Optimization based comparative study of machine learning methods for the prediction of bio-oil produced from microalgae via pyrolysis

Prediction of bio-oil yield using machine learning methods is an effective and economical approach. To examine the correlation between pyrolysis conditions, ultimate, and proximate analysis with bio-oil production is intricate and challenging task for the experimental techniques. Therefore, an effic...

Full description

Saved in:
Bibliographic Details
Published inJournal of analytical and applied pyrolysis Vol. 170; p. 105879
Main Authors Ullah, Hafeez, Haq, Zeeshan Ul, Naqvi, Salman Raza, Khan, Muhammad Nouman Aslam, Ahsan, Muhammad, Wang, Jiawei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text
ISSN0165-2370
1873-250X
DOI10.1016/j.jaap.2023.105879

Cover

Abstract Prediction of bio-oil yield using machine learning methods is an effective and economical approach. To examine the correlation between pyrolysis conditions, ultimate, and proximate analysis with bio-oil production is intricate and challenging task for the experimental techniques. Therefore, an efficient and well-organized model must be created to reliably predict the effect of input parameters on the bio-oil yield. Multiple ML models are integrated with PSO and GA for selection of features and hyperparameters optimization. Here, GPR-GA model performed better with R2 = 0.997 and RMSE = 0.0185 as compared to GPR-PSO model with R2 = 0.994 and RMSE = 0.0120. The values of R2 for DT, ANN, ET, SVM integrated with PSO are respectively 0.91, 0.92, 0.83 and 0.43 and for GA based algorithms the values of R2 are 0.62, 0.93, 0.94, and 0.55 respectively. The significance of input factors on bio-oil yield was thoroughly examined using partial dependence plots and Shapley method. Moreover, an interface was developed by GPR-GA model to predict bio-oil yield. Yield comparison predicted by GPR-GA model and experimental study shows remarkable synchronization with maximum error of 1.48. It offers technologically advanced process in the pyrolysis of microalgae to enhance production of bio-oil. [Display omitted] •Optimized ML methods analyzed for bio oil production from microalgae via pyrolysis.•PDPs show temperature, time, and heating rate substantially affect bio oil yield.•GUI was developed utilizing the optimized GPR-PSO model to compute bio oil yield.
AbstractList Prediction of bio-oil yield using machine learning methods is an effective and economical approach. To examine the correlation between pyrolysis conditions, ultimate, and proximate analysis with bio-oil production is intricate and challenging task for the experimental techniques. Therefore, an efficient and well-organized model must be created to reliably predict the effect of input parameters on the bio-oil yield. Multiple ML models are integrated with PSO and GA for selection of features and hyperparameters optimization. Here, GPR-GA model performed better with R2 = 0.997 and RMSE = 0.0185 as compared to GPR-PSO model with R2 = 0.994 and RMSE = 0.0120. The values of R2 for DT, ANN, ET, SVM integrated with PSO are respectively 0.91, 0.92, 0.83 and 0.43 and for GA based algorithms the values of R2 are 0.62, 0.93, 0.94, and 0.55 respectively. The significance of input factors on bio-oil yield was thoroughly examined using partial dependence plots and Shapley method. Moreover, an interface was developed by GPR-GA model to predict bio-oil yield. Yield comparison predicted by GPR-GA model and experimental study shows remarkable synchronization with maximum error of 1.48. It offers technologically advanced process in the pyrolysis of microalgae to enhance production of bio-oil. [Display omitted] •Optimized ML methods analyzed for bio oil production from microalgae via pyrolysis.•PDPs show temperature, time, and heating rate substantially affect bio oil yield.•GUI was developed utilizing the optimized GPR-PSO model to compute bio oil yield.
ArticleNumber 105879
Author Ahsan, Muhammad
Ullah, Hafeez
Khan, Muhammad Nouman Aslam
Wang, Jiawei
Haq, Zeeshan Ul
Naqvi, Salman Raza
Author_xml – sequence: 1
  givenname: Hafeez
  surname: Ullah
  fullname: Ullah, Hafeez
  organization: School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 2
  givenname: Zeeshan Ul
  surname: Haq
  fullname: Haq, Zeeshan Ul
  organization: School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 3
  givenname: Salman Raza
  surname: Naqvi
  fullname: Naqvi, Salman Raza
  organization: School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 4
  givenname: Muhammad Nouman Aslam
  surname: Khan
  fullname: Khan, Muhammad Nouman Aslam
  email: mnouman@scme.nust.edu.pk
  organization: School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 5
  givenname: Muhammad
  surname: Ahsan
  fullname: Ahsan, Muhammad
  organization: School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
– sequence: 6
  givenname: Jiawei
  surname: Wang
  fullname: Wang, Jiawei
  organization: Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham B4 7ET, UK
BookMark eNp9kMFqGzEQhkVJoU7aF-hJL7DuSEJeGXoppk0DgVwayE3I0sges7taJMXg3vvekeOceshp4Ge-n5nvml1NaULGvgpYChCrb4flwbl5KUGqFmjTrz-whTC96qSGpyu2aEu6k6qHT-y6lAMArFbCLNi_h7nSSH9dpTTxrSsYuE_j7HJLjshLfQ4nniIfnd_ThHxAlyeadnzEuk-h8Jgyr3vkc8ZA_rWmrW8pdYmGlqbw7FtpzGnkI_mc3LBzyI_k-HzKaTgVKp_Zx-iGgl_e5g17_PXzz-Z3d_9we7f5cd95BVA77DWY0ON2a8DL9RqM9iLqqDRojTFAdCH0JiohjBQSlJAi6LWKvUO_Uk7dMHnpbWeUkjHaOdPo8skKsGeR9mDPIu1ZpL2IbJD5D_JUX33V7Gh4H_1-QbE9dSTMtnjCqfmgjL7akOg9_AUrmJQp
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119001
crossref_primary_10_1021_acs_iecr_3c01662
crossref_primary_10_1016_j_jaap_2024_106486
crossref_primary_10_1016_j_jaap_2023_106187
crossref_primary_10_1016_j_algal_2024_103642
crossref_primary_10_1016_j_envres_2024_120618
crossref_primary_10_1016_j_algal_2024_103662
crossref_primary_10_1016_j_renene_2024_120218
crossref_primary_10_1016_j_fuel_2025_135000
crossref_primary_10_1007_s10311_024_01767_7
crossref_primary_10_1016_j_chemolab_2023_105058
crossref_primary_10_1016_j_jaap_2023_105984
crossref_primary_10_1016_j_joei_2025_101973
crossref_primary_10_1016_j_jaap_2023_106295
crossref_primary_10_1016_j_psep_2023_07_046
crossref_primary_10_1016_j_applthermaleng_2024_123517
crossref_primary_10_1016_j_jece_2023_111314
crossref_primary_10_1016_j_algal_2025_103935
crossref_primary_10_1080_15435075_2023_2297776
crossref_primary_10_1016_j_ijhydene_2025_03_089
crossref_primary_10_3390_fractalfract7040283
crossref_primary_10_1016_j_scitotenv_2023_165596
crossref_primary_10_1016_j_ceja_2024_100620
crossref_primary_10_1016_j_envres_2023_117815
crossref_primary_10_1007_s13399_024_05749_1
crossref_primary_10_1002_apj_2935
crossref_primary_10_1016_j_flowmeasinst_2024_102653
crossref_primary_10_3390_fermentation9060529
Cites_doi 10.1109/TII.2012.2198665
10.1109/COMITCon.2019.8862451
10.1016/j.algal.2021.102256
10.1364/OE.406036
10.1016/j.cej.2022.136579
10.1186/s12911-019-1004-8
10.1016/j.jaap.2018.02.010
10.1016/j.biortech.2021.125292
10.1007/s11704-019-8208-z
10.1016/j.biortech.2014.08.014
10.1145/3195970.3196047
10.1016/j.apenergy.2020.115166
10.1016/j.jaap.2015.05.003
10.1007/s10311-020-00990-2
10.1007/s42979-020-00382-x
10.1016/S1470-2045(19)30149-4
10.1109/PowerAfrica.2017.7991209
10.1007/s11071-019-05430-7
10.1016/j.eswa.2021.115695
10.1016/j.biortech.2013.03.192
10.1038/nmeth.2811
10.1016/j.rser.2021.111436
10.1016/j.biombioe.2020.105941
10.1016/j.biortech.2010.05.089
10.1109/ICDCSW.2014.14
10.4067/S0718-19572014000200001
10.1016/j.energy.2018.09.131
10.1016/j.biortech.2022.127215
10.1016/j.energy.2018.06.073
10.1016/j.eswa.2010.11.028
10.1016/j.cej.2014.11.045
10.2174/18722121113079990005
10.1016/j.biombioe.2014.01.039
10.3390/en13184624
10.1021/acs.energyfuels.0c01893
10.1007/s10311-019-00939-0
10.1016/j.fuproc.2018.12.012
10.1007/s12155-014-9467-z
10.1145/1330598.1330647
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jaap.2023.105879
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-250X
ExternalDocumentID 10_1016_j_jaap_2023_105879
S0165237023000232
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
WUQ
YK3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-e7508d7ebb80c299085c1f5f35055efd0fadd78f311821203121d593f7aec63a3
IEDL.DBID .~1
ISSN 0165-2370
IngestDate Thu Oct 02 04:24:50 EDT 2025
Thu Apr 24 23:07:09 EDT 2025
Fri Feb 23 02:34:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pyrolysis
Microalgae
Genetic algorithm
Particle swarm optimization
Bio oil
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-e7508d7ebb80c299085c1f5f35055efd0fadd78f311821203121d593f7aec63a3
ParticipantIDs crossref_primary_10_1016_j_jaap_2023_105879
crossref_citationtrail_10_1016_j_jaap_2023_105879
elsevier_sciencedirect_doi_10_1016_j_jaap_2023_105879
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Journal of analytical and applied pyrolysis
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ullah, Naqvi, Farooq, Yang, Wang, Vo (bib24) 2021; 335
Zhang, Li, Liu, Leng, Yang, Peng, Jiang, Zhou, Leng, Li (bib26) 2021; 342
M. Abd El Aziz, A.M. Hemdan, A.A. Ewees, M. Elhoseny, A. Shehab, A.E. Hassanien and S. Xiong, Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization, in: 2017 IEEE PES PowerAfrica, 115.
Aravind, Kumar, Kumar, Siddarth (bib5) 2020; 18
J. Kocijan, K. Ažman and A. Grancharova, The concept for Gaussian process model based system identification toolbox, in: Proceedings of the 2007 International Conference on Computer Systems and Technologies, 1.
Tang, Chen, Yang, Liu, Xiao, Wu, Chen, Naqvi (bib27) 2020; 34
Sarker (bib41) 2021; 2
Heimann, Huerlimann (bib10) 2015
Otálora, Guzmán, Acién, Berenguel, Reul (bib28) 2021; 55
Z. Chang, P. Duan and Y.J.B.T. Xu, 184 (2015) 349.
Qureshi, Lup, Khan, Abnisa, Daud (bib11) 2018; 131
Yorgun, Yıldız (bib12) 2015; 114
Yang, Li, Zhang, Qiu, Wang, Yang, Ding, Wang (bib14) 2019
V. Roberge, M. Tarbouchi and G.J.I.Toii Labonté, 9 (2012) 132.
Z.U. Haq, H. Ullah, M.N.A. Khan, S.R. Naqvi, A. Ahad and N.A. Saidina Amin, Available at SSRN 4191311.
H. Sayadi, N. Patel, A. Sasan, S. Rafatirad and H. Homayoun, Ensemble learning for effective run-time hardware-based malware detection: a comprehensive analysis and classification, in: Proceedings of the 55th Annual Design Automation Conference, 1.
Quaranta, Lacarbonara, Masri (bib19) 2020; 99
González-López, García-Cuadra, Jawiarczyk, Fernández-Sevilla, Acién-Fernández (bib8) 2020
X. Dong, Z. Yu, W. Cao, Y. Shi and Q.J.F.o.C.S. Ma, 14 (2020) 241.
Ngiam, Khor (bib43) 2019; 20
S.-S. Kim, H.V. Ly, J. Kim, J.H. Choi and H.C.J.Bt Woo, 139 (2013) 242.
M. Spitzer, J. Wildenhain, J. Rappsilber and M.J.Nm Tyers, 11 (2014) 121.
Mahesh (bib37) 2020; 9
Xu, Jiang, Ji, Forsberg, Li, He (bib30) 2020; 28
Singh Chouhan, Sarma (bib45) 2013; 7
Khan, Mehran, Haq, Ullah, Naqvi, Ihsan, Abbass (bib20) 2021; 185
Chen, Cen, Zhuang, Gan, Zhou, Zhang, Zhang (bib13) 2022; 242
P. Otálora, J. Guzmán, F. Acién, M. Berenguel and A.J.A.R. Reul, 55 (2021) 102256.
Peng, Fu, Chu, Wang, Qi (bib9) 2020; 18
N. Muradov, B. Fidalgo, A.C. Gujar and T.J.Bt Ali, 101 (2010) 8424.
S. Uddin, A. Khan, M.E. Hossain, M.A.J.Bmi Moni and d. making, 19 (2019) 1.
Bolon-Canedo, Sanchez-Marono, Alonso-Betanzos (bib32) 2011; 38
Abdulyekeen, Umar, Patah, Daud (bib4) 2021; 150
Ullah, Naqvi, Farooq, Yang, Wang, Vo (bib18) 2021; 335
A.Y. Mutlu and O.J.E. Yucel, 165 (2018) 895.
E.E. Kwon, H. Yi, H.-H.J.B. Kwon, Bioenergy, 63 (2014) 46.
A. Mohammadi and M.J.E. Mehrpooya, 158 (2018) 632.
Kim, Ly, Kim, Lee, Woo (bib16) 2015; 263
Khan, Ullah, Mašek, Naqvi, Khan (bib23) 2022; 355
Xu, Niu, Gan, Gou, Zhang, Qiu, Jiang (bib29) 2022
O. Al-Jarrah, A. Siddiqui, M. Elsalamouny, P.D. Yoo, S. Muhaidat and K. Kim, Machine-learning-based feature selection techniques for large-scale network intrusion detection, in: 2014 IEEE 34th International Conference on Distributed Computing Systems Workshops (ICDCSW), 177.
N. Hajinajaf, A. Mehrabadi, O.J.B. Tavakoli, Bioenergy, 145 (2021) 105941.
R. Marks-Bielska, S. Bielski, K. Pik and K.J.E. Kurowska, 13 (2020) 4624.
Haq, Ullah, Khan, Naqvi, Ahsan (bib22) 2022
J. Li, L. Pan, M. Suvarna, Y.W. Tong and X.J.A.E. Wang, 269 (2020) 115166.
Shafizadeh, Shahbeig, Nadian, Mobli, Dowlati, Gupta, Peng, Lam, Tabatabaei, Aghbashlo (bib25) 2022; 445
A. Hernández-Pérez and J.I.J.Rdbmyo Labbé, 49 (2014) 157.
X. Yang, X. Wang, B. Zhao and Y.J.B.R. Li, 7 (2014) 1293.
S. Ray, A quick review of machine learning algorithms, in: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35.
Qureshi, Lup, Khan, Abnisa, Daud (bib49) 2021; 4
Qureshi (10.1016/j.jaap.2023.105879_bib11) 2018; 131
10.1016/j.jaap.2023.105879_bib6
10.1016/j.jaap.2023.105879_bib3
10.1016/j.jaap.2023.105879_bib1
Sarker (10.1016/j.jaap.2023.105879_bib41) 2021; 2
10.1016/j.jaap.2023.105879_bib2
10.1016/j.jaap.2023.105879_bib44
10.1016/j.jaap.2023.105879_bib42
10.1016/j.jaap.2023.105879_bib40
10.1016/j.jaap.2023.105879_bib7
Heimann (10.1016/j.jaap.2023.105879_bib10) 2015
Kim (10.1016/j.jaap.2023.105879_bib16) 2015; 263
Yorgun (10.1016/j.jaap.2023.105879_bib12) 2015; 114
10.1016/j.jaap.2023.105879_bib47
10.1016/j.jaap.2023.105879_bib48
10.1016/j.jaap.2023.105879_bib46
Chen (10.1016/j.jaap.2023.105879_bib13) 2022; 242
Yang (10.1016/j.jaap.2023.105879_bib14) 2019
Ullah (10.1016/j.jaap.2023.105879_bib24) 2021; 335
Shafizadeh (10.1016/j.jaap.2023.105879_bib25) 2022; 445
Zhang (10.1016/j.jaap.2023.105879_bib26) 2021; 342
10.1016/j.jaap.2023.105879_bib50
Xu (10.1016/j.jaap.2023.105879_bib29) 2022
Bolon-Canedo (10.1016/j.jaap.2023.105879_bib32) 2011; 38
Tang (10.1016/j.jaap.2023.105879_bib27) 2020; 34
10.1016/j.jaap.2023.105879_bib17
Peng (10.1016/j.jaap.2023.105879_bib9) 2020; 18
10.1016/j.jaap.2023.105879_bib15
Singh Chouhan (10.1016/j.jaap.2023.105879_bib45) 2013; 7
Haq (10.1016/j.jaap.2023.105879_bib22) 2022
Quaranta (10.1016/j.jaap.2023.105879_bib19) 2020; 99
Qureshi (10.1016/j.jaap.2023.105879_bib49) 2021; 4
Khan (10.1016/j.jaap.2023.105879_bib20) 2021; 185
10.1016/j.jaap.2023.105879_bib21
Ngiam (10.1016/j.jaap.2023.105879_bib43) 2019; 20
González-López (10.1016/j.jaap.2023.105879_bib8) 2020
Aravind (10.1016/j.jaap.2023.105879_bib5) 2020; 18
Otálora (10.1016/j.jaap.2023.105879_bib28) 2021; 55
Mahesh (10.1016/j.jaap.2023.105879_bib37) 2020; 9
Khan (10.1016/j.jaap.2023.105879_bib23) 2022; 355
Abdulyekeen (10.1016/j.jaap.2023.105879_bib4) 2021; 150
Ullah (10.1016/j.jaap.2023.105879_bib18) 2021; 335
10.1016/j.jaap.2023.105879_bib33
10.1016/j.jaap.2023.105879_bib31
10.1016/j.jaap.2023.105879_bib38
10.1016/j.jaap.2023.105879_bib39
10.1016/j.jaap.2023.105879_bib36
Xu (10.1016/j.jaap.2023.105879_bib30) 2020; 28
10.1016/j.jaap.2023.105879_bib34
10.1016/j.jaap.2023.105879_bib35
References_xml – volume: 55
  year: 2021
  ident: bib28
  publication-title: Algal Res.
– volume: 28
  start-page: 30686
  year: 2020
  ident: bib30
  publication-title: Opt. Express
– reference: P. Otálora, J. Guzmán, F. Acién, M. Berenguel and A.J.A.R. Reul, 55 (2021) 102256.
– reference: J. Li, L. Pan, M. Suvarna, Y.W. Tong and X.J.A.E. Wang, 269 (2020) 115166.
– volume: 18
  start-page: 285
  year: 2020
  ident: bib9
  publication-title: Environmental Chemistry Letters
– reference: H. Sayadi, N. Patel, A. Sasan, S. Rafatirad and H. Homayoun, Ensemble learning for effective run-time hardware-based malware detection: a comprehensive analysis and classification, in: Proceedings of the 55th Annual Design Automation Conference, 1.
– reference: A.Y. Mutlu and O.J.E. Yucel, 165 (2018) 895.
– start-page: 25
  year: 2015
  ident: bib10
  article-title: Handbook of Marine Microalgae
– volume: 99
  start-page: 1709
  year: 2020
  ident: bib19
  publication-title: Nonlinear Dynamics
– volume: 34
  start-page: 11050
  year: 2020
  ident: bib27
  publication-title: Energy Fuels
– volume: 185
  year: 2021
  ident: bib20
  publication-title: Expert Syst. Appl.
– reference: V. Roberge, M. Tarbouchi and G.J.I.Toii Labonté, 9 (2012) 132.
– volume: 335
  year: 2021
  ident: bib24
  publication-title: Bioresour. Technol.
– volume: 335
  start-page: 125292
  year: 2021
  ident: bib18
  publication-title: Bioresource Technology
– reference: N. Muradov, B. Fidalgo, A.C. Gujar and T.J.Bt Ali, 101 (2010) 8424.
– volume: 38
  start-page: 5947
  year: 2011
  ident: bib32
  publication-title: Expert Systems with Applications
– volume: 355
  year: 2022
  ident: bib23
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 1
  year: 2021
  ident: bib41
  publication-title: SN Computer Science
– reference: Z. Chang, P. Duan and Y.J.B.T. Xu, 184 (2015) 349.
– start-page: 53
  year: 2019
  ident: bib14
  publication-title: Fuel Processing Technology 186
– reference: O. Al-Jarrah, A. Siddiqui, M. Elsalamouny, P.D. Yoo, S. Muhaidat and K. Kim, Machine-learning-based feature selection techniques for large-scale network intrusion detection, in: 2014 IEEE 34th International Conference on Distributed Computing Systems Workshops (ICDCSW), 177.
– volume: 20
  start-page: e262
  year: 2019
  ident: bib43
  publication-title: The Lancet Oncology
– volume: 150
  start-page: 111436
  year: 2021
  ident: bib4
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 445
  year: 2022
  ident: bib25
  publication-title: Chem. Eng. J.
– reference: S. Ray, A quick review of machine learning algorithms, in: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35.
– volume: 242
  year: 2022
  ident: bib13
  publication-title: Combust. Flame
– reference: J. Kocijan, K. Ažman and A. Grancharova, The concept for Gaussian process model based system identification toolbox, in: Proceedings of the 2007 International Conference on Computer Systems and Technologies, 1.
– volume: 263
  start-page: 194
  year: 2015
  ident: bib16
  publication-title: Chemical Engineering Journal
– volume: 114
  start-page: 68
  year: 2015
  ident: bib12
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 7
  start-page: 98
  year: 2013
  ident: bib45
  publication-title: Recent Pat. Eng.
– reference: X. Yang, X. Wang, B. Zhao and Y.J.B.R. Li, 7 (2014) 1293.
– volume: 9
  start-page: 381
  year: 2020
  ident: bib37
  publication-title: International Journal of Science and Research
– year: 2022
  ident: bib22
  publication-title: Chem. Eng. Res. Des.
– start-page: 1
  year: 2022
  ident: bib29
  publication-title: J. Oceanol. Limnol.
– reference: Z.U. Haq, H. Ullah, M.N.A. Khan, S.R. Naqvi, A. Ahad and N.A. Saidina Amin, Available at SSRN 4191311.
– reference: A. Mohammadi and M.J.E. Mehrpooya, 158 (2018) 632.
– reference: R. Marks-Bielska, S. Bielski, K. Pik and K.J.E. Kurowska, 13 (2020) 4624.
– reference: S. Uddin, A. Khan, M.E. Hossain, M.A.J.Bmi Moni and d. making, 19 (2019) 1.
– reference: X. Dong, Z. Yu, W. Cao, Y. Shi and Q.J.F.o.C.S. Ma, 14 (2020) 241.
– reference: A. Hernández-Pérez and J.I.J.Rdbmyo Labbé, 49 (2014) 157.
– volume: 131
  start-page: 52
  year: 2018
  ident: bib11
  publication-title: Journal of Analytical and Applied Pyrolysis
– volume: 18
  start-page: 829
  year: 2020
  ident: bib5
  publication-title: Environmental Chemistry Letters
– year: 2020
  ident: bib8
  article-title: Sustainable Mobility
– reference: N. Hajinajaf, A. Mehrabadi, O.J.B. Tavakoli, Bioenergy, 145 (2021) 105941.
– volume: 4
  year: 2021
  ident: bib49
  publication-title: Clean. Eng. Technol.
– reference: E.E. Kwon, H. Yi, H.-H.J.B. Kwon, Bioenergy, 63 (2014) 46.
– volume: 342
  year: 2021
  ident: bib26
  publication-title: Bioresour. Technol.
– reference: M. Spitzer, J. Wildenhain, J. Rappsilber and M.J.Nm Tyers, 11 (2014) 121.
– reference: M. Abd El Aziz, A.M. Hemdan, A.A. Ewees, M. Elhoseny, A. Shehab, A.E. Hassanien and S. Xiong, Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization, in: 2017 IEEE PES PowerAfrica, 115.
– reference: S.-S. Kim, H.V. Ly, J. Kim, J.H. Choi and H.C.J.Bt Woo, 139 (2013) 242.
– ident: 10.1016/j.jaap.2023.105879_bib44
  doi: 10.1109/TII.2012.2198665
– ident: 10.1016/j.jaap.2023.105879_bib35
  doi: 10.1109/COMITCon.2019.8862451
– ident: 10.1016/j.jaap.2023.105879_bib6
  doi: 10.1016/j.algal.2021.102256
– volume: 28
  start-page: 30686
  year: 2020
  ident: 10.1016/j.jaap.2023.105879_bib30
  publication-title: Opt. Express
  doi: 10.1364/OE.406036
– volume: 445
  year: 2022
  ident: 10.1016/j.jaap.2023.105879_bib25
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136579
– ident: 10.1016/j.jaap.2023.105879_bib50
– ident: 10.1016/j.jaap.2023.105879_bib36
  doi: 10.1186/s12911-019-1004-8
– volume: 131
  start-page: 52
  year: 2018
  ident: 10.1016/j.jaap.2023.105879_bib11
  publication-title: Journal of Analytical and Applied Pyrolysis
  doi: 10.1016/j.jaap.2018.02.010
– volume: 335
  start-page: 125292
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib18
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2021.125292
– ident: 10.1016/j.jaap.2023.105879_bib39
  doi: 10.1007/s11704-019-8208-z
– ident: 10.1016/j.jaap.2023.105879_bib46
  doi: 10.1016/j.biortech.2014.08.014
– start-page: 25
  year: 2015
  ident: 10.1016/j.jaap.2023.105879_bib10
– ident: 10.1016/j.jaap.2023.105879_bib40
  doi: 10.1145/3195970.3196047
– ident: 10.1016/j.jaap.2023.105879_bib33
  doi: 10.1016/j.apenergy.2020.115166
– volume: 114
  start-page: 68
  year: 2015
  ident: 10.1016/j.jaap.2023.105879_bib12
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2015.05.003
– volume: 18
  start-page: 829
  year: 2020
  ident: 10.1016/j.jaap.2023.105879_bib5
  publication-title: Environmental Chemistry Letters
  doi: 10.1007/s10311-020-00990-2
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib41
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00382-x
– volume: 242
  year: 2022
  ident: 10.1016/j.jaap.2023.105879_bib13
  publication-title: Combust. Flame
– year: 2020
  ident: 10.1016/j.jaap.2023.105879_bib8
– volume: 20
  start-page: e262
  year: 2019
  ident: 10.1016/j.jaap.2023.105879_bib43
  publication-title: The Lancet Oncology
  doi: 10.1016/S1470-2045(19)30149-4
– ident: 10.1016/j.jaap.2023.105879_bib38
  doi: 10.1109/PowerAfrica.2017.7991209
– volume: 99
  start-page: 1709
  year: 2020
  ident: 10.1016/j.jaap.2023.105879_bib19
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-019-05430-7
– volume: 185
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib20
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115695
– ident: 10.1016/j.jaap.2023.105879_bib47
  doi: 10.1016/j.biortech.2013.03.192
– ident: 10.1016/j.jaap.2023.105879_bib31
  doi: 10.1038/nmeth.2811
– volume: 150
  start-page: 111436
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib4
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2021.111436
– ident: 10.1016/j.jaap.2023.105879_bib1
  doi: 10.1016/j.biombioe.2020.105941
– ident: 10.1016/j.jaap.2023.105879_bib17
  doi: 10.1016/j.biortech.2010.05.089
– year: 2022
  ident: 10.1016/j.jaap.2023.105879_bib22
  publication-title: Chem. Eng. Res. Des.
– ident: 10.1016/j.jaap.2023.105879_bib34
  doi: 10.1109/ICDCSW.2014.14
– ident: 10.1016/j.jaap.2023.105879_bib7
  doi: 10.4067/S0718-19572014000200001
– volume: 342
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib26
  publication-title: Bioresour. Technol.
– ident: 10.1016/j.jaap.2023.105879_bib21
  doi: 10.1016/j.energy.2018.09.131
– volume: 355
  year: 2022
  ident: 10.1016/j.jaap.2023.105879_bib23
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127215
– ident: 10.1016/j.jaap.2023.105879_bib3
  doi: 10.1016/j.energy.2018.06.073
– volume: 38
  start-page: 5947
  year: 2011
  ident: 10.1016/j.jaap.2023.105879_bib32
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.11.028
– start-page: 1
  year: 2022
  ident: 10.1016/j.jaap.2023.105879_bib29
  publication-title: J. Oceanol. Limnol.
– volume: 263
  start-page: 194
  year: 2015
  ident: 10.1016/j.jaap.2023.105879_bib16
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2014.11.045
– volume: 9
  start-page: 381
  year: 2020
  ident: 10.1016/j.jaap.2023.105879_bib37
  publication-title: International Journal of Science and Research
– volume: 7
  start-page: 98
  year: 2013
  ident: 10.1016/j.jaap.2023.105879_bib45
  publication-title: Recent Pat. Eng.
  doi: 10.2174/18722121113079990005
– volume: 335
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib24
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125292
– volume: 4
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib49
  publication-title: Clean. Eng. Technol.
– ident: 10.1016/j.jaap.2023.105879_bib48
  doi: 10.1016/j.biombioe.2014.01.039
– ident: 10.1016/j.jaap.2023.105879_bib2
  doi: 10.3390/en13184624
– volume: 34
  start-page: 11050
  year: 2020
  ident: 10.1016/j.jaap.2023.105879_bib27
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c01893
– volume: 55
  year: 2021
  ident: 10.1016/j.jaap.2023.105879_bib28
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2021.102256
– volume: 18
  start-page: 285
  year: 2020
  ident: 10.1016/j.jaap.2023.105879_bib9
  publication-title: Environmental Chemistry Letters
  doi: 10.1007/s10311-019-00939-0
– start-page: 53
  year: 2019
  ident: 10.1016/j.jaap.2023.105879_bib14
  publication-title: Fuel Processing Technology 186
  doi: 10.1016/j.fuproc.2018.12.012
– ident: 10.1016/j.jaap.2023.105879_bib15
  doi: 10.1007/s12155-014-9467-z
– ident: 10.1016/j.jaap.2023.105879_bib42
  doi: 10.1145/1330598.1330647
SSID ssj0006618
Score 2.542096
Snippet Prediction of bio-oil yield using machine learning methods is an effective and economical approach. To examine the correlation between pyrolysis conditions,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105879
SubjectTerms Bio oil
Genetic algorithm
Machine learning
Microalgae
Particle swarm optimization
Pyrolysis
Title Optimization based comparative study of machine learning methods for the prediction of bio-oil produced from microalgae via pyrolysis
URI https://dx.doi.org/10.1016/j.jaap.2023.105879
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-250X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006618
  issn: 0165-2370
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-250X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006618
  issn: 0165-2370
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-250X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006618
  issn: 0165-2370
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-250X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006618
  issn: 0165-2370
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-250X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006618
  issn: 0165-2370
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGA1jHtSD6FScP0YO3qRubZI2PY7hmIrzoIPdSpom0rGtZU7Bizf_b_O1qZsgO3gptCSh5Mf3vdL3vYfQZUBCLkKmHeXGgUNjOFIJXJhPfSqEqwubzoehPxjRuzEb11CvqoUBWqWN_WVML6K1fdK2s9nO07T9BIU4HgkAREPmgThMaQAuBtefK5qHyT-81PdmDrS2hTMlx2siBGhWegTsbjnQuf5KTmsJp7-P9ixSxN3yZQ5QTc0baLtXGbQ10O6aluAh-no0h39mqyoxJKcEy5W0Ny50ZHGm8aygTyps_SJecGki_YoNfMUGDuJ8AT9vimFM8zjNnCyd4ryQhjWDQkEKngGPD8pAFH5PBc4_FlmhbXKERv2b597AsR4LjjTTtnSUQQw8CVQc846E1MSZdDXTxCAjpnTS0SYABlwT-BBxPRMCPDdhIdGBUNInghyj-jybqxOEuR8YdObLxPdCKqTkofA94VIWE6oYi5vIrSY3klaAHHwwplHFNJtEsCARLEhULkgTXf30yUv5jY2tWbVm0a9NFJn8sKHf6T_7naEduCspaeeovly8qQuDUZZxq9iELbTVvb0fDL8BAZXm8w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHtCDUdSIP3vwZiZsXbfuaIgEFfAgJNyWrmvNCLAF0cSLN_9v-7ZOMDEcvOywtc3S1773Nf3e9xC68knAeECVJe3It9wItlQMD-q5nsu5rfIynf2B1x25D2M6rqB2mQsDtErj-wufnntr86ZpZrOZJUnzGRJxHOIDiIbIo_3wlksdH05gN58rnocOQKwQ-KYWNDeZMwXJa8I5iFY6BOrdMuBz_RWd1iJOZw_tGqiIb4u_2UcVOa-jWrus0FZHO2tiggfo60nv_plJq8QQnWIsVtreOBeSxanCs5w_KbEpGPGCiyrSr1jjV6zxIM4WcHuTD6ObR0lqpckUZ7k2rB4UMlLwDIh8kAci8XvCcfaxSHNxk0M06twN213LFFmwhJ63pSU1ZGCxL6OItQTEJkaFragiGhpRqeKW0h7QZ4rAScR2tA9w7JgGRPlcCo9wcoSq83QujxFmnq_hmSdizwlcLgQLuOdw26URcSWlUQPZ5eSGwiiQQyGMaVhSzSYhGCQEg4SFQRro-qdPVuhvbGxNS5uFv1ZRqAPEhn4n_-x3iWrdYb8X9u4Hj6doG74U_LQzVF0u3uS5BizL6CJfkN9qe-iI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+based+comparative+study+of+machine+learning+methods+for+the+prediction+of+bio-oil+produced+from+microalgae+via+pyrolysis&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Ullah%2C+Hafeez&rft.au=Haq%2C+Zeeshan+Ul&rft.au=Naqvi%2C+Salman+Raza&rft.au=Khan%2C+Muhammad+Nouman+Aslam&rft.date=2023-03-01&rft.issn=0165-2370&rft.volume=170&rft.spage=105879&rft_id=info:doi/10.1016%2Fj.jaap.2023.105879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jaap_2023_105879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon