Tailoring the microstructure and mechanical properties of laser metal-deposited Hastelloy X superalloy sheets via post heat-treatment

Nickel-based superalloys are subject to severe microsegregation and exhibit anisotropic properties during laser metal deposition (LMD), which restricts their wide application in the aerospace field. Thus, post heat-treatments must be investigated to further regulate the microstructure and mechanical...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 884; p. 145546
Main Authors Liang, Jiangkai, He, Zhubin, Du, Wei, Ruan, Xianggang, Guo, Enyu, Shen, Ningqiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 19.09.2023
Subjects
Online AccessGet full text
ISSN0921-5093
DOI10.1016/j.msea.2023.145546

Cover

Abstract Nickel-based superalloys are subject to severe microsegregation and exhibit anisotropic properties during laser metal deposition (LMD), which restricts their wide application in the aerospace field. Thus, post heat-treatments must be investigated to further regulate the microstructure and mechanical properties of such components. The aim is to provide a comprehensive understanding of the effects of double-stage aging (DA) and solution plus double-stage aging (SDA) heat treatments on microstructure and mechanical properties of Hastelloy X superalloy sheets fabricated via LMD. The effects of DA and SDA heat treatments on the density, residual stress, phase composition, carbides precipitation behavior, dislocation structure, grain structure, and mechanical properties of the sheets were studied and in comparison with the as-deposited (AD) samples. The results showed that the DA heat treatment yielded a significant amount of lamellar and granular phases in the interdendrites and grain boundaries, whereas the anisotropic microstructure between the transverse and vertical planes was similar to that observed in the AD samples. These phases are mainly composed of Laves phase and carbides. However, the needle-like carbide phase was dispersedly precipitated within the grains and at grain boundaries, and exhibited full recrystallization and reduced dislocation density after SDA heat treatment. Consequently, the SDA samples presented superior strength-ductility balance to those of the AD and DA samples with irregularly shaped Laves phase and carbides owing to microstructural changes. For instance, the SDA heat treatment improved the ultimate tensile strength and fracture elongation of the vertical samples by up to 10.9% and 30.7%, respectively, whereas the microhardness decreased by 13.3% compared to the AD samples. The compressive residual stress of 98 MPa and tensile residual stress of 147 MPa were also observed on the surfaces of the SDA and AD samples, respectively. In addition, the SDA samples exhibited an almost isotropic tensile behavior in the vertical and horizontal directions as the epitaxially grown columnar grains transforms into equiaxed grains, as well as exhibited a prominent overall crystallographic texture. The effect of DA and SDA heat treatments on the mechanical properties were analyzed on the basis of stress–strain curves, hardening behavior, and multiple strengthening mechanisms. [Display omitted] •Hastelloy X alloy fabricated via laser metal deposition was heat treated and characterized.•LMDed Hastelloy X with ideal mechanical properties can be obtained by suitable heat treatment.•The microstructural evolution of LMDed Hastelloy X was systematically investigated.•The hardening behavior and strengthening mechanism were discussed in detail.
AbstractList Nickel-based superalloys are subject to severe microsegregation and exhibit anisotropic properties during laser metal deposition (LMD), which restricts their wide application in the aerospace field. Thus, post heat-treatments must be investigated to further regulate the microstructure and mechanical properties of such components. The aim is to provide a comprehensive understanding of the effects of double-stage aging (DA) and solution plus double-stage aging (SDA) heat treatments on microstructure and mechanical properties of Hastelloy X superalloy sheets fabricated via LMD. The effects of DA and SDA heat treatments on the density, residual stress, phase composition, carbides precipitation behavior, dislocation structure, grain structure, and mechanical properties of the sheets were studied and in comparison with the as-deposited (AD) samples. The results showed that the DA heat treatment yielded a significant amount of lamellar and granular phases in the interdendrites and grain boundaries, whereas the anisotropic microstructure between the transverse and vertical planes was similar to that observed in the AD samples. These phases are mainly composed of Laves phase and carbides. However, the needle-like carbide phase was dispersedly precipitated within the grains and at grain boundaries, and exhibited full recrystallization and reduced dislocation density after SDA heat treatment. Consequently, the SDA samples presented superior strength-ductility balance to those of the AD and DA samples with irregularly shaped Laves phase and carbides owing to microstructural changes. For instance, the SDA heat treatment improved the ultimate tensile strength and fracture elongation of the vertical samples by up to 10.9% and 30.7%, respectively, whereas the microhardness decreased by 13.3% compared to the AD samples. The compressive residual stress of 98 MPa and tensile residual stress of 147 MPa were also observed on the surfaces of the SDA and AD samples, respectively. In addition, the SDA samples exhibited an almost isotropic tensile behavior in the vertical and horizontal directions as the epitaxially grown columnar grains transforms into equiaxed grains, as well as exhibited a prominent overall crystallographic texture. The effect of DA and SDA heat treatments on the mechanical properties were analyzed on the basis of stress–strain curves, hardening behavior, and multiple strengthening mechanisms. [Display omitted] •Hastelloy X alloy fabricated via laser metal deposition was heat treated and characterized.•LMDed Hastelloy X with ideal mechanical properties can be obtained by suitable heat treatment.•The microstructural evolution of LMDed Hastelloy X was systematically investigated.•The hardening behavior and strengthening mechanism were discussed in detail.
ArticleNumber 145546
Author Liang, Jiangkai
Ruan, Xianggang
Guo, Enyu
Du, Wei
Shen, Ningqiang
He, Zhubin
Author_xml – sequence: 1
  givenname: Jiangkai
  surname: Liang
  fullname: Liang, Jiangkai
  organization: State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China
– sequence: 2
  givenname: Zhubin
  surname: He
  fullname: He, Zhubin
  email: hezb@dlut.edu.cn
  organization: State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China
– sequence: 3
  givenname: Wei
  surname: Du
  fullname: Du, Wei
  organization: State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China
– sequence: 4
  givenname: Xianggang
  surname: Ruan
  fullname: Ruan, Xianggang
  organization: State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China
– sequence: 5
  givenname: Enyu
  surname: Guo
  fullname: Guo, Enyu
  organization: School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, China
– sequence: 6
  givenname: Ningqiang
  surname: Shen
  fullname: Shen, Ningqiang
  organization: State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China
BookMark eNp9kEtqwzAQhrVIoUnaC3SlC9iVbMkP6KaEviDQTQrdCVke1wq2ZaRJIAfovWs3XXWRzQzDzDfwfyuyGNwAhNxxFnPGs_t93AfQccKSNOZCSpEtyJKVCY8kK9Nrsgphzxjjgskl-d5p2zlvhy-KLdDeGu8C-oPBgweqh5r2YFo9WKM7Ono3gkcLgbqGdjqAn9aou6iG0QWLUNNXHRC6zp3oJw2H6Vz_DqEFwECPVtPpEmkLGiP0U-1hwBty1eguwO1fX5OP56fd5jXavr-8bR63kUkZwwgqxmSR86lkoikhh0boLC9FIqtMpHmWF0kJkCapabK0kdzwQiSMVVXW1CCrdE2S8985ZfDQqNHbXvuT4kzN8tRezfLULE-d5U1Q8Q8yFjVaN6Cf5F1GH84oTKGOFrwKxsJgoLYeDKra2Uv4D2iskh8
CitedBy_id crossref_primary_10_1016_j_corsci_2024_112374
crossref_primary_10_2478_msp_2024_0017
crossref_primary_10_1016_j_optlastec_2024_111809
crossref_primary_10_1016_j_ijmecsci_2024_109757
crossref_primary_10_1080_21663831_2023_2297734
crossref_primary_10_3390_jmmp7060213
crossref_primary_10_1115_1_4065134
crossref_primary_10_1016_j_addma_2024_104252
crossref_primary_10_1016_j_jmrt_2024_09_106
crossref_primary_10_1016_j_msea_2024_146776
crossref_primary_10_1016_j_jmatprotec_2024_118678
crossref_primary_10_1016_j_jallcom_2024_178310
crossref_primary_10_1016_j_msea_2024_146396
crossref_primary_10_1016_j_msea_2024_146464
crossref_primary_10_1016_j_jallcom_2024_176035
Cites_doi 10.1016/j.phpro.2015.06.196
10.1016/j.msea.2018.12.005
10.1016/j.matdes.2020.108642
10.1016/j.msea.2021.141537
10.1016/j.jmapro.2020.10.077
10.1007/s12613-020-1991-6
10.1007/s11661-999-0272-9
10.1016/j.msea.2019.03.096
10.1007/s11041-021-00697-3
10.1007/s11663-005-0009-0
10.1016/j.matdes.2017.03.004
10.1007/BF02649792
10.1016/j.jallcom.2018.01.159
10.1016/j.scriptamat.2004.06.002
10.1007/BF00700780
10.1016/j.msea.2016.04.086
10.1016/j.jallcom.2018.07.087
10.1007/s11665-021-06094-4
10.1016/0921-5093(89)90632-1
10.1016/S0921-5093(00)01049-2
10.1016/j.matchar.2015.06.011
10.1007/s11661-997-0268-2
10.1016/j.actamat.2017.04.026
10.1016/j.matdes.2019.107760
10.1016/j.jallcom.2018.02.268
10.1361/10599490524057
10.2320/matertrans1960.27.656
10.1016/j.jnucmat.2020.152322
10.1016/j.pmatsci.2017.10.001
10.1016/j.msea.2017.03.098
10.1016/S0079-6425(01)00003-2
10.3901/JME.2020.21.208
10.1016/j.eng.2020.08.014
10.3390/ma12152368
10.1016/j.matdes.2019.108095
10.1016/j.mtla.2020.100657
10.1016/j.jallcom.2010.11.176
10.1080/09506608.2015.1116649
10.1016/j.actamat.2009.12.013
10.1016/j.jmrt.2016.05.004
10.1016/j.jnucmat.2018.10.017
10.3390/ma12030486
10.1179/1743284711Y.0000000056
10.1016/j.scriptamat.2017.07.025
10.1016/j.msea.2015.06.021
10.1016/j.optlastec.2018.07.037
10.1016/j.msea.2013.07.037
10.1007/s11661-009-9858-5
10.1016/j.jmrt.2020.06.061
10.1016/j.jmst.2014.09.020
10.1016/j.matdes.2019.107598
10.1016/S0921-5093(03)00565-3
10.1016/j.actamat.2015.06.004
10.1016/j.corsci.2020.108647
10.1016/j.mtla.2021.101042
10.1007/BF02801173
10.1007/s11661-014-2614-5
10.1515/htmp-2020-0032
10.1016/j.ijplas.2018.10.015
10.1016/j.msea.2017.12.043
10.3390/met8060464
10.1126/science.1254581
10.1016/j.actamat.2015.09.017
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.msea.2023.145546
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_msea_2023_145546
S092150932300970X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEZYN
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SPC
SSH
WUQ
ID FETCH-LOGICAL-c300t-eb00587105864f9e7ef4a679425b643767829ee323cf63f51c184200bb6fde5b3
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Thu Apr 24 23:00:16 EDT 2025
Tue Jul 01 01:27:04 EDT 2025
Sun Apr 06 06:52:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Post heat-treatment
Hastelloy X superalloy
Laser metal deposition
Laves phase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-eb00587105864f9e7ef4a679425b643767829ee323cf63f51c184200bb6fde5b3
ParticipantIDs crossref_primary_10_1016_j_msea_2023_145546
crossref_citationtrail_10_1016_j_msea_2023_145546
elsevier_sciencedirect_doi_10_1016_j_msea_2023_145546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-19
PublicationDateYYYYMMDD 2023-09-19
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-19
  day: 19
PublicationDecade 2020
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Holmedal, Mánik, Saai (bib76) 2019; 114
Zhang, Niu, Cao, Liu (bib51) 2015; 644
Kozar, Suzuki, Milligan, Schirra, Savage, Pollock (bib72) 2009; 40
Qiao, Zhang, Bai, Dilnoza (bib27) 2021; 30
Kumar, Balasubramanian, Rao (bib66) 2017; 6
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib67) 2014; 80
Callister, Rethwisch (bib61) 2020
Li (bib79) 2003; 361
Guo (bib37) 2008; vol. 109
Karapuzha, Fraser, Schliephake, Dietrich, Zhu, Wu, Huang (bib46) 2021; 862
Li, Wei, Shi, Zhu, Zhang (bib52) 2015; 31
Ono, Yuri, Nagashima, Sumiyoshi, Ogata, Nagao (bib14) 2015; 67
Antonsson, Fredriksson (bib16) 2005; 36
Sabelkin, Cobb, Shelton, Hartsfield, Newell, O Hara, Kemnitz (bib48) 2019; 182
Ren, Lin, Fu, Tan, Chen, Huang (bib7) 2017; 132
Wang, Li, Anderoglu, Zhang, Misra, Huang, Hirth (bib38) 2010; 58
Ma, Hu, Yang, Topping, Yousefiani, Lavernia, Schoenung (bib74) 2016; 103
El-Danaf, Kalidindi, Doherty (bib60) 1999; 30
Tomus, Tian, Rometsch, Heilmaier, Wu (bib33) 2016; 667
Sun, Ji, Guo, Lu, Chang, Xing (bib24) 2020; 39
G. Marchese, E. Bassini, A. Aversa, M. Lombardi, D. Ugues, P. Fino, S. Biamino, Microstructural evolution of post-processed Hastelloy X alloy fabricated by laser powder bed fusion, Materials 12 (3) 486.
Qin, Mao, Liu (bib4) 2017; 51
Tawancy (bib19) 1983; 18
Esmaeilizadeh, Keshavarzkermani, Ali, Behravesh, Bonakdar, Jahed, Toyserkani (bib57) 2021; 38
Liu, Li, Qin, Zong, Fang (bib77) 2020; 191
Das, Shyamal, Sahu, Kömi, Chakraborti, Porter, Karjalainen, Sahu (bib40) 2021; 15
Romedenne, Pillai, Kirka, Dryepondt (bib35) 2020; 171
Liu, Zhang, Lin (bib8) 2020; 60
Behjati, Asgari (bib56) 2011; 27
Tian, Yuan, Duan, Liu, Wang, Zhao, Zuo (bib64) 2019; 12
Kim, Choi, Jung, Do, Jo (bib42) 2015; 106
Wang, Hao, Liang, Liu, Wang, Zhang (bib22) 2023; 72
Chew, Bi, Zhu, Ng, Weng, Liu, Nai, Lee (bib68) 2019; 744
Zhu, Xu, Gu (bib10) 2018; 746
(bib41) 2014; 4
(bib45) 2019; 5
DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (bib5) 2018; 92
Sui, Chen, Fan, Yang, Lin, Huang (bib13) 2017; 695
Montero-Sistiaga, Liu, Bautmans, Nardone, Ji, Kruth, Van Humbeeck, Vanmeensel (bib20) 2020; 31
Püschl (bib55) 2002; 47
Sun, Teng, Cheng, Wang, Chen, Bai, Liu, Wei (bib23) 2020; 56
Ling, Han, Zhou, Gao, Shu, Wang, Kang, Sun (bib15) 2015; 46
(bib28) 2010
Montero-Sistiaga, Pourbabak, Van Humbeeck, Schryvers, Vanmeensel (bib32) 2019; 165
Cao, Di, Zhang, Zhang, Ma, Misra (bib49) 2013; 585
Xu, Gruber, Boyd, Jiang, Peng, Moverare (bib59) 2020; 10
Liu, Lin, Huang, Song, Yang, Chen, Huang (bib6) 2011; 509
Hosford (bib58) 2013
Sames, List, Pannala, Dehoff, Babu (bib9) 2016; 61
Wang, Sun, Chen, Liu, Wang (bib39) 2018; 8
Hansen (bib73) 2004; 51
Jiang, Shen, Nagasaka, Muroga, Sagara, Ohnuki, Hokamoto, Tanaka, Inao, Morizono, Kasada, Zheng (bib75) 2020; 539
Massey, Dryepondt, Edmondson, Terrani, Zinkle (bib80) 2018; 512
Xiao, Li, Han, Mazumder, Song (bib31) 2017; 122
Jinoop, Paul, Bindra (bib30) 2019; 109
Hao, Liu, Li, Liang (bib21) 2021; 70
Lai (bib2) 1978; 9
Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (bib69) 2015; 96
Zhang, Zheng, Liu, Wang, Liu, Huang, Li, Lin, Huang (bib53) 2021; 820
Roth, Davis, Thomson (bib70) 1997; 28
Deng, Peng, Brodin, Moverare (bib47) 2018; 713
Xiao, Li, Han, Mazumder, Song (bib17) 2017; 122
Ren, Li, Chen, Xin, Ye, Lu, Wan, Cheng, He, Tu, Han (bib25) 2021; 63
Diepold, Vorlaufer, Neumeier, Gartner, Göken (bib43) 2020; 27
Yuan (bib3) 2021; 7
Liu, Lyu, Liu, Lin, Huang (bib11) 2020; 9
Chen, Moon, Yao, Bi, Shen, Umeda, Kondoh (bib54) 2017; 141
Fan, Mingzhi, Deke (bib65) 1989; 122
Lai (bib18) 1978; 9A
Zhao, Larsen, Ravikumar (bib36) 2000; 293
Hu, Peng, Run, Dai (bib26) 2021; 46
Hu, Lin, Zhang, Jiang, Lu, Yang, Huang (bib12) 2018; 767
Mishima, Ochiai, Hamao, Yodogawa, Suzuji (bib71) 1986; 27
Dieter (bib63) 1961
Miner, Castelli (bib1) 1992; 23
Chen, Guo, Xu, Ma, Zhang, Wang, Yao, Li (bib50) 2019; 754
Goodfellow, Galindo-Nava, Schwalbe, Stone (bib78) 2019; 173
You, Tan, Zhao, You, Wang, Ye, Li (bib29) 2018; 741
Zhang, Sun, Li, Zhao (bib62) 2006; 15
Gallmeyer, Moorthy, Kappes, Mills, Amin-Ahmadi, Stebner (bib44) 2020; 31
Liu (10.1016/j.msea.2023.145546_bib77) 2020; 191
Qin (10.1016/j.msea.2023.145546_bib4) 2017; 51
Ren (10.1016/j.msea.2023.145546_bib7) 2017; 132
Sames (10.1016/j.msea.2023.145546_bib9) 2016; 61
Wang (10.1016/j.msea.2023.145546_bib22) 2023; 72
Kim (10.1016/j.msea.2023.145546_bib42) 2015; 106
Zhang (10.1016/j.msea.2023.145546_bib51) 2015; 644
You (10.1016/j.msea.2023.145546_bib29) 2018; 741
Xiao (10.1016/j.msea.2023.145546_bib17) 2017; 122
Zhao (10.1016/j.msea.2023.145546_bib36) 2000; 293
DebRoy (10.1016/j.msea.2023.145546_bib5) 2018; 92
Ono (10.1016/j.msea.2023.145546_bib14) 2015; 67
(10.1016/j.msea.2023.145546_bib28) 2010
Püschl (10.1016/j.msea.2023.145546_bib55) 2002; 47
Hansen (10.1016/j.msea.2023.145546_bib73) 2004; 51
Liu (10.1016/j.msea.2023.145546_bib11) 2020; 9
Tawancy (10.1016/j.msea.2023.145546_bib19) 1983; 18
Das (10.1016/j.msea.2023.145546_bib40) 2021; 15
Esmaeilizadeh (10.1016/j.msea.2023.145546_bib57) 2021; 38
Wang (10.1016/j.msea.2023.145546_bib39) 2018; 8
Deng (10.1016/j.msea.2023.145546_bib47) 2018; 713
Antonsson (10.1016/j.msea.2023.145546_bib16) 2005; 36
Hu (10.1016/j.msea.2023.145546_bib12) 2018; 767
Qiu (10.1016/j.msea.2023.145546_bib69) 2015; 96
Mishima (10.1016/j.msea.2023.145546_bib71) 1986; 27
Ling (10.1016/j.msea.2023.145546_bib15) 2015; 46
Hu (10.1016/j.msea.2023.145546_bib26) 2021; 46
Zhang (10.1016/j.msea.2023.145546_bib62) 2006; 15
Goodfellow (10.1016/j.msea.2023.145546_bib78) 2019; 173
Romedenne (10.1016/j.msea.2023.145546_bib35) 2020; 171
Callister (10.1016/j.msea.2023.145546_bib61) 2020
Qiao (10.1016/j.msea.2023.145546_bib27) 2021; 30
Guo (10.1016/j.msea.2023.145546_bib37) 2008; vol. 109
Karapuzha (10.1016/j.msea.2023.145546_bib46) 2021; 862
Hosford (10.1016/j.msea.2023.145546_bib58) 2013
Tian (10.1016/j.msea.2023.145546_bib64) 2019; 12
Lai (10.1016/j.msea.2023.145546_bib2) 1978; 9
Miner (10.1016/j.msea.2023.145546_bib1) 1992; 23
Montero-Sistiaga (10.1016/j.msea.2023.145546_bib20) 2020; 31
Chen (10.1016/j.msea.2023.145546_bib50) 2019; 754
Zhang (10.1016/j.msea.2023.145546_bib53) 2021; 820
Yuan (10.1016/j.msea.2023.145546_bib3) 2021; 7
Ren (10.1016/j.msea.2023.145546_bib25) 2021; 63
Gallmeyer (10.1016/j.msea.2023.145546_bib44) 2020; 31
Jiang (10.1016/j.msea.2023.145546_bib75) 2020; 539
Kumar (10.1016/j.msea.2023.145546_bib66) 2017; 6
10.1016/j.msea.2023.145546_bib34
Diepold (10.1016/j.msea.2023.145546_bib43) 2020; 27
Roth (10.1016/j.msea.2023.145546_bib70) 1997; 28
Chen (10.1016/j.msea.2023.145546_bib54) 2017; 141
Sun (10.1016/j.msea.2023.145546_bib23) 2020; 56
Jinoop (10.1016/j.msea.2023.145546_bib30) 2019; 109
Tomus (10.1016/j.msea.2023.145546_bib33) 2016; 667
Massey (10.1016/j.msea.2023.145546_bib80) 2018; 512
Cao (10.1016/j.msea.2023.145546_bib49) 2013; 585
Liu (10.1016/j.msea.2023.145546_bib8) 2020; 60
Montero-Sistiaga (10.1016/j.msea.2023.145546_bib32) 2019; 165
Sun (10.1016/j.msea.2023.145546_bib24) 2020; 39
Dieter (10.1016/j.msea.2023.145546_bib63) 1961
Wang (10.1016/j.msea.2023.145546_bib38) 2010; 58
Sabelkin (10.1016/j.msea.2023.145546_bib48) 2019; 182
Gludovatz (10.1016/j.msea.2023.145546_bib67) 2014; 80
Xu (10.1016/j.msea.2023.145546_bib59) 2020; 10
Lai (10.1016/j.msea.2023.145546_bib18) 1978; 9A
(10.1016/j.msea.2023.145546_bib41) 2014; 4
(10.1016/j.msea.2023.145546_bib45) 2019; 5
Ma (10.1016/j.msea.2023.145546_bib74) 2016; 103
Liu (10.1016/j.msea.2023.145546_bib6) 2011; 509
Xiao (10.1016/j.msea.2023.145546_bib31) 2017; 122
El-Danaf (10.1016/j.msea.2023.145546_bib60) 1999; 30
Zhang (10.1016/j.msea.2023.145546_bib76) 2019; 114
Li (10.1016/j.msea.2023.145546_bib79) 2003; 361
Chew (10.1016/j.msea.2023.145546_bib68) 2019; 744
Kozar (10.1016/j.msea.2023.145546_bib72) 2009; 40
Fan (10.1016/j.msea.2023.145546_bib65) 1989; 122
Sui (10.1016/j.msea.2023.145546_bib13) 2017; 695
Hao (10.1016/j.msea.2023.145546_bib21) 2021; 70
Behjati (10.1016/j.msea.2023.145546_bib56) 2011; 27
Li (10.1016/j.msea.2023.145546_bib52) 2015; 31
Zhu (10.1016/j.msea.2023.145546_bib10) 2018; 746
References_xml – volume: 28
  start-page: 1329
  year: 1997
  end-page: 1335
  ident: bib70
  article-title: Modeling solid solution strengthening in nickel alloys
  publication-title: Metall. Mater. Trans.
– volume: 695
  start-page: 6
  year: 2017
  end-page: 13
  ident: bib13
  article-title: The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718
  publication-title: Mater. Sci. Eng.
– volume: 754
  start-page: 339
  year: 2019
  end-page: 347
  ident: bib50
  article-title: Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser
  publication-title: Mater. Sci. Eng.
– volume: 9
  start-page: 9753
  year: 2020
  end-page: 9765
  ident: bib11
  article-title: Laves phase control of inconel 718 superalloy fabricated by laser direct energy deposition via δ aging and solution treatment
  publication-title: J. Mater. Res. Technol.
– volume: 56
  start-page: 208
  year: 2020
  end-page: 218
  ident: bib23
  article-title: Influence of heat treatment on microstructure evolution of GH3536 superalloy fabricated by selective laser melting
  publication-title: J. Mech. Eng.
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  ident: bib5
  article-title: Additive manufacturing of metallic components-process, structure and properties
  publication-title: Prog. Mater. Sci.
– volume: 15
  start-page: 19
  year: 2006
  end-page: 22
  ident: bib62
  article-title: Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials
  publication-title: J. Mater. Eng. Perform.
– volume: 744
  start-page: 137
  year: 2019
  end-page: 144
  ident: bib68
  article-title: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy
  publication-title: Mater. Sci. Eng.
– volume: 9A
  start-page: 827
  year: 1978
  end-page: 833
  ident: bib18
  article-title: An investigation of the thermal stability of a commercial Ni-Cr-Fe-Mo alloy (hastelloy alloy X)
  publication-title: Metall. Trans. A
– volume: 667
  start-page: 42
  year: 2016
  end-page: 53
  ident: bib33
  article-title: Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X components produced by selective laser melting
  publication-title: Mater. Sci. Eng.
– volume: 36
  start-page: 85
  year: 2005
  end-page: 96
  ident: bib16
  article-title: The effect of cooling rate on the solidification of INCONEL 718
  publication-title: Metall. Mater. Trans. B
– volume: 51
  start-page: 3
  year: 2017
  end-page: 6
  ident: bib4
  article-title: Application and future prospect of high-temperature alloy in aero-engine industry
  publication-title: Tool. Eng.
– volume: 103
  start-page: 153
  year: 2016
  end-page: 164
  ident: bib74
  article-title: Coupling of dislocations and precipitates: impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys
  publication-title: Acta Mater.
– volume: 9
  start-page: 827
  year: 1978
  end-page: 833
  ident: bib2
  article-title: Investigation of the thermal stability of a commercial Ni--Cr--Fe--Mo alloy (Hastelloy Alloy X)
  publication-title: Metall. Trans. A
– volume: 293
  start-page: 112
  year: 2000
  end-page: 119
  ident: bib36
  article-title: Phase precipitation and time-temperature-transformation diagram of Hastelloy X
  publication-title: Mater. Sci. Eng.
– volume: 7
  start-page: 358
  year: 2021
  end-page: 366
  ident: bib3
  article-title: Fundamentals and processes of fluid pressure forming technology for complex thin-walled components
  publication-title: Engineering
– year: 2013
  ident: bib58
  article-title: Fundamentals of Engineering Plasticity
– volume: 96
  start-page: 72
  year: 2015
  end-page: 79
  ident: bib69
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
– volume: 23
  start-page: 551
  year: 1992
  end-page: 561
  ident: bib1
  article-title: Hardening mechanisms in a dynamic strain aging alloy, HASTELLOY X, during isothermal and thermomechanical cyclic deformation
  publication-title: Metall. Trans. A
– volume: 46
  start-page: 354
  year: 2015
  end-page: 361
  ident: bib15
  article-title: Study of microsegregation and Laves phase in Inconel 718 superalloy regarding cooling rate during solidification
  publication-title: Metall. Mater. Trans. A
– volume: 27
  start-page: 1858
  year: 2011
  end-page: 1862
  ident: bib56
  article-title: Microstructural characterisation of deformation behaviour of nickel base superalloy IN625
  publication-title: Mater. Sci. Technol.
– volume: 12
  start-page: 2368
  year: 2019
  ident: bib64
  article-title: Prediction of the work-hardening exponent for 3104 aluminum sheets with different grain sizes
  publication-title: Materials
– volume: 30
  start-page: 8892
  year: 2021
  end-page: 8900
  ident: bib27
  article-title: Effect of heat treatment on microstructure and residual stress of GH3536 superalloy fabricated by selective laser melting
  publication-title: J. Mater. Eng. Perform.
– volume: 6
  start-page: 116
  year: 2017
  end-page: 122
  ident: bib66
  article-title: Hot tensile properties and strain hardening behaviour of Super 304HCu stainless steel
  publication-title: J. Mater. Res. Technol.
– volume: 122
  start-page: 330
  year: 2017
  end-page: 339
  ident: bib17
  article-title: Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing
  publication-title: Mater. Des.
– volume: 67
  start-page: 1028
  year: 2015
  end-page: 1035
  ident: bib14
  article-title: High-cycle fatigue properties of alloy 718 base metal and electron beam welded joint
  publication-title: Phys. Procedia
– volume: 122
  start-page: 330
  year: 2017
  end-page: 339
  ident: bib31
  article-title: Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing
  publication-title: Mater. Des.
– volume: 191
  year: 2020
  ident: bib77
  article-title: The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718
  publication-title: Mater. Des.
– volume: 509
  start-page: 4505
  year: 2011
  end-page: 4509
  ident: bib6
  article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718
  publication-title: J. Alloys Compd.
– volume: 713
  start-page: 294
  year: 2018
  end-page: 306
  ident: bib47
  article-title: Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments
  publication-title: Mater. Sci. Eng.
– year: 1961
  ident: bib63
  article-title: Mechanical Metallurgy
– volume: 746
  start-page: 159
  year: 2018
  end-page: 167
  ident: bib10
  article-title: Effect of laser power on the microstructure and mechanical properties of heat treated Inconel 718 superalloy by laser solid forming
  publication-title: J. Alloys Compd.
– volume: 63
  start-page: 369
  year: 2021
  end-page: 374
  ident: bib25
  article-title: Effect of heat treatment on the microstructure and mechanical properties of Nickel superalloy GH3536 obtained by selective laser melting
  publication-title: Met. Sci. Heat Treat.
– volume: 70
  start-page: 1295
  year: 2021
  end-page: 1301
  ident: bib21
  article-title: Effect of heat treatment on microstructure evolution of GH3536 alloy formed by laser melting deposition
  publication-title: Foundry
– volume: 8
  start-page: 464
  year: 2018
  ident: bib39
  article-title: Machining distortion of titanium alloys aero engine case based on the energy principles
  publication-title: Metals
– volume: 39
  start-page: 124
  year: 2020
  end-page: 135
  ident: bib24
  article-title: Microstructure evolution and mechanical properties of Hastelloy X alloy produced by Selective Laser Melting
  publication-title: High Temp. Mater. Process.
– volume: 31
  year: 2020
  ident: bib20
  article-title: Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X produced by selective laser melting
  publication-title: Addit. Manuf.
– volume: 165
  year: 2019
  ident: bib32
  article-title: Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting)
  publication-title: Mater. Des.
– volume: 61
  start-page: 315
  year: 2016
  end-page: 360
  ident: bib9
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
– volume: 106
  start-page: 375
  year: 2015
  end-page: 381
  ident: bib42
  article-title: Effect of microstructural characteristics on the low cycle fatigue behaviors of cast Ni-base superalloys
  publication-title: Mater. Char.
– volume: 585
  start-page: 71
  year: 2013
  end-page: 85
  ident: bib49
  article-title: An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation
  publication-title: Mater. Sci. Eng.
– volume: 46
  start-page: 56
  year: 2021
  end-page: 60
  ident: bib26
  article-title: Heat treatment of selective laser melting GH3536 alloy
  publication-title: Heat Treat. Met.
– volume: 18
  start-page: 2976
  year: 1983
  end-page: 2986
  ident: bib19
  article-title: Long-term ageing characteristics of Hastelloy alloy X
  publication-title: J. Mater. Sci.
– volume: 862
  year: 2021
  ident: bib46
  article-title: Microstructure, mechanical behaviour and strengthening mechanisms in Hastelloy X manufactured by electron beam and laser beam powder bed fusion
  publication-title: J. Alloys Compd.
– volume: 30
  start-page: 1223
  year: 1999
  end-page: 1233
  ident: bib60
  article-title: Influence of grain size and stacking-fault energy on deformation twinning in fcc metals
  publication-title: Metall. Mater. Trans. A
– volume: 80
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib67
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 40
  start-page: 1588
  year: 2009
  end-page: 1603
  ident: bib72
  article-title: Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys
  publication-title: Metall. Mater. Trans. A
– volume: 51
  start-page: 801
  year: 2004
  end-page: 806
  ident: bib73
  article-title: Hall-Petch relation and boundary strengthening
  publication-title: Scripta Mater.
– volume: vol. 109
  start-page: 292
  year: 2008
  ident: bib37
  publication-title: Materials Science and Engineering for Superalloys
– volume: 15
  year: 2021
  ident: bib40
  article-title: On the mechanism of cross-slip induced dislocation substructure formation in an high-Mn steel
  publication-title: Materialia
– reference: G. Marchese, E. Bassini, A. Aversa, M. Lombardi, D. Ugues, P. Fino, S. Biamino, Microstructural evolution of post-processed Hastelloy X alloy fabricated by laser powder bed fusion, Materials 12 (3) 486.
– volume: 114
  start-page: 144
  year: 2019
  end-page: 160
  ident: bib76
  article-title: Assessment of advanced Taylor models, the Taylor factor and yield-surface exponent for FCC metals
  publication-title: Int. J. Plast.
– volume: 31
  year: 2020
  ident: bib44
  article-title: Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718
  publication-title: Addit. Manuf.
– volume: 173
  year: 2019
  ident: bib78
  article-title: The role of composition on the extent of individual strengthening mechanisms in polycrystalline Ni-based superalloys
  publication-title: Mater. Des.
– volume: 182
  year: 2019
  ident: bib48
  article-title: Mitigation of anisotropic fatigue in nickel alloy 718 manufactured via selective laser melting
  publication-title: Mater. Des.
– volume: 644
  start-page: 32
  year: 2015
  end-page: 40
  ident: bib51
  article-title: Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy
  publication-title: Mater. Sci. Eng.
– volume: 27
  start-page: 656
  year: 1986
  end-page: 664
  ident: bib71
  article-title: Solid solution hardening of nickel – role of transition metal and B-subgroup solutes
  publication-title: J. Trans. Jpn. Inst. Met.
– volume: 10
  year: 2020
  ident: bib59
  article-title: On the strengthening and embrittlement mechanisms of an additively manufactured Nickel-base superalloy
  publication-title: Materialia
– volume: 31
  start-page: 946
  year: 2015
  end-page: 952
  ident: bib52
  article-title: Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting
  publication-title: J. Mater. Sci. Technol.
– year: 2020
  ident: bib61
  article-title: Fundamentals of Materials Science and Engineering: an Integrated Approach
– volume: 38
  year: 2021
  ident: bib57
  article-title: On the effect of laser powder-bed fusion process parameters on quasi-static and fatigue behaviour of Hastelloy X: a microstructure/defect interaction study
  publication-title: Addit. Manuf.
– volume: 741
  start-page: 792
  year: 2018
  end-page: 803
  ident: bib29
  article-title: Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy
  publication-title: J. Alloys Compd.
– volume: 767
  start-page: 330
  year: 2018
  end-page: 344
  ident: bib12
  article-title: Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming
  publication-title: J. Alloys Compd.
– volume: 58
  start-page: 2262
  year: 2010
  end-page: 2270
  ident: bib38
  article-title: Detwinning mechanisms for growth twins in face-centered cubic metals
  publication-title: Acta Mater.
– volume: 122
  start-page: 211
  year: 1989
  end-page: 213
  ident: bib65
  article-title: The relationship between the strain-hardening exponent n and the microstructure of metals
  publication-title: Mater. Sci. Eng.
– volume: 5
  year: 2019
  ident: bib45
  article-title: Aerospace Material Specification: AMS5754
  publication-title: SAE Int.
– volume: 512
  start-page: 227
  year: 2018
  end-page: 238
  ident: bib80
  article-title: Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys
  publication-title: J. Nucl. Mater.
– year: 2010
  ident: bib28
  article-title: E8/E8M Standard Test Methods for Tension Testing of Metallic Materials
– volume: 47
  start-page: 415
  year: 2002
  end-page: 461
  ident: bib55
  article-title: Models for dislocation cross-slip in close-packed crystal structures: a critical review
  publication-title: Prog. Mater. Sci.
– volume: 72
  start-page: 508
  year: 2023
  end-page: 513
  ident: bib22
  article-title: Effect of heat treatment on mechanical properties of laser solid forming GH3536
  publication-title: Foundry
– volume: 820
  year: 2021
  ident: bib53
  article-title: Effect of solution temperature on the microstructure and mechanical properties of Hastelloy X superalloy fabricated by laser directed energy deposition
  publication-title: Mater. Sci. Eng.
– volume: 539
  year: 2020
  ident: bib75
  article-title: Interfacial characterization of dissimilar-metals bonding between vanadium alloy and Hastelloy X alloy by explosive welding
  publication-title: J. Nucl. Mater.
– volume: 60
  start-page: 426
  year: 2020
  end-page: 434
  ident: bib8
  article-title: Achieving superior ductility for laser directed energy deposition 300 M steel through isothermal bainitic transformation
  publication-title: J. Manuf. Process.
– volume: 132
  start-page: 82
  year: 2017
  end-page: 95
  ident: bib7
  article-title: Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming
  publication-title: Acta Mater.
– volume: 171
  year: 2020
  ident: bib35
  article-title: High temperature air oxidation behavior of hastelloy X processed by electron beam melting (EBM) and selective laser melting (SLM)
  publication-title: Corrosion Sci.
– volume: 361
  start-page: 385
  year: 2003
  end-page: 391
  ident: bib79
  article-title: Modeling the microstructure-mechanical property relationship for a 12Cr-2W-V-Mo-Ni power plant steel
  publication-title: Mater. Sci. Eng.
– volume: 141
  start-page: 45
  year: 2017
  end-page: 49
  ident: bib54
  article-title: Strength and strain hardening of a selective laser melted AlSi10Mg alloy
  publication-title: Scripta Mater.
– volume: 27
  start-page: 6470
  year: 2020
  end-page: 6648
  ident: bib43
  article-title: Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 4
  year: 2014
  ident: bib41
  article-title: Aerospace Material Specification: AMS5390
  publication-title: SAE Int.
– volume: 109
  start-page: 14
  year: 2019
  end-page: 19
  ident: bib30
  article-title: Laser assisted direct energy deposition of Hastelloy-X
  publication-title: Opt Laser. Technol.
– volume: 67
  start-page: 1028
  year: 2015
  ident: 10.1016/j.msea.2023.145546_bib14
  article-title: High-cycle fatigue properties of alloy 718 base metal and electron beam welded joint
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2015.06.196
– volume: 744
  start-page: 137
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib68
  article-title: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2018.12.005
– volume: 191
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib77
  article-title: The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108642
– volume: 820
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib53
  article-title: Effect of solution temperature on the microstructure and mechanical properties of Hastelloy X superalloy fabricated by laser directed energy deposition
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2021.141537
– volume: 60
  start-page: 426
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib8
  article-title: Achieving superior ductility for laser directed energy deposition 300 M steel through isothermal bainitic transformation
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.10.077
– volume: 31
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib44
  article-title: Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718
  publication-title: Addit. Manuf.
– volume: 27
  start-page: 6470
  issue: 5
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib43
  article-title: Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-1991-6
– volume: 30
  start-page: 1223
  issue: 5
  year: 1999
  ident: 10.1016/j.msea.2023.145546_bib60
  article-title: Influence of grain size and stacking-fault energy on deformation twinning in fcc metals
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-999-0272-9
– volume: 754
  start-page: 339
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib50
  article-title: Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2019.03.096
– volume: 63
  start-page: 369
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib25
  article-title: Effect of heat treatment on the microstructure and mechanical properties of Nickel superalloy GH3536 obtained by selective laser melting
  publication-title: Met. Sci. Heat Treat.
  doi: 10.1007/s11041-021-00697-3
– volume: 36
  start-page: 85
  issue: 1
  year: 2005
  ident: 10.1016/j.msea.2023.145546_bib16
  article-title: The effect of cooling rate on the solidification of INCONEL 718
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-005-0009-0
– volume: 51
  start-page: 3
  issue: 9
  year: 2017
  ident: 10.1016/j.msea.2023.145546_bib4
  article-title: Application and future prospect of high-temperature alloy in aero-engine industry
  publication-title: Tool. Eng.
– volume: 122
  start-page: 330
  year: 2017
  ident: 10.1016/j.msea.2023.145546_bib17
  article-title: Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.03.004
– volume: 9A
  start-page: 827
  year: 1978
  ident: 10.1016/j.msea.2023.145546_bib18
  article-title: An investigation of the thermal stability of a commercial Ni-Cr-Fe-Mo alloy (hastelloy alloy X)
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02649792
– volume: 741
  start-page: 792
  year: 2018
  ident: 10.1016/j.msea.2023.145546_bib29
  article-title: Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.01.159
– volume: 51
  start-page: 801
  issue: 8
  year: 2004
  ident: 10.1016/j.msea.2023.145546_bib73
  article-title: Hall-Petch relation and boundary strengthening
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2004.06.002
– volume: 18
  start-page: 2976
  year: 1983
  ident: 10.1016/j.msea.2023.145546_bib19
  article-title: Long-term ageing characteristics of Hastelloy alloy X
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00700780
– year: 2013
  ident: 10.1016/j.msea.2023.145546_bib58
– volume: 667
  start-page: 42
  year: 2016
  ident: 10.1016/j.msea.2023.145546_bib33
  article-title: Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X components produced by selective laser melting
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2016.04.086
– year: 1961
  ident: 10.1016/j.msea.2023.145546_bib63
– volume: 38
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib57
  article-title: On the effect of laser powder-bed fusion process parameters on quasi-static and fatigue behaviour of Hastelloy X: a microstructure/defect interaction study
  publication-title: Addit. Manuf.
– volume: 767
  start-page: 330
  year: 2018
  ident: 10.1016/j.msea.2023.145546_bib12
  article-title: Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.07.087
– volume: 30
  start-page: 8892
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib27
  article-title: Effect of heat treatment on microstructure and residual stress of GH3536 superalloy fabricated by selective laser melting
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-021-06094-4
– volume: 122
  start-page: 211
  issue: 2
  year: 1989
  ident: 10.1016/j.msea.2023.145546_bib65
  article-title: The relationship between the strain-hardening exponent n and the microstructure of metals
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0921-5093(89)90632-1
– volume: 293
  start-page: 112
  issue: 1–2
  year: 2000
  ident: 10.1016/j.msea.2023.145546_bib36
  article-title: Phase precipitation and time-temperature-transformation diagram of Hastelloy X
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(00)01049-2
– volume: 106
  start-page: 375
  year: 2015
  ident: 10.1016/j.msea.2023.145546_bib42
  article-title: Effect of microstructural characteristics on the low cycle fatigue behaviors of cast Ni-base superalloys
  publication-title: Mater. Char.
  doi: 10.1016/j.matchar.2015.06.011
– volume: 28
  start-page: 1329
  issue: 6
  year: 1997
  ident: 10.1016/j.msea.2023.145546_bib70
  article-title: Modeling solid solution strengthening in nickel alloys
  publication-title: Metall. Mater. Trans.
  doi: 10.1007/s11661-997-0268-2
– volume: 132
  start-page: 82
  year: 2017
  ident: 10.1016/j.msea.2023.145546_bib7
  article-title: Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.04.026
– volume: 173
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib78
  article-title: The role of composition on the extent of individual strengthening mechanisms in polycrystalline Ni-based superalloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107760
– volume: 746
  start-page: 159
  year: 2018
  ident: 10.1016/j.msea.2023.145546_bib10
  article-title: Effect of laser power on the microstructure and mechanical properties of heat treated Inconel 718 superalloy by laser solid forming
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.02.268
– year: 2020
  ident: 10.1016/j.msea.2023.145546_bib61
– volume: 15
  start-page: 19
  issue: 1
  year: 2006
  ident: 10.1016/j.msea.2023.145546_bib62
  article-title: Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1361/10599490524057
– volume: 27
  start-page: 656
  year: 1986
  ident: 10.1016/j.msea.2023.145546_bib71
  article-title: Solid solution hardening of nickel – role of transition metal and B-subgroup solutes
  publication-title: J. Trans. Jpn. Inst. Met.
  doi: 10.2320/matertrans1960.27.656
– volume: 539
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib75
  article-title: Interfacial characterization of dissimilar-metals bonding between vanadium alloy and Hastelloy X alloy by explosive welding
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152322
– volume: 92
  start-page: 112
  year: 2018
  ident: 10.1016/j.msea.2023.145546_bib5
  article-title: Additive manufacturing of metallic components-process, structure and properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 695
  start-page: 6
  year: 2017
  ident: 10.1016/j.msea.2023.145546_bib13
  article-title: The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2017.03.098
– volume: 72
  start-page: 508
  year: 2023
  ident: 10.1016/j.msea.2023.145546_bib22
  article-title: Effect of heat treatment on mechanical properties of laser solid forming GH3536
  publication-title: Foundry
– volume: 47
  start-page: 415
  issue: 4
  year: 2002
  ident: 10.1016/j.msea.2023.145546_bib55
  article-title: Models for dislocation cross-slip in close-packed crystal structures: a critical review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/S0079-6425(01)00003-2
– volume: 70
  start-page: 1295
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib21
  article-title: Effect of heat treatment on microstructure evolution of GH3536 alloy formed by laser melting deposition
  publication-title: Foundry
– volume: 56
  start-page: 208
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib23
  article-title: Influence of heat treatment on microstructure evolution of GH3536 superalloy fabricated by selective laser melting
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2020.21.208
– volume: vol. 109
  start-page: 292
  year: 2008
  ident: 10.1016/j.msea.2023.145546_bib37
– volume: 7
  start-page: 358
  issue: 3
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib3
  article-title: Fundamentals and processes of fluid pressure forming technology for complex thin-walled components
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.08.014
– volume: 12
  start-page: 2368
  issue: 15
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib64
  article-title: Prediction of the work-hardening exponent for 3104 aluminum sheets with different grain sizes
  publication-title: Materials
  doi: 10.3390/ma12152368
– volume: 182
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib48
  article-title: Mitigation of anisotropic fatigue in nickel alloy 718 manufactured via selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108095
– volume: 10
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib59
  article-title: On the strengthening and embrittlement mechanisms of an additively manufactured Nickel-base superalloy
  publication-title: Materialia
  doi: 10.1016/j.mtla.2020.100657
– volume: 46
  start-page: 56
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib26
  article-title: Heat treatment of selective laser melting GH3536 alloy
  publication-title: Heat Treat. Met.
– volume: 509
  start-page: 4505
  issue: 13
  year: 2011
  ident: 10.1016/j.msea.2023.145546_bib6
  article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.11.176
– volume: 61
  start-page: 315
  issue: 5
  year: 2016
  ident: 10.1016/j.msea.2023.145546_bib9
  article-title: The metallurgy and processing science of metal additive manufacturing
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2015.1116649
– volume: 58
  start-page: 2262
  year: 2010
  ident: 10.1016/j.msea.2023.145546_bib38
  article-title: Detwinning mechanisms for growth twins in face-centered cubic metals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.12.013
– volume: 4
  year: 2014
  ident: 10.1016/j.msea.2023.145546_bib41
  article-title: Aerospace Material Specification: AMS5390
  publication-title: SAE Int.
– volume: 6
  start-page: 116
  issue: 2
  year: 2017
  ident: 10.1016/j.msea.2023.145546_bib66
  article-title: Hot tensile properties and strain hardening behaviour of Super 304HCu stainless steel
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2016.05.004
– volume: 512
  start-page: 227
  year: 2018
  ident: 10.1016/j.msea.2023.145546_bib80
  article-title: Influence of mechanical alloying and extrusion conditions on the microstructure and tensile properties of Low-Cr ODS FeCrAl alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.10.017
– year: 2010
  ident: 10.1016/j.msea.2023.145546_bib28
– ident: 10.1016/j.msea.2023.145546_bib34
  doi: 10.3390/ma12030486
– volume: 27
  start-page: 1858
  issue: 12
  year: 2011
  ident: 10.1016/j.msea.2023.145546_bib56
  article-title: Microstructural characterisation of deformation behaviour of nickel base superalloy IN625
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284711Y.0000000056
– volume: 141
  start-page: 45
  year: 2017
  ident: 10.1016/j.msea.2023.145546_bib54
  article-title: Strength and strain hardening of a selective laser melted AlSi10Mg alloy
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.07.025
– volume: 644
  start-page: 32
  year: 2015
  ident: 10.1016/j.msea.2023.145546_bib51
  article-title: Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2015.06.021
– volume: 109
  start-page: 14
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib30
  article-title: Laser assisted direct energy deposition of Hastelloy-X
  publication-title: Opt Laser. Technol.
  doi: 10.1016/j.optlastec.2018.07.037
– volume: 862
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib46
  article-title: Microstructure, mechanical behaviour and strengthening mechanisms in Hastelloy X manufactured by electron beam and laser beam powder bed fusion
  publication-title: J. Alloys Compd.
– volume: 585
  start-page: 71
  year: 2013
  ident: 10.1016/j.msea.2023.145546_bib49
  article-title: An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2013.07.037
– volume: 5
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib45
  article-title: Aerospace Material Specification: AMS5754
  publication-title: SAE Int.
– volume: 40
  start-page: 1588
  issue: 7
  year: 2009
  ident: 10.1016/j.msea.2023.145546_bib72
  article-title: Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-009-9858-5
– volume: 9
  start-page: 9753
  issue: 5
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib11
  article-title: Laves phase control of inconel 718 superalloy fabricated by laser direct energy deposition via δ aging and solution treatment
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.06.061
– volume: 31
  start-page: 946
  issue: 9
  year: 2015
  ident: 10.1016/j.msea.2023.145546_bib52
  article-title: Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2014.09.020
– volume: 165
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib32
  article-title: Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting)
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107598
– volume: 361
  start-page: 385
  issue: 1
  year: 2003
  ident: 10.1016/j.msea.2023.145546_bib79
  article-title: Modeling the microstructure-mechanical property relationship for a 12Cr-2W-V-Mo-Ni power plant steel
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(03)00565-3
– volume: 96
  start-page: 72
  year: 2015
  ident: 10.1016/j.msea.2023.145546_bib69
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.004
– volume: 171
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib35
  article-title: High temperature air oxidation behavior of hastelloy X processed by electron beam melting (EBM) and selective laser melting (SLM)
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2020.108647
– volume: 15
  year: 2021
  ident: 10.1016/j.msea.2023.145546_bib40
  article-title: On the mechanism of cross-slip induced dislocation substructure formation in an high-Mn steel
  publication-title: Materialia
  doi: 10.1016/j.mtla.2021.101042
– volume: 23
  start-page: 551
  issue: 2
  year: 1992
  ident: 10.1016/j.msea.2023.145546_bib1
  article-title: Hardening mechanisms in a dynamic strain aging alloy, HASTELLOY X, during isothermal and thermomechanical cyclic deformation
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02801173
– volume: 46
  start-page: 354
  issue: 1
  year: 2015
  ident: 10.1016/j.msea.2023.145546_bib15
  article-title: Study of microsegregation and Laves phase in Inconel 718 superalloy regarding cooling rate during solidification
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2614-5
– volume: 31
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib20
  article-title: Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X produced by selective laser melting
  publication-title: Addit. Manuf.
– volume: 39
  start-page: 124
  year: 2020
  ident: 10.1016/j.msea.2023.145546_bib24
  article-title: Microstructure evolution and mechanical properties of Hastelloy X alloy produced by Selective Laser Melting
  publication-title: High Temp. Mater. Process.
  doi: 10.1515/htmp-2020-0032
– volume: 114
  start-page: 144
  year: 2019
  ident: 10.1016/j.msea.2023.145546_bib76
  article-title: Assessment of advanced Taylor models, the Taylor factor and yield-surface exponent for FCC metals
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.10.015
– volume: 713
  start-page: 294
  year: 2018
  ident: 10.1016/j.msea.2023.145546_bib47
  article-title: Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2017.12.043
– volume: 9
  start-page: 827
  issue: 6
  year: 1978
  ident: 10.1016/j.msea.2023.145546_bib2
  article-title: Investigation of the thermal stability of a commercial Ni--Cr--Fe--Mo alloy (Hastelloy Alloy X)
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02649792
– volume: 122
  start-page: 330
  year: 2017
  ident: 10.1016/j.msea.2023.145546_bib31
  article-title: Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.03.004
– volume: 8
  start-page: 464
  year: 2018
  ident: 10.1016/j.msea.2023.145546_bib39
  article-title: Machining distortion of titanium alloys aero engine case based on the energy principles
  publication-title: Metals
  doi: 10.3390/met8060464
– volume: 80
  start-page: 1153
  issue: 345
  year: 2014
  ident: 10.1016/j.msea.2023.145546_bib67
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 103
  start-page: 153
  year: 2016
  ident: 10.1016/j.msea.2023.145546_bib74
  article-title: Coupling of dislocations and precipitates: impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.09.017
SSID ssj0001405
Score 2.5213985
Snippet Nickel-based superalloys are subject to severe microsegregation and exhibit anisotropic properties during laser metal deposition (LMD), which restricts their...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 145546
SubjectTerms Hastelloy X superalloy
Laser metal deposition
Laves phase
Mechanical properties
Post heat-treatment
Title Tailoring the microstructure and mechanical properties of laser metal-deposited Hastelloy X superalloy sheets via post heat-treatment
URI https://dx.doi.org/10.1016/j.msea.2023.145546
Volume 884
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0921-5093
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001405
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0921-5093
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001405
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0921-5093
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001405
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0921-5093
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001405
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvwZhZaul3okRBJ1chFSLg1u-1srBFoKJh48eb_doYW1MRw8NKk7UzSzOzOfLv9Zpaxa21jDzptLazrJUImHRCIQnBe-RLBvquUdqnA-XGgwpG8H_vjCuuta2GIVlnG_iKmr6J1-aRZWrOZpWnzyQkwXeGCHEG0E7SdMVWwS0W0vsbHN80DFxArGiMKC5IuC2cKjtcEh1ODDhBvUL9uAsF_JacfCad_wPZLpMi7xcccsgpMj9jej_6Bx-xzqNOCQccRx_EJkeuKhrDLOXA9TfgEqLKXHMEz2nafU_9UPrMcQTPM8TVib5HAiroFCQ91TlUls3c-5vkyo_0qusmfARY5f0s1R8kFpwAuNhT1Ezbq3w57oSjPVRAxmmoh6LggHxdKeFHSBtAGK7XCidnyDf3Hw_zVCgDQsLFVnvXdGJeBOJuMUTYB33inrDqdTeGM8ThGHW2dJJCuNNozMvCkNbJtFMpKU2Pu2qBRXDYdp7MvXqM1u-wlIidE5ISocEKN3Wx0sqLlxlZpf-2n6NfAiTAnbNE7_6feBdulO6KMuMElq6JT4QpxycLUVwOvzna6dw_h4Au2VOSa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHNSD8RnxuQdvZoHSbaFHQiTFBxch4dbstrMRI49AMfEH-L-doYVgYjx4adJ2Jmlmdme-3X4zC3Crbexio66lddxEqqSBklAIzStPEdh3fF87XOD83PXDvnoYeIMtaK1qYZhWmcf-LKYvo3X-pJJbszIdDisv1YDSFS3ICURXg3p1sA1F5VFMLkCx2XkMu-uATGuIJZOR5CUr5LUzGc1rRCOqzGeIl7llN-Pg3_LTRs5pH8B-DhZFM_ueQ9jC8RHsbbQQPIavnh5mJDpBUE6MmF-X9YRdzFDocSJGyMW97Asx5Z33GbdQFRMrCDfjjF4T_JYJLtlbmIhQz7mwZPIpBmK-mPKWFd_MXxHTufgYakGSqeAYLtcs9RPot-97rVDmRyvImKyVSj4xyKO1El18ZQOso1Xap7lZ8wz_yqMUVgsQybax9V3rOTGtBGlCGePbBD3jnkJhPBnjGYg4Jh1tq0mgHGW0a1TgKmtU3fgkq0wJnJVBozjvO87HX7xHK4LZW8ROiNgJUeaEEtytdaZZ140_pb2Vn6IfYyeitPCH3vk_9W5gJ-w9P0VPne7jBezyG2aQOMElFMjBeEUwJTXX-TD8Bn2350U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+the+microstructure+and+mechanical+properties+of+laser+metal-deposited+Hastelloy+X+superalloy+sheets+via+post+heat-treatment&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Liang%2C+Jiangkai&rft.au=He%2C+Zhubin&rft.au=Du%2C+Wei&rft.au=Ruan%2C+Xianggang&rft.date=2023-09-19&rft.issn=0921-5093&rft.volume=884&rft.spage=145546&rft_id=info:doi/10.1016%2Fj.msea.2023.145546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2023_145546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon