Design of subject independent 3D VAD emotion detection system using EEG signals and machine learning algorithms

•Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems: EDS1, EDS2, and EDS3, are designed.•Wavelet-based on Atomic Functions feature extraction technique is used to investigate the EEG signals.•Th...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 85; p. 104894
Main Authors Nandini, Durgesh, Yadav, Jyoti, Rani, Asha, Singh, Vijander
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2023.104894

Cover

Abstract •Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems: EDS1, EDS2, and EDS3, are designed.•Wavelet-based on Atomic Functions feature extraction technique is used to investigate the EEG signals.•The principal component analysis technique is used to reduce high data dimensionality, and Machine Learning hyperparameters are optimized using the “Optuna” technique.•The Machine Learning hyperparameters are optimized using the “Optuna” technique.•The designed EDS1 and EDS2 show improved performance, and EDS3 detect the highest number of discrete emotions compared with existing literature. This work aims to develop a subject-independent Emotion Detection System (EDS) based on EEG signals and the 3D Valence-Arousal-Dominance (VAD) model. The DEAP database physiological signals are considered for the system design. A multi-domain feature extraction is performed using the Wavelet-based Atomic Function time–frequency domain technique; and various time and frequency domain feature extraction techniques. Further, principal component analysis reduces the data dimensionality and redundancy in the obtained feature set. The minimal feature set is analysed using machine learning classifiers, i.e., gradient boosting, decision tree, and random forest. Additionally, the hyperparameters of machine learning algorithms are tuned using Optuna to improve the performance of the proposed model. Three EDS are designed in this work; EDS1 considers the 3D VAD model for three class classifications. 2D VA model is used in EDS2 to determine 9 discrete emotions, and EDS3 detects 12 discrete emotions using the 3D VAD model. Results reveal the highest classification accuracy of about 99% with EDS1, whereas an average accuracy of 99.82% and 98.44% is obtained with EDS2 and EDS3, respectively. The results reveal that both EDS1 and EDS2 show improvement as compared to the existing literature. Also, the proposed EDS3 provides the classification of the highest number of discrete emotions, which may facilitate the design of an efficient human–computer interface system.
AbstractList •Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems: EDS1, EDS2, and EDS3, are designed.•Wavelet-based on Atomic Functions feature extraction technique is used to investigate the EEG signals.•The principal component analysis technique is used to reduce high data dimensionality, and Machine Learning hyperparameters are optimized using the “Optuna” technique.•The Machine Learning hyperparameters are optimized using the “Optuna” technique.•The designed EDS1 and EDS2 show improved performance, and EDS3 detect the highest number of discrete emotions compared with existing literature. This work aims to develop a subject-independent Emotion Detection System (EDS) based on EEG signals and the 3D Valence-Arousal-Dominance (VAD) model. The DEAP database physiological signals are considered for the system design. A multi-domain feature extraction is performed using the Wavelet-based Atomic Function time–frequency domain technique; and various time and frequency domain feature extraction techniques. Further, principal component analysis reduces the data dimensionality and redundancy in the obtained feature set. The minimal feature set is analysed using machine learning classifiers, i.e., gradient boosting, decision tree, and random forest. Additionally, the hyperparameters of machine learning algorithms are tuned using Optuna to improve the performance of the proposed model. Three EDS are designed in this work; EDS1 considers the 3D VAD model for three class classifications. 2D VA model is used in EDS2 to determine 9 discrete emotions, and EDS3 detects 12 discrete emotions using the 3D VAD model. Results reveal the highest classification accuracy of about 99% with EDS1, whereas an average accuracy of 99.82% and 98.44% is obtained with EDS2 and EDS3, respectively. The results reveal that both EDS1 and EDS2 show improvement as compared to the existing literature. Also, the proposed EDS3 provides the classification of the highest number of discrete emotions, which may facilitate the design of an efficient human–computer interface system.
ArticleNumber 104894
Author Rani, Asha
Nandini, Durgesh
Yadav, Jyoti
Singh, Vijander
Author_xml – sequence: 1
  givenname: Durgesh
  surname: Nandini
  fullname: Nandini, Durgesh
  email: durgesh.ic18@nsut.ac.in
– sequence: 2
  givenname: Jyoti
  surname: Yadav
  fullname: Yadav, Jyoti
  email: bmjyoti@gmail.com
– sequence: 3
  givenname: Asha
  surname: Rani
  fullname: Rani, Asha
  email: asha.rani@nsut.ac.in
– sequence: 4
  givenname: Vijander
  surname: Singh
  fullname: Singh, Vijander
  email: vijaydee@nsut.ac.in
BookMark eNp9kLFuwyAQhhlSqUnaF-jECzgFY8eO1CVK0rRSpC5tVwT4SLBsiIBUytsXy506ZOHQ6f9Od98MTayzgNATJQtK6PK5XchwVouc5Cw1inpVTNCUVsUyq8mquEezEFqS-hUtpshtIZijxU7jcJEtqIiNbeAM6bERsy3-Xm8x9C4aZ3EDMSWGX7iGCD2-BGOPeLfb42GK6AIWtsG9UCdjAXcgvB0Cojs6b-KpDw_oTqcYPP7VOfp63X1u3rLDx_59sz5kihESM8jLiupKSibyijGtGlYqIpmGmtKyFprlgrAllCALQpVgTaFyJaBicgVSlGyO6nGu8i4ED5orE8WwevTCdJwSPsjiLR9k8UEWH2UlNP-Hnr3phb_ehl5GCNJRPwY8D8qAVdAYn5Txxplb-C8WvYmH
CitedBy_id crossref_primary_10_1007_s11760_024_03406_8
crossref_primary_10_1016_j_bspc_2024_106353
crossref_primary_10_3390_electronics12102232
crossref_primary_10_1109_ACCESS_2023_3334974
crossref_primary_10_1038_s41598_024_60977_9
crossref_primary_10_7717_peerj_cs_1829
crossref_primary_10_1007_s40998_024_00710_4
crossref_primary_10_1007_s11042_023_16815_7
crossref_primary_10_1088_1361_6579_adb006
crossref_primary_10_3233_JIFS_237884
crossref_primary_10_3390_app15052328
crossref_primary_10_1007_s40998_023_00644_3
crossref_primary_10_1063_5_0253284
Cites_doi 10.1016/j.compbiomed.2019.103549
10.3390/s22093246
10.1016/j.bspc.2021.103456
10.1016/j.compbiomed.2020.103671
10.1016/j.compbiomed.2021.104664
10.1109/TAFFC.2018.2817622
10.1109/ACCESS.2021.3091487
10.1016/j.eswa.2020.113768
10.1145/1007730.1007735
10.5772/intechopen.94398
10.1016/j.knosys.2020.106243
10.1007/s11760-021-01942-1
10.1007/s10339-019-00924-z
10.1016/j.neucom.2015.09.085
10.1145/3292500.3330701
10.1016/j.compbiomed.2021.104428
10.1016/j.bbe.2020.02.007
10.1007/s00521-022-07292-4
10.1016/j.neunet.2019.04.003
10.1016/j.bspc.2020.102389
10.1109/ACCESS.2020.2986504
10.1109/TCBB.2020.3018137
10.1007/s11042-020-09354-y
10.1109/T-AFFC.2011.15
10.1016/j.measurement.2020.108047
10.1007/s11042-018-5885-9
10.1109/ICCMC.2018.8488044
10.1016/j.bspc.2020.102160
10.1007/978-981-16-3346-1_71
10.1038/s41597-022-01262-0
10.1016/j.compbiomed.2021.105048
10.1016/j.procs.2016.04.062
10.1016/j.neucom.2021.03.105
10.1016/j.compbiomed.2020.103927
10.1007/s10916-018-1020-8
10.1016/j.dsp.2018.07.003
10.1007/s11042-015-3119-y
10.1016/j.bspc.2021.102648
10.1109/TAFFC.2017.2660485
10.1109/ACCESS.2021.3051281
10.1016/0092-6566(77)90037-X
10.1016/j.neucom.2017.03.027
10.1016/j.csda.2005.09.010
10.1016/j.bj.2017.11.001
10.1016/j.neucom.2020.07.061
10.3390/sym12010021
10.1016/j.physa.2007.05.065
10.1016/j.bspc.2020.101867
10.3233/THC-174836
10.1016/j.jksuci.2019.11.003
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.104894
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2023_104894
S1746809423003270
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c300t-e2571f7bb3a2733fcd35c0b3fe81158af32a036e5eb401ca3d4c2cae73b9eba53
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 29 21:32:58 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
Sun Apr 06 06:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Subject-Independent
Wavelet-based on Atomic-Functions
EEG
OPTUNA Hyper-parameter optimization
Affective-computing
Discrete-Emotions
Valence-Arousal-Dominance
DEAP Database
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-e2571f7bb3a2733fcd35c0b3fe81158af32a036e5eb401ca3d4c2cae73b9eba53
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2023_104894
crossref_primary_10_1016_j_bspc_2023_104894
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104894
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahirwal, Mitul Kumar, Mangesh Ramaji Kose, Emotion recognition system based on EEG signal: A comparative study of different features and classifiers, in: 2018 second international conference on computing methodologies and communication (ICCMC), pp. 472-476. IEEE, 2018. DOI: https://doi.org/10.1109/ICCMC.2018.8488044.
Khateeb, Anwar, Alnowami (b0085) 2021; 9
Bălan, Moise, Petrescu, Moldoveanu, Leordeanu, Moldoveanu (b0010) 2019; 12
Batista, Prati, Monard (b0230) 2004; 6
Huang, Chen, Liu, Zheng, Tian, Jiang (b0090) 2021; 448
Kumar, Khaund, Hazarika (b0175) Jan. 2016; 84
Swana, Doorsamy, Bokoro (b0240) 2022; 22
Chakladar, Chakraborty (b0165) 2018; 24
Goshvarpour, Abbasi, Goshvarpour (b0020) 2017; 40
Song, Zheng, Song, Cui (b0055) 2018; 11
Hamada, Zaidan, Zaidan (b0005) 2018; 42
Li, Xu, Liu, Lu (b0185) 2018
Sharma, Pachori, Sircar (b0095) 2020; 58
Verma, Tiwary (b0015) 2017; 76
Feurer, Hutter (b0260) 2019
Bajaj, Nikesh, Wavelets for EEG Analysis, in: Wavelet Theory. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.94398.
Zhang, Zhang, Ji (b0180) 2018; 77
Prabha, Yadav, Rani, Singh (b0295) 2021; 136
Xu, Sun, Jiang, Chen, He, Xie (b0205) 2020; 62
Islam, Moni, Islam, Rashed-Al-Mahfuz, Islam, Hasan, Hossain, Ahmad, Uddin, Azad, Alyami, Ahad, Lio (b0045) 2021; 9
Russell, Mehrabian (b0130) 1977; 11
Prabha, Yadav, Rani, Singh (b0235) 2021
Srinivas, Katarya (b0270) 2022; 73
Kose, Ahirwal, Kumar (b0200) 2021; 15
Houssein, Hammad, Ali (b0040) 2022; 34
Jiang, Chen, Li (b0210) 2020; 116
V. Kravchenko, H.M, P. Meana, V. Ponomaryov, Adaptive Digital Processing of Multidimensional Signals With Applications, 2009.
Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, Masanori Koyama, Optuna: A next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631. 2019. DOI: https://doi.org/10.48550/arXiv.1907.10902.
Mert, Akan (b0105) 2018; 81
Cui, Liu, Zhang, Chen, Wang, Chen (b0065) 2020; 205
Yang, Shami (b0255) 2020; 415
Salankar, Mishra, Garg (b0125) 2021; 65
Liu, Ding, Li, Cheng, Song, Wan, Chen (b0135) 2020; 123
Pandey, Seeja (b0275) 2022; 34
Sneddon (b0220) 2007; 386
Nandini, Durgesh, Jyoti Yadav, Asha Rani, and Vijander Singh. “Improved patient-independent seizure detection system using novel feature extraction techniques.” In Proceedings of Second Doctoral Symposium on Computational Intelligence, pp. 879-888. Springer, Singapore, 2022. DOI: https://doi.org/10.1007/978-981-16-3346-1_71.
Zhu, Ghodsi (b0280) 2006; 51
Singh, Ahirwal, Pandey (b0070) 2023; 14
Gao, Wang, Wang, Song, Dong, Song (b0245) 2020; 79
He, Zhong, Pan (b0115) 2022; 141
Yang, Li, Zhang, Duan, Liu, Zhang, Feng, Tan, Huang, Zhou (b0215) 2020; 119
Liu, Yu, Zhao, Song, Ge, Shi (b0170) Oct. 2018; 9
Liu, Wang, Zhao, Zhao, Xin, Wang (b0060) 2020; 18
Subasi, Tuncer, Dogan, Tanko, Sakoglu (b0025) 2021; 68
Shukla, Barreda-Angeles, Oliver, Nandi, Puig (b0160) Feb. 2019; 5
Topic, Russo (b0030) 2021; 24
Saganowski, Komoszyńska, Behnke, Perz, Kunc, Klich, Kaczmarek, Kazienko (b0075) 2022; 9
Hernandez-Matamoros, Fujita, Escamilla-Hernandez, Perez-Meana, Nakano-Miyatake (b0195) 2020; 40
Liang, Oba, Ishii (b0300) 2019; 116
Rabiul, Islam, Rahman, Mondal, Singha, Ahmad, Abdul Awal, Islam, Moni (b0120) 2021; 136
Gannouni, Aledaily, Belwafi, Aboalsamh (b0080) 2020; 8
Maheshwari, Ghosh, Tripathy, Sharma, Acharya (b0145) 2021; 134
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0155) 2011; 3
Arnau-González, Arevalillo-Herráez, Ramzan (b0100) 2017; 244
Gupta, ur Rehman Laghari, Falk (b0140) 2016; 174
Chen, Sihang, Ren, Fan, Yu (b0110) 2020; 164
Probst, Boulesteix, Bischl (b0285) 2019; 20
Nandini, Yadav, Rani, Singh, Kravchenko (b0190) 2022
Pane, Wibawa, Purnomo (b0035) 2019; 20
Yin, Liu, Chen, Zhao, Wang (b0050) 2020; 162
Xu (10.1016/j.bspc.2023.104894_b0205) 2020; 62
Gannouni (10.1016/j.bspc.2023.104894_b0080) 2020; 8
Kumar (10.1016/j.bspc.2023.104894_b0175) 2016; 84
Nandini (10.1016/j.bspc.2023.104894_b0190) 2022
Houssein (10.1016/j.bspc.2023.104894_b0040) 2022; 34
Liang (10.1016/j.bspc.2023.104894_b0300) 2019; 116
Verma (10.1016/j.bspc.2023.104894_b0015) 2017; 76
Jiang (10.1016/j.bspc.2023.104894_b0210) 2020; 116
Hamada (10.1016/j.bspc.2023.104894_b0005) 2018; 42
Sharma (10.1016/j.bspc.2023.104894_b0095) 2020; 58
Topic (10.1016/j.bspc.2023.104894_b0030) 2021; 24
Koelstra (10.1016/j.bspc.2023.104894_b0155) 2011; 3
Batista (10.1016/j.bspc.2023.104894_b0230) 2004; 6
Feurer (10.1016/j.bspc.2023.104894_b0260) 2019
Song (10.1016/j.bspc.2023.104894_b0055) 2018; 11
Yang (10.1016/j.bspc.2023.104894_b0215) 2020; 119
Bălan (10.1016/j.bspc.2023.104894_b0010) 2019; 12
10.1016/j.bspc.2023.104894_b0150
Russell (10.1016/j.bspc.2023.104894_b0130) 1977; 11
Shukla (10.1016/j.bspc.2023.104894_b0160) 2019; 5
10.1016/j.bspc.2023.104894_b0290
Huang (10.1016/j.bspc.2023.104894_b0090) 2021; 448
Kose (10.1016/j.bspc.2023.104894_b0200) 2021; 15
Prabha (10.1016/j.bspc.2023.104894_b0295) 2021; 136
Khateeb (10.1016/j.bspc.2023.104894_b0085) 2021; 9
Islam (10.1016/j.bspc.2023.104894_b0045) 2021; 9
Cui (10.1016/j.bspc.2023.104894_b0065) 2020; 205
Mert (10.1016/j.bspc.2023.104894_b0105) 2018; 81
Gupta (10.1016/j.bspc.2023.104894_b0140) 2016; 174
Subasi (10.1016/j.bspc.2023.104894_b0025) 2021; 68
Rabiul (10.1016/j.bspc.2023.104894_b0120) 2021; 136
Swana (10.1016/j.bspc.2023.104894_b0240) 2022; 22
Maheshwari (10.1016/j.bspc.2023.104894_b0145) 2021; 134
Pane (10.1016/j.bspc.2023.104894_b0035) 2019; 20
Chen (10.1016/j.bspc.2023.104894_b0110) 2020; 164
Yin (10.1016/j.bspc.2023.104894_b0050) 2020; 162
Yang (10.1016/j.bspc.2023.104894_b0255) 2020; 415
Hernandez-Matamoros (10.1016/j.bspc.2023.104894_b0195) 2020; 40
Prabha (10.1016/j.bspc.2023.104894_b0235) 2021
Liu (10.1016/j.bspc.2023.104894_b0060) 2020; 18
Zhu (10.1016/j.bspc.2023.104894_b0280) 2006; 51
Gao (10.1016/j.bspc.2023.104894_b0245) 2020; 79
Liu (10.1016/j.bspc.2023.104894_b0170) 2018; 9
10.1016/j.bspc.2023.104894_b0250
Sneddon (10.1016/j.bspc.2023.104894_b0220) 2007; 386
Saganowski (10.1016/j.bspc.2023.104894_b0075) 2022; 9
Probst (10.1016/j.bspc.2023.104894_b0285) 2019; 20
Singh (10.1016/j.bspc.2023.104894_b0070) 2023; 14
Pandey (10.1016/j.bspc.2023.104894_b0275) 2022; 34
Srinivas (10.1016/j.bspc.2023.104894_b0270) 2022; 73
He (10.1016/j.bspc.2023.104894_b0115) 2022; 141
Salankar (10.1016/j.bspc.2023.104894_b0125) 2021; 65
Li (10.1016/j.bspc.2023.104894_b0185) 2018
Arnau-González (10.1016/j.bspc.2023.104894_b0100) 2017; 244
10.1016/j.bspc.2023.104894_b0225
Goshvarpour (10.1016/j.bspc.2023.104894_b0020) 2017; 40
10.1016/j.bspc.2023.104894_b0265
Liu (10.1016/j.bspc.2023.104894_b0135) 2020; 123
Chakladar (10.1016/j.bspc.2023.104894_b0165) 2018; 24
Zhang (10.1016/j.bspc.2023.104894_b0180) 2018; 77
References_xml – volume: 9
  start-page: 94601
  year: 2021
  end-page: 94624
  ident: b0045
  article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques
  publication-title: IEEE Access
– volume: 136
  year: 2021
  ident: b0120
  article-title: EEG channel correlation based model for emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 386
  start-page: 101
  year: 2007
  end-page: 118
  ident: b0220
  article-title: The Tsallis entropy of natural information
  publication-title: Physica A
– volume: 141
  year: 2022
  ident: b0115
  article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 84
  start-page: 31
  year: Jan. 2016
  end-page: 35
  ident: b0175
  article-title: ‘Bispectral analysis of EEG for emotion recognition’
  publication-title: Procedia Comput. Sci.
– reference: V. Kravchenko, H.M, P. Meana, V. Ponomaryov, Adaptive Digital Processing of Multidimensional Signals With Applications, 2009.
– reference: Nandini, Durgesh, Jyoti Yadav, Asha Rani, and Vijander Singh. “Improved patient-independent seizure detection system using novel feature extraction techniques.” In Proceedings of Second Doctoral Symposium on Computational Intelligence, pp. 879-888. Springer, Singapore, 2022. DOI: https://doi.org/10.1007/978-981-16-3346-1_71.
– volume: 6
  start-page: 20
  year: 2004
  end-page: 29
  ident: b0230
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD explorations newsletter
– volume: 42
  start-page: 1
  year: 2018
  end-page: 25
  ident: b0005
  article-title: A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison
  publication-title: J. Med. Syst.
– volume: 76
  start-page: 2159
  year: 2017
  end-page: 2183
  ident: b0015
  article-title: Affect representation and recognition in 3D continuous valence–arousal–dominance space
  publication-title: Multimedia Tools Appl.
– volume: 51
  start-page: 918
  year: 2006
  end-page: 930
  ident: b0280
  article-title: Automatic dimensionality selection from the scree plot via the use of profile likelihood
  publication-title: Comput. Stat. Data Anal.
– volume: 244
  start-page: 81
  year: 2017
  end-page: 89
  ident: b0100
  article-title: Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals
  publication-title: Neurocomputing
– volume: 62
  year: 2020
  ident: b0205
  article-title: Two-level multi-domain feature extraction on sparse representation for motor imagery classification
  publication-title: Biomed. Signal Process. Control
– volume: 116
  start-page: 257
  year: 2019
  end-page: 268
  ident: b0300
  article-title: An unsupervised EEG decoding system for human emotion recognition
  publication-title: Neural Netw.
– reference: Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, Masanori Koyama, Optuna: A next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631. 2019. DOI: https://doi.org/10.48550/arXiv.1907.10902.
– volume: 40
  start-page: 355
  year: 2017
  end-page: 368
  ident: b0020
  article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
  publication-title: Biomed. J.
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: b0255
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– volume: 9
  start-page: 158
  year: 2022
  ident: b0075
  article-title: Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
  publication-title: Sci. Data
– start-page: 1
  year: 2021
  end-page: 14
  ident: b0235
  article-title: Respiratory Effort Signal Based Sleep Apnea Detection System Using Improved Random Forest Classifier
  publication-title: IETE J. Res.
– volume: 8
  start-page: 67444
  year: 2020
  end-page: 67455
  ident: b0080
  article-title: Adaptive emotion detection using the valence-arousal-dominance model and EEG brain rhythmic activity changes in relevant brain lobes
  publication-title: IEEE Access
– volume: 34
  start-page: 1730
  year: 2022
  end-page: 1738
  ident: b0275
  article-title: Subject independent emotion recognition from EEG using VMD and deep learning
  publication-title: J. King Saud University-Computer and Information Sci.
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: b0055
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 9
  start-page: 12134
  year: 2021
  end-page: 12142
  ident: b0085
  article-title: Multi-domain feature fusion for emotion classification using DEAP dataset
  publication-title: IEEE Access
– volume: 20
  start-page: 405
  year: 2019
  end-page: 417
  ident: b0035
  article-title: Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters
  publication-title: Cogn. Process.
– volume: 116
  year: 2020
  ident: b0210
  article-title: Symplectic geometry decomposition-based features for automatic epileptic seizure detection
  publication-title: Comput. Biol. Med.
– volume: 119
  year: 2020
  ident: b0215
  article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals
  publication-title: Comput. Biol. Med.
– reference: Bajaj, Nikesh, Wavelets for EEG Analysis, in: Wavelet Theory. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.94398.
– volume: 164
  year: 2020
  ident: b0110
  article-title: EEG emotion recognition model based on the LIBSVM classifier
  publication-title: Measurement
– volume: 68
  year: 2021
  ident: b0025
  article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier
  publication-title: Biomed. Signal Process. Control
– volume: 58
  year: 2020
  ident: b0095
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: b0155
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 22
  start-page: 3246
  year: 2022
  ident: b0240
  article-title: Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset
  publication-title: Sensors
– volume: 174
  start-page: 875
  year: 2016
  end-page: 884
  ident: b0140
  article-title: Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization
  publication-title: Neurocomputing
– volume: 205
  start-page: 106243
  year: 2020
  ident: b0065
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowl.-Based Syst.
– volume: 79
  start-page: 27057
  year: 2020
  end-page: 27074
  ident: b0245
  article-title: EEG based emotion recognition using fusion feature extraction method
  publication-title: Multimed. Tools Appl.
– volume: 136
  year: 2021
  ident: b0295
  article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier
  publication-title: Comput. Biol. Med.
– start-page: 3
  year: 2019
  end-page: 33
  ident: b0260
  article-title: Hyperparameter optimization
  publication-title: Automated machine learning
– start-page: 1
  year: 2022
  end-page: 5
  ident: b0190
  article-title: Efficient Patient Independent Seizure Detection System using WAF based Hybrid Feature Extraction Method and XGBoost classifier
  publication-title: In 2022 IEEE Delhi Section Conference (DELCON)
– volume: 18
  start-page: 1710
  year: 2020
  end-page: 1721
  ident: b0060
  article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 15
  start-page: 1863
  year: 2021
  end-page: 1871
  ident: b0200
  article-title: A new approach for emotions recognition through EOG and EMG signals
  publication-title: SIViP
– volume: 34
  start-page: 12527
  year: 2022
  end-page: 12557
  ident: b0040
  article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review
  publication-title: Neural Comput. Applic.
– volume: 5
  start-page: 327
  year: Feb. 2019
  end-page: 339
  ident: b0160
  article-title: ‘Feature extraction and selection for emotion recognition from electro- dermal activity’
  publication-title: IEEE Trans. Affect. Comput.
– volume: 134
  start-page: 104428
  year: 2021
  ident: b0145
  article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals
  publication-title: Comput. Biol. Med.
– volume: 448
  start-page: 140
  year: 2021
  end-page: 151
  ident: b0090
  article-title: Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition
  publication-title: Neurocomputing
– volume: 81
  start-page: 106
  year: 2018
  end-page: 115
  ident: b0105
  article-title: Emotion recognition based on time–frequency distribution of EEG signals using multivariate synchrosqueezing transform
  publication-title: Digital Signal Process.
– volume: 14
  start-page: 2429
  year: 2023
  end-page: 2441
  ident: b0070
  article-title: “Quaternary classification of emotions based on electroencephalogram signals using hybrid deep learning model.” Journal of Ambient Intelligence and Humanized
  publication-title: Computing
– year: 2018
  ident: b0185
  article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
  publication-title: Technol. Health Care
– volume: 11
  start-page: 273
  year: 1977
  end-page: 294
  ident: b0130
  article-title: Evidence for a three-factor theory of emotions
  publication-title: J. Res. Pers.
– volume: 77
  start-page: 26697
  year: 2018
  end-page: 26710
  ident: b0180
  article-title: EEG-based classification of emotions using empirical mode decomposition and autoregressive model
  publication-title: Multimedia Tools Appl.
– volume: 20
  start-page: 1934
  year: 2019
  end-page: 1965
  ident: b0285
  article-title: Tunability: Importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 98
  year: 2018
  end-page: 106
  ident: b0165
  article-title: EEG based emotion classification using “Correlation Based Subset Selection”
  publication-title: Biol. Inspired Cognit. Archit.
– volume: 162
  year: 2020
  ident: b0050
  article-title: Locally robust EEG feature selection for individual-independent emotion recognition
  publication-title: Expert Syst. Appl.
– volume: 73
  year: 2022
  ident: b0270
  article-title: hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost
  publication-title: Biomed. Signal Process. Control
– volume: 123
  year: 2020
  ident: b0135
  article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network
  publication-title: Comput. Biol. Med.
– volume: 40
  start-page: 803
  year: 2020
  end-page: 814
  ident: b0195
  article-title: Recognition of ECG signals using wavelet based on atomic functions
  publication-title: Biocybernetics and Biomedical Engineering
– reference: Ahirwal, Mitul Kumar, Mangesh Ramaji Kose, Emotion recognition system based on EEG signal: A comparative study of different features and classifiers, in: 2018 second international conference on computing methodologies and communication (ICCMC), pp. 472-476. IEEE, 2018. DOI: https://doi.org/10.1109/ICCMC.2018.8488044.
– volume: 12
  start-page: 21
  year: 2019
  ident: b0010
  article-title: Emotion classification based on biophysical signals and machine learning techniques
  publication-title: Symmetry
– volume: 9
  start-page: 550
  year: Oct. 2018
  end-page: 562
  ident: b0170
  article-title: ‘Real-time movie-induced discrete emotion recognition from EEG signals’
  publication-title: IEEE Trans. Affect. Comput.
– volume: 24
  start-page: 1442
  year: 2021
  end-page: 1454
  ident: b0030
  article-title: Emotion recognition based on EEG feature maps through deep learning network
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 65
  year: 2021
  ident: b0125
  article-title: Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot
  publication-title: Biomed. Signal Process. Control
– volume: 5
  start-page: 327
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2023.104894_b0160
  article-title: ‘Feature extraction and selection for emotion recognition from electro- dermal activity’
  publication-title: IEEE Trans. Affect. Comput.
– volume: 116
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0210
  article-title: Symplectic geometry decomposition-based features for automatic epileptic seizure detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103549
– volume: 22
  start-page: 3246
  issue: 9
  year: 2022
  ident: 10.1016/j.bspc.2023.104894_b0240
  article-title: Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset
  publication-title: Sensors
  doi: 10.3390/s22093246
– volume: 73
  year: 2022
  ident: 10.1016/j.bspc.2023.104894_b0270
  article-title: hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103456
– volume: 119
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0215
  article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103671
– volume: 136
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0295
  article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104664
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.bspc.2023.104894_b0055
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
– start-page: 3
  year: 2019
  ident: 10.1016/j.bspc.2023.104894_b0260
  article-title: Hyperparameter optimization
– ident: 10.1016/j.bspc.2023.104894_b0225
– volume: 9
  start-page: 94601
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0045
  article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091487
– volume: 162
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0050
  article-title: Locally robust EEG feature selection for individual-independent emotion recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113768
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 10.1016/j.bspc.2023.104894_b0230
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD explorations newsletter
  doi: 10.1145/1007730.1007735
– ident: 10.1016/j.bspc.2023.104894_b0290
  doi: 10.5772/intechopen.94398
– volume: 205
  start-page: 106243
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0065
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106243
– volume: 15
  start-page: 1863
  issue: 8
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0200
  article-title: A new approach for emotions recognition through EOG and EMG signals
  publication-title: SIViP
  doi: 10.1007/s11760-021-01942-1
– volume: 20
  start-page: 405
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2023.104894_b0035
  article-title: Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters
  publication-title: Cogn. Process.
  doi: 10.1007/s10339-019-00924-z
– volume: 174
  start-page: 875
  year: 2016
  ident: 10.1016/j.bspc.2023.104894_b0140
  article-title: Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.085
– ident: 10.1016/j.bspc.2023.104894_b0265
  doi: 10.1145/3292500.3330701
– volume: 24
  start-page: 1442
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0030
  article-title: Emotion recognition based on EEG feature maps through deep learning network
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 134
  start-page: 104428
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0145
  article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104428
– volume: 40
  start-page: 803
  issue: 2
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0195
  article-title: Recognition of ECG signals using wavelet based on atomic functions
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2020.02.007
– volume: 34
  start-page: 12527
  issue: 15
  year: 2022
  ident: 10.1016/j.bspc.2023.104894_b0040
  article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review
  publication-title: Neural Comput. Applic.
  doi: 10.1007/s00521-022-07292-4
– volume: 116
  start-page: 257
  year: 2019
  ident: 10.1016/j.bspc.2023.104894_b0300
  article-title: An unsupervised EEG decoding system for human emotion recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.04.003
– volume: 65
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0125
  article-title: Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102389
– volume: 8
  start-page: 67444
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0080
  article-title: Adaptive emotion detection using the valence-arousal-dominance model and EEG brain rhythmic activity changes in relevant brain lobes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986504
– volume: 18
  start-page: 1710
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0060
  article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2020.3018137
– volume: 79
  start-page: 27057
  issue: 37
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0245
  article-title: EEG based emotion recognition using fusion feature extraction method
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09354-y
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.bspc.2023.104894_b0155
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 164
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0110
  article-title: EEG emotion recognition model based on the LIBSVM classifier
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108047
– volume: 77
  start-page: 26697
  issue: 20
  year: 2018
  ident: 10.1016/j.bspc.2023.104894_b0180
  article-title: EEG-based classification of emotions using empirical mode decomposition and autoregressive model
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5885-9
– ident: 10.1016/j.bspc.2023.104894_b0150
  doi: 10.1109/ICCMC.2018.8488044
– volume: 62
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0205
  article-title: Two-level multi-domain feature extraction on sparse representation for motor imagery classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102160
– ident: 10.1016/j.bspc.2023.104894_b0250
  doi: 10.1007/978-981-16-3346-1_71
– volume: 9
  start-page: 158
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104894_b0075
  article-title: Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01262-0
– volume: 141
  year: 2022
  ident: 10.1016/j.bspc.2023.104894_b0115
  article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105048
– volume: 84
  start-page: 31
  year: 2016
  ident: 10.1016/j.bspc.2023.104894_b0175
  article-title: ‘Bispectral analysis of EEG for emotion recognition’
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.04.062
– volume: 448
  start-page: 140
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0090
  article-title: Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.105
– volume: 123
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0135
  article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103927
– volume: 42
  start-page: 1
  issue: 9
  year: 2018
  ident: 10.1016/j.bspc.2023.104894_b0005
  article-title: A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1020-8
– volume: 81
  start-page: 106
  year: 2018
  ident: 10.1016/j.bspc.2023.104894_b0105
  article-title: Emotion recognition based on time–frequency distribution of EEG signals using multivariate synchrosqueezing transform
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2018.07.003
– volume: 76
  start-page: 2159
  issue: 2
  year: 2017
  ident: 10.1016/j.bspc.2023.104894_b0015
  article-title: Affect representation and recognition in 3D continuous valence–arousal–dominance space
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-015-3119-y
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0025
  article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102648
– volume: 9
  start-page: 550
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2023.104894_b0170
  article-title: ‘Real-time movie-induced discrete emotion recognition from EEG signals’
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2660485
– volume: 9
  start-page: 12134
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0085
  article-title: Multi-domain feature fusion for emotion classification using DEAP dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051281
– volume: 11
  start-page: 273
  issue: 3
  year: 1977
  ident: 10.1016/j.bspc.2023.104894_b0130
  article-title: Evidence for a three-factor theory of emotions
  publication-title: J. Res. Pers.
  doi: 10.1016/0092-6566(77)90037-X
– volume: 244
  start-page: 81
  year: 2017
  ident: 10.1016/j.bspc.2023.104894_b0100
  article-title: Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.027
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.104894_b0190
  article-title: Efficient Patient Independent Seizure Detection System using WAF based Hybrid Feature Extraction Method and XGBoost classifier
– volume: 51
  start-page: 918
  issue: 2
  year: 2006
  ident: 10.1016/j.bspc.2023.104894_b0280
  article-title: Automatic dimensionality selection from the scree plot via the use of profile likelihood
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2005.09.010
– volume: 136
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0120
  article-title: EEG channel correlation based model for emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 40
  start-page: 355
  issue: 6
  year: 2017
  ident: 10.1016/j.bspc.2023.104894_b0020
  article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2017.11.001
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0255
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 12
  start-page: 21
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.104894_b0010
  article-title: Emotion classification based on biophysical signals and machine learning techniques
  publication-title: Symmetry
  doi: 10.3390/sym12010021
– volume: 386
  start-page: 101
  issue: 1
  year: 2007
  ident: 10.1016/j.bspc.2023.104894_b0220
  article-title: The Tsallis entropy of natural information
  publication-title: Physica A
  doi: 10.1016/j.physa.2007.05.065
– volume: 58
  year: 2020
  ident: 10.1016/j.bspc.2023.104894_b0095
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101867
– volume: 24
  start-page: 98
  year: 2018
  ident: 10.1016/j.bspc.2023.104894_b0165
  article-title: EEG based emotion classification using “Correlation Based Subset Selection”
  publication-title: Biol. Inspired Cognit. Archit.
– year: 2018
  ident: 10.1016/j.bspc.2023.104894_b0185
  article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
  publication-title: Technol. Health Care
  doi: 10.3233/THC-174836
– volume: 14
  start-page: 2429
  issue: 3
  year: 2023
  ident: 10.1016/j.bspc.2023.104894_b0070
  article-title: “Quaternary classification of emotions based on electroencephalogram signals using hybrid deep learning model.” Journal of Ambient Intelligence and Humanized
  publication-title: Computing
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104894_b0235
  article-title: Respiratory Effort Signal Based Sleep Apnea Detection System Using Improved Random Forest Classifier
  publication-title: IETE J. Res.
– volume: 20
  start-page: 1934
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2023.104894_b0285
  article-title: Tunability: Importance of hyperparameters of machine learning algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 1730
  issue: 5
  year: 2022
  ident: 10.1016/j.bspc.2023.104894_b0275
  article-title: Subject independent emotion recognition from EEG using VMD and deep learning
  publication-title: J. King Saud University-Computer and Information Sci.
  doi: 10.1016/j.jksuci.2019.11.003
SSID ssj0048714
Score 2.4013252
Snippet •Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems:...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104894
SubjectTerms Affective-computing
DEAP Database
Discrete-Emotions
EEG
OPTUNA Hyper-parameter optimization
Subject-Independent
Valence-Arousal-Dominance
Wavelet-based on Atomic-Functions
Title Design of subject independent 3D VAD emotion detection system using EEG signals and machine learning algorithms
URI https://dx.doi.org/10.1016/j.bspc.2023.104894
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHPwZip0H7Q9Eh6iJlwUw63Z7e5iDbQEytXf7m4fBBPDwWObmab5Op35tv12BqF7rInGjHCHkI50KGe-4_tSO64vA82DgCmeC2THndGEvkzZtIZ61V4YK6ssc3-R0_NsXZ5plWi2lnHcejNcuuOb1Ykh0W2CPbtup9SzUwwev7cyD8PH8_7e1tix1uXGmULjJdZL28YQE_ur0w_o38Vpp-AMT9BxyRShW9zMKaqp5Awd7fQPPEdpP9dfQKphvRH2iwrE27G2GZA-fHT7oIpJPSBVluuuEijaN4PVvM9gMHgCexUTh8ATCYtcXqmgnCcxAz6fpas4-1ysL9BkOHjvjZxygoITGVAyR5kX0tWeEIQbmkJ0JAmL2oJo5Rsm6HNNMDclTDElzDor4kTSCEdceUQESnBGLlE9SRN1hUBHgZSYSyGpplywgDOtiadcLCSmXtBAbgVdGJXtxe2Ui3lY6ci-Qgt3aOEOC7gb6GHrsyyaa-y1ZtUTCX-FSGiy_x6_63_63aBDe1So_W5RPVtt1J1hIJlo5iHWRAfd59fR-Af-9dx5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTleQMbCm3suEnGqg8KlC60qFtkx3YJapOqTVd-O3YeVZFQB9bkHEVfLnffJZ_vELrHiihMCbMIaQjLYdSzPE8oy_aEr5jvU8kygeyg0Rs5L2M6rqBWuRfGyCqL2J_H9CxaF0dqBZq1eRTV3jWXbni6OtEkuk6wq-v2XYdi11Rgj99rnYcm5FmDb2NtGfNi50wu8uLLueljiIn51-n5zt_ZaSPjdI_QYUEVoZnfzTGqyPgEHWw0EDxFSTsTYECiYLni5pMKROu5timQNnw02yDzUT0gZJoJr2LI-zeDEb1PoNN5AnMV7YjAYgGzTF8poRgoMQE2nSSLKP2cLc_QqNsZtnpWMULBCjUqqSX1G2krl3PCNE8hKhSEhnVOlPQ0FfSYIpjpHCap5LrQChkRTohDJl3CfckZJedoJ05ieYFAhb4QmAkuHOUwTn1GlSKutDEX2HH9KrJL6IKw6C9uxlxMg1JI9hUYuAMDd5DDXUUP6zXzvLvGVmtaPpHgl48EOvxvWXf5z3V3aK83fOsH_efB6xXaN2dy6d812kkXK3mj6UjKbzN3-wE22d4O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+subject+independent+3D+VAD+emotion+detection+system+using+EEG+signals+and+machine+learning+algorithms&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Nandini%2C+Durgesh&rft.au=Yadav%2C+Jyoti&rft.au=Rani%2C+Asha&rft.au=Singh%2C+Vijander&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=85&rft_id=info:doi/10.1016%2Fj.bspc.2023.104894&rft.externalDocID=S1746809423003270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon