Design of subject independent 3D VAD emotion detection system using EEG signals and machine learning algorithms
•Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems: EDS1, EDS2, and EDS3, are designed.•Wavelet-based on Atomic Functions feature extraction technique is used to investigate the EEG signals.•Th...
Saved in:
| Published in | Biomedical signal processing and control Vol. 85; p. 104894 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 |
| DOI | 10.1016/j.bspc.2023.104894 |
Cover
| Abstract | •Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems: EDS1, EDS2, and EDS3, are designed.•Wavelet-based on Atomic Functions feature extraction technique is used to investigate the EEG signals.•The principal component analysis technique is used to reduce high data dimensionality, and Machine Learning hyperparameters are optimized using the “Optuna” technique.•The Machine Learning hyperparameters are optimized using the “Optuna” technique.•The designed EDS1 and EDS2 show improved performance, and EDS3 detect the highest number of discrete emotions compared with existing literature.
This work aims to develop a subject-independent Emotion Detection System (EDS) based on EEG signals and the 3D Valence-Arousal-Dominance (VAD) model. The DEAP database physiological signals are considered for the system design. A multi-domain feature extraction is performed using the Wavelet-based Atomic Function time–frequency domain technique; and various time and frequency domain feature extraction techniques. Further, principal component analysis reduces the data dimensionality and redundancy in the obtained feature set. The minimal feature set is analysed using machine learning classifiers, i.e., gradient boosting, decision tree, and random forest. Additionally, the hyperparameters of machine learning algorithms are tuned using Optuna to improve the performance of the proposed model. Three EDS are designed in this work; EDS1 considers the 3D VAD model for three class classifications. 2D VA model is used in EDS2 to determine 9 discrete emotions, and EDS3 detects 12 discrete emotions using the 3D VAD model. Results reveal the highest classification accuracy of about 99% with EDS1, whereas an average accuracy of 99.82% and 98.44% is obtained with EDS2 and EDS3, respectively. The results reveal that both EDS1 and EDS2 show improvement as compared to the existing literature. Also, the proposed EDS3 provides the classification of the highest number of discrete emotions, which may facilitate the design of an efficient human–computer interface system. |
|---|---|
| AbstractList | •Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems: EDS1, EDS2, and EDS3, are designed.•Wavelet-based on Atomic Functions feature extraction technique is used to investigate the EEG signals.•The principal component analysis technique is used to reduce high data dimensionality, and Machine Learning hyperparameters are optimized using the “Optuna” technique.•The Machine Learning hyperparameters are optimized using the “Optuna” technique.•The designed EDS1 and EDS2 show improved performance, and EDS3 detect the highest number of discrete emotions compared with existing literature.
This work aims to develop a subject-independent Emotion Detection System (EDS) based on EEG signals and the 3D Valence-Arousal-Dominance (VAD) model. The DEAP database physiological signals are considered for the system design. A multi-domain feature extraction is performed using the Wavelet-based Atomic Function time–frequency domain technique; and various time and frequency domain feature extraction techniques. Further, principal component analysis reduces the data dimensionality and redundancy in the obtained feature set. The minimal feature set is analysed using machine learning classifiers, i.e., gradient boosting, decision tree, and random forest. Additionally, the hyperparameters of machine learning algorithms are tuned using Optuna to improve the performance of the proposed model. Three EDS are designed in this work; EDS1 considers the 3D VAD model for three class classifications. 2D VA model is used in EDS2 to determine 9 discrete emotions, and EDS3 detects 12 discrete emotions using the 3D VAD model. Results reveal the highest classification accuracy of about 99% with EDS1, whereas an average accuracy of 99.82% and 98.44% is obtained with EDS2 and EDS3, respectively. The results reveal that both EDS1 and EDS2 show improvement as compared to the existing literature. Also, the proposed EDS3 provides the classification of the highest number of discrete emotions, which may facilitate the design of an efficient human–computer interface system. |
| ArticleNumber | 104894 |
| Author | Rani, Asha Nandini, Durgesh Yadav, Jyoti Singh, Vijander |
| Author_xml | – sequence: 1 givenname: Durgesh surname: Nandini fullname: Nandini, Durgesh email: durgesh.ic18@nsut.ac.in – sequence: 2 givenname: Jyoti surname: Yadav fullname: Yadav, Jyoti email: bmjyoti@gmail.com – sequence: 3 givenname: Asha surname: Rani fullname: Rani, Asha email: asha.rani@nsut.ac.in – sequence: 4 givenname: Vijander surname: Singh fullname: Singh, Vijander email: vijaydee@nsut.ac.in |
| BookMark | eNp9kLFuwyAQhhlSqUnaF-jECzgFY8eO1CVK0rRSpC5tVwT4SLBsiIBUytsXy506ZOHQ6f9Od98MTayzgNATJQtK6PK5XchwVouc5Cw1inpVTNCUVsUyq8mquEezEFqS-hUtpshtIZijxU7jcJEtqIiNbeAM6bERsy3-Xm8x9C4aZ3EDMSWGX7iGCD2-BGOPeLfb42GK6AIWtsG9UCdjAXcgvB0Cojs6b-KpDw_oTqcYPP7VOfp63X1u3rLDx_59sz5kihESM8jLiupKSibyijGtGlYqIpmGmtKyFprlgrAllCALQpVgTaFyJaBicgVSlGyO6nGu8i4ED5orE8WwevTCdJwSPsjiLR9k8UEWH2UlNP-Hnr3phb_ehl5GCNJRPwY8D8qAVdAYn5Txxplb-C8WvYmH |
| CitedBy_id | crossref_primary_10_1007_s11760_024_03406_8 crossref_primary_10_1016_j_bspc_2024_106353 crossref_primary_10_3390_electronics12102232 crossref_primary_10_1109_ACCESS_2023_3334974 crossref_primary_10_1038_s41598_024_60977_9 crossref_primary_10_7717_peerj_cs_1829 crossref_primary_10_1007_s40998_024_00710_4 crossref_primary_10_1007_s11042_023_16815_7 crossref_primary_10_1088_1361_6579_adb006 crossref_primary_10_3233_JIFS_237884 crossref_primary_10_3390_app15052328 crossref_primary_10_1007_s40998_023_00644_3 crossref_primary_10_1063_5_0253284 |
| Cites_doi | 10.1016/j.compbiomed.2019.103549 10.3390/s22093246 10.1016/j.bspc.2021.103456 10.1016/j.compbiomed.2020.103671 10.1016/j.compbiomed.2021.104664 10.1109/TAFFC.2018.2817622 10.1109/ACCESS.2021.3091487 10.1016/j.eswa.2020.113768 10.1145/1007730.1007735 10.5772/intechopen.94398 10.1016/j.knosys.2020.106243 10.1007/s11760-021-01942-1 10.1007/s10339-019-00924-z 10.1016/j.neucom.2015.09.085 10.1145/3292500.3330701 10.1016/j.compbiomed.2021.104428 10.1016/j.bbe.2020.02.007 10.1007/s00521-022-07292-4 10.1016/j.neunet.2019.04.003 10.1016/j.bspc.2020.102389 10.1109/ACCESS.2020.2986504 10.1109/TCBB.2020.3018137 10.1007/s11042-020-09354-y 10.1109/T-AFFC.2011.15 10.1016/j.measurement.2020.108047 10.1007/s11042-018-5885-9 10.1109/ICCMC.2018.8488044 10.1016/j.bspc.2020.102160 10.1007/978-981-16-3346-1_71 10.1038/s41597-022-01262-0 10.1016/j.compbiomed.2021.105048 10.1016/j.procs.2016.04.062 10.1016/j.neucom.2021.03.105 10.1016/j.compbiomed.2020.103927 10.1007/s10916-018-1020-8 10.1016/j.dsp.2018.07.003 10.1007/s11042-015-3119-y 10.1016/j.bspc.2021.102648 10.1109/TAFFC.2017.2660485 10.1109/ACCESS.2021.3051281 10.1016/0092-6566(77)90037-X 10.1016/j.neucom.2017.03.027 10.1016/j.csda.2005.09.010 10.1016/j.bj.2017.11.001 10.1016/j.neucom.2020.07.061 10.3390/sym12010021 10.1016/j.physa.2007.05.065 10.1016/j.bspc.2020.101867 10.3233/THC-174836 10.1016/j.jksuci.2019.11.003 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2023.104894 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_bspc_2023_104894 S1746809423003270 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-e2571f7bb3a2733fcd35c0b3fe81158af32a036e5eb401ca3d4c2cae73b9eba53 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Wed Oct 29 21:32:58 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 Sun Apr 06 06:53:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Subject-Independent Wavelet-based on Atomic-Functions EEG OPTUNA Hyper-parameter optimization Affective-computing Discrete-Emotions Valence-Arousal-Dominance DEAP Database |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-e2571f7bb3a2733fcd35c0b3fe81158af32a036e5eb401ca3d4c2cae73b9eba53 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2023_104894 crossref_primary_10_1016_j_bspc_2023_104894 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104894 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ahirwal, Mitul Kumar, Mangesh Ramaji Kose, Emotion recognition system based on EEG signal: A comparative study of different features and classifiers, in: 2018 second international conference on computing methodologies and communication (ICCMC), pp. 472-476. IEEE, 2018. DOI: https://doi.org/10.1109/ICCMC.2018.8488044. Khateeb, Anwar, Alnowami (b0085) 2021; 9 Bălan, Moise, Petrescu, Moldoveanu, Leordeanu, Moldoveanu (b0010) 2019; 12 Batista, Prati, Monard (b0230) 2004; 6 Huang, Chen, Liu, Zheng, Tian, Jiang (b0090) 2021; 448 Kumar, Khaund, Hazarika (b0175) Jan. 2016; 84 Swana, Doorsamy, Bokoro (b0240) 2022; 22 Chakladar, Chakraborty (b0165) 2018; 24 Goshvarpour, Abbasi, Goshvarpour (b0020) 2017; 40 Song, Zheng, Song, Cui (b0055) 2018; 11 Hamada, Zaidan, Zaidan (b0005) 2018; 42 Li, Xu, Liu, Lu (b0185) 2018 Sharma, Pachori, Sircar (b0095) 2020; 58 Verma, Tiwary (b0015) 2017; 76 Feurer, Hutter (b0260) 2019 Bajaj, Nikesh, Wavelets for EEG Analysis, in: Wavelet Theory. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.94398. Zhang, Zhang, Ji (b0180) 2018; 77 Prabha, Yadav, Rani, Singh (b0295) 2021; 136 Xu, Sun, Jiang, Chen, He, Xie (b0205) 2020; 62 Islam, Moni, Islam, Rashed-Al-Mahfuz, Islam, Hasan, Hossain, Ahmad, Uddin, Azad, Alyami, Ahad, Lio (b0045) 2021; 9 Russell, Mehrabian (b0130) 1977; 11 Prabha, Yadav, Rani, Singh (b0235) 2021 Srinivas, Katarya (b0270) 2022; 73 Kose, Ahirwal, Kumar (b0200) 2021; 15 Houssein, Hammad, Ali (b0040) 2022; 34 Jiang, Chen, Li (b0210) 2020; 116 V. Kravchenko, H.M, P. Meana, V. Ponomaryov, Adaptive Digital Processing of Multidimensional Signals With Applications, 2009. Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, Masanori Koyama, Optuna: A next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631. 2019. DOI: https://doi.org/10.48550/arXiv.1907.10902. Mert, Akan (b0105) 2018; 81 Cui, Liu, Zhang, Chen, Wang, Chen (b0065) 2020; 205 Yang, Shami (b0255) 2020; 415 Salankar, Mishra, Garg (b0125) 2021; 65 Liu, Ding, Li, Cheng, Song, Wan, Chen (b0135) 2020; 123 Pandey, Seeja (b0275) 2022; 34 Sneddon (b0220) 2007; 386 Nandini, Durgesh, Jyoti Yadav, Asha Rani, and Vijander Singh. “Improved patient-independent seizure detection system using novel feature extraction techniques.” In Proceedings of Second Doctoral Symposium on Computational Intelligence, pp. 879-888. Springer, Singapore, 2022. DOI: https://doi.org/10.1007/978-981-16-3346-1_71. Zhu, Ghodsi (b0280) 2006; 51 Singh, Ahirwal, Pandey (b0070) 2023; 14 Gao, Wang, Wang, Song, Dong, Song (b0245) 2020; 79 He, Zhong, Pan (b0115) 2022; 141 Yang, Li, Zhang, Duan, Liu, Zhang, Feng, Tan, Huang, Zhou (b0215) 2020; 119 Liu, Yu, Zhao, Song, Ge, Shi (b0170) Oct. 2018; 9 Liu, Wang, Zhao, Zhao, Xin, Wang (b0060) 2020; 18 Subasi, Tuncer, Dogan, Tanko, Sakoglu (b0025) 2021; 68 Shukla, Barreda-Angeles, Oliver, Nandi, Puig (b0160) Feb. 2019; 5 Topic, Russo (b0030) 2021; 24 Saganowski, Komoszyńska, Behnke, Perz, Kunc, Klich, Kaczmarek, Kazienko (b0075) 2022; 9 Hernandez-Matamoros, Fujita, Escamilla-Hernandez, Perez-Meana, Nakano-Miyatake (b0195) 2020; 40 Liang, Oba, Ishii (b0300) 2019; 116 Rabiul, Islam, Rahman, Mondal, Singha, Ahmad, Abdul Awal, Islam, Moni (b0120) 2021; 136 Gannouni, Aledaily, Belwafi, Aboalsamh (b0080) 2020; 8 Maheshwari, Ghosh, Tripathy, Sharma, Acharya (b0145) 2021; 134 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b0155) 2011; 3 Arnau-González, Arevalillo-Herráez, Ramzan (b0100) 2017; 244 Gupta, ur Rehman Laghari, Falk (b0140) 2016; 174 Chen, Sihang, Ren, Fan, Yu (b0110) 2020; 164 Probst, Boulesteix, Bischl (b0285) 2019; 20 Nandini, Yadav, Rani, Singh, Kravchenko (b0190) 2022 Pane, Wibawa, Purnomo (b0035) 2019; 20 Yin, Liu, Chen, Zhao, Wang (b0050) 2020; 162 Xu (10.1016/j.bspc.2023.104894_b0205) 2020; 62 Gannouni (10.1016/j.bspc.2023.104894_b0080) 2020; 8 Kumar (10.1016/j.bspc.2023.104894_b0175) 2016; 84 Nandini (10.1016/j.bspc.2023.104894_b0190) 2022 Houssein (10.1016/j.bspc.2023.104894_b0040) 2022; 34 Liang (10.1016/j.bspc.2023.104894_b0300) 2019; 116 Verma (10.1016/j.bspc.2023.104894_b0015) 2017; 76 Jiang (10.1016/j.bspc.2023.104894_b0210) 2020; 116 Hamada (10.1016/j.bspc.2023.104894_b0005) 2018; 42 Sharma (10.1016/j.bspc.2023.104894_b0095) 2020; 58 Topic (10.1016/j.bspc.2023.104894_b0030) 2021; 24 Koelstra (10.1016/j.bspc.2023.104894_b0155) 2011; 3 Batista (10.1016/j.bspc.2023.104894_b0230) 2004; 6 Feurer (10.1016/j.bspc.2023.104894_b0260) 2019 Song (10.1016/j.bspc.2023.104894_b0055) 2018; 11 Yang (10.1016/j.bspc.2023.104894_b0215) 2020; 119 Bălan (10.1016/j.bspc.2023.104894_b0010) 2019; 12 10.1016/j.bspc.2023.104894_b0150 Russell (10.1016/j.bspc.2023.104894_b0130) 1977; 11 Shukla (10.1016/j.bspc.2023.104894_b0160) 2019; 5 10.1016/j.bspc.2023.104894_b0290 Huang (10.1016/j.bspc.2023.104894_b0090) 2021; 448 Kose (10.1016/j.bspc.2023.104894_b0200) 2021; 15 Prabha (10.1016/j.bspc.2023.104894_b0295) 2021; 136 Khateeb (10.1016/j.bspc.2023.104894_b0085) 2021; 9 Islam (10.1016/j.bspc.2023.104894_b0045) 2021; 9 Cui (10.1016/j.bspc.2023.104894_b0065) 2020; 205 Mert (10.1016/j.bspc.2023.104894_b0105) 2018; 81 Gupta (10.1016/j.bspc.2023.104894_b0140) 2016; 174 Subasi (10.1016/j.bspc.2023.104894_b0025) 2021; 68 Rabiul (10.1016/j.bspc.2023.104894_b0120) 2021; 136 Swana (10.1016/j.bspc.2023.104894_b0240) 2022; 22 Maheshwari (10.1016/j.bspc.2023.104894_b0145) 2021; 134 Pane (10.1016/j.bspc.2023.104894_b0035) 2019; 20 Chen (10.1016/j.bspc.2023.104894_b0110) 2020; 164 Yin (10.1016/j.bspc.2023.104894_b0050) 2020; 162 Yang (10.1016/j.bspc.2023.104894_b0255) 2020; 415 Hernandez-Matamoros (10.1016/j.bspc.2023.104894_b0195) 2020; 40 Prabha (10.1016/j.bspc.2023.104894_b0235) 2021 Liu (10.1016/j.bspc.2023.104894_b0060) 2020; 18 Zhu (10.1016/j.bspc.2023.104894_b0280) 2006; 51 Gao (10.1016/j.bspc.2023.104894_b0245) 2020; 79 Liu (10.1016/j.bspc.2023.104894_b0170) 2018; 9 10.1016/j.bspc.2023.104894_b0250 Sneddon (10.1016/j.bspc.2023.104894_b0220) 2007; 386 Saganowski (10.1016/j.bspc.2023.104894_b0075) 2022; 9 Probst (10.1016/j.bspc.2023.104894_b0285) 2019; 20 Singh (10.1016/j.bspc.2023.104894_b0070) 2023; 14 Pandey (10.1016/j.bspc.2023.104894_b0275) 2022; 34 Srinivas (10.1016/j.bspc.2023.104894_b0270) 2022; 73 He (10.1016/j.bspc.2023.104894_b0115) 2022; 141 Salankar (10.1016/j.bspc.2023.104894_b0125) 2021; 65 Li (10.1016/j.bspc.2023.104894_b0185) 2018 Arnau-González (10.1016/j.bspc.2023.104894_b0100) 2017; 244 10.1016/j.bspc.2023.104894_b0225 Goshvarpour (10.1016/j.bspc.2023.104894_b0020) 2017; 40 10.1016/j.bspc.2023.104894_b0265 Liu (10.1016/j.bspc.2023.104894_b0135) 2020; 123 Chakladar (10.1016/j.bspc.2023.104894_b0165) 2018; 24 Zhang (10.1016/j.bspc.2023.104894_b0180) 2018; 77 |
| References_xml | – volume: 9 start-page: 94601 year: 2021 end-page: 94624 ident: b0045 article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques publication-title: IEEE Access – volume: 136 year: 2021 ident: b0120 article-title: EEG channel correlation based model for emotion recognition publication-title: Comput. Biol. Med. – volume: 386 start-page: 101 year: 2007 end-page: 118 ident: b0220 article-title: The Tsallis entropy of natural information publication-title: Physica A – volume: 141 year: 2022 ident: b0115 article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition publication-title: Comput. Biol. Med. – volume: 84 start-page: 31 year: Jan. 2016 end-page: 35 ident: b0175 article-title: ‘Bispectral analysis of EEG for emotion recognition’ publication-title: Procedia Comput. Sci. – reference: V. Kravchenko, H.M, P. Meana, V. Ponomaryov, Adaptive Digital Processing of Multidimensional Signals With Applications, 2009. – reference: Nandini, Durgesh, Jyoti Yadav, Asha Rani, and Vijander Singh. “Improved patient-independent seizure detection system using novel feature extraction techniques.” In Proceedings of Second Doctoral Symposium on Computational Intelligence, pp. 879-888. Springer, Singapore, 2022. DOI: https://doi.org/10.1007/978-981-16-3346-1_71. – volume: 6 start-page: 20 year: 2004 end-page: 29 ident: b0230 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: ACM SIGKDD explorations newsletter – volume: 42 start-page: 1 year: 2018 end-page: 25 ident: b0005 article-title: A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison publication-title: J. Med. Syst. – volume: 76 start-page: 2159 year: 2017 end-page: 2183 ident: b0015 article-title: Affect representation and recognition in 3D continuous valence–arousal–dominance space publication-title: Multimedia Tools Appl. – volume: 51 start-page: 918 year: 2006 end-page: 930 ident: b0280 article-title: Automatic dimensionality selection from the scree plot via the use of profile likelihood publication-title: Comput. Stat. Data Anal. – volume: 244 start-page: 81 year: 2017 end-page: 89 ident: b0100 article-title: Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals publication-title: Neurocomputing – volume: 62 year: 2020 ident: b0205 article-title: Two-level multi-domain feature extraction on sparse representation for motor imagery classification publication-title: Biomed. Signal Process. Control – volume: 116 start-page: 257 year: 2019 end-page: 268 ident: b0300 article-title: An unsupervised EEG decoding system for human emotion recognition publication-title: Neural Netw. – reference: Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, Masanori Koyama, Optuna: A next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631. 2019. DOI: https://doi.org/10.48550/arXiv.1907.10902. – volume: 40 start-page: 355 year: 2017 end-page: 368 ident: b0020 article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method publication-title: Biomed. J. – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: b0255 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing – volume: 9 start-page: 158 year: 2022 ident: b0075 article-title: Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables publication-title: Sci. Data – start-page: 1 year: 2021 end-page: 14 ident: b0235 article-title: Respiratory Effort Signal Based Sleep Apnea Detection System Using Improved Random Forest Classifier publication-title: IETE J. Res. – volume: 8 start-page: 67444 year: 2020 end-page: 67455 ident: b0080 article-title: Adaptive emotion detection using the valence-arousal-dominance model and EEG brain rhythmic activity changes in relevant brain lobes publication-title: IEEE Access – volume: 34 start-page: 1730 year: 2022 end-page: 1738 ident: b0275 article-title: Subject independent emotion recognition from EEG using VMD and deep learning publication-title: J. King Saud University-Computer and Information Sci. – volume: 11 start-page: 532 year: 2018 end-page: 541 ident: b0055 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 9 start-page: 12134 year: 2021 end-page: 12142 ident: b0085 article-title: Multi-domain feature fusion for emotion classification using DEAP dataset publication-title: IEEE Access – volume: 20 start-page: 405 year: 2019 end-page: 417 ident: b0035 article-title: Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters publication-title: Cogn. Process. – volume: 116 year: 2020 ident: b0210 article-title: Symplectic geometry decomposition-based features for automatic epileptic seizure detection publication-title: Comput. Biol. Med. – volume: 119 year: 2020 ident: b0215 article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals publication-title: Comput. Biol. Med. – reference: Bajaj, Nikesh, Wavelets for EEG Analysis, in: Wavelet Theory. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.94398. – volume: 164 year: 2020 ident: b0110 article-title: EEG emotion recognition model based on the LIBSVM classifier publication-title: Measurement – volume: 68 year: 2021 ident: b0025 article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier publication-title: Biomed. Signal Process. Control – volume: 58 year: 2020 ident: b0095 article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm publication-title: Biomed. Signal Process. Control – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: b0155 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. – volume: 22 start-page: 3246 year: 2022 ident: b0240 article-title: Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset publication-title: Sensors – volume: 174 start-page: 875 year: 2016 end-page: 884 ident: b0140 article-title: Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization publication-title: Neurocomputing – volume: 205 start-page: 106243 year: 2020 ident: b0065 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Knowl.-Based Syst. – volume: 79 start-page: 27057 year: 2020 end-page: 27074 ident: b0245 article-title: EEG based emotion recognition using fusion feature extraction method publication-title: Multimed. Tools Appl. – volume: 136 year: 2021 ident: b0295 article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier publication-title: Comput. Biol. Med. – start-page: 3 year: 2019 end-page: 33 ident: b0260 article-title: Hyperparameter optimization publication-title: Automated machine learning – start-page: 1 year: 2022 end-page: 5 ident: b0190 article-title: Efficient Patient Independent Seizure Detection System using WAF based Hybrid Feature Extraction Method and XGBoost classifier publication-title: In 2022 IEEE Delhi Section Conference (DELCON) – volume: 18 start-page: 1710 year: 2020 end-page: 1721 ident: b0060 article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 15 start-page: 1863 year: 2021 end-page: 1871 ident: b0200 article-title: A new approach for emotions recognition through EOG and EMG signals publication-title: SIViP – volume: 34 start-page: 12527 year: 2022 end-page: 12557 ident: b0040 article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review publication-title: Neural Comput. Applic. – volume: 5 start-page: 327 year: Feb. 2019 end-page: 339 ident: b0160 article-title: ‘Feature extraction and selection for emotion recognition from electro- dermal activity’ publication-title: IEEE Trans. Affect. Comput. – volume: 134 start-page: 104428 year: 2021 ident: b0145 article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals publication-title: Comput. Biol. Med. – volume: 448 start-page: 140 year: 2021 end-page: 151 ident: b0090 article-title: Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition publication-title: Neurocomputing – volume: 81 start-page: 106 year: 2018 end-page: 115 ident: b0105 article-title: Emotion recognition based on time–frequency distribution of EEG signals using multivariate synchrosqueezing transform publication-title: Digital Signal Process. – volume: 14 start-page: 2429 year: 2023 end-page: 2441 ident: b0070 article-title: “Quaternary classification of emotions based on electroencephalogram signals using hybrid deep learning model.” Journal of Ambient Intelligence and Humanized publication-title: Computing – year: 2018 ident: b0185 article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification publication-title: Technol. Health Care – volume: 11 start-page: 273 year: 1977 end-page: 294 ident: b0130 article-title: Evidence for a three-factor theory of emotions publication-title: J. Res. Pers. – volume: 77 start-page: 26697 year: 2018 end-page: 26710 ident: b0180 article-title: EEG-based classification of emotions using empirical mode decomposition and autoregressive model publication-title: Multimedia Tools Appl. – volume: 20 start-page: 1934 year: 2019 end-page: 1965 ident: b0285 article-title: Tunability: Importance of hyperparameters of machine learning algorithms publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 98 year: 2018 end-page: 106 ident: b0165 article-title: EEG based emotion classification using “Correlation Based Subset Selection” publication-title: Biol. Inspired Cognit. Archit. – volume: 162 year: 2020 ident: b0050 article-title: Locally robust EEG feature selection for individual-independent emotion recognition publication-title: Expert Syst. Appl. – volume: 73 year: 2022 ident: b0270 article-title: hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost publication-title: Biomed. Signal Process. Control – volume: 123 year: 2020 ident: b0135 article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network publication-title: Comput. Biol. Med. – volume: 40 start-page: 803 year: 2020 end-page: 814 ident: b0195 article-title: Recognition of ECG signals using wavelet based on atomic functions publication-title: Biocybernetics and Biomedical Engineering – reference: Ahirwal, Mitul Kumar, Mangesh Ramaji Kose, Emotion recognition system based on EEG signal: A comparative study of different features and classifiers, in: 2018 second international conference on computing methodologies and communication (ICCMC), pp. 472-476. IEEE, 2018. DOI: https://doi.org/10.1109/ICCMC.2018.8488044. – volume: 12 start-page: 21 year: 2019 ident: b0010 article-title: Emotion classification based on biophysical signals and machine learning techniques publication-title: Symmetry – volume: 9 start-page: 550 year: Oct. 2018 end-page: 562 ident: b0170 article-title: ‘Real-time movie-induced discrete emotion recognition from EEG signals’ publication-title: IEEE Trans. Affect. Comput. – volume: 24 start-page: 1442 year: 2021 end-page: 1454 ident: b0030 article-title: Emotion recognition based on EEG feature maps through deep learning network publication-title: Eng. Sci. Technol. Int. J. – volume: 65 year: 2021 ident: b0125 article-title: Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot publication-title: Biomed. Signal Process. Control – volume: 5 start-page: 327 issue: 3 year: 2019 ident: 10.1016/j.bspc.2023.104894_b0160 article-title: ‘Feature extraction and selection for emotion recognition from electro- dermal activity’ publication-title: IEEE Trans. Affect. Comput. – volume: 116 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0210 article-title: Symplectic geometry decomposition-based features for automatic epileptic seizure detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103549 – volume: 22 start-page: 3246 issue: 9 year: 2022 ident: 10.1016/j.bspc.2023.104894_b0240 article-title: Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset publication-title: Sensors doi: 10.3390/s22093246 – volume: 73 year: 2022 ident: 10.1016/j.bspc.2023.104894_b0270 article-title: hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103456 – volume: 119 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0215 article-title: Selection of features for patient-independent detection of seizure events using scalp EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103671 – volume: 136 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0295 article-title: Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104664 – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 10.1016/j.bspc.2023.104894_b0055 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2817622 – start-page: 3 year: 2019 ident: 10.1016/j.bspc.2023.104894_b0260 article-title: Hyperparameter optimization – ident: 10.1016/j.bspc.2023.104894_b0225 – volume: 9 start-page: 94601 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0045 article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091487 – volume: 162 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0050 article-title: Locally robust EEG feature selection for individual-independent emotion recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113768 – volume: 6 start-page: 20 issue: 1 year: 2004 ident: 10.1016/j.bspc.2023.104894_b0230 article-title: A study of the behavior of several methods for balancing machine learning training data publication-title: ACM SIGKDD explorations newsletter doi: 10.1145/1007730.1007735 – ident: 10.1016/j.bspc.2023.104894_b0290 doi: 10.5772/intechopen.94398 – volume: 205 start-page: 106243 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0065 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106243 – volume: 15 start-page: 1863 issue: 8 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0200 article-title: A new approach for emotions recognition through EOG and EMG signals publication-title: SIViP doi: 10.1007/s11760-021-01942-1 – volume: 20 start-page: 405 issue: 4 year: 2019 ident: 10.1016/j.bspc.2023.104894_b0035 article-title: Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters publication-title: Cogn. Process. doi: 10.1007/s10339-019-00924-z – volume: 174 start-page: 875 year: 2016 ident: 10.1016/j.bspc.2023.104894_b0140 article-title: Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.085 – ident: 10.1016/j.bspc.2023.104894_b0265 doi: 10.1145/3292500.3330701 – volume: 24 start-page: 1442 issue: 6 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0030 article-title: Emotion recognition based on EEG feature maps through deep learning network publication-title: Eng. Sci. Technol. Int. J. – volume: 134 start-page: 104428 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0145 article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104428 – volume: 40 start-page: 803 issue: 2 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0195 article-title: Recognition of ECG signals using wavelet based on atomic functions publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2020.02.007 – volume: 34 start-page: 12527 issue: 15 year: 2022 ident: 10.1016/j.bspc.2023.104894_b0040 article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: a comprehensive review publication-title: Neural Comput. Applic. doi: 10.1007/s00521-022-07292-4 – volume: 116 start-page: 257 year: 2019 ident: 10.1016/j.bspc.2023.104894_b0300 article-title: An unsupervised EEG decoding system for human emotion recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.04.003 – volume: 65 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0125 article-title: Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102389 – volume: 8 start-page: 67444 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0080 article-title: Adaptive emotion detection using the valence-arousal-dominance model and EEG brain rhythmic activity changes in relevant brain lobes publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986504 – volume: 18 start-page: 1710 issue: 5 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0060 article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2020.3018137 – volume: 79 start-page: 27057 issue: 37 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0245 article-title: EEG based emotion recognition using fusion feature extraction method publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09354-y – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 10.1016/j.bspc.2023.104894_b0155 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 164 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0110 article-title: EEG emotion recognition model based on the LIBSVM classifier publication-title: Measurement doi: 10.1016/j.measurement.2020.108047 – volume: 77 start-page: 26697 issue: 20 year: 2018 ident: 10.1016/j.bspc.2023.104894_b0180 article-title: EEG-based classification of emotions using empirical mode decomposition and autoregressive model publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-5885-9 – ident: 10.1016/j.bspc.2023.104894_b0150 doi: 10.1109/ICCMC.2018.8488044 – volume: 62 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0205 article-title: Two-level multi-domain feature extraction on sparse representation for motor imagery classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102160 – ident: 10.1016/j.bspc.2023.104894_b0250 doi: 10.1007/978-981-16-3346-1_71 – volume: 9 start-page: 158 issue: 1 year: 2022 ident: 10.1016/j.bspc.2023.104894_b0075 article-title: Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables publication-title: Sci. Data doi: 10.1038/s41597-022-01262-0 – volume: 141 year: 2022 ident: 10.1016/j.bspc.2023.104894_b0115 article-title: An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105048 – volume: 84 start-page: 31 year: 2016 ident: 10.1016/j.bspc.2023.104894_b0175 article-title: ‘Bispectral analysis of EEG for emotion recognition’ publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.04.062 – volume: 448 start-page: 140 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0090 article-title: Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.105 – volume: 123 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0135 article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103927 – volume: 42 start-page: 1 issue: 9 year: 2018 ident: 10.1016/j.bspc.2023.104894_b0005 article-title: A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1020-8 – volume: 81 start-page: 106 year: 2018 ident: 10.1016/j.bspc.2023.104894_b0105 article-title: Emotion recognition based on time–frequency distribution of EEG signals using multivariate synchrosqueezing transform publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2018.07.003 – volume: 76 start-page: 2159 issue: 2 year: 2017 ident: 10.1016/j.bspc.2023.104894_b0015 article-title: Affect representation and recognition in 3D continuous valence–arousal–dominance space publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-015-3119-y – volume: 68 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0025 article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102648 – volume: 9 start-page: 550 issue: 4 year: 2018 ident: 10.1016/j.bspc.2023.104894_b0170 article-title: ‘Real-time movie-induced discrete emotion recognition from EEG signals’ publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2660485 – volume: 9 start-page: 12134 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0085 article-title: Multi-domain feature fusion for emotion classification using DEAP dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051281 – volume: 11 start-page: 273 issue: 3 year: 1977 ident: 10.1016/j.bspc.2023.104894_b0130 article-title: Evidence for a three-factor theory of emotions publication-title: J. Res. Pers. doi: 10.1016/0092-6566(77)90037-X – volume: 244 start-page: 81 year: 2017 ident: 10.1016/j.bspc.2023.104894_b0100 article-title: Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.027 – start-page: 1 year: 2022 ident: 10.1016/j.bspc.2023.104894_b0190 article-title: Efficient Patient Independent Seizure Detection System using WAF based Hybrid Feature Extraction Method and XGBoost classifier – volume: 51 start-page: 918 issue: 2 year: 2006 ident: 10.1016/j.bspc.2023.104894_b0280 article-title: Automatic dimensionality selection from the scree plot via the use of profile likelihood publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2005.09.010 – volume: 136 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0120 article-title: EEG channel correlation based model for emotion recognition publication-title: Comput. Biol. Med. – volume: 40 start-page: 355 issue: 6 year: 2017 ident: 10.1016/j.bspc.2023.104894_b0020 article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method publication-title: Biomed. J. doi: 10.1016/j.bj.2017.11.001 – volume: 415 start-page: 295 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0255 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 12 start-page: 21 issue: 1 year: 2019 ident: 10.1016/j.bspc.2023.104894_b0010 article-title: Emotion classification based on biophysical signals and machine learning techniques publication-title: Symmetry doi: 10.3390/sym12010021 – volume: 386 start-page: 101 issue: 1 year: 2007 ident: 10.1016/j.bspc.2023.104894_b0220 article-title: The Tsallis entropy of natural information publication-title: Physica A doi: 10.1016/j.physa.2007.05.065 – volume: 58 year: 2020 ident: 10.1016/j.bspc.2023.104894_b0095 article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101867 – volume: 24 start-page: 98 year: 2018 ident: 10.1016/j.bspc.2023.104894_b0165 article-title: EEG based emotion classification using “Correlation Based Subset Selection” publication-title: Biol. Inspired Cognit. Archit. – year: 2018 ident: 10.1016/j.bspc.2023.104894_b0185 article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification publication-title: Technol. Health Care doi: 10.3233/THC-174836 – volume: 14 start-page: 2429 issue: 3 year: 2023 ident: 10.1016/j.bspc.2023.104894_b0070 article-title: “Quaternary classification of emotions based on electroencephalogram signals using hybrid deep learning model.” Journal of Ambient Intelligence and Humanized publication-title: Computing – start-page: 1 year: 2021 ident: 10.1016/j.bspc.2023.104894_b0235 article-title: Respiratory Effort Signal Based Sleep Apnea Detection System Using Improved Random Forest Classifier publication-title: IETE J. Res. – volume: 20 start-page: 1934 issue: 1 year: 2019 ident: 10.1016/j.bspc.2023.104894_b0285 article-title: Tunability: Importance of hyperparameters of machine learning algorithms publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 1730 issue: 5 year: 2022 ident: 10.1016/j.bspc.2023.104894_b0275 article-title: Subject independent emotion recognition from EEG using VMD and deep learning publication-title: J. King Saud University-Computer and Information Sci. doi: 10.1016/j.jksuci.2019.11.003 |
| SSID | ssj0048714 |
| Score | 2.4013252 |
| Snippet | •Use of EEG signals to facilitate the design of an emotionally efficient human–computer interface system.•Three subject-independent emotion detection systems:... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104894 |
| SubjectTerms | Affective-computing DEAP Database Discrete-Emotions EEG OPTUNA Hyper-parameter optimization Subject-Independent Valence-Arousal-Dominance Wavelet-based on Atomic-Functions |
| Title | Design of subject independent 3D VAD emotion detection system using EEG signals and machine learning algorithms |
| URI | https://dx.doi.org/10.1016/j.bspc.2023.104894 |
| Volume | 85 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0048714 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHPwZip0H7Q9Eh6iJlwUw63Z7e5iDbQEytXf7m4fBBPDwWObmab5Op35tv12BqF7rInGjHCHkI50KGe-4_tSO64vA82DgCmeC2THndGEvkzZtIZ61V4YK6ssc3-R0_NsXZ5plWi2lnHcejNcuuOb1Ykh0W2CPbtup9SzUwwev7cyD8PH8_7e1tix1uXGmULjJdZL28YQE_ur0w_o38Vpp-AMT9BxyRShW9zMKaqp5Awd7fQPPEdpP9dfQKphvRH2iwrE27G2GZA-fHT7oIpJPSBVluuuEijaN4PVvM9gMHgCexUTh8ATCYtcXqmgnCcxAz6fpas4-1ysL9BkOHjvjZxygoITGVAyR5kX0tWeEIQbmkJ0JAmL2oJo5Rsm6HNNMDclTDElzDor4kTSCEdceUQESnBGLlE9SRN1hUBHgZSYSyGpplywgDOtiadcLCSmXtBAbgVdGJXtxe2Ui3lY6ci-Qgt3aOEOC7gb6GHrsyyaa-y1ZtUTCX-FSGiy_x6_63_63aBDe1So_W5RPVtt1J1hIJlo5iHWRAfd59fR-Af-9dx5 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTleQMbCm3suEnGqg8KlC60qFtkx3YJapOqTVd-O3YeVZFQB9bkHEVfLnffJZ_vELrHiihMCbMIaQjLYdSzPE8oy_aEr5jvU8kygeyg0Rs5L2M6rqBWuRfGyCqL2J_H9CxaF0dqBZq1eRTV3jWXbni6OtEkuk6wq-v2XYdi11Rgj99rnYcm5FmDb2NtGfNi50wu8uLLueljiIn51-n5zt_ZaSPjdI_QYUEVoZnfzTGqyPgEHWw0EDxFSTsTYECiYLni5pMKROu5timQNnw02yDzUT0gZJoJr2LI-zeDEb1PoNN5AnMV7YjAYgGzTF8poRgoMQE2nSSLKP2cLc_QqNsZtnpWMULBCjUqqSX1G2krl3PCNE8hKhSEhnVOlPQ0FfSYIpjpHCap5LrQChkRTohDJl3CfckZJedoJ05ieYFAhb4QmAkuHOUwTn1GlSKutDEX2HH9KrJL6IKw6C9uxlxMg1JI9hUYuAMDd5DDXUUP6zXzvLvGVmtaPpHgl48EOvxvWXf5z3V3aK83fOsH_efB6xXaN2dy6d812kkXK3mj6UjKbzN3-wE22d4O |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+subject+independent+3D+VAD+emotion+detection+system+using+EEG+signals+and+machine+learning+algorithms&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Nandini%2C+Durgesh&rft.au=Yadav%2C+Jyoti&rft.au=Rani%2C+Asha&rft.au=Singh%2C+Vijander&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=85&rft_id=info:doi/10.1016%2Fj.bspc.2023.104894&rft.externalDocID=S1746809423003270 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |