EM-CSP: An efficient multiclass common spatial pattern feature method for speech imagery EEG signals recognition

Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of imagery speech has been collected in electroencephalogram (EEG) signals. In this paper, we propose an approach for EEG feature extraction of i...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 84; p. 104933
Main Authors Alizadeh, Danial, Omranpour, Hesam
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2023.104933

Cover

Abstract Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of imagery speech has been collected in electroencephalogram (EEG) signals. In this paper, we propose an approach for EEG feature extraction of imagined speech with high accuracy and efficiency. In this way, we improve the common spatial pattern (CSP) binary algorithm to multiclass level in two parts ‘One-vs-One’ and ‘One-vs-All’. The “Kara One” dataset is used in this research that includes EEG signals of thirteen subjects with twelve trials and sixty-four channels for any four English words signals and seven English phonemes signals. We compared our proposed CSP to other imagined speech feature methods. The classification accuracy of the second part of the proposed method is 97.34% in the subject-wise overall model which is 19.97% better than the best previous result. We have obtained the highest classification accuracy for sixty-four channels, which is the highest accuracy ever achieved using this database. Our proposed model is ready to be tested with more EEG data. This proposed work, which includes an ensemble method for classifying speech imagery words, can greatly contribute to intuitive BCI development using silent speech.
AbstractList Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of imagery speech has been collected in electroencephalogram (EEG) signals. In this paper, we propose an approach for EEG feature extraction of imagined speech with high accuracy and efficiency. In this way, we improve the common spatial pattern (CSP) binary algorithm to multiclass level in two parts ‘One-vs-One’ and ‘One-vs-All’. The “Kara One” dataset is used in this research that includes EEG signals of thirteen subjects with twelve trials and sixty-four channels for any four English words signals and seven English phonemes signals. We compared our proposed CSP to other imagined speech feature methods. The classification accuracy of the second part of the proposed method is 97.34% in the subject-wise overall model which is 19.97% better than the best previous result. We have obtained the highest classification accuracy for sixty-four channels, which is the highest accuracy ever achieved using this database. Our proposed model is ready to be tested with more EEG data. This proposed work, which includes an ensemble method for classifying speech imagery words, can greatly contribute to intuitive BCI development using silent speech.
ArticleNumber 104933
Author Omranpour, Hesam
Alizadeh, Danial
Author_xml – sequence: 1
  givenname: Danial
  surname: Alizadeh
  fullname: Alizadeh, Danial
– sequence: 2
  givenname: Hesam
  orcidid: 0000-0003-4253-0811
  surname: Omranpour
  fullname: Omranpour, Hesam
  email: H.Omranpour@nit.ac.ir
BookMark eNp9kM9KAzEQh4Mo2FZfwFNeYGuy_1e8lLJWoaKgnkM2mbQpu0lJUqFvb5bqxUNPMwzzDfP7pujSWAMI3VEyp4SW97t55_dinpI0i4O8ybILNKFVXiY1JfXlX0-a_BpNvd8RktcVzSdo374my4_3B7wwGJTSQoMJeDj0QYuee4-FHQZrsN_zoHmPYwngDFbAw8EBHiBsrcTKurgCILZYD3wD7ojbdoW93hjee-xA2I3RQVtzg65UHMHtb52hr6f2c_mcrN9WL8vFOhEZISGRQKXsirITMqV5LhrSVV1ZpURwIoRSQna0VHna1SUUtCqg5rQsCs5lQ4u0kdkMpae7wlnvHSi2d_E1d2SUsNEZ27HRGRudsZOzCNX_IKEDH98Ojuv-PPp4QiGG-tbgmB9dCpA6pg9MWn0O_wExKYvU
CitedBy_id crossref_primary_10_1109_TIM_2024_3472830
crossref_primary_10_3389_fnhum_2024_1398065
crossref_primary_10_1007_s11571_024_10167_0
Cites_doi 10.1007/978-3-030-04497-8_20
10.1016/j.eswa.2022.118621
10.1016/j.neunet.2009.05.008
10.1117/12.2255697
10.1007/s41133-016-0001-z
10.1109/BTAS.2010.5634515
10.1109/SPIN.2016.7566774
10.1016/j.bspc.2013.07.011
10.1109/ISSC.2018.8585291
10.1016/j.eswa.2016.04.011
10.1109/ICASSP.2015.7178118
10.1016/j.bspc.2022.104379
10.1088/1741-2552/acb232
10.1088/1741-2560/11/3/036010
10.1155/2016/2618265
10.1088/1741-2552/aa8235
10.1109/TBME.2017.2786251
10.1016/j.bspc.2019.01.006
10.3389/fnins.2016.00429
10.1016/j.bspc.2016.10.012
10.1007/978-3-642-02574-7_5
10.1088/1741-2560/7/4/046006
10.21437/Interspeech.2019-3041
10.1109/TASLP.2017.2758164
10.1016/j.bspc.2021.102625
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.104933
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_104933
S174680942300366X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-de1ddb56bcd2144c90b7b6720ca0ccffcdb16f42b86e5175e8a1655aad91529d3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:55:16 EDT 2025
Wed Oct 29 21:28:47 EDT 2025
Fri Feb 23 02:37:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiclass CSP
Imagined speech
EEG signals
KNN classification
Common spatial pattern (CSP)
Brain computer interface (BCI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-de1ddb56bcd2144c90b7b6720ca0ccffcdb16f42b86e5175e8a1655aad91529d3
ORCID 0000-0003-4253-0811
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_104933
crossref_citationtrail_10_1016_j_bspc_2023_104933
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104933
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References The KARA ONE database.
2018, pp. 1–7.
Herff, Schultz (b0010) 2016; 10
Qureshi, Min, Park, Cho, Choi, Lee (b0095) 2017; 65
Garc’ia-Salinas, Villaseñor-Pineda, Reyes-Garc’ia, Torres-Garc’ia (b0105) 2019; 50
Guo, Chen (b0155) 2023
Mini, Thomas, Gopikakumari (b0140) 2021; 63
Wang, Zhang, Zhong, Zhang (b0035) 2013; 8
C. Cooney, R. Folli, and D. Coyle, “Mel frequency cepstral coefficients enhance imagined speech decoding accuracy from EEG,” in
DaSalla, Kambara, Sato, Koike (b0040) 2009; 22
Schalk, Mellinger (b0005) 2010
Wester (b0015) 2006
2018, pp. 239 249.
Kim, Lee, Lee (b0060) 2014; 11
J. S. Garc\’\ia-Salinas, L. Villaseñor-Pineda, C. A. Reyes-Garc\’\ia, and A. Torres-Garc\’\ia, “Tensor decomposition for imagined speech discrimination in EEG,” in
K. Brigham and B. V. K. V. Kumar, “Subject identification from electroencephalogram (EEG) signals during imagined speech,” in
2015, pp. 1591–1594.
P. Saha, M. Abdul-Mageed, and S. Fels, “Speak your mind! towards imagined speech recognition with hierarchical deep learning,”
M. D’Zmura, S. Deng, T. Lappas, S. Thorpe, and R. Srinivasan, “Toward EEG sensing of imagined speech,” in
2019.
S. Zhao and F. Rudzicz, “Classifying phonological categories in imagined and articulated speech,” in
Nguyen, Karavas, Artemiadis (b0110) 2017; 15
Deng, Srinivasan, Lappas, D’Zmura (b0030) 2010; 7
2015, pp. 992–996.
2017, vol. 10160, p. 1016002.
2009, pp. 40–48.
G. A. P. Coretto, I. E. Gareis, and H. L. Rufiner, “Open access database of EEG signals recorded during imagined speech,” in
Mohanchandra, Saha (b0085) 2016; 1
P. Sun and J. Qin, “Neural networks based eeg-speech models,”
2015, pp. 63–66.
Min, Kim, Park, Lee (b0065) 2016; 2016
González-Castañeda, Torres-Garc’ia, Reyes-Garc’ia, Villaseñor-Pineda (b0090) 2017; 37
.
Pourali, Omranpour (b0160) 2023; 211
Afrakhteh, Mosavi (b0165) 2020
2016, pp. 636–640.
Patel, Pasha, Krishna (b0055) 2018; 118
E. F. González-Castañeda, A. A. Torres-Garc\’\ia, A. Rosales-Pérez, C. A. Reyes-Garc\’\ia, and L. Villaseñor-Pineda, “EEG sonification for classifying unspoken words,” in
Pawar, Dhage (b0150) 2023; 80
Mini, Thomas, Gopikakumari (b0145) 2021; 68
2010, pp. 1–8.
S. Iqbal, Y. U. Khan, and O. Farooq, “EEG based classification of imagined vowel sounds,” in
2016.
B. M. Idrees and O. Farooq, “Vowel classification using wavelet decomposition during speech imagery,” in
Torres-Garc’ia, Reyes-Garc’ia, Villaseñor-Pineda, Garc’ia-Aguilar (b0080) 2016; 59
Sereshkeh, Trott, Bricout, Chau (b0170) 2017; 25
DaSalla (10.1016/j.bspc.2023.104933_b0040) 2009; 22
Patel (10.1016/j.bspc.2023.104933_b0055) 2018; 118
Deng (10.1016/j.bspc.2023.104933_b0030) 2010; 7
10.1016/j.bspc.2023.104933_b0125
Herff (10.1016/j.bspc.2023.104933_b0010) 2016; 10
Wang (10.1016/j.bspc.2023.104933_b0035) 2013; 8
10.1016/j.bspc.2023.104933_b0045
10.1016/j.bspc.2023.104933_b0100
Qureshi (10.1016/j.bspc.2023.104933_b0095) 2017; 65
Guo (10.1016/j.bspc.2023.104933_b0155) 2023
10.1016/j.bspc.2023.104933_b0025
10.1016/j.bspc.2023.104933_b0020
Mini (10.1016/j.bspc.2023.104933_b0145) 2021; 68
Pawar (10.1016/j.bspc.2023.104933_b0150) 2023; 80
10.1016/j.bspc.2023.104933_b0120
Mini (10.1016/j.bspc.2023.104933_b0140) 2021; 63
Mohanchandra (10.1016/j.bspc.2023.104933_b0085) 2016; 1
Kim (10.1016/j.bspc.2023.104933_b0060) 2014; 11
10.1016/j.bspc.2023.104933_b0115
Sereshkeh (10.1016/j.bspc.2023.104933_b0170) 2017; 25
Min (10.1016/j.bspc.2023.104933_b0065) 2016; 2016
Nguyen (10.1016/j.bspc.2023.104933_b0110) 2017; 15
Garc’ia-Salinas (10.1016/j.bspc.2023.104933_b0105) 2019; 50
Schalk (10.1016/j.bspc.2023.104933_b0005) 2010
González-Castañeda (10.1016/j.bspc.2023.104933_b0090) 2017; 37
Afrakhteh (10.1016/j.bspc.2023.104933_b0165) 2020
10.1016/j.bspc.2023.104933_b0070
10.1016/j.bspc.2023.104933_b0050
Wester (10.1016/j.bspc.2023.104933_b0015) 2006
Pourali (10.1016/j.bspc.2023.104933_b0160) 2023; 211
Torres-Garc’ia (10.1016/j.bspc.2023.104933_b0080) 2016; 59
10.1016/j.bspc.2023.104933_b0135
10.1016/j.bspc.2023.104933_b0075
10.1016/j.bspc.2023.104933_b0130
References_xml – reference: , 2009, pp. 40–48.
– reference: , 2019.
– reference: B. M. Idrees and O. Farooq, “Vowel classification using wavelet decomposition during speech imagery,” in
– volume: 37
  start-page: 82
  year: 2017
  end-page: 91
  ident: b0090
  article-title: Sonification and textification: proposing methods for classifying unspoken words from EEG signals
  publication-title: Biomed. Signal Process. Control
– volume: 22
  start-page: 1334
  year: 2009
  end-page: 1339
  ident: b0040
  article-title: Single-trial classification of vowel speech imagery using common spatial patterns
  publication-title: Neural Netw.
– volume: 80
  year: 2023
  ident: b0150
  article-title: EEG-based covert speech decoding using random rotation extreme learning machine ensemble for intuitive BCI communication
  publication-title: Biomed. Signal Process. Control
– reference: G. A. P. Coretto, I. E. Gareis, and H. L. Rufiner, “Open access database of EEG signals recorded during imagined speech,” in
– reference: C. Cooney, R. Folli, and D. Coyle, “Mel frequency cepstral coefficients enhance imagined speech decoding accuracy from EEG,” in
– volume: 11
  start-page: 36010
  year: 2014
  ident: b0060
  article-title: EEG classification in a single-trial basis for vowel speech perception using multivariate empirical mode decomposition
  publication-title: J. Neural Eng.
– reference: M. D’Zmura, S. Deng, T. Lappas, S. Thorpe, and R. Srinivasan, “Toward EEG sensing of imagined speech,” in
– volume: 7
  start-page: 46006
  year: 2010
  ident: b0030
  article-title: EEG classification of imagined syllable rhythm using Hilbert spectrum methods
  publication-title: J. Neural Eng.
– reference: , 2016, pp. 636–640.
– start-page: 9
  year: 2010
  end-page: 35
  ident: b0005
  article-title: “Brain sensors and signals”, in A Practical Guide to Brain-Computer Interfacing with BCI2000
– volume: 1
  start-page: 1
  year: 2016
  end-page: 14
  ident: b0085
  article-title: A communication paradigm using subvocalized speech: translating brain signals into speech
  publication-title: Augment. Hum. Res.
– start-page: 25
  year: 2020
  end-page: 52
  ident: b0165
  article-title: Applying an efficient evolutionary algorithm for EEG signal feature selection and classification in decision-based systems
  publication-title: Energy Efficiency of Medical Devices and Healthcare Applications
– reference: , 2015, pp. 63–66.
– volume: 59
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0080
  article-title: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification
  publication-title: Expert Syst. Appl.
– reference: S. Iqbal, Y. U. Khan, and O. Farooq, “EEG based classification of imagined vowel sounds,” in
– volume: 68
  year: 2021
  ident: b0145
  article-title: EEG based direct speech BCI system using a fusion of SMRT and MFCC/LPCC features with ANN classifier
  publication-title: Biomed. Signal Process. Control
– volume: 25
  start-page: 2292
  year: 2017
  end-page: 2300
  ident: b0170
  article-title: EEG classification of covert speech using regularized neural networks
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
– reference: , 2015, pp. 1591–1594.
– volume: 15
  start-page: 16002
  year: 2017
  ident: b0110
  article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features
  publication-title: J. Neural Eng.
– volume: 211
  year: 2023
  ident: b0160
  article-title: CSP-Ph-PS: Learning CSP-phase space and Poincare sections based on evolutionary algorithm for EEG signals recognition
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 901
  year: 2013
  end-page: 908
  ident: b0035
  article-title: Analysis and classification of speech imagery EEG for BCI
  publication-title: Biomed. Signal Process. Control
– volume: 50
  start-page: 151
  year: 2019
  end-page: 157
  ident: b0105
  article-title: Transfer learning in imagined speech EEG-based BCIs
  publication-title: Biomed. Signal Process. Control
– reference: , 2017, vol. 10160, p. 1016002.
– year: 2006
  ident: b0015
  article-title: “Unspoken speech-speech recognition based on electroencephalography”,
– reference: , 2018, pp. 239 249.
– volume: 63
  year: 2021
  ident: b0140
  article-title: Wavelet feature selection of audio and imagined/vocalized EEG signals for ANN based multimodal ASR system
  publication-title: Biomed. Signal Process. Control
– volume: 10
  start-page: 429
  year: 2016
  ident: b0010
  article-title: Automatic speech recognition from neural signals: a focused review
  publication-title: Front. Neurosci.
– reference: .
– reference: E. F. González-Castañeda, A. A. Torres-Garc\’\ia, A. Rosales-Pérez, C. A. Reyes-Garc\’\ia, and L. Villaseñor-Pineda, “EEG sonification for classifying unspoken words,” in
– reference: , 2016.
– reference: J. S. Garc\’\ia-Salinas, L. Villaseñor-Pineda, C. A. Reyes-Garc\’\ia, and A. Torres-Garc\’\ia, “Tensor decomposition for imagined speech discrimination in EEG,” in
– volume: 118
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0055
  article-title: Classification of imagery vowel speech using EEG and cross correlation
  publication-title: Int. J. Pure Appl. Math.
– year: 2023
  ident: b0155
  article-title: Impacts of simplifying articulation movements imagery to speech imagery BCI performance
  publication-title: J. Neural Eng.
– reference: K. Brigham and B. V. K. V. Kumar, “Subject identification from electroencephalogram (EEG) signals during imagined speech,” in
– reference: , 2010, pp. 1–8.
– volume: 65
  start-page: 2168
  year: 2017
  end-page: 2177
  ident: b0095
  article-title: Multiclass classification of word imagination speech with hybrid connectivity features
  publication-title: IEEE Trans. Biomed. Eng.
– reference: , 2018, pp. 1–7.
– volume: 2016
  year: 2016
  ident: b0065
  article-title: Vowel imagery decoding toward silent speech BCI using extreme learning machine with electroencephalogram
  publication-title: Biomed Res. Int.
– reference: S. Zhao and F. Rudzicz, “Classifying phonological categories in imagined and articulated speech,” in
– reference: , 2015, pp. 992–996.
– reference: “The KARA ONE database.”
– reference: P. Saha, M. Abdul-Mageed, and S. Fels, “Speak your mind! towards imagined speech recognition with hierarchical deep learning,”
– reference: P. Sun and J. Qin, “Neural networks based eeg-speech models,”
– start-page: 9
  year: 2010
  ident: 10.1016/j.bspc.2023.104933_b0005
– ident: 10.1016/j.bspc.2023.104933_b0100
  doi: 10.1007/978-3-030-04497-8_20
– volume: 211
  year: 2023
  ident: 10.1016/j.bspc.2023.104933_b0160
  article-title: CSP-Ph-PS: Learning CSP-phase space and Poincare sections based on evolutionary algorithm for EEG signals recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118621
– volume: 22
  start-page: 1334
  issue: 9
  year: 2009
  ident: 10.1016/j.bspc.2023.104933_b0040
  article-title: Single-trial classification of vowel speech imagery using common spatial patterns
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.05.008
– ident: 10.1016/j.bspc.2023.104933_b0115
  doi: 10.1117/12.2255697
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2023.104933_b0085
  article-title: A communication paradigm using subvocalized speech: translating brain signals into speech
  publication-title: Augment. Hum. Res.
  doi: 10.1007/s41133-016-0001-z
– ident: 10.1016/j.bspc.2023.104933_b0025
  doi: 10.1109/BTAS.2010.5634515
– ident: 10.1016/j.bspc.2023.104933_b0045
  doi: 10.1109/SPIN.2016.7566774
– volume: 8
  start-page: 901
  issue: 6
  year: 2013
  ident: 10.1016/j.bspc.2023.104933_b0035
  article-title: Analysis and classification of speech imagery EEG for BCI
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.07.011
– ident: 10.1016/j.bspc.2023.104933_b0075
– ident: 10.1016/j.bspc.2023.104933_b0130
  doi: 10.1109/ISSC.2018.8585291
– volume: 59
  start-page: 1
  year: 2016
  ident: 10.1016/j.bspc.2023.104933_b0080
  article-title: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.011
– ident: 10.1016/j.bspc.2023.104933_b0070
  doi: 10.1109/ICASSP.2015.7178118
– ident: 10.1016/j.bspc.2023.104933_b0050
– volume: 80
  year: 2023
  ident: 10.1016/j.bspc.2023.104933_b0150
  article-title: EEG-based covert speech decoding using random rotation extreme learning machine ensemble for intuitive BCI communication
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104379
– volume: 63
  year: 2021
  ident: 10.1016/j.bspc.2023.104933_b0140
  article-title: Wavelet feature selection of audio and imagined/vocalized EEG signals for ANN based multimodal ASR system
  publication-title: Biomed. Signal Process. Control
– year: 2023
  ident: 10.1016/j.bspc.2023.104933_b0155
  article-title: Impacts of simplifying articulation movements imagery to speech imagery BCI performance
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acb232
– start-page: 25
  year: 2020
  ident: 10.1016/j.bspc.2023.104933_b0165
  article-title: Applying an efficient evolutionary algorithm for EEG signal feature selection and classification in decision-based systems
– volume: 11
  start-page: 36010
  issue: 3
  year: 2014
  ident: 10.1016/j.bspc.2023.104933_b0060
  article-title: EEG classification in a single-trial basis for vowel speech perception using multivariate empirical mode decomposition
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/036010
– volume: 118
  start-page: 1
  issue: 24
  year: 2018
  ident: 10.1016/j.bspc.2023.104933_b0055
  article-title: Classification of imagery vowel speech using EEG and cross correlation
  publication-title: Int. J. Pure Appl. Math.
– volume: 2016
  year: 2016
  ident: 10.1016/j.bspc.2023.104933_b0065
  article-title: Vowel imagery decoding toward silent speech BCI using extreme learning machine with electroencephalogram
  publication-title: Biomed Res. Int.
  doi: 10.1155/2016/2618265
– volume: 15
  start-page: 16002
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2023.104933_b0110
  article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa8235
– ident: 10.1016/j.bspc.2023.104933_b0125
– volume: 65
  start-page: 2168
  issue: 10
  year: 2017
  ident: 10.1016/j.bspc.2023.104933_b0095
  article-title: Multiclass classification of word imagination speech with hybrid connectivity features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2786251
– volume: 50
  start-page: 151
  year: 2019
  ident: 10.1016/j.bspc.2023.104933_b0105
  article-title: Transfer learning in imagined speech EEG-based BCIs
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.01.006
– volume: 10
  start-page: 429
  year: 2016
  ident: 10.1016/j.bspc.2023.104933_b0010
  article-title: Automatic speech recognition from neural signals: a focused review
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00429
– volume: 37
  start-page: 82
  year: 2017
  ident: 10.1016/j.bspc.2023.104933_b0090
  article-title: Sonification and textification: proposing methods for classifying unspoken words from EEG signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.10.012
– year: 2006
  ident: 10.1016/j.bspc.2023.104933_b0015
– ident: 10.1016/j.bspc.2023.104933_b0020
  doi: 10.1007/978-3-642-02574-7_5
– volume: 7
  start-page: 46006
  issue: 4
  year: 2010
  ident: 10.1016/j.bspc.2023.104933_b0030
  article-title: EEG classification of imagined syllable rhythm using Hilbert spectrum methods
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/4/046006
– ident: 10.1016/j.bspc.2023.104933_b0135
  doi: 10.21437/Interspeech.2019-3041
– ident: 10.1016/j.bspc.2023.104933_b0120
– volume: 25
  start-page: 2292
  issue: 12
  year: 2017
  ident: 10.1016/j.bspc.2023.104933_b0170
  article-title: EEG classification of covert speech using regularized neural networks
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2017.2758164
– volume: 68
  year: 2021
  ident: 10.1016/j.bspc.2023.104933_b0145
  article-title: EEG based direct speech BCI system using a fusion of SMRT and MFCC/LPCC features with ANN classifier
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102625
SSID ssj0048714
Score 2.3688293
Snippet Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104933
SubjectTerms Brain computer interface (BCI)
Common spatial pattern (CSP)
EEG signals
Imagined speech
KNN classification
Multiclass CSP
Title EM-CSP: An efficient multiclass common spatial pattern feature method for speech imagery EEG signals recognition
URI https://dx.doi.org/10.1016/j.bspc.2023.104933
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7XdbLJJvJWSWhWLUAu9hewLK5oGWw9e_O3ObpJSQXrwmDC7JLPDzBfyzTcIXWpGeZBFmmRKhMTPfENiP6Yk40yoiDKTKUeQHfHhxL-fBtMG6te9MJZWWeX-Mqe7bF3d6VTe7BSzWWcMWJpH8HUCIBrSMJ_aDnY_tFMMrr9XNA_A407f2xoTa101zpQcL7EorIyhx-yvzpixv4vTWsEZ7KHdCiniXvkw-6ih8wO0s6YfeIiK5JH0x083uJdj7bQgoIRgxxGUFhVjeCsIM7ywtGnYq3Bimjk22sl54nJ8NAbcCiZayxc8e7eaFl84SW6xpXZAcOIVx2ieH6HJIHnuD0k1QoFI8MqSKE2VEgEXUlltNBl3RSh46HVl1pXSGKkE5cb3RMR1AEhCRxmcXZDBCUFhjxU7Rs18nusThE3oGRb6IpCcAepiccQ5WIfU-FxyQ1uI1r5LZaUvbsdcvKU1kew1tf5Orb_T0t8tdLVaU5TqGhutg_pI0l8xkkL637Du9J_rztC2vSrJueeoufz41BcAQZai7WKsjbZ6dw_D0Q-3Bdu7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQdvZoV2t9vWGyFFVCAmQMKt6b4iRksjePDib3e2LQQTw8FrO9O0M5OZb9Nvv0XoWlOHe0mgSaKET1jCDAlZ6JCEU6ECh5pE5QTZPu-M2OPYG1dQa7EXxtIqy95f9PS8W5dX6mU069lkUh8AluYBrE4AREMb5uMNtMk817crsNvvJc8DAHku8G2tiTUvd84UJC8xy6yOoUvtv86Q0r-n08rEae-h3RIq4mbxNvuootMDtLMiIHiIsqhHWoPnO9xMsc7FIGCG4JwkKC0sxvBZUGd4ZnnT8KwsV9NMsdG5nicuzo_GAFzBRGv5gifvVtTiC0fRPbbcDqhOvCQZTdMjNGpHw1aHlGcoEAlhmROlHaWEx4VUVhxNhg3hC-67DZk0pDRGKuFww1wRcO0BlNBBAsnzEkgRTPZQ0WNUTaepPkHY-K6hPhOe5BRgFw0DzsHadwzjkhunhpxF7GJZCozbcy7e4gWT7DW28Y5tvOMi3jV0s_TJCnmNtdbeIiXxryKJof-v8Tv9p98V2uoMe924-9B_OkPb9k7B1D1H1fnHp74APDIXl3m9_QDsnd1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM-CSP%3A+An+efficient+multiclass+common+spatial+pattern+feature+method+for+speech+imagery+EEG+signals+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Alizadeh%2C+Danial&rft.au=Omranpour%2C+Hesam&rft.date=2023-07-01&rft.issn=1746-8094&rft.volume=84&rft.spage=104933&rft_id=info:doi/10.1016%2Fj.bspc.2023.104933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_104933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon