An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine

Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions. According to the World Health Organization, an early and accurate detection of breast cancer successfully leads to a correct decision towards its tr...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 91; p. 106266
Main Authors Mohanty, Figlu, Rup, Suvendu, Dash, Bodhisattva, Majhi, Banshidhar, Swamy, M.N.S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2020.106266

Cover

Abstract Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions. According to the World Health Organization, an early and accurate detection of breast cancer successfully leads to a correct decision towards its treatment. Development of computer-aided diagnosis (CAD) system is considered to be a major stead in current research practice to abet medical practitioners in decision-making. This paper proposes an improved CAD framework to correctly classify the digital mammograms into normal or abnormal, and further, benign or malignant. The proposed scheme employs a block-based discrete wavelet packet transform (BDWPT) to extract the features, namely, the Shannon entropy, Tsallis entropy, Renyi entropy, and energy. Then, principal component analysis (PCA) technique is utilized to extract the discriminating features from the original feature vector. Subsequently, an optimized wrapper-based kernel extreme learning machine (KELM) using a weighted chaotic salp swarm algorithm (WC-SSA) is proposed as classifier to classify the digital mammograms. Since the efficacy of KELM algorithm depends on its two important parameters, namely, the penalty parameter and the kernel parameter, the prime objective of the proposed work is to obtain the optimized value of the aforementioned parameters as well as to select the most relevant features from the reduced feature vector simultaneously. The proposed scheme is evaluated on three publicly available standard datasets, namely, MIAS, DDSM, and BCDR to validate the efficacy of the proposed BDWPT+PCA+WC-SSA-KELM scheme. The performance of the proposed model is evaluated in terms of different metrics, namely, classification accuracy, sensitivity, specificity, area under curve (AUC), Matthew’s correlation coefficient (MCC), and F-measure via a 5 × 5 stratified cross-validation approach. From the experimental results and their analysis, it is observed that for the normal–abnormal category, the proposed technique results in an accuracy of 99.62% and 99.92% for MIAS and DDSM, respectively, whereas in the case of benign–malignant classification, the proposed method yields an accuracy of 99.28%, 99.63%, 99.60% for MIAS, DDSM, and BCDR datasets, respectively. Further, it is also observed that the proposed WC-SSA-KELM scheme exhibits superior performance as compared to that of its counterparts. Additionally, two well-known statistical analyses, namely, ANOVA and Friedman tests are performed to demonstrate that the performance of the proposed scheme is significantly better than that of the other existing schemes. •The present scheme effectively classifies the digital mammograms in real time.•Block-based discrete wavelet packet transform performs the feature extraction.•Proposed WC-SSA does feature selection and hyper-parameter optimization in parallel.
AbstractList Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions. According to the World Health Organization, an early and accurate detection of breast cancer successfully leads to a correct decision towards its treatment. Development of computer-aided diagnosis (CAD) system is considered to be a major stead in current research practice to abet medical practitioners in decision-making. This paper proposes an improved CAD framework to correctly classify the digital mammograms into normal or abnormal, and further, benign or malignant. The proposed scheme employs a block-based discrete wavelet packet transform (BDWPT) to extract the features, namely, the Shannon entropy, Tsallis entropy, Renyi entropy, and energy. Then, principal component analysis (PCA) technique is utilized to extract the discriminating features from the original feature vector. Subsequently, an optimized wrapper-based kernel extreme learning machine (KELM) using a weighted chaotic salp swarm algorithm (WC-SSA) is proposed as classifier to classify the digital mammograms. Since the efficacy of KELM algorithm depends on its two important parameters, namely, the penalty parameter and the kernel parameter, the prime objective of the proposed work is to obtain the optimized value of the aforementioned parameters as well as to select the most relevant features from the reduced feature vector simultaneously. The proposed scheme is evaluated on three publicly available standard datasets, namely, MIAS, DDSM, and BCDR to validate the efficacy of the proposed BDWPT+PCA+WC-SSA-KELM scheme. The performance of the proposed model is evaluated in terms of different metrics, namely, classification accuracy, sensitivity, specificity, area under curve (AUC), Matthew’s correlation coefficient (MCC), and F-measure via a 5 × 5 stratified cross-validation approach. From the experimental results and their analysis, it is observed that for the normal–abnormal category, the proposed technique results in an accuracy of 99.62% and 99.92% for MIAS and DDSM, respectively, whereas in the case of benign–malignant classification, the proposed method yields an accuracy of 99.28%, 99.63%, 99.60% for MIAS, DDSM, and BCDR datasets, respectively. Further, it is also observed that the proposed WC-SSA-KELM scheme exhibits superior performance as compared to that of its counterparts. Additionally, two well-known statistical analyses, namely, ANOVA and Friedman tests are performed to demonstrate that the performance of the proposed scheme is significantly better than that of the other existing schemes. •The present scheme effectively classifies the digital mammograms in real time.•Block-based discrete wavelet packet transform performs the feature extraction.•Proposed WC-SSA does feature selection and hyper-parameter optimization in parallel.
ArticleNumber 106266
Author Swamy, M.N.S.
Mohanty, Figlu
Majhi, Banshidhar
Rup, Suvendu
Dash, Bodhisattva
Author_xml – sequence: 1
  givenname: Figlu
  surname: Mohanty
  fullname: Mohanty, Figlu
  email: figlu92@gmail.com
  organization: Image and Video Processing Laboratory, Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar 751003, India
– sequence: 2
  givenname: Suvendu
  surname: Rup
  fullname: Rup, Suvendu
  email: suvendu@iiit-bh.ac.in
  organization: Image and Video Processing Laboratory, Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar 751003, India
– sequence: 3
  givenname: Bodhisattva
  surname: Dash
  fullname: Dash, Bodhisattva
  email: bdash.fac@gmail.com
  organization: Image and Video Processing Laboratory, Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar 751003, India
– sequence: 4
  givenname: Banshidhar
  surname: Majhi
  fullname: Majhi, Banshidhar
  email: bm@iiitdm.ac.in
  organization: Indian Institute of Information Technology Design and Manufacturing, Kancheepuram, Chennai 600127, India
– sequence: 5
  givenname: M.N.S.
  surname: Swamy
  fullname: Swamy, M.N.S.
  email: swamy@ece.concordia.ca
  organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
BookMark eNp9kM9q3DAQh0VIoUnaF-hJL-CtLNtaCXoJIf0DgV5yF7Pjka2NJS2SmqSP0LeuzfbUQ04zDPPN8Puu2WVMkRj71IpdK1r1-biDknAnhdwGSip1wa5avZeNUbq9XPtB6aY3vXrPrks5ihUyUl-xP7eR-3DK6ZlGXnCmQNylzEc_-QoLDxBCmjIEjguU4p1HqD5F_qv4OPEX8tNcVxRnSNUjL7CceHmBHDgsU8q-zqE5QFlXnihHWji91rx9WQhy3G4EwNlH-sDeOVgKffxXb9jj1_vHu-_Nw89vP-5uHxrshKgNHUCqgxkHDSj7vh-1c123d0M3tNR1Wu7JyEEJNMYNPUp0YEwnyAkanNHdDdPns5hTKZmcxTXoFqlm8Itthd2M2qPdjNrNqD0bXVH5H3rKPkD-_Tb05QzRmunZU7YFPUWk0WfCasfk38L_An6OlZA
CitedBy_id crossref_primary_10_1002_cpe_6971
crossref_primary_10_1016_j_ibmed_2023_100117
crossref_primary_10_1038_s41598_025_87285_0
crossref_primary_10_1016_j_knosys_2021_107303
crossref_primary_10_1007_s41403_023_00450_7
crossref_primary_10_1007_s11517_024_03158_0
crossref_primary_10_1016_j_imu_2020_100401
crossref_primary_10_1007_s00500_021_05757_7
crossref_primary_10_1016_j_neucom_2020_10_038
crossref_primary_10_1016_j_imu_2020_100408
crossref_primary_10_1109_TDMR_2022_3228253
crossref_primary_10_1007_s10479_022_05086_4
crossref_primary_10_1109_ACCESS_2021_3100580
crossref_primary_10_7717_peerj_cs_411
crossref_primary_10_4236_jmp_2024_157045
crossref_primary_10_1016_j_asoc_2023_110334
crossref_primary_10_1002_ima_22718
crossref_primary_10_3390_app12073273
crossref_primary_10_18038_estubtda_906920
crossref_primary_10_1007_s10619_021_07355_w
crossref_primary_10_1007_s00500_022_07280_9
crossref_primary_10_1016_j_cie_2022_108146
crossref_primary_10_1080_08839514_2021_2001177
crossref_primary_10_1007_s00500_023_08565_3
crossref_primary_10_32604_csse_2022_016376
crossref_primary_10_3390_app112412122
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1016_j_measurement_2020_108373
crossref_primary_10_1007_s11063_022_10856_z
crossref_primary_10_1016_j_chaos_2020_110071
crossref_primary_10_1007_s42452_021_04616_2
crossref_primary_10_1007_s12652_021_02965_9
crossref_primary_10_1007_s00521_020_05062_8
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_1016_j_eswa_2020_114161
crossref_primary_10_14201_adcaij_31412
crossref_primary_10_1186_s40537_024_00936_3
crossref_primary_10_1007_s11831_022_09738_3
crossref_primary_10_1016_j_ijleo_2021_167572
crossref_primary_10_1007_s11042_023_18025_7
crossref_primary_10_1007_s00432_023_04956_z
crossref_primary_10_1007_s11548_021_02541_8
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_1007_s10278_022_00677_w
crossref_primary_10_3390_app132412995
crossref_primary_10_1109_ACCESS_2020_2997864
crossref_primary_10_1111_coin_12522
crossref_primary_10_2174_2210298102666220406121814
Cites_doi 10.1016/j.cam.2006.09.008
10.1016/j.swevo.2011.02.002
10.1016/j.eswa.2012.02.102
10.4236/cs.2016.74028
10.1016/j.neucom.2014.11.080
10.3390/jimaging4010014
10.1016/j.knosys.2015.08.004
10.1016/j.ecolmodel.2013.06.027
10.1016/j.neucom.2013.09.070
10.1007/s00521-016-2290-z
10.1016/j.asej.2019.01.009
10.1023/A:1022627411411
10.1007/s13042-011-0019-y
10.1118/1.2188080
10.1007/s11042-016-4174-8
10.1016/j.eswa.2011.06.025
10.3390/e16063009
10.1016/j.cmpb.2017.11.021
10.3233/THC-170851
10.1016/j.advengsoft.2017.07.002
10.1016/j.neucom.2005.12.126
10.1007/s11042-016-3931-z
10.1007/s11042-016-3605-x
10.1109/34.244679
10.1016/j.asoc.2009.11.014
10.1016/j.eswa.2018.11.008
10.1109/TCYB.2014.2298235
10.3390/e17085218
10.1109/TEVC.2009.2014613
10.1016/j.asoc.2011.01.037
10.1016/j.patcog.2017.07.008
10.1016/j.chaos.2006.04.057
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106266
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106266
S1568494620302064
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-eba26b9d58ac2444d8ff337f5351e33827e92560c99f54c2cfa9930ef0e5f983
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:58:46 EDT 2025
Wed Oct 29 21:44:44 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chaotic map salp swarm algorithm
Digital mammogram
Wavelet packet transform
Kernel extreme learning machine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-eba26b9d58ac2444d8ff337f5351e33827e92560c99f54c2cfa9930ef0e5f983
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106266
crossref_primary_10_1016_j_asoc_2020_106266
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106266
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hariharan, Sindhu, Vijean, Yazid, Nadarajaw, Yaacob, Polat (b31) 2018; 155
Nickabadi, Ebadzadeh, Safabakhsh (b47) 2011; 11
Bajaj, Pawar, Meena, Kumar, Sengur, Guo (b9) 2017
Junguo, Guomo, Xiaojun (b27) 2013; 266
Hariharan, Yaacob, Awang (b34) 2011; 38
Huang, Zhu, Siew (b23) 2006; 70
Chuang, Yang, Li (b48) 2011; 11
Berraho, El Margae, Kerroum, Fakhri (b3) 2017; 76
Cortes, Vapnik (b28) 1995; 20
Sudha, Selvarajan (b12) 2016; 7
Silvestre, Lemos, Braga, Braga (b26) 2015; 169
Ancy, Nair (b50) 2018
Aminikhanghahi, Shin, Wang, Jeon, Son (b7) 2017; 76
Christopher (b40) 2016
Rényi (b39) 1961
Duda, Hart, Stork (b41) 2012
Mabrouk, Afify, Marzouk (b17) 2019
Anter, Hassenian (b5) 2016
Tavazoei, Haeri (b21) 2007; 206
Kaur, Arora (b22) 2018; 5
Society (b1) 2018
Bhosle, Deshmukh (b51) 2019; 11
Zhang, Sanderson (b46) 2009; 13
Huang, Wang, Lan (b29) 2011; 2
Acharya, Fujita, Sudarshan, Bhat, Koh (b36) 2015; 88
Wu, Yang, Wang (b32) 2018; 77
Suckling, Parker, Dance, Astley, Hutt, Boggis, Ricketts, Stamatakis, Cerneaz, Kok (b43) 1994; vol. 1069
Abubacker, Azman, Doraisamy, Murad (b6) 2017; 28
Bai, Huang, Wang, Wang, Westover (b24) 2014; 44
Derrac, García, Molina, Herrera (b52) 2011; 1
Suhail, Denton, Zwiggelaar (b10) 2018
Sharma, Pachori, Acharya (b37) 2015; 17
Wang, Rao, Chen, Zhang, Liu, Wei (b4) 2017; 151
Hariharan, Saraswathy, Sindhu, Khairunizam, Yaacob (b35) 2012; 39
Zhang, Wang, Sun, Phillips (b33) 2015; 26
Singh, Srivastava, Srivastava (b11) 2017; 25
Heath, Bowyer, Kopans, Moore, Kegelmeyer (b44) 2000
Jiao, Gao, Wang, Li (b49) 2018; 75
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b20) 2017; 114
Wang, Miao, Xie (b30) 2011; 38
Ting, Tan, Sim (b18) 2019; 120
Rampun, Scotney, Morrow, Wang, Winder (b14) 2018; 4
Han, Liu (b25) 2015; 149
Yang, Xu (b8) 2017
M.G. Lopez, N.G. Posada, D.C. Moura, R.R. Pollán, J.M.F. Valiente, C.S. Ortega, M. Solar, G. Diaz-Herrero, I. Ramos, J. Loureiro, et al. BCDR: a breast cancer digital repository, in: 15th International Conference on Experimental Mechanics, 2012.
Thawkar, Ingolikar (b15) 2018
Mohanty, Rup, Dash, Majhi, Swamy (b13) 2018
Chen, Li (b38) 2014; 16
Gupta, Chyn, Markey (b2) 2006; 33
Yang, Li, Cheng (b42) 2007; 34
Thawkar, Ingolikar (b16) 2018; 10
Laine, Fan (b19) 1993; 15
Yang (10.1016/j.asoc.2020.106266_b8) 2017
Hariharan (10.1016/j.asoc.2020.106266_b31) 2018; 155
Zhang (10.1016/j.asoc.2020.106266_b33) 2015; 26
Huang (10.1016/j.asoc.2020.106266_b23) 2006; 70
Wang (10.1016/j.asoc.2020.106266_b4) 2017; 151
Hariharan (10.1016/j.asoc.2020.106266_b35) 2012; 39
Jiao (10.1016/j.asoc.2020.106266_b49) 2018; 75
Heath (10.1016/j.asoc.2020.106266_b44) 2000
Duda (10.1016/j.asoc.2020.106266_b41) 2012
Nickabadi (10.1016/j.asoc.2020.106266_b47) 2011; 11
Silvestre (10.1016/j.asoc.2020.106266_b26) 2015; 169
Huang (10.1016/j.asoc.2020.106266_b29) 2011; 2
Bai (10.1016/j.asoc.2020.106266_b24) 2014; 44
Mabrouk (10.1016/j.asoc.2020.106266_b17) 2019
Laine (10.1016/j.asoc.2020.106266_b19) 1993; 15
Derrac (10.1016/j.asoc.2020.106266_b52) 2011; 1
Suckling (10.1016/j.asoc.2020.106266_b43) 1994; vol. 1069
Anter (10.1016/j.asoc.2020.106266_b5) 2016
Han (10.1016/j.asoc.2020.106266_b25) 2015; 149
Sharma (10.1016/j.asoc.2020.106266_b37) 2015; 17
Cortes (10.1016/j.asoc.2020.106266_b28) 1995; 20
Acharya (10.1016/j.asoc.2020.106266_b36) 2015; 88
Gupta (10.1016/j.asoc.2020.106266_b2) 2006; 33
Abubacker (10.1016/j.asoc.2020.106266_b6) 2017; 28
Society (10.1016/j.asoc.2020.106266_b1) 2018
Mohanty (10.1016/j.asoc.2020.106266_b13) 2018
Bajaj (10.1016/j.asoc.2020.106266_b9) 2017
Suhail (10.1016/j.asoc.2020.106266_b10) 2018
Singh (10.1016/j.asoc.2020.106266_b11) 2017; 25
Yang (10.1016/j.asoc.2020.106266_b42) 2007; 34
Thawkar (10.1016/j.asoc.2020.106266_b15) 2018
Chuang (10.1016/j.asoc.2020.106266_b48) 2011; 11
Chen (10.1016/j.asoc.2020.106266_b38) 2014; 16
Hariharan (10.1016/j.asoc.2020.106266_b34) 2011; 38
10.1016/j.asoc.2020.106266_b45
Tavazoei (10.1016/j.asoc.2020.106266_b21) 2007; 206
Wang (10.1016/j.asoc.2020.106266_b30) 2011; 38
Bhosle (10.1016/j.asoc.2020.106266_b51) 2019; 11
Ancy (10.1016/j.asoc.2020.106266_b50) 2018
Kaur (10.1016/j.asoc.2020.106266_b22) 2018; 5
Wu (10.1016/j.asoc.2020.106266_b32) 2018; 77
Sudha (10.1016/j.asoc.2020.106266_b12) 2016; 7
Berraho (10.1016/j.asoc.2020.106266_b3) 2017; 76
Junguo (10.1016/j.asoc.2020.106266_b27) 2013; 266
Thawkar (10.1016/j.asoc.2020.106266_b16) 2018; 10
Mirjalili (10.1016/j.asoc.2020.106266_b20) 2017; 114
Aminikhanghahi (10.1016/j.asoc.2020.106266_b7) 2017; 76
Rényi (10.1016/j.asoc.2020.106266_b39) 1961
Christopher (10.1016/j.asoc.2020.106266_b40) 2016
Rampun (10.1016/j.asoc.2020.106266_b14) 2018; 4
Ting (10.1016/j.asoc.2020.106266_b18) 2019; 120
Zhang (10.1016/j.asoc.2020.106266_b46) 2009; 13
References_xml – volume: 206
  start-page: 1070
  year: 2007
  end-page: 1081
  ident: b21
  article-title: An optimization algorithm based on chaotic behavior and fractal nature
  publication-title: J. Comput. Appl. Math.
– volume: 169
  start-page: 288
  year: 2015
  end-page: 294
  ident: b26
  article-title: Dataset structure as prior information for parameter-free regularization of extreme learning machines
  publication-title: Neurocomputing
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b28
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b9
  article-title: Computer-aided diagnosis of breast cancer using bi-dimensional empirical mode decomposition
  publication-title: Neural Comput. Appl.
– volume: 76
  start-page: 18425
  year: 2017
  end-page: 18448
  ident: b3
  article-title: Texture classification based on curvelet transform and extreme learning machine with reduced feature set
  publication-title: Multimedia Tools Appl.
– volume: 7
  start-page: 327
  year: 2016
  ident: b12
  article-title: Feature selection based on enhanced cuckoo search for breast cancer classification in mammogram image
  publication-title: Circuits Syst.
– volume: 120
  start-page: 103
  year: 2019
  end-page: 115
  ident: b18
  article-title: Convolutional neural network improvement for breast cancer classification
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b46
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– year: 2019
  ident: b17
  article-title: Fully automated computer-aided diagnosis system for micro calcifications cancer based on improved mammographic image techniques
  publication-title: Ain Shams Eng. J.
– volume: 25
  start-page: 709
  year: 2017
  end-page: 727
  ident: b11
  article-title: Effective mammogram classification based on center symmetric-LBP features in wavelet domain using random forests
  publication-title: Technol. Health Care
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b23
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– reference: M.G. Lopez, N.G. Posada, D.C. Moura, R.R. Pollán, J.M.F. Valiente, C.S. Ortega, M. Solar, G. Diaz-Herrero, I. Ramos, J. Loureiro, et al. BCDR: a breast cancer digital repository, in: 15th International Conference on Experimental Mechanics, 2012.
– volume: 26
  start-page: S1283
  year: 2015
  end-page: S1290
  ident: b33
  article-title: Pathological brain detection based on wavelet entropy and hu moment invariants
  publication-title: Bio-Med. Mater. Eng.
– volume: 76
  start-page: 10191
  year: 2017
  end-page: 10205
  ident: b7
  article-title: A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification
  publication-title: Multimedia Tools Appl.
– volume: 39
  start-page: 9515
  year: 2012
  end-page: 9523
  ident: b35
  article-title: Infant cry classification to identify asphyxia using time-frequency analysis and radial basis neural networks
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 15377
  year: 2011
  end-page: 15382
  ident: b34
  article-title: Pathological infant cry analysis using wavelet packet transform and probabilistic neural network
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: b1
  article-title: Cancer facts and figures 2018
– volume: 28
  start-page: 3967
  year: 2017
  end-page: 3980
  ident: b6
  article-title: An integrated method of associative classification and neuro-fuzzy approach for effective mammographic classification
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2018
  end-page: 11
  ident: b10
  article-title: Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis
  publication-title: Med. Biol. Eng. Comput.
– volume: 75
  start-page: 292
  year: 2018
  end-page: 301
  ident: b49
  article-title: A parasitic metric learning net for breast mass classification based on mammography
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 1366
  year: 2007
  end-page: 1375
  ident: b42
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos Solitons Fractals
– volume: 33
  start-page: 1810
  year: 2006
  end-page: 1817
  ident: b2
  article-title: Breast cancer CADx based on BI-RADS™ descriptors from two mammographic views
  publication-title: Med. Phys.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b20
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 15
  start-page: 1186
  year: 1993
  end-page: 1191
  ident: b19
  article-title: Texture classification by wavelet packet signatures
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 25
  year: 2018
  ident: b16
  article-title: Classification of masses in digital mammograms using firefly based optimization
  publication-title: Int. J. Image Graph. Signal Process.
– year: 2016
  ident: b40
  article-title: Pattern Recognition And Machine Learning
– volume: 38
  start-page: 14314
  year: 2011
  end-page: 14320
  ident: b30
  article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2018
  end-page: 30
  ident: b13
  article-title: Mammogram classification using contourlet features with forest optimization-based feature selection approach
  publication-title: Multimedia Tools Appl.
– volume: 4
  start-page: 14
  year: 2018
  ident: b14
  article-title: Breast density classification using local quinary patterns with various neighbourhood topologies
  publication-title: J. Imaging
– year: 2018
  ident: b15
  article-title: Classification of masses in digital mammograms using biogeography-based optimization technique
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 11
  start-page: 719
  year: 2019
  end-page: 726
  ident: b51
  article-title: Mammogram classification using AdaBoost with RBFSVM and Hybrid KNN–RBFSVM as base estimator by adaptively adjusting
  publication-title: Int. J. Inf. Technol.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b52
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 149
  start-page: 65
  year: 2015
  end-page: 70
  ident: b25
  article-title: Ensemble of extreme learning machine for remote sensing image classification
  publication-title: Neurocomputing
– volume: 77
  start-page: 3745
  year: 2018
  end-page: 3759
  ident: b32
  article-title: Tea category identification based on optimal wavelet entropy and weighted k-nearest neighbors algorithm
  publication-title: Multimedia Tools Appl.
– volume: 155
  start-page: 39
  year: 2018
  end-page: 51
  ident: b31
  article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification
  publication-title: Comput. Methods Programs Biomed.
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: b29
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybernetics
– start-page: 197
  year: 2018
  end-page: 208
  ident: b50
  article-title: Tumour classification in graph-cut segmented mammograms using GLCM features-fed SVM
  publication-title: Intelligent Engineering Informatics
– volume: 17
  start-page: 5218
  year: 2015
  end-page: 5240
  ident: b37
  article-title: An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures
  publication-title: Entropy
– start-page: 1
  year: 2017
  end-page: 11
  ident: b8
  article-title: Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning
  publication-title: Int. J. Mach. Learn. Cybern.
– year: 2012
  ident: b41
  article-title: Pattern Classification
– volume: 266
  start-page: 86
  year: 2013
  end-page: 96
  ident: b27
  article-title: Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data
  publication-title: Ecol. Model.
– volume: 11
  start-page: 239
  year: 2011
  end-page: 248
  ident: b48
  article-title: Chaotic maps based on binary particle swarm optimization for feature selection
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 275
  year: 2018
  end-page: 284
  ident: b22
  article-title: Chaotic whale optimization algorithm
  publication-title: J. Comput. Des. Eng.
– start-page: 212
  year: 2000
  end-page: 218
  ident: b44
  article-title: The digital database for screening mammography
  publication-title: Proceedings of the 5th International Workshop on Digital Mammography
– volume: vol. 1069
  start-page: 375
  year: 1994
  end-page: 378
  ident: b43
  article-title: The mammographic image analysis society digital mammogram database
  publication-title: Exerpta Medica. International Congress Series
– year: 1961
  ident: b39
  article-title: On Measures of Entropy and Information
– volume: 151
  start-page: 191
  year: 2017
  end-page: 211
  ident: b4
  article-title: Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm
  publication-title: Fund. Inform.
– start-page: 175
  year: 2016
  end-page: 191
  ident: b5
  article-title: Computer aided diagnosis system for mammogram abnormality
  publication-title: Medical Imaging in Clinical Applications
– volume: 88
  start-page: 85
  year: 2015
  end-page: 96
  ident: b36
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 3658
  year: 2011
  end-page: 3670
  ident: b47
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl. Soft Comput.
– volume: 16
  start-page: 3009
  year: 2014
  end-page: 3025
  ident: b38
  article-title: Tsallis wavelet entropy and its application in power signal analysis
  publication-title: Entropy
– volume: 44
  start-page: 1858
  year: 2014
  end-page: 1870
  ident: b24
  article-title: Sparse extreme learning machine for classification
  publication-title: IEEE Trans. Cybernetics
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b10
  article-title: Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis
  publication-title: Med. Biol. Eng. Comput.
– volume: 206
  start-page: 1070
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2020.106266_b21
  article-title: An optimization algorithm based on chaotic behavior and fractal nature
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.09.008
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.106266_b52
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– start-page: 175
  year: 2016
  ident: 10.1016/j.asoc.2020.106266_b5
  article-title: Computer aided diagnosis system for mammogram abnormality
– volume: 39
  start-page: 9515
  issue: 10
  year: 2012
  ident: 10.1016/j.asoc.2020.106266_b35
  article-title: Infant cry classification to identify asphyxia using time-frequency analysis and radial basis neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.102
– volume: 7
  start-page: 327
  issue: 04
  year: 2016
  ident: 10.1016/j.asoc.2020.106266_b12
  article-title: Feature selection based on enhanced cuckoo search for breast cancer classification in mammogram image
  publication-title: Circuits Syst.
  doi: 10.4236/cs.2016.74028
– start-page: 197
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b50
  article-title: Tumour classification in graph-cut segmented mammograms using GLCM features-fed SVM
– volume: 169
  start-page: 288
  year: 2015
  ident: 10.1016/j.asoc.2020.106266_b26
  article-title: Dataset structure as prior information for parameter-free regularization of extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.080
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b8
  article-title: Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 4
  start-page: 14
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b14
  article-title: Breast density classification using local quinary patterns with various neighbourhood topologies
  publication-title: J. Imaging
  doi: 10.3390/jimaging4010014
– volume: 88
  start-page: 85
  year: 2015
  ident: 10.1016/j.asoc.2020.106266_b36
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.08.004
– volume: 266
  start-page: 86
  year: 2013
  ident: 10.1016/j.asoc.2020.106266_b27
  article-title: Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2013.06.027
– volume: 149
  start-page: 65
  year: 2015
  ident: 10.1016/j.asoc.2020.106266_b25
  article-title: Ensemble of extreme learning machine for remote sensing image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.070
– year: 1961
  ident: 10.1016/j.asoc.2020.106266_b39
– volume: 11
  start-page: 719
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2020.106266_b51
  article-title: Mammogram classification using AdaBoost with RBFSVM and Hybrid KNN–RBFSVM as base estimator by adaptively adjusting γ and C value
  publication-title: Int. J. Inf. Technol.
– volume: 10
  start-page: 25
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b16
  article-title: Classification of masses in digital mammograms using firefly based optimization
  publication-title: Int. J. Image Graph. Signal Process.
– ident: 10.1016/j.asoc.2020.106266_b45
– volume: 28
  start-page: 3967
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b6
  article-title: An integrated method of associative classification and neuro-fuzzy approach for effective mammographic classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2290-z
– volume: 5
  start-page: 275
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b22
  article-title: Chaotic whale optimization algorithm
  publication-title: J. Comput. Des. Eng.
– volume: 38
  start-page: 14314
  issue: 11
  year: 2011
  ident: 10.1016/j.asoc.2020.106266_b30
  article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: 10.1016/j.asoc.2020.106266_b1
– volume: 151
  start-page: 191
  issue: 1–4
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b4
  article-title: Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm
  publication-title: Fund. Inform.
– year: 2019
  ident: 10.1016/j.asoc.2020.106266_b17
  article-title: Fully automated computer-aided diagnosis system for micro calcifications cancer based on improved mammographic image techniques
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2019.01.009
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2020.106266_b28
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2020.106266_b29
  article-title: Extreme learning machines: a survey
  publication-title: Int. J. Mach. Learn. Cybernetics
  doi: 10.1007/s13042-011-0019-y
– year: 2016
  ident: 10.1016/j.asoc.2020.106266_b40
– volume: 33
  start-page: 1810
  issue: 6Part1
  year: 2006
  ident: 10.1016/j.asoc.2020.106266_b2
  article-title: Breast cancer CADx based on BI-RADS™ descriptors from two mammographic views
  publication-title: Med. Phys.
  doi: 10.1118/1.2188080
– volume: 76
  start-page: 18425
  issue: 18
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b3
  article-title: Texture classification based on curvelet transform and extreme learning machine with reduced feature set
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4174-8
– volume: 26
  start-page: S1283
  issue: s1
  year: 2015
  ident: 10.1016/j.asoc.2020.106266_b33
  article-title: Pathological brain detection based on wavelet entropy and hu moment invariants
  publication-title: Bio-Med. Mater. Eng.
– volume: 38
  start-page: 15377
  issue: 12
  year: 2011
  ident: 10.1016/j.asoc.2020.106266_b34
  article-title: Pathological infant cry analysis using wavelet packet transform and probabilistic neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.025
– volume: 16
  start-page: 3009
  issue: 6
  year: 2014
  ident: 10.1016/j.asoc.2020.106266_b38
  article-title: Tsallis wavelet entropy and its application in power signal analysis
  publication-title: Entropy
  doi: 10.3390/e16063009
– volume: 155
  start-page: 39
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b31
  article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.11.021
– start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b9
  article-title: Computer-aided diagnosis of breast cancer using bi-dimensional empirical mode decomposition
  publication-title: Neural Comput. Appl.
– volume: 25
  start-page: 709
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b11
  article-title: Effective mammogram classification based on center symmetric-LBP features in wavelet domain using random forests
  publication-title: Technol. Health Care
  doi: 10.3233/THC-170851
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b20
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.asoc.2020.106266_b23
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 77
  start-page: 3745
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b32
  article-title: Tea category identification based on optimal wavelet entropy and weighted k-nearest neighbors algorithm
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-3931-z
– volume: 76
  start-page: 10191
  issue: 7
  year: 2017
  ident: 10.1016/j.asoc.2020.106266_b7
  article-title: A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-3605-x
– volume: 15
  start-page: 1186
  issue: 11
  year: 1993
  ident: 10.1016/j.asoc.2020.106266_b19
  article-title: Texture classification by wavelet packet signatures
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.244679
– volume: 11
  start-page: 239
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.106266_b48
  article-title: Chaotic maps based on binary particle swarm optimization for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.014
– volume: 120
  start-page: 103
  year: 2019
  ident: 10.1016/j.asoc.2020.106266_b18
  article-title: Convolutional neural network improvement for breast cancer classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.11.008
– volume: 44
  start-page: 1858
  issue: 10
  year: 2014
  ident: 10.1016/j.asoc.2020.106266_b24
  article-title: Sparse extreme learning machine for classification
  publication-title: IEEE Trans. Cybernetics
  doi: 10.1109/TCYB.2014.2298235
– volume: 17
  start-page: 5218
  issue: 8
  year: 2015
  ident: 10.1016/j.asoc.2020.106266_b37
  article-title: An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures
  publication-title: Entropy
  doi: 10.3390/e17085218
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2020.106266_b46
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b13
  article-title: Mammogram classification using contourlet features with forest optimization-based feature selection approach
  publication-title: Multimedia Tools Appl.
– start-page: 212
  year: 2000
  ident: 10.1016/j.asoc.2020.106266_b44
  article-title: The digital database for screening mammography
– volume: 11
  start-page: 3658
  issue: 4
  year: 2011
  ident: 10.1016/j.asoc.2020.106266_b47
  article-title: A novel particle swarm optimization algorithm with adaptive inertia weight
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.01.037
– year: 2012
  ident: 10.1016/j.asoc.2020.106266_b41
– volume: 75
  start-page: 292
  year: 2018
  ident: 10.1016/j.asoc.2020.106266_b49
  article-title: A parasitic metric learning net for breast mass classification based on mammography
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.07.008
– volume: vol. 1069
  start-page: 375
  year: 1994
  ident: 10.1016/j.asoc.2020.106266_b43
  article-title: The mammographic image analysis society digital mammogram database
– year: 2018
  ident: 10.1016/j.asoc.2020.106266_b15
  article-title: Classification of masses in digital mammograms using biogeography-based optimization technique
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2020.106266_b42
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.04.057
SSID ssj0016928
Score 2.4736
Snippet Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106266
SubjectTerms Chaotic map salp swarm algorithm
Digital mammogram
Kernel extreme learning machine
Wavelet packet transform
Title An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine
URI https://dx.doi.org/10.1016/j.asoc.2020.106266
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZLcsmlTfqgeXSZQ27FXT8k2zouS8OmeRDaFHIzsjzauN31LpsNueXef90ZWw4NlBx6MhIaZDRv8Y1GiOOMEuM4UTKItMOA_C2SzukkkLqUpE5WVZprhy8u0-kP-fVG3QzEpK-FYVilt_2dTW-ttZ8Z-dMcrep69J0yj1xqmcYkpzF5Vq5glxl3Mfj8-ATziFLd9lflxQGv9oUzHcbL0AlQjhjzBEX26b-d018O52RXvPKRIoy7n9kTA2zeiNd9FwbwSvlW_B43ULdXA1gB5aq4QKBIFKp6xg1BYGFI1BiDBZYjZYYGtdwAhrzP4KG9GyVSe2uWtBXcmfkK7h7MegFmPluu683tImBnV8EvXDc4B7LnfKsIvuPEjLZgRCa-E9cnX64n08A3WAhsEoabAEsTp6WuVG4suXlZ5c4lSeZUoiKk3DXOUHNIZLV2StrYOkPhTIguROV0nrwXW82ywQ8CSJNzrGSk81xJZ9IyzUylU1vmYSmlTvZF1B9sYf3j49wDY170KLOfBTOjYGYUHTP2xacnmlX39MaLq1XPr-KZABXkG16gO_hPukOxw6MONXYktjbre_xI8cmmHLYCOBTb48m38yv-np5NL_8AkDroQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgeygX6AuxhbZz6K1KNw87iY8rBNq2wKVbiVvkOOMlsJtdLVtx673_mpnEQVSqOHB1PHLkeX1jffYI8TmjwjhOlAwi7TCgfIvkczoJpC4luZNVlea7w-cX6eSX_H6pLrfEcX8XhmmVPvZ3Mb2N1n5k5HdztKrr0U-qPHKpZRqTncaUWbfFC6nijCuwr38eeB5RqtsGqzw74On-5kxH8jK0BVQkxjxA0D79f3Z6lHFOX4ldDxVh3P3Na7GFzRux17dhAO-Vb8XfcQN1ezaAFVCxigsEgqJQ1TPuCAILQ7bGJCywDJWZG9SqA5jzPoO79nCURO2VWdJScGvmK7i9M-sFmPlsua43V4uAs10FN7hucA4U0PlYEXzLiRktwZRMfCempyfT40ngOywENgnDTYClidNSVyo3lvK8rHLnkiRzKlERUvEaZ6gZE1mtnZI2ts4QngnRhaiczpN9MWiWDR4IIFfOsZKRznMlnUnLNDOVTm2Zh6WUOhmKqN_YwvrXx7kJxrzoaWbXBSujYGUUnTKG4suDzKp7e-PJ2arXV_GPBRWUHJ6Qe_9MuU_i5WR6flacfbv4cSh2-EtHITsSg836N34gsLIpP7bGeA-8G-hD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+scheme+for+digital+mammogram+classification+using+weighted+chaotic+salp+swarm+algorithm-based+kernel+extreme+learning+machine&rft.jtitle=Applied+soft+computing&rft.au=Mohanty%2C+Figlu&rft.au=Rup%2C+Suvendu&rft.au=Dash%2C+Bodhisattva&rft.au=Majhi%2C+Banshidhar&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=91&rft_id=info:doi/10.1016%2Fj.asoc.2020.106266&rft.externalDocID=S1568494620302064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon