Binary artificial algae algorithm for multidimensional knapsack problems

[Display omitted] •A novel binary artificial algae algorithm is proposed for solving MKPs.•The method is composed of discrete process, repair operators and elite local search.•The results show the proposed method outperforms many existing algorithms. The multidimensional knapsack problem (MKP) is a...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 43; pp. 583 - 595
Main Authors Zhang, Xuedong, Wu, Changzhi, Li, Jing, Wang, Xiangyu, Yang, Zhijing, Lee, Jae-Myung, Jung, Kwang-Hyo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2016.02.027

Cover

Abstract [Display omitted] •A novel binary artificial algae algorithm is proposed for solving MKPs.•The method is composed of discrete process, repair operators and elite local search.•The results show the proposed method outperforms many existing algorithms. The multidimensional knapsack problem (MKP) is a well-known NP-hard optimization problem. Various meta-heuristic methods are dedicated to solve this problem in literature. Recently a new meta-heuristic algorithm, called artificial algae algorithm (AAA), was presented, which has been successfully applied to solve various continuous optimization problems. However, due to its continuous nature, AAA cannot settle the discrete problem straightforwardly such as MKP. In view of this, this paper proposes a binary artificial algae algorithm (BAAA) to efficiently solve MKP. This algorithm is composed of discrete process, repair operators and elite local search. In discrete process, two logistic functions with different coefficients of curve are studied to achieve good discrete process results. Repair operators are performed to make the solution feasible and increase the efficiency. Finally, elite local search is introduced to improve the quality of solutions. To demonstrate the efficiency of our proposed algorithm, simulations and evaluations are carried out with total of 94 benchmark problems and compared with other bio-inspired state-of-the-art algorithms in the recent years including MBPSO, BPSOTVAC, CBPSOTVAC, GADS, bAFSA, and IbAFSA. The results show the superiority of BAAA to many compared existing algorithms.
AbstractList [Display omitted] •A novel binary artificial algae algorithm is proposed for solving MKPs.•The method is composed of discrete process, repair operators and elite local search.•The results show the proposed method outperforms many existing algorithms. The multidimensional knapsack problem (MKP) is a well-known NP-hard optimization problem. Various meta-heuristic methods are dedicated to solve this problem in literature. Recently a new meta-heuristic algorithm, called artificial algae algorithm (AAA), was presented, which has been successfully applied to solve various continuous optimization problems. However, due to its continuous nature, AAA cannot settle the discrete problem straightforwardly such as MKP. In view of this, this paper proposes a binary artificial algae algorithm (BAAA) to efficiently solve MKP. This algorithm is composed of discrete process, repair operators and elite local search. In discrete process, two logistic functions with different coefficients of curve are studied to achieve good discrete process results. Repair operators are performed to make the solution feasible and increase the efficiency. Finally, elite local search is introduced to improve the quality of solutions. To demonstrate the efficiency of our proposed algorithm, simulations and evaluations are carried out with total of 94 benchmark problems and compared with other bio-inspired state-of-the-art algorithms in the recent years including MBPSO, BPSOTVAC, CBPSOTVAC, GADS, bAFSA, and IbAFSA. The results show the superiority of BAAA to many compared existing algorithms.
Author Jung, Kwang-Hyo
Wang, Xiangyu
Wu, Changzhi
Yang, Zhijing
Lee, Jae-Myung
Zhang, Xuedong
Li, Jing
Author_xml – sequence: 1
  givenname: Xuedong
  surname: Zhang
  fullname: Zhang, Xuedong
  organization: School of Management Science and Engineering, Anhui University of Finance & Economics, Bengbu 233000, China
– sequence: 2
  givenname: Changzhi
  surname: Wu
  fullname: Wu, Changzhi
  organization: Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, Perth, WA 6845, Australia
– sequence: 3
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Information and Intelligence Engineering Department, Anhui Vocational College of Electronics & Information Technology, Bengbu 233000, China
– sequence: 4
  givenname: Xiangyu
  surname: Wang
  fullname: Wang, Xiangyu
  organization: Australasian Joint Research Centre for Building Information Modelling, School of Built Environment, Curtin University, Perth, WA 6845, Australia
– sequence: 5
  givenname: Zhijing
  surname: Yang
  fullname: Yang, Zhijing
  email: yzhj@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 6
  givenname: Jae-Myung
  surname: Lee
  fullname: Lee, Jae-Myung
  organization: Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, South Korea
– sequence: 7
  givenname: Kwang-Hyo
  surname: Jung
  fullname: Jung, Kwang-Hyo
  organization: Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, South Korea
BookMark eNp9kMFOwzAMhiM0JLbBC3DqC7QkaZc2EheYYEOaxAXOUZo64K1tpiQg8fakGicOkyz7P_iz9f8LMhvdCITcMlowysTdvtDBmYInXVCeqr4gc9bUPJeiYbOkV6LJK1mJK7IIYU_TouTNnGwfcdT-J9M-okWDus90_6Fh6s5j_Bwy63w2fPUROxxgDOjGtHQY9TFoc8iO3rU9DOGaXFrdB7j5m0vy_vz0tt7mu9fNy_phl5uS0pgDFZUQjUjfBeO6rm3ZtRYMtFXXtQAaypYmqbta2ko0diVqkFIKYUxrmCyXhJ_uGu9C8GDV0eOQLChG1ZSF2qspCzVloShPVSeo-QcZjDomK9Fr7M-j9ycUkqlvBK-CQRgNdOjBRNU5PIf_Akpofvs
CitedBy_id crossref_primary_10_1016_j_apm_2017_05_001
crossref_primary_10_1007_s00500_017_2744_y
crossref_primary_10_1109_ACCESS_2021_3124710
crossref_primary_10_1016_j_cie_2021_107469
crossref_primary_10_1016_j_envres_2021_112574
crossref_primary_10_1016_j_jestch_2020_07_001
crossref_primary_10_1080_0952813X_2020_1785020
crossref_primary_10_1016_j_apm_2017_06_010
crossref_primary_10_1007_s13042_020_01085_8
crossref_primary_10_3390_a15100366
crossref_primary_10_1155_2018_3010514
crossref_primary_10_1016_j_asoc_2020_107077
crossref_primary_10_1016_j_advengsoft_2021_102998
crossref_primary_10_1016_j_asoc_2022_108443
crossref_primary_10_1016_j_bspc_2023_105073
crossref_primary_10_1155_2018_8395193
crossref_primary_10_1016_j_cie_2019_04_025
crossref_primary_10_1155_2017_8404231
crossref_primary_10_17341_gazimmfd_1111302
crossref_primary_10_1016_j_apm_2017_09_015
crossref_primary_10_1016_j_eswa_2020_113298
crossref_primary_10_55195_jscai_1560068
crossref_primary_10_1186_s40537_024_00931_8
crossref_primary_10_1016_j_fcij_2018_06_001
crossref_primary_10_1007_s10489_017_0972_6
crossref_primary_10_1007_s00521_023_09190_9
crossref_primary_10_1016_j_asoc_2022_108630
crossref_primary_10_1016_j_swevo_2021_100993
crossref_primary_10_1016_j_iswa_2025_200502
crossref_primary_10_1155_2018_8705134
crossref_primary_10_4236_ajor_2018_85023
crossref_primary_10_1016_j_asoc_2017_02_009
crossref_primary_10_1016_j_cie_2019_06_027
crossref_primary_10_1109_ACCESS_2022_3156593
crossref_primary_10_1016_j_asoc_2019_105576
crossref_primary_10_1007_s00521_022_07932_9
crossref_primary_10_1186_s40537_024_01055_9
crossref_primary_10_3390_math8040507
crossref_primary_10_1007_s11063_023_11171_x
crossref_primary_10_1109_TCYB_2020_3002495
crossref_primary_10_1016_j_asoc_2016_05_021
crossref_primary_10_1016_j_asoc_2020_107054
crossref_primary_10_1016_j_asoc_2019_105611
crossref_primary_10_1016_j_asoc_2018_01_001
crossref_primary_10_1007_s13369_024_09222_z
crossref_primary_10_1007_s40747_021_00410_0
crossref_primary_10_1016_j_swevo_2017_04_004
crossref_primary_10_1016_j_eswa_2020_114288
crossref_primary_10_1007_s13042_022_01518_6
crossref_primary_10_1007_s00521_022_07058_y
crossref_primary_10_1007_s13369_021_05677_6
crossref_primary_10_1016_j_eswa_2021_115078
crossref_primary_10_1007_s00366_019_00853_7
crossref_primary_10_1007_s13369_021_05415_y
crossref_primary_10_1016_j_swevo_2018_08_006
crossref_primary_10_1080_0305215X_2019_1657113
crossref_primary_10_1016_j_jestch_2024_101684
crossref_primary_10_1007_s13042_017_0772_7
crossref_primary_10_1016_j_asoc_2021_107346
crossref_primary_10_3390_electronics12092042
crossref_primary_10_3934_jimo_2017021
Cites_doi 10.1109/TSP.2014.2371779
10.1023/A:1009642405419
10.1016/j.swevo.2013.09.002
10.1016/S0377-2217(02)00149-2
10.1016/j.asoc.2014.10.030
10.1016/j.ejor.2006.02.058
10.1109/TSP.2014.2312326
10.1016/j.eswa.2013.11.040
10.1016/j.sigpro.2013.11.018
10.1016/S0377-2217(03)00274-1
10.1287/opre.1080.0529
10.1016/j.asoc.2015.01.022
10.1287/mnsc.48.4.550.208
10.1016/j.cor.2015.04.018
10.1016/j.amc.2012.05.001
10.1016/j.asoc.2015.03.003
10.1287/ijoc.1090.0344
10.1016/S0377-2217(97)00296-8
10.1016/j.apm.2013.08.009
10.1109/TSP.2011.2171956
10.1002/1520-6750(198704)34:2<161::AID-NAV3220340203>3.0.CO;2-A
10.1016/j.cor.2011.10.016
10.1016/j.asoc.2010.07.019
10.1016/j.ins.2012.12.043
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.02.027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 595
ExternalDocumentID 10_1016_j_asoc_2016_02_027
S1568494616300783
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-e0646686692612a77f3dbfeceb4ddbeeae3b04ddad79f468f567e99966ccbc193
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:06 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artificial algae algorithm
Pseudo-utility ratio
Multidimensional knapsack problem
Elite local search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-e0646686692612a77f3dbfeceb4ddbeeae3b04ddad79f468f567e99966ccbc193
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_asoc_2016_02_027
crossref_citationtrail_10_1016_j_asoc_2016_02_027
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_02_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
2016-06-00
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fréville (bib0030) 2004; 155
Li, Liang, Chang (bib0055) 2012; 39
Ling, Ho, Subramaniam, Georgakis, Cao, Dai (bib0025) 2014; 98
Chih (bib0150) 2015; 26
Suganthan, Hansen, Liang, Deb, Chen, Auger, Tiwari (bib0170) 2005
Baykasoğlu, Ozsoydan (bib0105) 2014; 41
Kong, Gao, Ouyang, Li (bib0110) 2015; 63
Uymaz, Tezel, Yel (bib0165) 2015; 31
Azad, Rocha, Fernandes (bib0125) 2012
Hembecker, Lopes, Godoy (bib0095) 2007
Zhang, Pan, Zhang, Duan (bib0115) 2015; 29
Chih, Lin, Chern, Ou (bib0145) 2014; 38
Hanafi, Freville (bib0085) 1998; 106
Pirkul (bib0175) 1987; 34
Varnamkhasti (bib0045) 2012; 4
Subramaniam, Ling, Georgakis (bib0020) 2012; 60
Sakawa, Kato (bib0080) 2003; 144
Chu, Beasley (bib0070) 1998; 4
Kennedy, Eberhart (bib0140) 1997
Zou, Gao, Li, Wu (bib0160) 2011; 11
Binitha, Sathya (bib0135) 2012; 2
Balev, Yanev, Fréville, Andonov (bib0050) 2008; 186
Yang, Cui, Xiao, Gandomi, Karamanoglu (bib0130) 2013
Gallardo, Cotta, Fernández (bib0065) 2005
Vasquez, Hao (bib0060) 2001
Ling, Ho, Cao, Dai (bib0005) 2013; 9
Ling, Tian, Ho, Siu, Teo, Dai (bib0010) 2015; 63
Song, Schmeiser (bib0185) 2009; 57
Azad, Rocha, Fernandes (bib0120) 2014; 14
Djannaty, Doostdar (bib0075) 2008; 3
Bansal, Deep (bib0100) 2012; 218
Ling, Ho, Teo, Siu, Cao, Dai (bib0015) 2014; 62
Bertsimas, Demir (bib0035) 2002; 48
Xiangyong Konga, Gaoa (bib0180) 2015; 63
Qian, Ding (bib0090) 2007; 16
Wang, Yang, Xu, Niu, Pardalos, Fei (bib0155) 2013; 232
Puchinger, Raidl, Pferschy (bib0040) 2010; 22
Chu (10.1016/j.asoc.2016.02.027_bib0070) 1998; 4
Qian (10.1016/j.asoc.2016.02.027_bib0090) 2007; 16
Ling (10.1016/j.asoc.2016.02.027_bib0010) 2015; 63
Chih (10.1016/j.asoc.2016.02.027_bib0150) 2015; 26
Azad (10.1016/j.asoc.2016.02.027_bib0125) 2012
Fréville (10.1016/j.asoc.2016.02.027_bib0030) 2004; 155
Hanafi (10.1016/j.asoc.2016.02.027_bib0085) 1998; 106
Xiangyong Konga (10.1016/j.asoc.2016.02.027_bib0180) 2015; 63
Chih (10.1016/j.asoc.2016.02.027_bib0145) 2014; 38
Ling (10.1016/j.asoc.2016.02.027_bib0005) 2013; 9
Kennedy (10.1016/j.asoc.2016.02.027_bib0140) 1997
Djannaty (10.1016/j.asoc.2016.02.027_bib0075) 2008; 3
Ling (10.1016/j.asoc.2016.02.027_bib0025) 2014; 98
Puchinger (10.1016/j.asoc.2016.02.027_bib0040) 2010; 22
Bansal (10.1016/j.asoc.2016.02.027_bib0100) 2012; 218
Sakawa (10.1016/j.asoc.2016.02.027_bib0080) 2003; 144
Hembecker (10.1016/j.asoc.2016.02.027_bib0095) 2007
Zhang (10.1016/j.asoc.2016.02.027_bib0115) 2015; 29
Azad (10.1016/j.asoc.2016.02.027_bib0120) 2014; 14
Gallardo (10.1016/j.asoc.2016.02.027_bib0065) 2005
Baykasoğlu (10.1016/j.asoc.2016.02.027_bib0105) 2014; 41
Subramaniam (10.1016/j.asoc.2016.02.027_bib0020) 2012; 60
Pirkul (10.1016/j.asoc.2016.02.027_bib0175) 1987; 34
Ling (10.1016/j.asoc.2016.02.027_bib0015) 2014; 62
Yang (10.1016/j.asoc.2016.02.027_bib0130) 2013
Wang (10.1016/j.asoc.2016.02.027_bib0155) 2013; 232
Balev (10.1016/j.asoc.2016.02.027_bib0050) 2008; 186
Uymaz (10.1016/j.asoc.2016.02.027_bib0165) 2015; 31
Song (10.1016/j.asoc.2016.02.027_bib0185) 2009; 57
Binitha (10.1016/j.asoc.2016.02.027_bib0135) 2012; 2
Zou (10.1016/j.asoc.2016.02.027_bib0160) 2011; 11
Suganthan (10.1016/j.asoc.2016.02.027_bib0170) 2005
Varnamkhasti (10.1016/j.asoc.2016.02.027_bib0045) 2012; 4
Li (10.1016/j.asoc.2016.02.027_bib0055) 2012; 39
Kong (10.1016/j.asoc.2016.02.027_bib0110) 2015; 63
Bertsimas (10.1016/j.asoc.2016.02.027_bib0035) 2002; 48
Vasquez (10.1016/j.asoc.2016.02.027_bib0060) 2001
References_xml – volume: 41
  start-page: 3712
  year: 2014
  end-page: 3725
  ident: bib0105
  article-title: An improved firefly algorithm for solving dynamic multidimensional knapsack problems
  publication-title: Expert Syst. Appl.
– volume: 63
  start-page: 7
  year: 2015
  end-page: 22
  ident: bib0180
  article-title: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm
  publication-title: Comput. Oper. Res.
– volume: 2
  start-page: 137
  year: 2012
  end-page: 151
  ident: bib0135
  article-title: A survey of bio inspired optimization algorithms
  publication-title: Int. J. Soft Comput. Eng.
– volume: 106
  start-page: 659
  year: 1998
  end-page: 675
  ident: bib0085
  article-title: An efficient tabu search approach for the 0–1 multidimensional knapsack problem
  publication-title: Eur. J. Oper. Res.
– start-page: 72
  year: 2012
  end-page: 86
  ident: bib0125
  article-title: Solving multidimensional 0–1 knapsack problem with an artificial fish swarm algorithm
  publication-title: Computational Science and Its Applications-ICCSA 2012
– volume: 9
  start-page: 588
  year: 2013
  end-page: 593
  ident: bib0005
  article-title: Efficient complex-valued finite word length allpass rational IIR PCLS filter design via functional inequality constrained integer programming with bit plane searching technique
  publication-title: Mediterr. J. Electron. Commun.
– volume: 98
  start-page: 1
  year: 2014
  end-page: 22
  ident: bib0025
  article-title: Optimal design of Hermitian transform and vectors of both mask and window coefficients for denoising applications with both unknown noise characteristics and distortions
  publication-title: Signal Process.
– year: 2013
  ident: bib0130
  article-title: Swarm Intelligence and Bio-inspired Computation: Theory and Applications, Newnes
– volume: 218
  start-page: 11042
  year: 2012
  end-page: 11061
  ident: bib0100
  article-title: A modified binary particle swarm optimization for knapsack problems
  publication-title: Appl. Math. Comput.
– volume: 38
  start-page: 1338
  year: 2014
  end-page: 1350
  ident: bib0145
  article-title: Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem
  publication-title: Appl. Math. Model.
– volume: 34
  start-page: 161
  year: 1987
  end-page: 172
  ident: bib0175
  article-title: A heuristic solution procedure for the multiconstraint zero-one knapsack problem
  publication-title: Nav. Res. Logist.
– volume: 11
  start-page: 1556
  year: 2011
  end-page: 1564
  ident: bib0160
  article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm
  publication-title: Appl. Soft Comput.
– volume: 62
  start-page: 2517
  year: 2014
  end-page: 2530
  ident: bib0015
  article-title: Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter
  publication-title: IEEE Trans. Signal Process.
– volume: 4
  start-page: 37
  year: 2012
  end-page: 47
  ident: bib0045
  article-title: Overview of the algorithms for solving the multidimensional knapsack problems
  publication-title: Adv. Stud. Biol.
– volume: 144
  start-page: 581
  year: 2003
  end-page: 597
  ident: bib0080
  article-title: Genetic algorithms with double strings for 0–1 programming problems
  publication-title: Eur. J. Oper. Res.
– volume: 57
  start-page: 109
  year: 2009
  end-page: 117
  ident: bib0185
  article-title: Omitting meaningless digits in point estimates: the probability guarantee of leading-digit rules
  publication-title: Oper. Res.
– start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib0140
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5
– volume: 60
  start-page: 489
  year: 2012
  end-page: 493
  ident: bib0020
  article-title: Filtering in rotated time-frequency domains with unknown noise statistics
  publication-title: IEEE Trans. Signal Process.
– volume: 63
  start-page: 466
  year: 2015
  end-page: 481
  ident: bib0010
  article-title: Maximally decimated paraunitary linear phase FIR filter bank design via iterative SVD approach
  publication-title: IEEE Trans. Signal Process.
– volume: 16
  start-page: 320
  year: 2007
  ident: bib0090
  article-title: Simulated annealing for the 0/1 multidimensional knapsack problem
  publication-title: Numer. Math. Engl. Ser.
– volume: 232
  start-page: 58
  year: 2013
  end-page: 87
  ident: bib0155
  article-title: An improved adaptive binary harmony search algorithm
  publication-title: Inf. Sci.
– start-page: 328
  year: 2001
  end-page: 333
  ident: bib0060
  article-title: A hybrid approach for the 0–1 multidimensional knapsack problem
  publication-title: IJCAI
– volume: 186
  start-page: 63
  year: 2008
  end-page: 76
  ident: bib0050
  article-title: A dynamic programming based reduction procedure for the multidimensional 0–1 knapsack problem
  publication-title: Eur. J. Oper. Res.
– volume: 29
  start-page: 288
  year: 2015
  end-page: 297
  ident: bib0115
  article-title: An effective hybrid harmony search-based algorithm for solving multidimensional knapsack problems
  publication-title: Appl. Soft Comput.
– start-page: 358
  year: 2007
  end-page: 365
  ident: bib0095
  article-title: Particle swarm optimization for the multidimensional knapsack problem
  publication-title: Adaptive and Natural Computing Algorithms
– volume: 14
  start-page: 66
  year: 2014
  end-page: 75
  ident: bib0120
  article-title: Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems
  publication-title: Swarm Evol. Comput.
– year: 2005
  ident: bib0170
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, KanGAL report 2005005
– volume: 39
  start-page: 2111
  year: 2012
  end-page: 2121
  ident: bib0055
  article-title: Solving the multidimensional knapsack problems with generalized upper bound constraints by the adaptive memory projection method
  publication-title: Comput. Oper. Res.
– volume: 4
  start-page: 63
  year: 1998
  end-page: 86
  ident: bib0070
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: J. Heuristics
– volume: 48
  start-page: 550
  year: 2002
  end-page: 565
  ident: bib0035
  article-title: An approximate dynamic programming approach to multidimensional knapsack problems
  publication-title: Manag. Sci.
– volume: 26
  start-page: 378
  year: 2015
  end-page: 389
  ident: bib0150
  article-title: Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 443
  year: 2008
  end-page: 456
  ident: bib0075
  article-title: A hybrid genetic algorithm for the multidimensional knapsack problem
  publication-title: Int. J. Contemp. Math. Sci.
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  ident: bib0165
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput.
– start-page: 21
  year: 2005
  end-page: 30
  ident: bib0065
  article-title: Solving the multidimensional knapsack problem using an evolutionary algorithm hybridized with branch and bound
  publication-title: Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach
– volume: 155
  start-page: 1
  year: 2004
  end-page: 21
  ident: bib0030
  article-title: The multidimensional 0–1 knapsack problem: an overview
  publication-title: Eur. J. Oper. Res.
– volume: 22
  start-page: 250
  year: 2010
  end-page: 265
  ident: bib0040
  article-title: The multidimensional knapsack problem: structure and algorithms
  publication-title: INFORMS J. Comput.
– volume: 63
  start-page: 7
  year: 2015
  end-page: 22
  ident: bib0110
  article-title: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm
  publication-title: Comput. Oper. Res.
– volume: 63
  start-page: 466
  year: 2015
  ident: 10.1016/j.asoc.2016.02.027_bib0010
  article-title: Maximally decimated paraunitary linear phase FIR filter bank design via iterative SVD approach
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2371779
– start-page: 72
  year: 2012
  ident: 10.1016/j.asoc.2016.02.027_bib0125
  article-title: Solving multidimensional 0–1 knapsack problem with an artificial fish swarm algorithm
– volume: 4
  start-page: 63
  year: 1998
  ident: 10.1016/j.asoc.2016.02.027_bib0070
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: J. Heuristics
  doi: 10.1023/A:1009642405419
– volume: 4
  start-page: 37
  year: 2012
  ident: 10.1016/j.asoc.2016.02.027_bib0045
  article-title: Overview of the algorithms for solving the multidimensional knapsack problems
  publication-title: Adv. Stud. Biol.
– volume: 14
  start-page: 66
  year: 2014
  ident: 10.1016/j.asoc.2016.02.027_bib0120
  article-title: Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.09.002
– volume: 144
  start-page: 581
  year: 2003
  ident: 10.1016/j.asoc.2016.02.027_bib0080
  article-title: Genetic algorithms with double strings for 0–1 programming problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(02)00149-2
– volume: 26
  start-page: 378
  year: 2015
  ident: 10.1016/j.asoc.2016.02.027_bib0150
  article-title: Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.030
– volume: 186
  start-page: 63
  year: 2008
  ident: 10.1016/j.asoc.2016.02.027_bib0050
  article-title: A dynamic programming based reduction procedure for the multidimensional 0–1 knapsack problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.02.058
– year: 2013
  ident: 10.1016/j.asoc.2016.02.027_bib0130
– volume: 62
  start-page: 2517
  year: 2014
  ident: 10.1016/j.asoc.2016.02.027_bib0015
  article-title: Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2312326
– volume: 41
  start-page: 3712
  year: 2014
  ident: 10.1016/j.asoc.2016.02.027_bib0105
  article-title: An improved firefly algorithm for solving dynamic multidimensional knapsack problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.11.040
– volume: 98
  start-page: 1
  year: 2014
  ident: 10.1016/j.asoc.2016.02.027_bib0025
  article-title: Optimal design of Hermitian transform and vectors of both mask and window coefficients for denoising applications with both unknown noise characteristics and distortions
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.11.018
– volume: 155
  start-page: 1
  year: 2004
  ident: 10.1016/j.asoc.2016.02.027_bib0030
  article-title: The multidimensional 0–1 knapsack problem: an overview
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(03)00274-1
– volume: 3
  start-page: 443
  year: 2008
  ident: 10.1016/j.asoc.2016.02.027_bib0075
  article-title: A hybrid genetic algorithm for the multidimensional knapsack problem
  publication-title: Int. J. Contemp. Math. Sci.
– start-page: 358
  year: 2007
  ident: 10.1016/j.asoc.2016.02.027_bib0095
  article-title: Particle swarm optimization for the multidimensional knapsack problem
– volume: 57
  start-page: 109
  year: 2009
  ident: 10.1016/j.asoc.2016.02.027_bib0185
  article-title: Omitting meaningless digits in point estimates: the probability guarantee of leading-digit rules
  publication-title: Oper. Res.
  doi: 10.1287/opre.1080.0529
– volume: 29
  start-page: 288
  year: 2015
  ident: 10.1016/j.asoc.2016.02.027_bib0115
  article-title: An effective hybrid harmony search-based algorithm for solving multidimensional knapsack problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.022
– volume: 48
  start-page: 550
  year: 2002
  ident: 10.1016/j.asoc.2016.02.027_bib0035
  article-title: An approximate dynamic programming approach to multidimensional knapsack problems
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.48.4.550.208
– start-page: 328
  year: 2001
  ident: 10.1016/j.asoc.2016.02.027_bib0060
  article-title: A hybrid approach for the 0–1 multidimensional knapsack problem
– start-page: 21
  year: 2005
  ident: 10.1016/j.asoc.2016.02.027_bib0065
  article-title: Solving the multidimensional knapsack problem using an evolutionary algorithm hybridized with branch and bound
– volume: 2
  start-page: 137
  year: 2012
  ident: 10.1016/j.asoc.2016.02.027_bib0135
  article-title: A survey of bio inspired optimization algorithms
  publication-title: Int. J. Soft Comput. Eng.
– volume: 63
  start-page: 7
  year: 2015
  ident: 10.1016/j.asoc.2016.02.027_bib0180
  article-title: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.04.018
– volume: 218
  start-page: 11042
  year: 2012
  ident: 10.1016/j.asoc.2016.02.027_bib0100
  article-title: A modified binary particle swarm optimization for knapsack problems
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.05.001
– volume: 31
  start-page: 153
  year: 2015
  ident: 10.1016/j.asoc.2016.02.027_bib0165
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.003
– volume: 22
  start-page: 250
  year: 2010
  ident: 10.1016/j.asoc.2016.02.027_bib0040
  article-title: The multidimensional knapsack problem: structure and algorithms
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1090.0344
– volume: 106
  start-page: 659
  year: 1998
  ident: 10.1016/j.asoc.2016.02.027_bib0085
  article-title: An efficient tabu search approach for the 0–1 multidimensional knapsack problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(97)00296-8
– volume: 63
  start-page: 7
  year: 2015
  ident: 10.1016/j.asoc.2016.02.027_bib0110
  article-title: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.04.018
– volume: 38
  start-page: 1338
  year: 2014
  ident: 10.1016/j.asoc.2016.02.027_bib0145
  article-title: Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.08.009
– year: 2005
  ident: 10.1016/j.asoc.2016.02.027_bib0170
– volume: 60
  start-page: 489
  year: 2012
  ident: 10.1016/j.asoc.2016.02.027_bib0020
  article-title: Filtering in rotated time-frequency domains with unknown noise statistics
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2171956
– volume: 16
  start-page: 320
  year: 2007
  ident: 10.1016/j.asoc.2016.02.027_bib0090
  article-title: Simulated annealing for the 0/1 multidimensional knapsack problem
  publication-title: Numer. Math. Engl. Ser.
– start-page: 4104
  year: 1997
  ident: 10.1016/j.asoc.2016.02.027_bib0140
  article-title: A discrete binary version of the particle swarm algorithm
– volume: 34
  start-page: 161
  year: 1987
  ident: 10.1016/j.asoc.2016.02.027_bib0175
  article-title: A heuristic solution procedure for the multiconstraint zero-one knapsack problem
  publication-title: Nav. Res. Logist.
  doi: 10.1002/1520-6750(198704)34:2<161::AID-NAV3220340203>3.0.CO;2-A
– volume: 39
  start-page: 2111
  year: 2012
  ident: 10.1016/j.asoc.2016.02.027_bib0055
  article-title: Solving the multidimensional knapsack problems with generalized upper bound constraints by the adaptive memory projection method
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.10.016
– volume: 11
  start-page: 1556
  year: 2011
  ident: 10.1016/j.asoc.2016.02.027_bib0160
  article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.07.019
– volume: 9
  start-page: 588
  year: 2013
  ident: 10.1016/j.asoc.2016.02.027_bib0005
  article-title: Efficient complex-valued finite word length allpass rational IIR PCLS filter design via functional inequality constrained integer programming with bit plane searching technique
  publication-title: Mediterr. J. Electron. Commun.
– volume: 232
  start-page: 58
  year: 2013
  ident: 10.1016/j.asoc.2016.02.027_bib0155
  article-title: An improved adaptive binary harmony search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.12.043
SSID ssj0016928
Score 2.4253185
Snippet [Display omitted] •A novel binary artificial algae algorithm is proposed for solving MKPs.•The method is composed of discrete process, repair operators and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 583
SubjectTerms Artificial algae algorithm
Elite local search
Multidimensional knapsack problem
Pseudo-utility ratio
Title Binary artificial algae algorithm for multidimensional knapsack problems
URI https://dx.doi.org/10.1016/j.asoc.2016.02.027
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGbrH1ks7s51mKJryJqobeQfQRrNS22Xv3tziSboiA9CCHZhB3YHTbzgJnvI-Qs0y7TYAUZ-G_NuEoNU05FTEcWvLu2gbDY4Hw_EPGQ34zCUY30ql4YLKv0tr-06YW19l-aXpvN2XjcfILMQ_GIizaiRkmFiJ-cS2QxuPhalnm0RVTwq-JkhrN940xZ45WCBrC8SxS4ncgs85dz-uFw-ttk00eKtFsuZofUXL5LtioWBup_yj0SXxYttRRXXcJBUOzPcHifQur_8k4hMKVF5aBFLP8Sh4NO8nQ2T82Eek6Z-T4Z9q-eezHz_AjMwI4XzEE4IYQSsEWIU1Ips8DqzBmnubXaudQFugXD1Moo40JloZCuSHCM0QYitwOylk9zd0hooHQrNJnMOhEIc6O5sqGKjJKdEBIQXiftSjGJ8eDhyGHxllRVYq8JKjNBZSatDlyyTs6XMrMSOmPl7LDSd_LrACRg21fIHf1T7phs4FtZ9XVC1hYfn-4U4ouFbhQHqEHWu73Huwd8Xt_Gg28pedLR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPejFt1ife_AmsW2y2d0ctShR215sobcl-8JaTYutV3-7s8mmKEgPQgghmYHdYTMP-OYbhC6tNFaCFwwgfsuA8EwF3PAkkImG6C51RLVrcO71aTokj6N4VEOdqhfGwSq97y99euGt_Zumt2ZzNh43n6Hy4CQhtO1YoxiP1tA6iUPmKrDrryXOo02TYsCqkw6cuO-cKUFeGZjA4btoQdzpRsv8FZ1-RJz7HbTlU0V8U65mF9VMvoe2qzEM2P-V-yi9LXpqsVt2yQeBXYOGcfcp1P4v7xgyU1xAB7Uj8y-JOPAkz2bzTE2wHyozP0DD-7tBJw38gIRAwZYXgYF8glJOYYuQqGSM2UhLa5SRRGtpTGYi2YLHTLPEEsptTJkpKhylpILU7RDV82lujhCOuGzFyjIbJqBMlCRcxzxRnIUxVCCkgdqVYYTy7OFuiMWbqGBir8IZUzhjilYIF2ugq6XOrOTOWCkdV_YWv06AAOe-Qu_4n3oXaCMd9Lqi-9B_OkGb7ksJATtF9cXHpzmDZGMhz4vD9A2dldLR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+artificial+algae+algorithm+for+multidimensional+knapsack+problems&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Xuedong&rft.au=Wu%2C+Changzhi&rft.au=Li%2C+Jing&rft.au=Wang%2C+Xiangyu&rft.date=2016-06-01&rft.issn=1568-4946&rft.volume=43&rft.spage=583&rft.epage=595&rft_id=info:doi/10.1016%2Fj.asoc.2016.02.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_02_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon