication-title: Expert Systems with Applications – volume: 569 start-page: 430 year: 2021 end-page: 449 ident: b37 article-title: An incremental-learning model-based multiobjective estimation of distribution algorithm publication-title: Information Sciences – volume: 335 start-page: 261 year: 2019 end-page: 273 ident: b23 article-title: A survey on metaheuristic optimization for random single-hidden layer feedforward neural network publication-title: Neurocomputing – volume: 99 start-page: 1 year: 2020 end-page: 14 ident: b32 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEE Transactions on Cybernetics – volume: 28 start-page: 31 year: 2013 end-page: 34 ident: b33 article-title: Representational learning with ELMs for big data publication-title: IEEE Intelligent Systems – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 278 year: 2023 ident: b62 article-title: Ensemble of kernel extreme learning machine based elimination optimization for multi-label classification publication-title: Knowledge-Based Systems – reference: Echanobe, J., Campo, I. D., Martnez, V., & Basterretxea, K. (2017). Genetic algorithm-based optimization of ELM for on-line hyperspectral image classification. In – reference: (pp. 985–990). 2004. – volume: 378 start-page: 260 year: 2020 end-page: 269 ident: b26 article-title: Deep neural networks compression learning based on multiobjective evolutionary algorithms publication-title: Neurocomputing – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b11 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 146 year: 2020 ident: b19 article-title: A bi-phased multi-objective genetic algorithm based classifier publication-title: Expert Systems with Applications – volume: 137 start-page: 75 year: 2021 end-page: 84 ident: b16 article-title: A training algorithm with selectable search direction for complex-valued feedforward neural networks publication-title: Neural Networks – reference: (pp. 4202–4207). 2017. – volume: 556 year: 2023 ident: b30 article-title: A comprehensive review of extreme learning machine on medical imaging publication-title: Neurocomputing – reference: Mane, S., Sonawani, S. S., & Sakhare, S. (2016). Classification problem solving using multi-objective optimization approach and local search. In – volume: 95 year: 2020 ident: b48 article-title: Multi-objective ensembles of echo state networks and extreme learning machines for streamflow series forecasting publication-title: Engineering Applications of Artificial Intelligence – volume: 4 start-page: 67 year: 1991 end-page: 79 ident: b51 article-title: Creating artificial neural networks that generalize publication-title: Neural Network – volume: 70 start-page: 2790 year: 2022 end-page: 2799 ident: b60 article-title: Genetic algorithm-based ensemble hybrid sparse ELM for grasp stability recognition with multimodal tactile signals publication-title: IEEE Transactions on Industrial Electronics – volume: 96 year: 2020 ident: b36 article-title: Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine publication-title: Engineering Applications of Artificial Intelligence – volume: 137 start-page: 239 year: 2002 end-page: 263 ident: b64 article-title: Ensembling neural networks: many could be better than all publication-title: Artificial Intelligence – volume: 121 year: 2022 ident: b24 article-title: Creating synthetic minority class samples based on autoencoder extreme learning machine publication-title: Pattern Recognition – year: 2016 ident: b25 article-title: NSGA-III: Non-dominated sorting genetic algorithm, the third version-MATLAB implementation – volume: 187 year: 2022 ident: b53 article-title: A predictive model for chinese children with developmental dyslexia-based on a genetic algorithm optimized back-propagation neural network publication-title: Expert Systems with Applications – volume: 23 start-page: 376 year: 2019 end-page: 390 ident: b55 article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 78 start-page: 447 year: 2019 end-page: 464 ident: b15 article-title: A novel two-archive strategy for evolutionary many-objective optimization algorithm based on reference points publication-title: Applied Soft Computing – volume: 435 start-page: 307 year: 2021 end-page: 320 ident: b47 article-title: Exploring multiobjective training in multiclass classification publication-title: Neurocomputing – volume: 448 start-page: 82 year: 2021 end-page: 93 ident: b45 article-title: Feature learning for stacked ELM via low-rank matrix factorization publication-title: Neurocomputing – year: 2019 ident: b18 article-title: UCI machine learning repository – volume: 21 start-page: 158 year: 2010 end-page: 162 ident: b41 article-title: OP-ELM: Optimally pruned extreme learning machine publication-title: IEEE Transactions on Neural Networks – volume: 269 start-page: 188 year: 2014 end-page: 209 ident: b43 article-title: Let a biogeography-based optimizer train your multilayer perceptron publication-title: Information Sciences – volume: 317 start-page: 88 year: 2018 end-page: 100 ident: b57 article-title: A multiobjective optimization-based sparse extreme learning machine algorithm publication-title: Neurocomputing – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b10 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation – volume: 642 year: 2023 ident: b34 article-title: Multiobjective bilevel programming model for multilayer perceptron neural networks publication-title: Information Sciences – reference: Díaz-Manríquez, A., Toscano-Pulido, G., Coello, C. A. C., & Landa-Becerra, R. (2013). A ranking method based on the R2 indicator for many-objective optimization. In – year: 1999 ident: b42 article-title: Nonlinear multiobjective optimization – volume: 181 start-page: 1653 year: 2007 end-page: 1669 ident: b4 article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research – volume: 164 year: 2021 ident: b9 article-title: A clustering based ensemble of weighted kernelized extreme learning machine for class imbalance learning publication-title: Expert Systems with Applications – volume: 76 start-page: 29 year: 2016 end-page: 38 ident: b13 article-title: A fast reduced kernel extreme learning machine publication-title: Neural Networks – volume: 233 year: 2023 ident: b58 article-title: Differential evolution-based optimized hierarchical extreme learning machines for fault section diagnosis of large-scale power systems publication-title: Expert Systems with Applications – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: b27 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B – volume: 60 start-page: 97 year: 2017 end-page: 116 ident: b44 article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research publication-title: Engineering Applications of Artificial Intelligence – volume: 28 start-page: 337 year: 2000 end-page: 374 ident: b22 article-title: Additive logistic regression: a statistical view of boosting publication-title: The Annals of Statistics – volume: 33 year: 2021 ident: b40 article-title: Short term power dispatch using neural network based ensemble classifier publication-title: Journal of Energy Storage – reference: (pp. 420–435). 2017. – reference: Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In – volume: 123 year: 2023 ident: b56 article-title: Error-distribution-free kernel extreme learning machine for traffic flow forecasting publication-title: Engineering Applications of Artificial Intelligence – volume: 275 start-page: 278 year: 2018 end-page: 287 ident: b8 article-title: A review on neural networks with random weights publication-title: Neurocomputing – volume: 13 start-page: 825 year: 2009 end-page: 847 ident: b1 article-title: Convergence acceleration operator for multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b5 article-title: Bagging predictors publication-title: Machine Learning – volume: 123 start-page: 305 year: 2020 end-page: 316 ident: b31 article-title: Efficient network architecture search via multiobjective particle swarm optimization based on decomposition publication-title: Neural Networks – volume: 230 start-page: 374 year: 2017 end-page: 381 ident: b52 article-title: Generalized extreme learning machine autoencoder and a new deep neural network publication-title: Neurocomputing – volume: 41 start-page: 8049 year: 2014 end-page: 8061 ident: b17 article-title: Time series forecasting by neural networks: a knee point-based multiobjective evolutionary algorithm approach publication-title: Expert Systems with Applications – volume: 213 year: 2023 ident: b3 article-title: A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization publication-title: Expert Systems with Applications – start-page: 1 year: 1992 end-page: 4 ident: b50 article-title: Feedforward neural networks with random weights publication-title: Proceedings of the 11th IAPR international conference on pattern recognition, 1992. Vol. II. conference B: Pattern recognition methodology and systems – volume: 24 start-page: 49 year: 1996 end-page: 64 ident: b6 article-title: Stacked regressions publication-title: Machine Learning – reference: Cai, Y. M., Liu, X. B., Wu, Y., Hu, P., Wang, R. L., Wu, B., & Cai, Z. H. (2017). Extreme learning machine based on evolutionary multi-objective optimization. In – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b29 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – reference: (pp. 1523–1530). 2013. – volume: 532 start-page: 91 year: 2020 end-page: 109 ident: b63 article-title: Many-objective optimization of feature selection based on two-level particle cooperation publication-title: Information Sciences – volume: 25 start-page: 84 year: 2009 end-page: 108 ident: b59 article-title: Adaptive multi-objective optimation based on nondominated solutions publication-title: Computational Intelligence – volume: 41 start-page: 8049 issue: 18 year: 2014 ident: 10.1016/j.eswa.2024.123186_b17 article-title: Time series forecasting by neural networks: a knee point-based multiobjective evolutionary algorithm approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.06.041 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.eswa.2024.123186_b29 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 317 start-page: 88 year: 2018 ident: 10.1016/j.eswa.2024.123186_b57 article-title: A multiobjective optimization-based sparse extreme learning machine algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.060 – year: 2008 ident: 10.1016/j.eswa.2024.123186_b54 – volume: 23 start-page: 376 issue: 3 year: 2019 ident: 10.1016/j.eswa.2024.123186_b55 article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2865931 – volume: 233 year: 2023 ident: 10.1016/j.eswa.2024.123186_b58 article-title: Differential evolution-based optimized hierarchical extreme learning machines for fault section diagnosis of large-scale power systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120937 – volume: 278 year: 2023 ident: 10.1016/j.eswa.2024.123186_b62 article-title: Ensemble of kernel extreme learning machine based elimination optimization for multi-label classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110817 – volume: 275 start-page: 278 year: 2018 ident: 10.1016/j.eswa.2024.123186_b8 article-title: A review on neural networks with random weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.040 – volume: 78 start-page: 447 year: 2019 ident: 10.1016/j.eswa.2024.123186_b15 article-title: A novel two-archive strategy for evolutionary many-objective optimization algorithm based on reference points publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.02.040 – volume: 25 start-page: 84 issue: 2 year: 2009 ident: 10.1016/j.eswa.2024.123186_b59 article-title: Adaptive multi-objective optimation based on nondominated solutions publication-title: Computational Intelligence doi: 10.1111/j.1467-8640.2009.00332.x – volume: 238 year: 2024 ident: 10.1016/j.eswa.2024.123186_b2 article-title: Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121609 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.eswa.2024.123186_b12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.eswa.2024.123186_b27 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B doi: 10.1109/TSMCB.2011.2168604 – volume: 123 year: 2023 ident: 10.1016/j.eswa.2024.123186_b56 article-title: Error-distribution-free kernel extreme learning machine for traffic flow forecasting publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.106411 – volume: 76 start-page: 29 year: 2016 ident: 10.1016/j.eswa.2024.123186_b13 article-title: A fast reduced kernel extreme learning machine publication-title: Neural Networks doi: 10.1016/j.neunet.2015.10.006 – volume: 137 start-page: 75 year: 2021 ident: 10.1016/j.eswa.2024.123186_b16 article-title: A training algorithm with selectable search direction for complex-valued feedforward neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2021.01.014 – year: 2019 ident: 10.1016/j.eswa.2024.123186_b18 – volume: 96 year: 2020 ident: 10.1016/j.eswa.2024.123186_b36 article-title: Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103968 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.eswa.2024.123186_b61 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.892759 – volume: 25 start-page: 76 issue: 5 year: 1992 ident: 10.1016/j.eswa.2024.123186_b46 article-title: Functional-link net computing: theory, system architecture, and functionalities publication-title: Computer doi: 10.1109/2.144401 – ident: 10.1016/j.eswa.2024.123186_b28 – ident: 10.1016/j.eswa.2024.123186_b14 doi: 10.1109/CEC.2013.6557743 – volume: 569 start-page: 430 year: 2021 ident: 10.1016/j.eswa.2024.123186_b37 article-title: An incremental-learning model-based multiobjective estimation of distribution algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2021.04.011 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.eswa.2024.123186_b11 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 213 year: 2023 ident: 10.1016/j.eswa.2024.123186_b3 article-title: A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119080 – volume: 28 start-page: 337 issue: 2 year: 2000 ident: 10.1016/j.eswa.2024.123186_b22 article-title: Additive logistic regression: a statistical view of boosting publication-title: The Annals of Statistics doi: 10.1214/aos/1016218223 – volume: 435 start-page: 307 year: 2021 ident: 10.1016/j.eswa.2024.123186_b47 article-title: Exploring multiobjective training in multiclass classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.087 – volume: 17 start-page: 754 issue: 8 year: 2010 ident: 10.1016/j.eswa.2024.123186_b38 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2010.2053356 – volume: 230 start-page: 374 year: 2017 ident: 10.1016/j.eswa.2024.123186_b52 article-title: Generalized extreme learning machine autoencoder and a new deep neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.027 – volume: 49 start-page: 455 year: 2018 ident: 10.1016/j.eswa.2024.123186_b35 article-title: Research and development of neural network ensembles: a survey publication-title: Artificial Intelligence Review doi: 10.1007/s10462-016-9535-1 – year: 2016 ident: 10.1016/j.eswa.2024.123186_b25 – volume: 532 start-page: 91 year: 2020 ident: 10.1016/j.eswa.2024.123186_b63 article-title: Many-objective optimization of feature selection based on two-level particle cooperation publication-title: Information Sciences doi: 10.1016/j.ins.2020.05.004 – volume: 335 start-page: 261 year: 2019 ident: 10.1016/j.eswa.2024.123186_b23 article-title: A survey on metaheuristic optimization for random single-hidden layer feedforward neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.080 – start-page: 1 year: 1992 ident: 10.1016/j.eswa.2024.123186_b50 article-title: Feedforward neural networks with random weights – volume: 181 start-page: 1653 issue: 3 year: 2007 ident: 10.1016/j.eswa.2024.123186_b4 article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.008 – volume: 18 start-page: 127 issue: 1 year: 2014 ident: 10.1016/j.eswa.2024.123186_b21 article-title: Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization publication-title: Evolutionary Computation doi: 10.1162/evco.2010.18.1.18105 – year: 1999 ident: 10.1016/j.eswa.2024.123186_b42 – volume: 24 start-page: 49 issue: 1 year: 1996 ident: 10.1016/j.eswa.2024.123186_b6 article-title: Stacked regressions publication-title: Machine Learning doi: 10.1023/A:1018046112532 – volume: 70 start-page: 2790 issue: 3 year: 2022 ident: 10.1016/j.eswa.2024.123186_b60 article-title: Genetic algorithm-based ensemble hybrid sparse ELM for grasp stability recognition with multimodal tactile signals publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2022.3170631 – volume: 31 start-page: 1310 issue: 4 year: 2020 ident: 10.1016/j.eswa.2024.123186_b65 article-title: Multi-objective evolutionary federated learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2919699 – volume: 146 year: 2020 ident: 10.1016/j.eswa.2024.123186_b19 article-title: A bi-phased multi-objective genetic algorithm based classifier publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113163 – volume: 95 year: 2020 ident: 10.1016/j.eswa.2024.123186_b48 article-title: Multi-objective ensembles of echo state networks and extreme learning machines for streamflow series forecasting publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103910 – ident: 10.1016/j.eswa.2024.123186_b20 doi: 10.1109/IJCNN.2017.7966387 – volume: 13 start-page: 825 issue: 4 year: 2009 ident: 10.1016/j.eswa.2024.123186_b1 article-title: Convergence acceleration operator for multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.2011743 – volume: 4 start-page: 67 issue: 1 year: 1991 ident: 10.1016/j.eswa.2024.123186_b51 article-title: Creating artificial neural networks that generalize publication-title: Neural Network doi: 10.1016/0893-6080(91)90033-2 – volume: 556 year: 2023 ident: 10.1016/j.eswa.2024.123186_b30 article-title: A comprehensive review of extreme learning machine on medical imaging publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126618 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.eswa.2024.123186_b10 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 99 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2024.123186_b32 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEE Transactions on Cybernetics – volume: 21 start-page: 158 issue: 1 year: 2010 ident: 10.1016/j.eswa.2024.123186_b41 article-title: OP-ELM: Optimally pruned extreme learning machine publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2036259 – volume: 28 start-page: 31 issue: 6 year: 2013 ident: 10.1016/j.eswa.2024.123186_b33 article-title: Representational learning with ELMs for big data publication-title: IEEE Intelligent Systems – volume: 164 year: 2021 ident: 10.1016/j.eswa.2024.123186_b9 article-title: A clustering based ensemble of weighted kernelized extreme learning machine for class imbalance learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114041 – volume: 378 start-page: 260 issue: 1 year: 2020 ident: 10.1016/j.eswa.2024.123186_b26 article-title: Deep neural networks compression learning based on multiobjective evolutionary algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.053 – volume: 448 start-page: 82 year: 2021 ident: 10.1016/j.eswa.2024.123186_b45 article-title: Feature learning for stacked ELM via low-rank matrix factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.110 – volume: 33 issue: 18 year: 2021 ident: 10.1016/j.eswa.2024.123186_b40 article-title: Short term power dispatch using neural network based ensemble classifier publication-title: Journal of Energy Storage – ident: 10.1016/j.eswa.2024.123186_b7 doi: 10.1007/978-981-10-7179-9_32 – volume: 31 start-page: 4761 issue: 11 year: 2020 ident: 10.1016/j.eswa.2024.123186_b49 article-title: Neural networks multiobjective learning with spherical representation of weights publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2957730 – volume: 187 year: 2022 ident: 10.1016/j.eswa.2024.123186_b53 article-title: A predictive model for chinese children with developmental dyslexia-based on a genetic algorithm optimized back-propagation neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115949 – volume: 269 start-page: 188 year: 2014 ident: 10.1016/j.eswa.2024.123186_b43 article-title: Let a biogeography-based optimizer train your multilayer perceptron publication-title: Information Sciences doi: 10.1016/j.ins.2014.01.038 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.eswa.2024.123186_b5 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1023/A:1018054314350 – ident: 10.1016/j.eswa.2024.123186_b39 doi: 10.1109/ICEEOT.2016.7755105 – volume: 121 year: 2022 ident: 10.1016/j.eswa.2024.123186_b24 article-title: Creating synthetic minority class samples based on autoencoder extreme learning machine publication-title: Pattern Recognition doi: 10.1016/j.patcog.2021.108191 – volume: 137 start-page: 239 issue: 2 year: 2002 ident: 10.1016/j.eswa.2024.123186_b64 article-title: Ensembling neural networks: many could be better than all publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(02)00190-X – volume: 642 year: 2023 ident: 10.1016/j.eswa.2024.123186_b34 article-title: Multiobjective bilevel programming model for multilayer perceptron neural networks publication-title: Information Sciences doi: 10.1016/j.ins.2023.119031 – volume: 123 start-page: 305 year: 2020 ident: 10.1016/j.eswa.2024.123186_b31 article-title: Efficient network architecture search via multiobjective particle swarm optimization based on decomposition publication-title: Neural Networks doi: 10.1016/j.neunet.2019.12.005 – volume: 60 start-page: 97 year: 2017 ident: 10.1016/j.eswa.2024.123186_b44 article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2017.01.013 |
| SSID | ssj0017007 |
| Score | 2.4960785 |
| Snippet | In artificial neural network (ANN) learning, empirical risk can be expressed by training error, while structural risk can be expressed by network complexity.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 123186 |
| SubjectTerms | Classification Ensemble learning Extreme learning machine auto-encoder Many-objective learning algorithm Structure optimization |
| Title | Many-objective coevolutionary learning algorithm with extreme learning machine auto-encoder for ensemble classifier of feedforward neural networks |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.123186 |
| Volume | 246 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EW95YEOmdurE9VhVVAUECyCxRXbiQFGbVG0KYuFH8Iu5SxweEmJgTGInls--h_Pdd4Qca7CxhicBM0ImTCINoXFRyKRxKrAm6qgqi__qOhrcyYv78H6B9JpcGIRVet1f6_RKW_s7LT-brclw2LoB5wDMIYR2snJEkBNUSoVVDE7fPmEeSD-nar49xbC1T5ypMV5u9oLcQ4E8BQUuMJ_6N-P0zeD018iK9xRptx7MOllw-QZZbaowUL8pN8n7FexnVtinWnXRpHDPfj2Z6Sv1ZSEeqBk9FNNh-TimePZKQSnj0eDX83EFq3TUzMuCIb1lCl8Bl5ZCoOvGdgRvRk97mMFYaZHRDOwePEbULUVWTBhrXmPKZ1vkrn922xswX2mBJW3OS-acEBaZyyIemFCbqG04SIyrNIDgOQg7LtIQRida6rYWmeA2lRnnqbFaQdOkvU0W8yJ3O4SmLtNpWP1BtFKptIOpt9qJlHNrVJjsEtFMcZx4GnKshjGKG7zZU4xiiVEscS2WXXLy2WdSk3D82TpsJBf_WEoxWIk_-u39s98-WcYrPPAV4QFZLKdzdwieSmmPqqV4RJa655eD6w_ereqG |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZKOYzL2BgINrb5wG0ytVM7ro-oWtUB5UIrcYvsxIFUbYNK2LTL_oj9xbyXOGxIiAPX2E4sP_v9cL73PUKODNhYy9OIWSFTJpGG0PpYMWm9jpyNB7rO4p9cxOOZPL1SVx0ybHNhEFYZdH-j02ttHZ70wmr2bouidwnOAZhDCO1k7YjIDbIpVaQxAjv-84jzQP453RDuaYbdQ-ZMA_Lyd7-QfCiSx6DBBSZUP2ed_rM4o3fkbXAV6Ukzm_ek41c7ZLstw0DDqfxA_k7gQLPSzRvdRdPS_wwbyq5_01AX4praxXW5LqqbJcXLVwpaGe8G_7Uva1ylp_a-KhnyW2bwFfBpKUS6fukW8GZ0tYsc5krLnOZg-KAZYbcUaTFhrqsGVH63S2aj79PhmIVSCyztc14x74VwSF0W88gqY-O-5SAyrrMIoudIDXxsII5OjTR9I3LBXSZzzjPrjIauaX-PdFflyu8TmvncZKr-heik1tkAc2-NFxnnzmqVHhDRLnGSBh5yLIexSFrA2TxBsSQolqQRywH59jjmtmHheLG3aiWXPNlLCZiJF8Z9fOW4r-TNeDo5T85_XJx9IlvYgre_Qh2SbrW-95_Bbancl3pbPgBW7uwb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many-objective+coevolutionary+learning+algorithm+with+extreme+learning+machine+auto-encoder+for+ensemble+classifier+of+feedforward+neural+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Hong&rft.au=Bai%2C+Lixia&rft.au=Gao%2C+Weifeng&rft.au=Xie%2C+Jin&rft.date=2024-07-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=246&rft_id=info:doi/10.1016%2Fj.eswa.2024.123186&rft.externalDocID=S0957417424000514 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |