An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine
Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions. According to the World Health Organization, an early and accurate detection of breast cancer successfully leads to a correct decision towards its tr...
Saved in:
| Published in | Applied soft computing Vol. 91; p. 106266 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2020.106266 |
Cover
| Abstract | Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions. According to the World Health Organization, an early and accurate detection of breast cancer successfully leads to a correct decision towards its treatment. Development of computer-aided diagnosis (CAD) system is considered to be a major stead in current research practice to abet medical practitioners in decision-making. This paper proposes an improved CAD framework to correctly classify the digital mammograms into normal or abnormal, and further, benign or malignant. The proposed scheme employs a block-based discrete wavelet packet transform (BDWPT) to extract the features, namely, the Shannon entropy, Tsallis entropy, Renyi entropy, and energy. Then, principal component analysis (PCA) technique is utilized to extract the discriminating features from the original feature vector. Subsequently, an optimized wrapper-based kernel extreme learning machine (KELM) using a weighted chaotic salp swarm algorithm (WC-SSA) is proposed as classifier to classify the digital mammograms. Since the efficacy of KELM algorithm depends on its two important parameters, namely, the penalty parameter and the kernel parameter, the prime objective of the proposed work is to obtain the optimized value of the aforementioned parameters as well as to select the most relevant features from the reduced feature vector simultaneously.
The proposed scheme is evaluated on three publicly available standard datasets, namely, MIAS, DDSM, and BCDR to validate the efficacy of the proposed BDWPT+PCA+WC-SSA-KELM scheme. The performance of the proposed model is evaluated in terms of different metrics, namely, classification accuracy, sensitivity, specificity, area under curve (AUC), Matthew’s correlation coefficient (MCC), and F-measure via a 5 × 5 stratified cross-validation approach. From the experimental results and their analysis, it is observed that for the normal–abnormal category, the proposed technique results in an accuracy of 99.62% and 99.92% for MIAS and DDSM, respectively, whereas in the case of benign–malignant classification, the proposed method yields an accuracy of 99.28%, 99.63%, 99.60% for MIAS, DDSM, and BCDR datasets, respectively. Further, it is also observed that the proposed WC-SSA-KELM scheme exhibits superior performance as compared to that of its counterparts. Additionally, two well-known statistical analyses, namely, ANOVA and Friedman tests are performed to demonstrate that the performance of the proposed scheme is significantly better than that of the other existing schemes.
•The present scheme effectively classifies the digital mammograms in real time.•Block-based discrete wavelet packet transform performs the feature extraction.•Proposed WC-SSA does feature selection and hyper-parameter optimization in parallel. |
|---|---|
| AbstractList | Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions. According to the World Health Organization, an early and accurate detection of breast cancer successfully leads to a correct decision towards its treatment. Development of computer-aided diagnosis (CAD) system is considered to be a major stead in current research practice to abet medical practitioners in decision-making. This paper proposes an improved CAD framework to correctly classify the digital mammograms into normal or abnormal, and further, benign or malignant. The proposed scheme employs a block-based discrete wavelet packet transform (BDWPT) to extract the features, namely, the Shannon entropy, Tsallis entropy, Renyi entropy, and energy. Then, principal component analysis (PCA) technique is utilized to extract the discriminating features from the original feature vector. Subsequently, an optimized wrapper-based kernel extreme learning machine (KELM) using a weighted chaotic salp swarm algorithm (WC-SSA) is proposed as classifier to classify the digital mammograms. Since the efficacy of KELM algorithm depends on its two important parameters, namely, the penalty parameter and the kernel parameter, the prime objective of the proposed work is to obtain the optimized value of the aforementioned parameters as well as to select the most relevant features from the reduced feature vector simultaneously.
The proposed scheme is evaluated on three publicly available standard datasets, namely, MIAS, DDSM, and BCDR to validate the efficacy of the proposed BDWPT+PCA+WC-SSA-KELM scheme. The performance of the proposed model is evaluated in terms of different metrics, namely, classification accuracy, sensitivity, specificity, area under curve (AUC), Matthew’s correlation coefficient (MCC), and F-measure via a 5 × 5 stratified cross-validation approach. From the experimental results and their analysis, it is observed that for the normal–abnormal category, the proposed technique results in an accuracy of 99.62% and 99.92% for MIAS and DDSM, respectively, whereas in the case of benign–malignant classification, the proposed method yields an accuracy of 99.28%, 99.63%, 99.60% for MIAS, DDSM, and BCDR datasets, respectively. Further, it is also observed that the proposed WC-SSA-KELM scheme exhibits superior performance as compared to that of its counterparts. Additionally, two well-known statistical analyses, namely, ANOVA and Friedman tests are performed to demonstrate that the performance of the proposed scheme is significantly better than that of the other existing schemes.
•The present scheme effectively classifies the digital mammograms in real time.•Block-based discrete wavelet packet transform performs the feature extraction.•Proposed WC-SSA does feature selection and hyper-parameter optimization in parallel. |
| ArticleNumber | 106266 |
| Author | Swamy, M.N.S. Mohanty, Figlu Majhi, Banshidhar Rup, Suvendu Dash, Bodhisattva |
| Author_xml | – sequence: 1 givenname: Figlu surname: Mohanty fullname: Mohanty, Figlu email: figlu92@gmail.com organization: Image and Video Processing Laboratory, Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar 751003, India – sequence: 2 givenname: Suvendu surname: Rup fullname: Rup, Suvendu email: suvendu@iiit-bh.ac.in organization: Image and Video Processing Laboratory, Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar 751003, India – sequence: 3 givenname: Bodhisattva surname: Dash fullname: Dash, Bodhisattva email: bdash.fac@gmail.com organization: Image and Video Processing Laboratory, Department of Computer Science and Engineering, International Institute of Information Technology, Bhubaneswar 751003, India – sequence: 4 givenname: Banshidhar surname: Majhi fullname: Majhi, Banshidhar email: bm@iiitdm.ac.in organization: Indian Institute of Information Technology Design and Manufacturing, Kancheepuram, Chennai 600127, India – sequence: 5 givenname: M.N.S. surname: Swamy fullname: Swamy, M.N.S. email: swamy@ece.concordia.ca organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada |
| BookMark | eNp9kM9q3DAQh0VIoUnaF-hJL-CtLNtaCXoJIf0DgV5yF7Pjka2NJS2SmqSP0LeuzfbUQ04zDPPN8Puu2WVMkRj71IpdK1r1-biDknAnhdwGSip1wa5avZeNUbq9XPtB6aY3vXrPrks5ihUyUl-xP7eR-3DK6ZlGXnCmQNylzEc_-QoLDxBCmjIEjguU4p1HqD5F_qv4OPEX8tNcVxRnSNUjL7CceHmBHDgsU8q-zqE5QFlXnihHWji91rx9WQhy3G4EwNlH-sDeOVgKffxXb9jj1_vHu-_Nw89vP-5uHxrshKgNHUCqgxkHDSj7vh-1c123d0M3tNR1Wu7JyEEJNMYNPUp0YEwnyAkanNHdDdPns5hTKZmcxTXoFqlm8Itthd2M2qPdjNrNqD0bXVH5H3rKPkD-_Tb05QzRmunZU7YFPUWk0WfCasfk38L_An6OlZA |
| CitedBy_id | crossref_primary_10_1002_cpe_6971 crossref_primary_10_1016_j_ibmed_2023_100117 crossref_primary_10_1038_s41598_025_87285_0 crossref_primary_10_1016_j_knosys_2021_107303 crossref_primary_10_1007_s41403_023_00450_7 crossref_primary_10_1007_s11517_024_03158_0 crossref_primary_10_1016_j_imu_2020_100401 crossref_primary_10_1007_s00500_021_05757_7 crossref_primary_10_1016_j_neucom_2020_10_038 crossref_primary_10_1016_j_imu_2020_100408 crossref_primary_10_1109_TDMR_2022_3228253 crossref_primary_10_1007_s10479_022_05086_4 crossref_primary_10_1109_ACCESS_2021_3100580 crossref_primary_10_7717_peerj_cs_411 crossref_primary_10_4236_jmp_2024_157045 crossref_primary_10_1016_j_asoc_2023_110334 crossref_primary_10_1002_ima_22718 crossref_primary_10_3390_app12073273 crossref_primary_10_18038_estubtda_906920 crossref_primary_10_1007_s10619_021_07355_w crossref_primary_10_1007_s00500_022_07280_9 crossref_primary_10_1016_j_cie_2022_108146 crossref_primary_10_1080_08839514_2021_2001177 crossref_primary_10_1007_s00500_023_08565_3 crossref_primary_10_32604_csse_2022_016376 crossref_primary_10_3390_app112412122 crossref_primary_10_1016_j_measurement_2023_114059 crossref_primary_10_1016_j_measurement_2020_108373 crossref_primary_10_1007_s11063_022_10856_z crossref_primary_10_1016_j_chaos_2020_110071 crossref_primary_10_1007_s42452_021_04616_2 crossref_primary_10_1007_s12652_021_02965_9 crossref_primary_10_1007_s00521_020_05062_8 crossref_primary_10_1016_j_compbiomed_2021_105137 crossref_primary_10_1016_j_eswa_2020_114161 crossref_primary_10_14201_adcaij_31412 crossref_primary_10_1186_s40537_024_00936_3 crossref_primary_10_1007_s11831_022_09738_3 crossref_primary_10_1016_j_ijleo_2021_167572 crossref_primary_10_1007_s11042_023_18025_7 crossref_primary_10_1007_s00432_023_04956_z crossref_primary_10_1007_s11548_021_02541_8 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_1007_s10278_022_00677_w crossref_primary_10_3390_app132412995 crossref_primary_10_1109_ACCESS_2020_2997864 crossref_primary_10_1111_coin_12522 crossref_primary_10_2174_2210298102666220406121814 |
| Cites_doi | 10.1016/j.cam.2006.09.008 10.1016/j.swevo.2011.02.002 10.1016/j.eswa.2012.02.102 10.4236/cs.2016.74028 10.1016/j.neucom.2014.11.080 10.3390/jimaging4010014 10.1016/j.knosys.2015.08.004 10.1016/j.ecolmodel.2013.06.027 10.1016/j.neucom.2013.09.070 10.1007/s00521-016-2290-z 10.1016/j.asej.2019.01.009 10.1023/A:1022627411411 10.1007/s13042-011-0019-y 10.1118/1.2188080 10.1007/s11042-016-4174-8 10.1016/j.eswa.2011.06.025 10.3390/e16063009 10.1016/j.cmpb.2017.11.021 10.3233/THC-170851 10.1016/j.advengsoft.2017.07.002 10.1016/j.neucom.2005.12.126 10.1007/s11042-016-3931-z 10.1007/s11042-016-3605-x 10.1109/34.244679 10.1016/j.asoc.2009.11.014 10.1016/j.eswa.2018.11.008 10.1109/TCYB.2014.2298235 10.3390/e17085218 10.1109/TEVC.2009.2014613 10.1016/j.asoc.2011.01.037 10.1016/j.patcog.2017.07.008 10.1016/j.chaos.2006.04.057 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106266 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2020_106266 S1568494620302064 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-eba26b9d58ac2444d8ff337f5351e33827e92560c99f54c2cfa9930ef0e5f983 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 22:58:46 EDT 2025 Wed Oct 29 21:44:44 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chaotic map salp swarm algorithm Digital mammogram Wavelet packet transform Kernel extreme learning machine |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-eba26b9d58ac2444d8ff337f5351e33827e92560c99f54c2cfa9930ef0e5f983 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106266 crossref_primary_10_1016_j_asoc_2020_106266 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106266 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hariharan, Sindhu, Vijean, Yazid, Nadarajaw, Yaacob, Polat (b31) 2018; 155 Nickabadi, Ebadzadeh, Safabakhsh (b47) 2011; 11 Bajaj, Pawar, Meena, Kumar, Sengur, Guo (b9) 2017 Junguo, Guomo, Xiaojun (b27) 2013; 266 Hariharan, Yaacob, Awang (b34) 2011; 38 Huang, Zhu, Siew (b23) 2006; 70 Chuang, Yang, Li (b48) 2011; 11 Berraho, El Margae, Kerroum, Fakhri (b3) 2017; 76 Cortes, Vapnik (b28) 1995; 20 Sudha, Selvarajan (b12) 2016; 7 Silvestre, Lemos, Braga, Braga (b26) 2015; 169 Ancy, Nair (b50) 2018 Aminikhanghahi, Shin, Wang, Jeon, Son (b7) 2017; 76 Christopher (b40) 2016 Rényi (b39) 1961 Duda, Hart, Stork (b41) 2012 Mabrouk, Afify, Marzouk (b17) 2019 Anter, Hassenian (b5) 2016 Tavazoei, Haeri (b21) 2007; 206 Kaur, Arora (b22) 2018; 5 Society (b1) 2018 Bhosle, Deshmukh (b51) 2019; 11 Zhang, Sanderson (b46) 2009; 13 Huang, Wang, Lan (b29) 2011; 2 Acharya, Fujita, Sudarshan, Bhat, Koh (b36) 2015; 88 Wu, Yang, Wang (b32) 2018; 77 Suckling, Parker, Dance, Astley, Hutt, Boggis, Ricketts, Stamatakis, Cerneaz, Kok (b43) 1994; vol. 1069 Abubacker, Azman, Doraisamy, Murad (b6) 2017; 28 Bai, Huang, Wang, Wang, Westover (b24) 2014; 44 Derrac, García, Molina, Herrera (b52) 2011; 1 Suhail, Denton, Zwiggelaar (b10) 2018 Sharma, Pachori, Acharya (b37) 2015; 17 Wang, Rao, Chen, Zhang, Liu, Wei (b4) 2017; 151 Hariharan, Saraswathy, Sindhu, Khairunizam, Yaacob (b35) 2012; 39 Zhang, Wang, Sun, Phillips (b33) 2015; 26 Singh, Srivastava, Srivastava (b11) 2017; 25 Heath, Bowyer, Kopans, Moore, Kegelmeyer (b44) 2000 Jiao, Gao, Wang, Li (b49) 2018; 75 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b20) 2017; 114 Wang, Miao, Xie (b30) 2011; 38 Ting, Tan, Sim (b18) 2019; 120 Rampun, Scotney, Morrow, Wang, Winder (b14) 2018; 4 Han, Liu (b25) 2015; 149 Yang, Xu (b8) 2017 M.G. Lopez, N.G. Posada, D.C. Moura, R.R. Pollán, J.M.F. Valiente, C.S. Ortega, M. Solar, G. Diaz-Herrero, I. Ramos, J. Loureiro, et al. BCDR: a breast cancer digital repository, in: 15th International Conference on Experimental Mechanics, 2012. Thawkar, Ingolikar (b15) 2018 Mohanty, Rup, Dash, Majhi, Swamy (b13) 2018 Chen, Li (b38) 2014; 16 Gupta, Chyn, Markey (b2) 2006; 33 Yang, Li, Cheng (b42) 2007; 34 Thawkar, Ingolikar (b16) 2018; 10 Laine, Fan (b19) 1993; 15 Yang (10.1016/j.asoc.2020.106266_b8) 2017 Hariharan (10.1016/j.asoc.2020.106266_b31) 2018; 155 Zhang (10.1016/j.asoc.2020.106266_b33) 2015; 26 Huang (10.1016/j.asoc.2020.106266_b23) 2006; 70 Wang (10.1016/j.asoc.2020.106266_b4) 2017; 151 Hariharan (10.1016/j.asoc.2020.106266_b35) 2012; 39 Jiao (10.1016/j.asoc.2020.106266_b49) 2018; 75 Heath (10.1016/j.asoc.2020.106266_b44) 2000 Duda (10.1016/j.asoc.2020.106266_b41) 2012 Nickabadi (10.1016/j.asoc.2020.106266_b47) 2011; 11 Silvestre (10.1016/j.asoc.2020.106266_b26) 2015; 169 Huang (10.1016/j.asoc.2020.106266_b29) 2011; 2 Bai (10.1016/j.asoc.2020.106266_b24) 2014; 44 Mabrouk (10.1016/j.asoc.2020.106266_b17) 2019 Laine (10.1016/j.asoc.2020.106266_b19) 1993; 15 Derrac (10.1016/j.asoc.2020.106266_b52) 2011; 1 Suckling (10.1016/j.asoc.2020.106266_b43) 1994; vol. 1069 Anter (10.1016/j.asoc.2020.106266_b5) 2016 Han (10.1016/j.asoc.2020.106266_b25) 2015; 149 Sharma (10.1016/j.asoc.2020.106266_b37) 2015; 17 Cortes (10.1016/j.asoc.2020.106266_b28) 1995; 20 Acharya (10.1016/j.asoc.2020.106266_b36) 2015; 88 Gupta (10.1016/j.asoc.2020.106266_b2) 2006; 33 Abubacker (10.1016/j.asoc.2020.106266_b6) 2017; 28 Society (10.1016/j.asoc.2020.106266_b1) 2018 Mohanty (10.1016/j.asoc.2020.106266_b13) 2018 Bajaj (10.1016/j.asoc.2020.106266_b9) 2017 Suhail (10.1016/j.asoc.2020.106266_b10) 2018 Singh (10.1016/j.asoc.2020.106266_b11) 2017; 25 Yang (10.1016/j.asoc.2020.106266_b42) 2007; 34 Thawkar (10.1016/j.asoc.2020.106266_b15) 2018 Chuang (10.1016/j.asoc.2020.106266_b48) 2011; 11 Chen (10.1016/j.asoc.2020.106266_b38) 2014; 16 Hariharan (10.1016/j.asoc.2020.106266_b34) 2011; 38 10.1016/j.asoc.2020.106266_b45 Tavazoei (10.1016/j.asoc.2020.106266_b21) 2007; 206 Wang (10.1016/j.asoc.2020.106266_b30) 2011; 38 Bhosle (10.1016/j.asoc.2020.106266_b51) 2019; 11 Ancy (10.1016/j.asoc.2020.106266_b50) 2018 Kaur (10.1016/j.asoc.2020.106266_b22) 2018; 5 Wu (10.1016/j.asoc.2020.106266_b32) 2018; 77 Sudha (10.1016/j.asoc.2020.106266_b12) 2016; 7 Berraho (10.1016/j.asoc.2020.106266_b3) 2017; 76 Junguo (10.1016/j.asoc.2020.106266_b27) 2013; 266 Thawkar (10.1016/j.asoc.2020.106266_b16) 2018; 10 Mirjalili (10.1016/j.asoc.2020.106266_b20) 2017; 114 Aminikhanghahi (10.1016/j.asoc.2020.106266_b7) 2017; 76 Rényi (10.1016/j.asoc.2020.106266_b39) 1961 Christopher (10.1016/j.asoc.2020.106266_b40) 2016 Rampun (10.1016/j.asoc.2020.106266_b14) 2018; 4 Ting (10.1016/j.asoc.2020.106266_b18) 2019; 120 Zhang (10.1016/j.asoc.2020.106266_b46) 2009; 13 |
| References_xml | – volume: 206 start-page: 1070 year: 2007 end-page: 1081 ident: b21 article-title: An optimization algorithm based on chaotic behavior and fractal nature publication-title: J. Comput. Appl. Math. – volume: 169 start-page: 288 year: 2015 end-page: 294 ident: b26 article-title: Dataset structure as prior information for parameter-free regularization of extreme learning machines publication-title: Neurocomputing – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b28 article-title: Support-vector networks publication-title: Mach. Learn. – start-page: 1 year: 2017 end-page: 9 ident: b9 article-title: Computer-aided diagnosis of breast cancer using bi-dimensional empirical mode decomposition publication-title: Neural Comput. Appl. – volume: 76 start-page: 18425 year: 2017 end-page: 18448 ident: b3 article-title: Texture classification based on curvelet transform and extreme learning machine with reduced feature set publication-title: Multimedia Tools Appl. – volume: 7 start-page: 327 year: 2016 ident: b12 article-title: Feature selection based on enhanced cuckoo search for breast cancer classification in mammogram image publication-title: Circuits Syst. – volume: 120 start-page: 103 year: 2019 end-page: 115 ident: b18 article-title: Convolutional neural network improvement for breast cancer classification publication-title: Expert Syst. Appl. – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b46 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – year: 2019 ident: b17 article-title: Fully automated computer-aided diagnosis system for micro calcifications cancer based on improved mammographic image techniques publication-title: Ain Shams Eng. J. – volume: 25 start-page: 709 year: 2017 end-page: 727 ident: b11 article-title: Effective mammogram classification based on center symmetric-LBP features in wavelet domain using random forests publication-title: Technol. Health Care – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b23 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – reference: M.G. Lopez, N.G. Posada, D.C. Moura, R.R. Pollán, J.M.F. Valiente, C.S. Ortega, M. Solar, G. Diaz-Herrero, I. Ramos, J. Loureiro, et al. BCDR: a breast cancer digital repository, in: 15th International Conference on Experimental Mechanics, 2012. – volume: 26 start-page: S1283 year: 2015 end-page: S1290 ident: b33 article-title: Pathological brain detection based on wavelet entropy and hu moment invariants publication-title: Bio-Med. Mater. Eng. – volume: 76 start-page: 10191 year: 2017 end-page: 10205 ident: b7 article-title: A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification publication-title: Multimedia Tools Appl. – volume: 39 start-page: 9515 year: 2012 end-page: 9523 ident: b35 article-title: Infant cry classification to identify asphyxia using time-frequency analysis and radial basis neural networks publication-title: Expert Syst. Appl. – volume: 38 start-page: 15377 year: 2011 end-page: 15382 ident: b34 article-title: Pathological infant cry analysis using wavelet packet transform and probabilistic neural network publication-title: Expert Syst. Appl. – year: 2018 ident: b1 article-title: Cancer facts and figures 2018 – volume: 28 start-page: 3967 year: 2017 end-page: 3980 ident: b6 article-title: An integrated method of associative classification and neuro-fuzzy approach for effective mammographic classification publication-title: Neural Comput. Appl. – start-page: 1 year: 2018 end-page: 11 ident: b10 article-title: Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis publication-title: Med. Biol. Eng. Comput. – volume: 75 start-page: 292 year: 2018 end-page: 301 ident: b49 article-title: A parasitic metric learning net for breast mass classification based on mammography publication-title: Pattern Recognit. – volume: 34 start-page: 1366 year: 2007 end-page: 1375 ident: b42 article-title: On the efficiency of chaos optimization algorithms for global optimization publication-title: Chaos Solitons Fractals – volume: 33 start-page: 1810 year: 2006 end-page: 1817 ident: b2 article-title: Breast cancer CADx based on BI-RADS™ descriptors from two mammographic views publication-title: Med. Phys. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b20 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 15 start-page: 1186 year: 1993 end-page: 1191 ident: b19 article-title: Texture classification by wavelet packet signatures publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 25 year: 2018 ident: b16 article-title: Classification of masses in digital mammograms using firefly based optimization publication-title: Int. J. Image Graph. Signal Process. – year: 2016 ident: b40 article-title: Pattern Recognition And Machine Learning – volume: 38 start-page: 14314 year: 2011 end-page: 14320 ident: b30 article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – start-page: 1 year: 2018 end-page: 30 ident: b13 article-title: Mammogram classification using contourlet features with forest optimization-based feature selection approach publication-title: Multimedia Tools Appl. – volume: 4 start-page: 14 year: 2018 ident: b14 article-title: Breast density classification using local quinary patterns with various neighbourhood topologies publication-title: J. Imaging – year: 2018 ident: b15 article-title: Classification of masses in digital mammograms using biogeography-based optimization technique publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 11 start-page: 719 year: 2019 end-page: 726 ident: b51 article-title: Mammogram classification using AdaBoost with RBFSVM and Hybrid KNN–RBFSVM as base estimator by adaptively adjusting publication-title: Int. J. Inf. Technol. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b52 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 149 start-page: 65 year: 2015 end-page: 70 ident: b25 article-title: Ensemble of extreme learning machine for remote sensing image classification publication-title: Neurocomputing – volume: 77 start-page: 3745 year: 2018 end-page: 3759 ident: b32 article-title: Tea category identification based on optimal wavelet entropy and weighted k-nearest neighbors algorithm publication-title: Multimedia Tools Appl. – volume: 155 start-page: 39 year: 2018 end-page: 51 ident: b31 article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification publication-title: Comput. Methods Programs Biomed. – volume: 2 start-page: 107 year: 2011 end-page: 122 ident: b29 article-title: Extreme learning machines: a survey publication-title: Int. J. Mach. Learn. Cybernetics – start-page: 197 year: 2018 end-page: 208 ident: b50 article-title: Tumour classification in graph-cut segmented mammograms using GLCM features-fed SVM publication-title: Intelligent Engineering Informatics – volume: 17 start-page: 5218 year: 2015 end-page: 5240 ident: b37 article-title: An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures publication-title: Entropy – start-page: 1 year: 2017 end-page: 11 ident: b8 article-title: Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning publication-title: Int. J. Mach. Learn. Cybern. – year: 2012 ident: b41 article-title: Pattern Classification – volume: 266 start-page: 86 year: 2013 end-page: 96 ident: b27 article-title: Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data publication-title: Ecol. Model. – volume: 11 start-page: 239 year: 2011 end-page: 248 ident: b48 article-title: Chaotic maps based on binary particle swarm optimization for feature selection publication-title: Appl. Soft Comput. – volume: 5 start-page: 275 year: 2018 end-page: 284 ident: b22 article-title: Chaotic whale optimization algorithm publication-title: J. Comput. Des. Eng. – start-page: 212 year: 2000 end-page: 218 ident: b44 article-title: The digital database for screening mammography publication-title: Proceedings of the 5th International Workshop on Digital Mammography – volume: vol. 1069 start-page: 375 year: 1994 end-page: 378 ident: b43 article-title: The mammographic image analysis society digital mammogram database publication-title: Exerpta Medica. International Congress Series – year: 1961 ident: b39 article-title: On Measures of Entropy and Information – volume: 151 start-page: 191 year: 2017 end-page: 211 ident: b4 article-title: Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm publication-title: Fund. Inform. – start-page: 175 year: 2016 end-page: 191 ident: b5 article-title: Computer aided diagnosis system for mammogram abnormality publication-title: Medical Imaging in Clinical Applications – volume: 88 start-page: 85 year: 2015 end-page: 96 ident: b36 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review publication-title: Knowl.-Based Syst. – volume: 11 start-page: 3658 year: 2011 end-page: 3670 ident: b47 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. – volume: 16 start-page: 3009 year: 2014 end-page: 3025 ident: b38 article-title: Tsallis wavelet entropy and its application in power signal analysis publication-title: Entropy – volume: 44 start-page: 1858 year: 2014 end-page: 1870 ident: b24 article-title: Sparse extreme learning machine for classification publication-title: IEEE Trans. Cybernetics – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106266_b10 article-title: Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis publication-title: Med. Biol. Eng. Comput. – volume: 206 start-page: 1070 issue: 2 year: 2007 ident: 10.1016/j.asoc.2020.106266_b21 article-title: An optimization algorithm based on chaotic behavior and fractal nature publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.09.008 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.asoc.2020.106266_b52 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – start-page: 175 year: 2016 ident: 10.1016/j.asoc.2020.106266_b5 article-title: Computer aided diagnosis system for mammogram abnormality – volume: 39 start-page: 9515 issue: 10 year: 2012 ident: 10.1016/j.asoc.2020.106266_b35 article-title: Infant cry classification to identify asphyxia using time-frequency analysis and radial basis neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.102 – volume: 7 start-page: 327 issue: 04 year: 2016 ident: 10.1016/j.asoc.2020.106266_b12 article-title: Feature selection based on enhanced cuckoo search for breast cancer classification in mammogram image publication-title: Circuits Syst. doi: 10.4236/cs.2016.74028 – start-page: 197 year: 2018 ident: 10.1016/j.asoc.2020.106266_b50 article-title: Tumour classification in graph-cut segmented mammograms using GLCM features-fed SVM – volume: 169 start-page: 288 year: 2015 ident: 10.1016/j.asoc.2020.106266_b26 article-title: Dataset structure as prior information for parameter-free regularization of extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.080 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2020.106266_b8 article-title: Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning publication-title: Int. J. Mach. Learn. Cybern. – volume: 4 start-page: 14 issue: 1 year: 2018 ident: 10.1016/j.asoc.2020.106266_b14 article-title: Breast density classification using local quinary patterns with various neighbourhood topologies publication-title: J. Imaging doi: 10.3390/jimaging4010014 – volume: 88 start-page: 85 year: 2015 ident: 10.1016/j.asoc.2020.106266_b36 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.08.004 – volume: 266 start-page: 86 year: 2013 ident: 10.1016/j.asoc.2020.106266_b27 article-title: Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2013.06.027 – volume: 149 start-page: 65 year: 2015 ident: 10.1016/j.asoc.2020.106266_b25 article-title: Ensemble of extreme learning machine for remote sensing image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.070 – year: 1961 ident: 10.1016/j.asoc.2020.106266_b39 – volume: 11 start-page: 719 issue: 4 year: 2019 ident: 10.1016/j.asoc.2020.106266_b51 article-title: Mammogram classification using AdaBoost with RBFSVM and Hybrid KNN–RBFSVM as base estimator by adaptively adjusting γ and C value publication-title: Int. J. Inf. Technol. – volume: 10 start-page: 25 issue: 2 year: 2018 ident: 10.1016/j.asoc.2020.106266_b16 article-title: Classification of masses in digital mammograms using firefly based optimization publication-title: Int. J. Image Graph. Signal Process. – ident: 10.1016/j.asoc.2020.106266_b45 – volume: 28 start-page: 3967 issue: 12 year: 2017 ident: 10.1016/j.asoc.2020.106266_b6 article-title: An integrated method of associative classification and neuro-fuzzy approach for effective mammographic classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2290-z – volume: 5 start-page: 275 issue: 3 year: 2018 ident: 10.1016/j.asoc.2020.106266_b22 article-title: Chaotic whale optimization algorithm publication-title: J. Comput. Des. Eng. – volume: 38 start-page: 14314 issue: 11 year: 2011 ident: 10.1016/j.asoc.2020.106266_b30 article-title: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection publication-title: Expert Syst. Appl. – year: 2018 ident: 10.1016/j.asoc.2020.106266_b1 – volume: 151 start-page: 191 issue: 1–4 year: 2017 ident: 10.1016/j.asoc.2020.106266_b4 article-title: Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm publication-title: Fund. Inform. – year: 2019 ident: 10.1016/j.asoc.2020.106266_b17 article-title: Fully automated computer-aided diagnosis system for micro calcifications cancer based on improved mammographic image techniques publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2019.01.009 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.asoc.2020.106266_b28 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 2 start-page: 107 issue: 2 year: 2011 ident: 10.1016/j.asoc.2020.106266_b29 article-title: Extreme learning machines: a survey publication-title: Int. J. Mach. Learn. Cybernetics doi: 10.1007/s13042-011-0019-y – year: 2016 ident: 10.1016/j.asoc.2020.106266_b40 – volume: 33 start-page: 1810 issue: 6Part1 year: 2006 ident: 10.1016/j.asoc.2020.106266_b2 article-title: Breast cancer CADx based on BI-RADS™ descriptors from two mammographic views publication-title: Med. Phys. doi: 10.1118/1.2188080 – volume: 76 start-page: 18425 issue: 18 year: 2017 ident: 10.1016/j.asoc.2020.106266_b3 article-title: Texture classification based on curvelet transform and extreme learning machine with reduced feature set publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-4174-8 – volume: 26 start-page: S1283 issue: s1 year: 2015 ident: 10.1016/j.asoc.2020.106266_b33 article-title: Pathological brain detection based on wavelet entropy and hu moment invariants publication-title: Bio-Med. Mater. Eng. – volume: 38 start-page: 15377 issue: 12 year: 2011 ident: 10.1016/j.asoc.2020.106266_b34 article-title: Pathological infant cry analysis using wavelet packet transform and probabilistic neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.025 – volume: 16 start-page: 3009 issue: 6 year: 2014 ident: 10.1016/j.asoc.2020.106266_b38 article-title: Tsallis wavelet entropy and its application in power signal analysis publication-title: Entropy doi: 10.3390/e16063009 – volume: 155 start-page: 39 year: 2018 ident: 10.1016/j.asoc.2020.106266_b31 article-title: Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.11.021 – start-page: 1 year: 2017 ident: 10.1016/j.asoc.2020.106266_b9 article-title: Computer-aided diagnosis of breast cancer using bi-dimensional empirical mode decomposition publication-title: Neural Comput. Appl. – volume: 25 start-page: 709 issue: 4 year: 2017 ident: 10.1016/j.asoc.2020.106266_b11 article-title: Effective mammogram classification based on center symmetric-LBP features in wavelet domain using random forests publication-title: Technol. Health Care doi: 10.3233/THC-170851 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.asoc.2020.106266_b20 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.asoc.2020.106266_b23 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 77 start-page: 3745 issue: 3 year: 2018 ident: 10.1016/j.asoc.2020.106266_b32 article-title: Tea category identification based on optimal wavelet entropy and weighted k-nearest neighbors algorithm publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-3931-z – volume: 76 start-page: 10191 issue: 7 year: 2017 ident: 10.1016/j.asoc.2020.106266_b7 article-title: A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-3605-x – volume: 15 start-page: 1186 issue: 11 year: 1993 ident: 10.1016/j.asoc.2020.106266_b19 article-title: Texture classification by wavelet packet signatures publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.244679 – volume: 11 start-page: 239 issue: 1 year: 2011 ident: 10.1016/j.asoc.2020.106266_b48 article-title: Chaotic maps based on binary particle swarm optimization for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.014 – volume: 120 start-page: 103 year: 2019 ident: 10.1016/j.asoc.2020.106266_b18 article-title: Convolutional neural network improvement for breast cancer classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.11.008 – volume: 44 start-page: 1858 issue: 10 year: 2014 ident: 10.1016/j.asoc.2020.106266_b24 article-title: Sparse extreme learning machine for classification publication-title: IEEE Trans. Cybernetics doi: 10.1109/TCYB.2014.2298235 – volume: 17 start-page: 5218 issue: 8 year: 2015 ident: 10.1016/j.asoc.2020.106266_b37 article-title: An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures publication-title: Entropy doi: 10.3390/e17085218 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.asoc.2020.106266_b46 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106266_b13 article-title: Mammogram classification using contourlet features with forest optimization-based feature selection approach publication-title: Multimedia Tools Appl. – start-page: 212 year: 2000 ident: 10.1016/j.asoc.2020.106266_b44 article-title: The digital database for screening mammography – volume: 11 start-page: 3658 issue: 4 year: 2011 ident: 10.1016/j.asoc.2020.106266_b47 article-title: A novel particle swarm optimization algorithm with adaptive inertia weight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.01.037 – year: 2012 ident: 10.1016/j.asoc.2020.106266_b41 – volume: 75 start-page: 292 year: 2018 ident: 10.1016/j.asoc.2020.106266_b49 article-title: A parasitic metric learning net for breast mass classification based on mammography publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.07.008 – volume: vol. 1069 start-page: 375 year: 1994 ident: 10.1016/j.asoc.2020.106266_b43 article-title: The mammographic image analysis society digital mammogram database – year: 2018 ident: 10.1016/j.asoc.2020.106266_b15 article-title: Classification of masses in digital mammograms using biogeography-based optimization technique publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 34 start-page: 1366 issue: 4 year: 2007 ident: 10.1016/j.asoc.2020.106266_b42 article-title: On the efficiency of chaos optimization algorithms for global optimization publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.04.057 |
| SSID | ssj0016928 |
| Score | 2.4736 |
| Snippet | Over the past years, the surge in the necessity for early detection and diagnosis of breast cancer has resulted in many innovative research directions.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106266 |
| SubjectTerms | Chaotic map salp swarm algorithm Digital mammogram Kernel extreme learning machine Wavelet packet transform |
| Title | An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106266 |
| Volume | 91 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZLcsmlTfqgeXSZQ27FXT8k2zouS8OmeRDaFHIzsjzauN31LpsNueXef90ZWw4NlBx6MhIaZDRv8Y1GiOOMEuM4UTKItMOA_C2SzukkkLqUpE5WVZprhy8u0-kP-fVG3QzEpK-FYVilt_2dTW-ttZ8Z-dMcrep69J0yj1xqmcYkpzF5Vq5glxl3Mfj8-ATziFLd9lflxQGv9oUzHcbL0AlQjhjzBEX26b-d018O52RXvPKRIoy7n9kTA2zeiNd9FwbwSvlW_B43ULdXA1gB5aq4QKBIFKp6xg1BYGFI1BiDBZYjZYYGtdwAhrzP4KG9GyVSe2uWtBXcmfkK7h7MegFmPluu683tImBnV8EvXDc4B7LnfKsIvuPEjLZgRCa-E9cnX64n08A3WAhsEoabAEsTp6WuVG4suXlZ5c4lSeZUoiKk3DXOUHNIZLV2StrYOkPhTIguROV0nrwXW82ywQ8CSJNzrGSk81xJZ9IyzUylU1vmYSmlTvZF1B9sYf3j49wDY170KLOfBTOjYGYUHTP2xacnmlX39MaLq1XPr-KZABXkG16gO_hPukOxw6MONXYktjbre_xI8cmmHLYCOBTb48m38yv-np5NL_8AkDroQw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgeygX6AuxhbZz6K1KNw87iY8rBNq2wKVbiVvkOOMlsJtdLVtx673_mpnEQVSqOHB1PHLkeX1jffYI8TmjwjhOlAwi7TCgfIvkczoJpC4luZNVlea7w-cX6eSX_H6pLrfEcX8XhmmVPvZ3Mb2N1n5k5HdztKrr0U-qPHKpZRqTncaUWbfFC6nijCuwr38eeB5RqtsGqzw74On-5kxH8jK0BVQkxjxA0D79f3Z6lHFOX4ldDxVh3P3Na7GFzRux17dhAO-Vb8XfcQN1ezaAFVCxigsEgqJQ1TPuCAILQ7bGJCywDJWZG9SqA5jzPoO79nCURO2VWdJScGvmK7i9M-sFmPlsua43V4uAs10FN7hucA4U0PlYEXzLiRktwZRMfCempyfT40ngOywENgnDTYClidNSVyo3lvK8rHLnkiRzKlERUvEaZ6gZE1mtnZI2ts4QngnRhaiczpN9MWiWDR4IIFfOsZKRznMlnUnLNDOVTm2Zh6WUOhmKqN_YwvrXx7kJxrzoaWbXBSujYGUUnTKG4suDzKp7e-PJ2arXV_GPBRWUHJ6Qe_9MuU_i5WR6flacfbv4cSh2-EtHITsSg836N34gsLIpP7bGeA-8G-hD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+scheme+for+digital+mammogram+classification+using+weighted+chaotic+salp+swarm+algorithm-based+kernel+extreme+learning+machine&rft.jtitle=Applied+soft+computing&rft.au=Mohanty%2C+Figlu&rft.au=Rup%2C+Suvendu&rft.au=Dash%2C+Bodhisattva&rft.au=Majhi%2C+Banshidhar&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=91&rft_id=info:doi/10.1016%2Fj.asoc.2020.106266&rft.externalDocID=S1568494620302064 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |