EM-CSP: An efficient multiclass common spatial pattern feature method for speech imagery EEG signals recognition
Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of imagery speech has been collected in electroencephalogram (EEG) signals. In this paper, we propose an approach for EEG feature extraction of i...
Saved in:
| Published in | Biomedical signal processing and control Vol. 84; p. 104933 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2023.104933 |
Cover
| Abstract | Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of imagery speech has been collected in electroencephalogram (EEG) signals.
In this paper, we propose an approach for EEG feature extraction of imagined speech with high accuracy and efficiency. In this way, we improve the common spatial pattern (CSP) binary algorithm to multiclass level in two parts ‘One-vs-One’ and ‘One-vs-All’. The “Kara One” dataset is used in this research that includes EEG signals of thirteen subjects with twelve trials and sixty-four channels for any four English words signals and seven English phonemes signals.
We compared our proposed CSP to other imagined speech feature methods. The classification accuracy of the second part of the proposed method is 97.34% in the subject-wise overall model which is 19.97% better than the best previous result.
We have obtained the highest classification accuracy for sixty-four channels, which is the highest accuracy ever achieved using this database. Our proposed model is ready to be tested with more EEG data. This proposed work, which includes an ensemble method for classifying speech imagery words, can greatly contribute to intuitive BCI development using silent speech. |
|---|---|
| AbstractList | Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of imagery speech has been collected in electroencephalogram (EEG) signals.
In this paper, we propose an approach for EEG feature extraction of imagined speech with high accuracy and efficiency. In this way, we improve the common spatial pattern (CSP) binary algorithm to multiclass level in two parts ‘One-vs-One’ and ‘One-vs-All’. The “Kara One” dataset is used in this research that includes EEG signals of thirteen subjects with twelve trials and sixty-four channels for any four English words signals and seven English phonemes signals.
We compared our proposed CSP to other imagined speech feature methods. The classification accuracy of the second part of the proposed method is 97.34% in the subject-wise overall model which is 19.97% better than the best previous result.
We have obtained the highest classification accuracy for sixty-four channels, which is the highest accuracy ever achieved using this database. Our proposed model is ready to be tested with more EEG data. This proposed work, which includes an ensemble method for classifying speech imagery words, can greatly contribute to intuitive BCI development using silent speech. |
| ArticleNumber | 104933 |
| Author | Omranpour, Hesam Alizadeh, Danial |
| Author_xml | – sequence: 1 givenname: Danial surname: Alizadeh fullname: Alizadeh, Danial – sequence: 2 givenname: Hesam orcidid: 0000-0003-4253-0811 surname: Omranpour fullname: Omranpour, Hesam email: H.Omranpour@nit.ac.ir |
| BookMark | eNp9kM9KAzEQh4Mo2FZfwFNeYGuy_1e8lLJWoaKgnkM2mbQpu0lJUqFvb5bqxUNPMwzzDfP7pujSWAMI3VEyp4SW97t55_dinpI0i4O8ybILNKFVXiY1JfXlX0-a_BpNvd8RktcVzSdo374my4_3B7wwGJTSQoMJeDj0QYuee4-FHQZrsN_zoHmPYwngDFbAw8EBHiBsrcTKurgCILZYD3wD7ojbdoW93hjee-xA2I3RQVtzg65UHMHtb52hr6f2c_mcrN9WL8vFOhEZISGRQKXsirITMqV5LhrSVV1ZpURwIoRSQna0VHna1SUUtCqg5rQsCs5lQ4u0kdkMpae7wlnvHSi2d_E1d2SUsNEZ27HRGRudsZOzCNX_IKEDH98Ojuv-PPp4QiGG-tbgmB9dCpA6pg9MWn0O_wExKYvU |
| CitedBy_id | crossref_primary_10_1109_TIM_2024_3472830 crossref_primary_10_3389_fnhum_2024_1398065 crossref_primary_10_1007_s11571_024_10167_0 |
| Cites_doi | 10.1007/978-3-030-04497-8_20 10.1016/j.eswa.2022.118621 10.1016/j.neunet.2009.05.008 10.1117/12.2255697 10.1007/s41133-016-0001-z 10.1109/BTAS.2010.5634515 10.1109/SPIN.2016.7566774 10.1016/j.bspc.2013.07.011 10.1109/ISSC.2018.8585291 10.1016/j.eswa.2016.04.011 10.1109/ICASSP.2015.7178118 10.1016/j.bspc.2022.104379 10.1088/1741-2552/acb232 10.1088/1741-2560/11/3/036010 10.1155/2016/2618265 10.1088/1741-2552/aa8235 10.1109/TBME.2017.2786251 10.1016/j.bspc.2019.01.006 10.3389/fnins.2016.00429 10.1016/j.bspc.2016.10.012 10.1007/978-3-642-02574-7_5 10.1088/1741-2560/7/4/046006 10.21437/Interspeech.2019-3041 10.1109/TASLP.2017.2758164 10.1016/j.bspc.2021.102625 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2023.104933 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2023_104933 S174680942300366X |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-de1ddb56bcd2144c90b7b6720ca0ccffcdb16f42b86e5175e8a1655aad91529d3 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Thu Apr 24 22:55:16 EDT 2025 Wed Oct 29 21:28:47 EDT 2025 Fri Feb 23 02:37:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiclass CSP Imagined speech EEG signals KNN classification Common spatial pattern (CSP) Brain computer interface (BCI) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-de1ddb56bcd2144c90b7b6720ca0ccffcdb16f42b86e5175e8a1655aad91529d3 |
| ORCID | 0000-0003-4253-0811 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2023_104933 crossref_citationtrail_10_1016_j_bspc_2023_104933 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104933 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | The KARA ONE database. 2018, pp. 1–7. Herff, Schultz (b0010) 2016; 10 Qureshi, Min, Park, Cho, Choi, Lee (b0095) 2017; 65 Garc’ia-Salinas, Villaseñor-Pineda, Reyes-Garc’ia, Torres-Garc’ia (b0105) 2019; 50 Guo, Chen (b0155) 2023 Mini, Thomas, Gopikakumari (b0140) 2021; 63 Wang, Zhang, Zhong, Zhang (b0035) 2013; 8 C. Cooney, R. Folli, and D. Coyle, “Mel frequency cepstral coefficients enhance imagined speech decoding accuracy from EEG,” in DaSalla, Kambara, Sato, Koike (b0040) 2009; 22 Schalk, Mellinger (b0005) 2010 Wester (b0015) 2006 2018, pp. 239 249. Kim, Lee, Lee (b0060) 2014; 11 J. S. Garc\’\ia-Salinas, L. Villaseñor-Pineda, C. A. Reyes-Garc\’\ia, and A. Torres-Garc\’\ia, “Tensor decomposition for imagined speech discrimination in EEG,” in K. Brigham and B. V. K. V. Kumar, “Subject identification from electroencephalogram (EEG) signals during imagined speech,” in 2015, pp. 1591–1594. P. Saha, M. Abdul-Mageed, and S. Fels, “Speak your mind! towards imagined speech recognition with hierarchical deep learning,” M. D’Zmura, S. Deng, T. Lappas, S. Thorpe, and R. Srinivasan, “Toward EEG sensing of imagined speech,” in 2019. S. Zhao and F. Rudzicz, “Classifying phonological categories in imagined and articulated speech,” in Nguyen, Karavas, Artemiadis (b0110) 2017; 15 Deng, Srinivasan, Lappas, D’Zmura (b0030) 2010; 7 2015, pp. 992–996. 2017, vol. 10160, p. 1016002. 2009, pp. 40–48. G. A. P. Coretto, I. E. Gareis, and H. L. Rufiner, “Open access database of EEG signals recorded during imagined speech,” in Mohanchandra, Saha (b0085) 2016; 1 P. Sun and J. Qin, “Neural networks based eeg-speech models,” 2015, pp. 63–66. Min, Kim, Park, Lee (b0065) 2016; 2016 González-Castañeda, Torres-Garc’ia, Reyes-Garc’ia, Villaseñor-Pineda (b0090) 2017; 37 . Pourali, Omranpour (b0160) 2023; 211 Afrakhteh, Mosavi (b0165) 2020 2016, pp. 636–640. Patel, Pasha, Krishna (b0055) 2018; 118 E. F. González-Castañeda, A. A. Torres-Garc\’\ia, A. Rosales-Pérez, C. A. Reyes-Garc\’\ia, and L. Villaseñor-Pineda, “EEG sonification for classifying unspoken words,” in Pawar, Dhage (b0150) 2023; 80 Mini, Thomas, Gopikakumari (b0145) 2021; 68 2010, pp. 1–8. S. Iqbal, Y. U. Khan, and O. Farooq, “EEG based classification of imagined vowel sounds,” in 2016. B. M. Idrees and O. Farooq, “Vowel classification using wavelet decomposition during speech imagery,” in Torres-Garc’ia, Reyes-Garc’ia, Villaseñor-Pineda, Garc’ia-Aguilar (b0080) 2016; 59 Sereshkeh, Trott, Bricout, Chau (b0170) 2017; 25 DaSalla (10.1016/j.bspc.2023.104933_b0040) 2009; 22 Patel (10.1016/j.bspc.2023.104933_b0055) 2018; 118 Deng (10.1016/j.bspc.2023.104933_b0030) 2010; 7 10.1016/j.bspc.2023.104933_b0125 Herff (10.1016/j.bspc.2023.104933_b0010) 2016; 10 Wang (10.1016/j.bspc.2023.104933_b0035) 2013; 8 10.1016/j.bspc.2023.104933_b0045 10.1016/j.bspc.2023.104933_b0100 Qureshi (10.1016/j.bspc.2023.104933_b0095) 2017; 65 Guo (10.1016/j.bspc.2023.104933_b0155) 2023 10.1016/j.bspc.2023.104933_b0025 10.1016/j.bspc.2023.104933_b0020 Mini (10.1016/j.bspc.2023.104933_b0145) 2021; 68 Pawar (10.1016/j.bspc.2023.104933_b0150) 2023; 80 10.1016/j.bspc.2023.104933_b0120 Mini (10.1016/j.bspc.2023.104933_b0140) 2021; 63 Mohanchandra (10.1016/j.bspc.2023.104933_b0085) 2016; 1 Kim (10.1016/j.bspc.2023.104933_b0060) 2014; 11 10.1016/j.bspc.2023.104933_b0115 Sereshkeh (10.1016/j.bspc.2023.104933_b0170) 2017; 25 Min (10.1016/j.bspc.2023.104933_b0065) 2016; 2016 Nguyen (10.1016/j.bspc.2023.104933_b0110) 2017; 15 Garc’ia-Salinas (10.1016/j.bspc.2023.104933_b0105) 2019; 50 Schalk (10.1016/j.bspc.2023.104933_b0005) 2010 González-Castañeda (10.1016/j.bspc.2023.104933_b0090) 2017; 37 Afrakhteh (10.1016/j.bspc.2023.104933_b0165) 2020 10.1016/j.bspc.2023.104933_b0070 10.1016/j.bspc.2023.104933_b0050 Wester (10.1016/j.bspc.2023.104933_b0015) 2006 Pourali (10.1016/j.bspc.2023.104933_b0160) 2023; 211 Torres-Garc’ia (10.1016/j.bspc.2023.104933_b0080) 2016; 59 10.1016/j.bspc.2023.104933_b0135 10.1016/j.bspc.2023.104933_b0075 10.1016/j.bspc.2023.104933_b0130 |
| References_xml | – reference: , 2009, pp. 40–48. – reference: , 2019. – reference: B. M. Idrees and O. Farooq, “Vowel classification using wavelet decomposition during speech imagery,” in – volume: 37 start-page: 82 year: 2017 end-page: 91 ident: b0090 article-title: Sonification and textification: proposing methods for classifying unspoken words from EEG signals publication-title: Biomed. Signal Process. Control – volume: 22 start-page: 1334 year: 2009 end-page: 1339 ident: b0040 article-title: Single-trial classification of vowel speech imagery using common spatial patterns publication-title: Neural Netw. – volume: 80 year: 2023 ident: b0150 article-title: EEG-based covert speech decoding using random rotation extreme learning machine ensemble for intuitive BCI communication publication-title: Biomed. Signal Process. Control – reference: G. A. P. Coretto, I. E. Gareis, and H. L. Rufiner, “Open access database of EEG signals recorded during imagined speech,” in – reference: C. Cooney, R. Folli, and D. Coyle, “Mel frequency cepstral coefficients enhance imagined speech decoding accuracy from EEG,” in – volume: 11 start-page: 36010 year: 2014 ident: b0060 article-title: EEG classification in a single-trial basis for vowel speech perception using multivariate empirical mode decomposition publication-title: J. Neural Eng. – reference: M. D’Zmura, S. Deng, T. Lappas, S. Thorpe, and R. Srinivasan, “Toward EEG sensing of imagined speech,” in – volume: 7 start-page: 46006 year: 2010 ident: b0030 article-title: EEG classification of imagined syllable rhythm using Hilbert spectrum methods publication-title: J. Neural Eng. – reference: , 2016, pp. 636–640. – start-page: 9 year: 2010 end-page: 35 ident: b0005 article-title: “Brain sensors and signals”, in A Practical Guide to Brain-Computer Interfacing with BCI2000 – volume: 1 start-page: 1 year: 2016 end-page: 14 ident: b0085 article-title: A communication paradigm using subvocalized speech: translating brain signals into speech publication-title: Augment. Hum. Res. – start-page: 25 year: 2020 end-page: 52 ident: b0165 article-title: Applying an efficient evolutionary algorithm for EEG signal feature selection and classification in decision-based systems publication-title: Energy Efficiency of Medical Devices and Healthcare Applications – reference: , 2015, pp. 63–66. – volume: 59 start-page: 1 year: 2016 end-page: 12 ident: b0080 article-title: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification publication-title: Expert Syst. Appl. – reference: S. Iqbal, Y. U. Khan, and O. Farooq, “EEG based classification of imagined vowel sounds,” in – volume: 68 year: 2021 ident: b0145 article-title: EEG based direct speech BCI system using a fusion of SMRT and MFCC/LPCC features with ANN classifier publication-title: Biomed. Signal Process. Control – volume: 25 start-page: 2292 year: 2017 end-page: 2300 ident: b0170 article-title: EEG classification of covert speech using regularized neural networks publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. – reference: , 2015, pp. 1591–1594. – volume: 15 start-page: 16002 year: 2017 ident: b0110 article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features publication-title: J. Neural Eng. – volume: 211 year: 2023 ident: b0160 article-title: CSP-Ph-PS: Learning CSP-phase space and Poincare sections based on evolutionary algorithm for EEG signals recognition publication-title: Expert Syst. Appl. – volume: 8 start-page: 901 year: 2013 end-page: 908 ident: b0035 article-title: Analysis and classification of speech imagery EEG for BCI publication-title: Biomed. Signal Process. Control – volume: 50 start-page: 151 year: 2019 end-page: 157 ident: b0105 article-title: Transfer learning in imagined speech EEG-based BCIs publication-title: Biomed. Signal Process. Control – reference: , 2017, vol. 10160, p. 1016002. – year: 2006 ident: b0015 article-title: “Unspoken speech-speech recognition based on electroencephalography”, – reference: , 2018, pp. 239 249. – volume: 63 year: 2021 ident: b0140 article-title: Wavelet feature selection of audio and imagined/vocalized EEG signals for ANN based multimodal ASR system publication-title: Biomed. Signal Process. Control – volume: 10 start-page: 429 year: 2016 ident: b0010 article-title: Automatic speech recognition from neural signals: a focused review publication-title: Front. Neurosci. – reference: . – reference: E. F. González-Castañeda, A. A. Torres-Garc\’\ia, A. Rosales-Pérez, C. A. Reyes-Garc\’\ia, and L. Villaseñor-Pineda, “EEG sonification for classifying unspoken words,” in – reference: , 2016. – reference: J. S. Garc\’\ia-Salinas, L. Villaseñor-Pineda, C. A. Reyes-Garc\’\ia, and A. Torres-Garc\’\ia, “Tensor decomposition for imagined speech discrimination in EEG,” in – volume: 118 start-page: 1 year: 2018 end-page: 10 ident: b0055 article-title: Classification of imagery vowel speech using EEG and cross correlation publication-title: Int. J. Pure Appl. Math. – year: 2023 ident: b0155 article-title: Impacts of simplifying articulation movements imagery to speech imagery BCI performance publication-title: J. Neural Eng. – reference: K. Brigham and B. V. K. V. Kumar, “Subject identification from electroencephalogram (EEG) signals during imagined speech,” in – reference: , 2010, pp. 1–8. – volume: 65 start-page: 2168 year: 2017 end-page: 2177 ident: b0095 article-title: Multiclass classification of word imagination speech with hybrid connectivity features publication-title: IEEE Trans. Biomed. Eng. – reference: , 2018, pp. 1–7. – volume: 2016 year: 2016 ident: b0065 article-title: Vowel imagery decoding toward silent speech BCI using extreme learning machine with electroencephalogram publication-title: Biomed Res. Int. – reference: S. Zhao and F. Rudzicz, “Classifying phonological categories in imagined and articulated speech,” in – reference: , 2015, pp. 992–996. – reference: “The KARA ONE database.” – reference: P. Saha, M. Abdul-Mageed, and S. Fels, “Speak your mind! towards imagined speech recognition with hierarchical deep learning,” – reference: P. Sun and J. Qin, “Neural networks based eeg-speech models,” – start-page: 9 year: 2010 ident: 10.1016/j.bspc.2023.104933_b0005 – ident: 10.1016/j.bspc.2023.104933_b0100 doi: 10.1007/978-3-030-04497-8_20 – volume: 211 year: 2023 ident: 10.1016/j.bspc.2023.104933_b0160 article-title: CSP-Ph-PS: Learning CSP-phase space and Poincare sections based on evolutionary algorithm for EEG signals recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118621 – volume: 22 start-page: 1334 issue: 9 year: 2009 ident: 10.1016/j.bspc.2023.104933_b0040 article-title: Single-trial classification of vowel speech imagery using common spatial patterns publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.05.008 – ident: 10.1016/j.bspc.2023.104933_b0115 doi: 10.1117/12.2255697 – volume: 1 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.bspc.2023.104933_b0085 article-title: A communication paradigm using subvocalized speech: translating brain signals into speech publication-title: Augment. Hum. Res. doi: 10.1007/s41133-016-0001-z – ident: 10.1016/j.bspc.2023.104933_b0025 doi: 10.1109/BTAS.2010.5634515 – ident: 10.1016/j.bspc.2023.104933_b0045 doi: 10.1109/SPIN.2016.7566774 – volume: 8 start-page: 901 issue: 6 year: 2013 ident: 10.1016/j.bspc.2023.104933_b0035 article-title: Analysis and classification of speech imagery EEG for BCI publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.07.011 – ident: 10.1016/j.bspc.2023.104933_b0075 – ident: 10.1016/j.bspc.2023.104933_b0130 doi: 10.1109/ISSC.2018.8585291 – volume: 59 start-page: 1 year: 2016 ident: 10.1016/j.bspc.2023.104933_b0080 article-title: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.011 – ident: 10.1016/j.bspc.2023.104933_b0070 doi: 10.1109/ICASSP.2015.7178118 – ident: 10.1016/j.bspc.2023.104933_b0050 – volume: 80 year: 2023 ident: 10.1016/j.bspc.2023.104933_b0150 article-title: EEG-based covert speech decoding using random rotation extreme learning machine ensemble for intuitive BCI communication publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104379 – volume: 63 year: 2021 ident: 10.1016/j.bspc.2023.104933_b0140 article-title: Wavelet feature selection of audio and imagined/vocalized EEG signals for ANN based multimodal ASR system publication-title: Biomed. Signal Process. Control – year: 2023 ident: 10.1016/j.bspc.2023.104933_b0155 article-title: Impacts of simplifying articulation movements imagery to speech imagery BCI performance publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acb232 – start-page: 25 year: 2020 ident: 10.1016/j.bspc.2023.104933_b0165 article-title: Applying an efficient evolutionary algorithm for EEG signal feature selection and classification in decision-based systems – volume: 11 start-page: 36010 issue: 3 year: 2014 ident: 10.1016/j.bspc.2023.104933_b0060 article-title: EEG classification in a single-trial basis for vowel speech perception using multivariate empirical mode decomposition publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/036010 – volume: 118 start-page: 1 issue: 24 year: 2018 ident: 10.1016/j.bspc.2023.104933_b0055 article-title: Classification of imagery vowel speech using EEG and cross correlation publication-title: Int. J. Pure Appl. Math. – volume: 2016 year: 2016 ident: 10.1016/j.bspc.2023.104933_b0065 article-title: Vowel imagery decoding toward silent speech BCI using extreme learning machine with electroencephalogram publication-title: Biomed Res. Int. doi: 10.1155/2016/2618265 – volume: 15 start-page: 16002 issue: 1 year: 2017 ident: 10.1016/j.bspc.2023.104933_b0110 article-title: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa8235 – ident: 10.1016/j.bspc.2023.104933_b0125 – volume: 65 start-page: 2168 issue: 10 year: 2017 ident: 10.1016/j.bspc.2023.104933_b0095 article-title: Multiclass classification of word imagination speech with hybrid connectivity features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2786251 – volume: 50 start-page: 151 year: 2019 ident: 10.1016/j.bspc.2023.104933_b0105 article-title: Transfer learning in imagined speech EEG-based BCIs publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.01.006 – volume: 10 start-page: 429 year: 2016 ident: 10.1016/j.bspc.2023.104933_b0010 article-title: Automatic speech recognition from neural signals: a focused review publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00429 – volume: 37 start-page: 82 year: 2017 ident: 10.1016/j.bspc.2023.104933_b0090 article-title: Sonification and textification: proposing methods for classifying unspoken words from EEG signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.10.012 – year: 2006 ident: 10.1016/j.bspc.2023.104933_b0015 – ident: 10.1016/j.bspc.2023.104933_b0020 doi: 10.1007/978-3-642-02574-7_5 – volume: 7 start-page: 46006 issue: 4 year: 2010 ident: 10.1016/j.bspc.2023.104933_b0030 article-title: EEG classification of imagined syllable rhythm using Hilbert spectrum methods publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/4/046006 – ident: 10.1016/j.bspc.2023.104933_b0135 doi: 10.21437/Interspeech.2019-3041 – ident: 10.1016/j.bspc.2023.104933_b0120 – volume: 25 start-page: 2292 issue: 12 year: 2017 ident: 10.1016/j.bspc.2023.104933_b0170 article-title: EEG classification of covert speech using regularized neural networks publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2017.2758164 – volume: 68 year: 2021 ident: 10.1016/j.bspc.2023.104933_b0145 article-title: EEG based direct speech BCI system using a fusion of SMRT and MFCC/LPCC features with ANN classifier publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102625 |
| SSID | ssj0048714 |
| Score | 2.3688293 |
| Snippet | Brain-computer interface (BCI) technology has many applications in various scientific fields, such as used in communication (speech recognition). The data of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104933 |
| SubjectTerms | Brain computer interface (BCI) Common spatial pattern (CSP) EEG signals Imagined speech KNN classification Multiclass CSP |
| Title | EM-CSP: An efficient multiclass common spatial pattern feature method for speech imagery EEG signals recognition |
| URI | https://dx.doi.org/10.1016/j.bspc.2023.104933 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k7XdbLJJvJWSWhWLUAu9hewLK5oGWw9e_O3ObpJSQXrwmDC7JLPDzBfyzTcIXWpGeZBFmmRKhMTPfENiP6Yk40yoiDKTKUeQHfHhxL-fBtMG6te9MJZWWeX-Mqe7bF3d6VTe7BSzWWcMWJpH8HUCIBrSMJ_aDnY_tFMMrr9XNA_A407f2xoTa101zpQcL7EorIyhx-yvzpixv4vTWsEZ7KHdCiniXvkw-6ih8wO0s6YfeIiK5JH0x083uJdj7bQgoIRgxxGUFhVjeCsIM7ywtGnYq3Bimjk22sl54nJ8NAbcCiZayxc8e7eaFl84SW6xpXZAcOIVx2ieH6HJIHnuD0k1QoFI8MqSKE2VEgEXUlltNBl3RSh46HVl1pXSGKkE5cb3RMR1AEhCRxmcXZDBCUFhjxU7Rs18nusThE3oGRb6IpCcAepiccQ5WIfU-FxyQ1uI1r5LZaUvbsdcvKU1kew1tf5Orb_T0t8tdLVaU5TqGhutg_pI0l8xkkL637Du9J_rztC2vSrJueeoufz41BcAQZai7WKsjbZ6dw_D0Q-3Bdu7 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQdvZoV2t9vWGyFFVCAmQMKt6b4iRksjePDib3e2LQQTw8FrO9O0M5OZb9Nvv0XoWlOHe0mgSaKET1jCDAlZ6JCEU6ECh5pE5QTZPu-M2OPYG1dQa7EXxtIqy95f9PS8W5dX6mU069lkUh8AluYBrE4AREMb5uMNtMk817crsNvvJc8DAHku8G2tiTUvd84UJC8xy6yOoUvtv86Q0r-n08rEae-h3RIq4mbxNvuootMDtLMiIHiIsqhHWoPnO9xMsc7FIGCG4JwkKC0sxvBZUGd4ZnnT8KwsV9NMsdG5nicuzo_GAFzBRGv5gifvVtTiC0fRPbbcDqhOvCQZTdMjNGpHw1aHlGcoEAlhmROlHaWEx4VUVhxNhg3hC-67DZk0pDRGKuFww1wRcO0BlNBBAsnzEkgRTPZQ0WNUTaepPkHY-K6hPhOe5BRgFw0DzsHadwzjkhunhpxF7GJZCozbcy7e4gWT7DW28Y5tvOMi3jV0s_TJCnmNtdbeIiXxryKJof-v8Tv9p98V2uoMe924-9B_OkPb9k7B1D1H1fnHp74APDIXl3m9_QDsnd1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EM-CSP%3A+An+efficient+multiclass+common+spatial+pattern+feature+method+for+speech+imagery+EEG+signals+recognition&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Alizadeh%2C+Danial&rft.au=Omranpour%2C+Hesam&rft.date=2023-07-01&rft.issn=1746-8094&rft.volume=84&rft.spage=104933&rft_id=info:doi/10.1016%2Fj.bspc.2023.104933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_104933 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |