Bayesian classifier with multivariate distribution based on D-vine copula model for awake/drowsiness interpretation during power nap
In this study, a Bayesian classifier with the multivariate distribution based on the D-vine copula model is developed and evaluated for the awake/drowsiness interpretation during the power nap. The objective is to consider the correlation among the features into the automatic classification algorith...
        Saved in:
      
    
          | Published in | Biomedical signal processing and control Vol. 56; p. 101686 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.02.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1746-8094 1746-8108  | 
| DOI | 10.1016/j.bspc.2019.101686 | 
Cover
| Abstract | In this study, a Bayesian classifier with the multivariate distribution based on the D-vine copula model is developed and evaluated for the awake/drowsiness interpretation during the power nap. The objective is to consider the correlation among the features into the automatic classification algorithm. A power nap is a short sleep process, which is commonly considered as a supplement to the insufficient overnight sleep. It may involve the states of awake and drowsiness. Neurophysiological features are extracted from the EEGs (electroencephalography) and EOGs (electrooculography), which are synchronously recorded during one's short nap after lunch. The multivariate distribution of features is decomposed into independency and dependency products according to the D-vine copula model. The independency product is the marginal probability density function of the features. The dependency product consists of pair-copula functions. The marginal probability density is estimated by the kernel function and k-nearest-neighbor density respectively. The parameters of pair-copula functions are estimated by the maximum likelihood estimation. In total, 8 healthy subjects were involved. The comparison results showed that the Bayesian classifier with the multivariate distribution based on the D-vine copula model obtained quite satisfied classification accuracy. The developed method introduced a feasible way to construct the multivariate distribution, which can enhance the classification performance of Bayesian classifier when dealing with the complex correlation of features in actual cases. | 
    
|---|---|
| AbstractList | In this study, a Bayesian classifier with the multivariate distribution based on the D-vine copula model is developed and evaluated for the awake/drowsiness interpretation during the power nap. The objective is to consider the correlation among the features into the automatic classification algorithm. A power nap is a short sleep process, which is commonly considered as a supplement to the insufficient overnight sleep. It may involve the states of awake and drowsiness. Neurophysiological features are extracted from the EEGs (electroencephalography) and EOGs (electrooculography), which are synchronously recorded during one's short nap after lunch. The multivariate distribution of features is decomposed into independency and dependency products according to the D-vine copula model. The independency product is the marginal probability density function of the features. The dependency product consists of pair-copula functions. The marginal probability density is estimated by the kernel function and k-nearest-neighbor density respectively. The parameters of pair-copula functions are estimated by the maximum likelihood estimation. In total, 8 healthy subjects were involved. The comparison results showed that the Bayesian classifier with the multivariate distribution based on the D-vine copula model obtained quite satisfied classification accuracy. The developed method introduced a feasible way to construct the multivariate distribution, which can enhance the classification performance of Bayesian classifier when dealing with the complex correlation of features in actual cases. | 
    
| ArticleNumber | 101686 | 
    
| Author | Wang, Bei Sun, Yudong Sugi, Takenao Wang, Xingyu Zhang, Tao  | 
    
| Author_xml | – sequence: 1 givenname: Bei orcidid: 0000-0002-4331-3053 surname: Wang fullname: Wang, Bei email: beiwang@ecust.edu.cn organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes (East China University of Science and Technology), Ministry of Education, Shanghai 200237, China – sequence: 2 givenname: Yudong surname: Sun fullname: Sun, Yudong organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes (East China University of Science and Technology), Ministry of Education, Shanghai 200237, China – sequence: 3 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Department of Automation, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Takenao surname: Sugi fullname: Sugi, Takenao organization: Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan – sequence: 5 givenname: Xingyu surname: Wang fullname: Wang, Xingyu organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes (East China University of Science and Technology), Ministry of Education, Shanghai 200237, China  | 
    
| BookMark | eNp9kL1OwzAQgC0EErTwAkx-gRQ7CYkjsfAPUiUWmK2rfYErqR3ZbqvuPDhpCwsD053u9N3PN2KHzjtk7FyKiRSyuphPZrE3k1zIZldQ1QE7kXVZZUoKdfibi6Y8ZqMY50KUqpblCfu6gQ1GAsdNBzFSSxj4mtIHXyy7RCsIBAm5pZgCzZaJvOMziGj5kNxlK3LIje-XHfCFt9jx1gcOa_jECxv8Og79GDm5hKEPmGA3wC4DuXfe-_WwzEF_yo5a6CKe_cQxe3u4f719yqYvj8-319PMFEKkzNq6ktDYPK_yAqBGKVpx2SjT2BZkUZUSimpWK1UWhZClyqVpy6YWsrZNXhssxkzt55rgYwzYakP7k1IA6rQUeitPz_XWpt7a1HubA5r_QftACwib_6GrPYTDU6vBrI6G0Bm0FNAkbT39h38DftSTeg | 
    
| CitedBy_id | crossref_primary_10_1016_j_bspc_2020_102320 crossref_primary_10_1049_itr2_12041 crossref_primary_10_1038_s41598_022_24233_2 crossref_primary_10_1186_s13640_021_00575_1 crossref_primary_10_1016_j_eswa_2022_118152 crossref_primary_10_1016_j_jneumeth_2020_108927 crossref_primary_10_3233_MAS_220006  | 
    
| Cites_doi | 10.4015/S1016237214500215 10.18637/jss.v052.i03 10.1109/TBME.2016.2574812 10.1016/j.jmva.2016.07.003 10.5194/hess-19-2685-2015 10.1016/j.bspc.2018.03.007 10.2486/indhealth.2013-0043 10.1198/jasa.2010.tm09572 10.1093/sleep/zsy207 10.1002/1348-9585.12063 10.1053/smrv.2000.0098 10.3389/fncom.2015.00038 10.1109/MCE.2015.2463373 10.5665/sleep.5550 10.1109/TVCG.2017.2744099 10.1016/j.neuroimage.2018.09.033 10.1016/j.csda.2013.02.018 10.1109/TPAMI.2017.2774300 10.1001/archinte.167.3.296 10.1016/j.csda.2016.12.009 10.1016/B978-0-444-62627-1.00023-8 10.1016/j.jmva.2012.02.021 10.1109/TBME.2010.2077291 10.1016/j.patcog.2017.01.026 10.1109/TFUZZ.2016.2633379 10.1016/j.neubiorev.2012.10.003 10.1007/s00521-017-2976-x 10.1080/14697688.2018.1438642 10.1093/sleep/zsw076 10.1109/TCSI.2012.2185290  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2019 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.bspc.2019.101686 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1746-8108 | 
    
| ExternalDocumentID | 10_1016_j_bspc_2019_101686 S1746809419302678  | 
    
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c300t-dd761a9d22623aa7e10f0598c9dfa13641a36b788433014821cf497017d927ce3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1746-8094 | 
    
| IngestDate | Wed Oct 29 21:26:26 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 Fri Feb 23 02:50:37 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Drowsiness Power nap Multivariate distribution D-vine copula Bayesian classifier  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c300t-dd761a9d22623aa7e10f0598c9dfa13641a36b788433014821cf497017d927ce3 | 
    
| ORCID | 0000-0002-4331-3053 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2019_101686 crossref_primary_10_1016_j_bspc_2019_101686 elsevier_sciencedirect_doi_10_1016_j_bspc_2019_101686  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2020 2020-02-00  | 
    
| PublicationDateYYYYMMDD | 2020-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Biomedical signal processing and control | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Ozdemir, Allen, Choi, Wimalajeewa, Varshney (bib0080) 2017; 40 Vernieuwe, Vandenberghe, De Baets, Verhoest (bib0100) 2015; 12 Lin, Ko, Chuang, Su, Lin (bib0155) 2012; 59 Senawi, Wei, Billings (bib0060) 2017; 67 Oriyama, Miyakoshi, Rahman (bib0175) 2019; 61 Oriyama, Miyakoshi, Kobayashi (bib0170) 2014; 52 Kim, Kim, Liao, Jung (bib0115) 2013; 64 Jasper (bib0125) 1958; 10 Borghini, Astolfi, Vecchiato, Mattia, Babiloni (bib0055) 2014; 44 Stübinger, Mangold, Krauss (bib0105) 2018; 18 Oriyama, Miyakoshi, Kobayashi (bib0030) 2014; 52 Patton (bib0070) 2012; 110 Jovanovic, Skoric, Sarenac, Milutinovic-Smiljanic, Japundzic-Zigon, Bajic (bib0075) 2018; 43 Maas, Wherry (bib0005) 1998 Gajic, Djurovic, Gligonjevic, Gennaro, Savic-Gajic (bib0050) 2015; 9 Cui, Krishnan, Hodge, Zhang (bib0085) 2018 Khushaba, Kodagoda, Lal, Dissanayake (bib0150) 2010; 58 Hazarika, Biswas, Shen (bib0090) 2018; 24 Chacon-Murguia, Prieto-Resendiz (bib0145) 2015; 4 Ayala-Solares, Wei, Billings (bib0065) 2019; 31 Nagler, Czado (bib0140) 2016; 151 Cousins, Wong, Raghunath (bib0020) 2019; 42 Nelsen (bib0130) 2012; 42 Tassi, Muzet (bib0040) 2000; 4 Smith, Min, Almeida, Czado (bib0135) 2010; 105 Vallat, Meunier, Nicolas, Ruby (bib0165) 2019; 184 Kraus, Czado (bib0095) 2017; 110 Gajic, Djurovic, Gennaro, Fredrik (bib0045) 2014; 26 Naska, Oikonomou, Trichopoulou, Psaltopoulou, Trichopoulos (bib0015) 2007; 167 Hilditch, Centofanti, Dorrian, Banks (bib0035) 2016; 39 Qian, Wang, Qing, Zhang, Zhang, Wang, Nakamura (bib0110) 2017; 64 Brechmann, Schepsmeier (bib0120) 2013; 52 Costa (bib0010) 2015; 131 Blaskovich, Szollosi, Gombos, Racsmany, Simor (bib0025) 2017; 40 Wu, Lawhern, Gordon, Lance, Lin (bib0160) 2017; 25 Tassi (10.1016/j.bspc.2019.101686_bib0040) 2000; 4 Stübinger (10.1016/j.bspc.2019.101686_bib0105) 2018; 18 Ozdemir (10.1016/j.bspc.2019.101686_bib0080) 2017; 40 Cui (10.1016/j.bspc.2019.101686_bib0085) 2018 Smith (10.1016/j.bspc.2019.101686_bib0135) 2010; 105 Hilditch (10.1016/j.bspc.2019.101686_bib0035) 2016; 39 Gajic (10.1016/j.bspc.2019.101686_bib0050) 2015; 9 Senawi (10.1016/j.bspc.2019.101686_bib0060) 2017; 67 Costa (10.1016/j.bspc.2019.101686_bib0010) 2015; 131 Brechmann (10.1016/j.bspc.2019.101686_bib0120) 2013; 52 Oriyama (10.1016/j.bspc.2019.101686_bib0170) 2014; 52 Lin (10.1016/j.bspc.2019.101686_bib0155) 2012; 59 Hazarika (10.1016/j.bspc.2019.101686_bib0090) 2018; 24 Gajic (10.1016/j.bspc.2019.101686_bib0045) 2014; 26 Patton (10.1016/j.bspc.2019.101686_bib0070) 2012; 110 Khushaba (10.1016/j.bspc.2019.101686_bib0150) 2010; 58 Vallat (10.1016/j.bspc.2019.101686_bib0165) 2019; 184 Blaskovich (10.1016/j.bspc.2019.101686_bib0025) 2017; 40 Qian (10.1016/j.bspc.2019.101686_bib0110) 2017; 64 Wu (10.1016/j.bspc.2019.101686_bib0160) 2017; 25 Oriyama (10.1016/j.bspc.2019.101686_bib0030) 2014; 52 Ayala-Solares (10.1016/j.bspc.2019.101686_bib0065) 2019; 31 Nelsen (10.1016/j.bspc.2019.101686_bib0130) 2012; 42 Chacon-Murguia (10.1016/j.bspc.2019.101686_bib0145) 2015; 4 Kraus (10.1016/j.bspc.2019.101686_bib0095) 2017; 110 Borghini (10.1016/j.bspc.2019.101686_bib0055) 2014; 44 Maas (10.1016/j.bspc.2019.101686_bib0005) 1998 Naska (10.1016/j.bspc.2019.101686_bib0015) 2007; 167 Jovanovic (10.1016/j.bspc.2019.101686_bib0075) 2018; 43 Vernieuwe (10.1016/j.bspc.2019.101686_bib0100) 2015; 12 Cousins (10.1016/j.bspc.2019.101686_bib0020) 2019; 42 Jasper (10.1016/j.bspc.2019.101686_bib0125) 1958; 10 Oriyama (10.1016/j.bspc.2019.101686_bib0175) 2019; 61 Kim (10.1016/j.bspc.2019.101686_bib0115) 2013; 64 Nagler (10.1016/j.bspc.2019.101686_bib0140) 2016; 151  | 
    
| References_xml | – volume: 12 start-page: 2685 year: 2015 end-page: 2699 ident: bib0100 article-title: A continuous rainfall model based on vine copulas publication-title: Hydrol. Earth Syst. Sci. – volume: 18 start-page: 1831 year: 2018 end-page: 1849 ident: bib0105 article-title: Statistical arbitrage with vine copulas publication-title: Quant. Finance – volume: 167 start-page: 296 year: 2007 end-page: 330 ident: bib0015 article-title: Siesta in healthy adults and coronary mortality in the general population publication-title: Arch. Intern. Med. – volume: 40 year: 2017 ident: bib0025 article-title: The benefit of directed forgetting persists after a daytime nap: the role of spindles and rapid eye movement sleep in the consolidation of relevant memories publication-title: Sleep – volume: 4 start-page: 107 year: 2015 end-page: 119 ident: bib0145 article-title: Detecting driver drowsiness: a survey of system designs and technology publication-title: IEEE Consum. Electron. Mag. – volume: 24 start-page: 934 year: 2018 end-page: 943 ident: bib0090 article-title: Uncertainty visualization using copula-based analysis in mixed distribution models publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 64 start-page: 1 year: 2013 end-page: 19 ident: bib0115 article-title: Mixture of D-vine copulas for modeling dependence publication-title: Comput. Stat. Data Anal. – volume: 67 start-page: 47 year: 2017 end-page: 61 ident: bib0060 article-title: A new maximum relevance-minimum multicollinearity (MRmMC) method for feature selection and ranking publication-title: Pattern Recognit. – volume: 52 start-page: 1 year: 2013 end-page: 27 ident: bib0120 article-title: Modeling dependence with C- and D-vine copulas: the R package CDVine publication-title: J. Stat. Softw. – volume: 131 start-page: 437 year: 2015 end-page: 446 ident: bib0010 article-title: Sleep deprivation due to shift work publication-title: Handb. Clin. Neurol. – volume: 52 start-page: 25 year: 2014 end-page: 35 ident: bib0170 article-title: Effects of two 15-min naps on the subjective sleepiness, fatigue and heart rate variability of night shift nurses publication-title: Industry Health – volume: 151 start-page: 69 year: 2016 end-page: 89 ident: bib0140 article-title: Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas publication-title: J. Multivar. Anal. – volume: 25 start-page: 1522 year: 2017 end-page: 1535 ident: bib0160 article-title: Driver drowsiness estimation from EEG signals using online weighted adaptation regularization for regression (OwARR) publication-title: IEEE Trans. Fuzzy Syst. – volume: 39 start-page: 675 year: 2016 end-page: 685 ident: bib0035 article-title: A 30-minute, but not a 10-minute nighttime nap is associated with sleep inertia publication-title: Sleep – volume: 59 start-page: 2044 year: 2012 end-page: 2055 ident: bib0155 article-title: Generalized EEG-based drowsiness prediction system by using a self-organizing neural fuzzy system publication-title: IEEE Trans. Circuits Syst. – volume: 44 start-page: 58 year: 2014 end-page: 75 ident: bib0055 article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness publication-title: Neurosci. Biobehav. Rev. – volume: 4 start-page: 341 year: 2000 end-page: 353 ident: bib0040 article-title: Sleep inertia publication-title: Sleep Med. Rev. – volume: 105 start-page: 1467 year: 2010 end-page: 1479 ident: bib0135 article-title: Modeling longitudinal data using a pair-copula decomposition of serial dependence publication-title: J. Am. Stat. Assoc. – volume: 110 start-page: 1 year: 2017 end-page: 18 ident: bib0095 article-title: D-vine copula based quantile regression publication-title: Comput. Stat. Data Anal. – year: 2018 ident: bib0085 article-title: A copula-based conditional probabilistic forecast model for wind power ramps publication-title: IEEE Trans. Smart Grid – volume: 61 start-page: 368 year: 2019 end-page: 377 ident: bib0175 article-title: The effects of a 120-minute nap on sleepiness, fatigue, and performance during 16-hour night shifts: a pilot study publication-title: J. Occup. Health – volume: 43 start-page: 250 year: 2018 end-page: 264 ident: bib0075 article-title: Copula as a dynamic measure of cardiovascular signal interactions publication-title: Biomed. Signal Process. Control – volume: 9 start-page: 38 year: 2015 ident: bib0050 article-title: Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis publication-title: Front. Comput. Neurosci. – volume: 64 start-page: 743 year: 2017 end-page: 754 ident: bib0110 article-title: Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap publication-title: IEEE Trans. Biomed. Eng. – volume: 26 year: 2014 ident: bib0045 article-title: Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition publication-title: Biomed. Eng. Appl. Basis Commun. – year: 1998 ident: bib0005 article-title: Miracle Sleep Cure: The Key to a Long Life of Peak Performance – volume: 184 start-page: 266 year: 2019 end-page: 278 ident: bib0165 article-title: Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures publication-title: Neuroimage – volume: 52 start-page: 25 year: 2014 end-page: 35 ident: bib0030 article-title: Effects of two 15-min naps on the subjective sleepiness, fatigue and heart rate variability of night shift nurses publication-title: Industry Health – volume: 10 start-page: 371 year: 1958 end-page: 375 ident: bib0125 article-title: The ten-twenty electrode system of the International Federation publication-title: Electroenceph. Clin. Neurophysiol. – volume: 58 start-page: 121 year: 2010 end-page: 131 ident: bib0150 article-title: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm publication-title: IEEE Trans. Biomed. Eng. – volume: 42 year: 2012 ident: bib0130 article-title: An introduction to copulas publication-title: Technometrics – volume: 31 start-page: 11 year: 2019 end-page: 25 ident: bib0065 article-title: A novel logistic-NARX model as a classifier for dynamic binary classification publication-title: Neural Comput. Appl. – volume: 110 start-page: 4 year: 2012 end-page: 18 ident: bib0070 article-title: A review of copula models for economic time series publication-title: J. Multivar. Anal. – volume: 40 start-page: 2740 year: 2017 end-page: 2748 ident: bib0080 article-title: Copula based classifier fusion under statistical dependence publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 42 year: 2019 ident: bib0020 article-title: The long-term memory benefits of a daytime nap compared with cramming publication-title: Sleep – volume: 26 issue: 2 year: 2014 ident: 10.1016/j.bspc.2019.101686_bib0045 article-title: Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition publication-title: Biomed. Eng. Appl. Basis Commun. doi: 10.4015/S1016237214500215 – volume: 52 start-page: 1 issue: 3 year: 2013 ident: 10.1016/j.bspc.2019.101686_bib0120 article-title: Modeling dependence with C- and D-vine copulas: the R package CDVine publication-title: J. Stat. Softw. doi: 10.18637/jss.v052.i03 – volume: 64 start-page: 743 issue: 4 year: 2017 ident: 10.1016/j.bspc.2019.101686_bib0110 article-title: Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2574812 – volume: 151 start-page: 69 year: 2016 ident: 10.1016/j.bspc.2019.101686_bib0140 article-title: Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2016.07.003 – volume: 12 start-page: 2685 issue: 1 year: 2015 ident: 10.1016/j.bspc.2019.101686_bib0100 article-title: A continuous rainfall model based on vine copulas publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-2685-2015 – volume: 43 start-page: 250 year: 2018 ident: 10.1016/j.bspc.2019.101686_bib0075 article-title: Copula as a dynamic measure of cardiovascular signal interactions publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.03.007 – volume: 52 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.bspc.2019.101686_bib0030 article-title: Effects of two 15-min naps on the subjective sleepiness, fatigue and heart rate variability of night shift nurses publication-title: Industry Health doi: 10.2486/indhealth.2013-0043 – volume: 105 start-page: 1467 issue: 492 year: 2010 ident: 10.1016/j.bspc.2019.101686_bib0135 article-title: Modeling longitudinal data using a pair-copula decomposition of serial dependence publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2010.tm09572 – volume: 52 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.bspc.2019.101686_bib0170 article-title: Effects of two 15-min naps on the subjective sleepiness, fatigue and heart rate variability of night shift nurses publication-title: Industry Health doi: 10.2486/indhealth.2013-0043 – volume: 42 issue: 1 year: 2019 ident: 10.1016/j.bspc.2019.101686_bib0020 article-title: The long-term memory benefits of a daytime nap compared with cramming publication-title: Sleep doi: 10.1093/sleep/zsy207 – volume: 61 start-page: 368 issue: 3 year: 2019 ident: 10.1016/j.bspc.2019.101686_bib0175 article-title: The effects of a 120-minute nap on sleepiness, fatigue, and performance during 16-hour night shifts: a pilot study publication-title: J. Occup. Health doi: 10.1002/1348-9585.12063 – volume: 4 start-page: 341 issue: 4 year: 2000 ident: 10.1016/j.bspc.2019.101686_bib0040 article-title: Sleep inertia publication-title: Sleep Med. Rev. doi: 10.1053/smrv.2000.0098 – volume: 9 start-page: 38 year: 2015 ident: 10.1016/j.bspc.2019.101686_bib0050 article-title: Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00038 – volume: 4 start-page: 107 issue: 4 year: 2015 ident: 10.1016/j.bspc.2019.101686_bib0145 article-title: Detecting driver drowsiness: a survey of system designs and technology publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2015.2463373 – volume: 39 start-page: 675 issue: 3 year: 2016 ident: 10.1016/j.bspc.2019.101686_bib0035 article-title: A 30-minute, but not a 10-minute nighttime nap is associated with sleep inertia publication-title: Sleep doi: 10.5665/sleep.5550 – volume: 24 start-page: 934 issue: 1 year: 2018 ident: 10.1016/j.bspc.2019.101686_bib0090 article-title: Uncertainty visualization using copula-based analysis in mixed distribution models publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2017.2744099 – volume: 184 start-page: 266 year: 2019 ident: 10.1016/j.bspc.2019.101686_bib0165 article-title: Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.033 – volume: 64 start-page: 1 issue: 4 year: 2013 ident: 10.1016/j.bspc.2019.101686_bib0115 article-title: Mixture of D-vine copulas for modeling dependence publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.02.018 – volume: 40 start-page: 2740 issue: 11 year: 2017 ident: 10.1016/j.bspc.2019.101686_bib0080 article-title: Copula based classifier fusion under statistical dependence publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2774300 – volume: 167 start-page: 296 issue: 3 year: 2007 ident: 10.1016/j.bspc.2019.101686_bib0015 article-title: Siesta in healthy adults and coronary mortality in the general population publication-title: Arch. Intern. Med. doi: 10.1001/archinte.167.3.296 – volume: 110 start-page: 1 year: 2017 ident: 10.1016/j.bspc.2019.101686_bib0095 article-title: D-vine copula based quantile regression publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2016.12.009 – volume: 131 start-page: 437 year: 2015 ident: 10.1016/j.bspc.2019.101686_bib0010 article-title: Sleep deprivation due to shift work publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-444-62627-1.00023-8 – volume: 110 start-page: 4 issue: S1 year: 2012 ident: 10.1016/j.bspc.2019.101686_bib0070 article-title: A review of copula models for economic time series publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2012.02.021 – volume: 58 start-page: 121 issue: 1 year: 2010 ident: 10.1016/j.bspc.2019.101686_bib0150 article-title: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2077291 – year: 2018 ident: 10.1016/j.bspc.2019.101686_bib0085 article-title: A copula-based conditional probabilistic forecast model for wind power ramps publication-title: IEEE Trans. Smart Grid – volume: 42 issue: 3 year: 2012 ident: 10.1016/j.bspc.2019.101686_bib0130 article-title: An introduction to copulas publication-title: Technometrics – year: 1998 ident: 10.1016/j.bspc.2019.101686_bib0005 – volume: 67 start-page: 47 year: 2017 ident: 10.1016/j.bspc.2019.101686_bib0060 article-title: A new maximum relevance-minimum multicollinearity (MRmMC) method for feature selection and ranking publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.026 – volume: 25 start-page: 1522 issue: 6 year: 2017 ident: 10.1016/j.bspc.2019.101686_bib0160 article-title: Driver drowsiness estimation from EEG signals using online weighted adaptation regularization for regression (OwARR) publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2016.2633379 – volume: 44 start-page: 58 year: 2014 ident: 10.1016/j.bspc.2019.101686_bib0055 article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.10.003 – volume: 31 start-page: 11 issue: 1 year: 2019 ident: 10.1016/j.bspc.2019.101686_bib0065 article-title: A novel logistic-NARX model as a classifier for dynamic binary classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2976-x – volume: 10 start-page: 371 year: 1958 ident: 10.1016/j.bspc.2019.101686_bib0125 article-title: The ten-twenty electrode system of the International Federation publication-title: Electroenceph. Clin. Neurophysiol. – volume: 18 start-page: 1831 issue: 11 year: 2018 ident: 10.1016/j.bspc.2019.101686_bib0105 article-title: Statistical arbitrage with vine copulas publication-title: Quant. Finance doi: 10.1080/14697688.2018.1438642 – volume: 40 issue: 3 year: 2017 ident: 10.1016/j.bspc.2019.101686_bib0025 article-title: The benefit of directed forgetting persists after a daytime nap: the role of spindles and rapid eye movement sleep in the consolidation of relevant memories publication-title: Sleep doi: 10.1093/sleep/zsw076 – volume: 59 start-page: 2044 issue: 9 year: 2012 ident: 10.1016/j.bspc.2019.101686_bib0155 article-title: Generalized EEG-based drowsiness prediction system by using a self-organizing neural fuzzy system publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/TCSI.2012.2185290  | 
    
| SSID | ssj0048714 | 
    
| Score | 2.238741 | 
    
| Snippet | In this study, a Bayesian classifier with the multivariate distribution based on the D-vine copula model is developed and evaluated for the awake/drowsiness... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 101686 | 
    
| SubjectTerms | Bayesian classifier D-vine copula Drowsiness Multivariate distribution Power nap  | 
    
| Title | Bayesian classifier with multivariate distribution based on D-vine copula model for awake/drowsiness interpretation during power nap | 
    
| URI | https://dx.doi.org/10.1016/j.bspc.2019.101686 | 
    
| Volume | 56 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg7eJDbZTfdxrNVSFXvRQm9LnlCVumitePHkD3dmdystSA_elpCEJZNkvgnfzEfIqdOJFonXLAyVYjJpc5ZKrpn3JtIAYNupwQf9u0HUH8qbUXtUI915LgzSKqu7v7zTi9u6amlVq9nKx-PWPWDpKIHoBCAIyihhwq-UMaoYnH_90jwAjxf1vbEzw95V4kzJ8dJvOZYxFGnRgPnUfzmnBYfT2yKbFVKknfJntknNTXbIxkL9wF3yfaE-HWZBUoMgeOxhGoovq7TgCc4gDgYoSS0Wx610rSi6LUvh45LNYCZqCgUvWijiUECwVH2oJ9eyEJ6XlHg6XuIl0jKxkeYor0YnKt8jw97VQ7fPKlkFZkLOp8zaOBIqtQC8AjBQ7AT3ALISk1qvRBhJocJIQ2gsQ4y3kkAYL9MYjq5Ng9i4cJ_UJy8Td0BoknIbCa9c4ELpPWAPzY20EdeJio3iDSLm65mZquY4Sl88Z3Ny2WOGNsjQBllpgwY5-x2TlxU3VvZuz82ULe2bDFzCinGH_xx3RNYDjLgL3vYxqU9f390JwJKpbhb7rknWOte3_cEPOKjkGQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DupBfOLbHLxJ3KRN2_Toa1lfe3EFbyVPWJW16Kp48eQPd6btigviwVsJSSiZJPN94ZsZQva8UUaoYFgca82kSjjLJTcsBJsaALBJbvFB_6qbdm7k-W1yO0GOR7EwKKts7v76Tq9u66al1axmq-z3W9eApVMF7AQgCJZRUpNkWiZRhgzs4ONb5wGAvErwjb0Zdm8iZ2qRl3kuMY-hyKsGDKj-zTv98DjtBTLfQEV6WP_NIpnwgyUy9yOB4DL5PNLvHsMgqUUU3A8wDcWnVVoJBV-BCAOWpA6z4zaFrSj6LUfh44S9wkzUViW8aFUShwKEpfpN3_uWA35ea-Jpf0yYSOvIRlpifTU60OUKuWmf9o47rKmrwGzM-ZA5l6VC5w6QVwQWyrzgAVCWsrkLWsSpFDpODXBjGSPhUpGwQeYZnF2XR5n18SqZGjwO_BqhKucuFUH7yMcyBAAfhlvpUm6Uzqzm60SM1rOwTdJxrH3xUIzUZXcF2qBAGxS1DdbJ_veYsk658WfvZGSmYmzjFOAT_hi38c9xu2Sm07u6LC7PuhebZDZC-l2JuLfI1PDpxW8DRhmanWoPfgGUR-Wu | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+classifier+with+multivariate+distribution+based+on+D-vine+copula+model+for+awake%2Fdrowsiness+interpretation+during+power+nap&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Wang%2C+Bei&rft.au=Sun%2C+Yudong&rft.au=Zhang%2C+Tao&rft.au=Sugi%2C+Takenao&rft.date=2020-02-01&rft.issn=1746-8094&rft.volume=56&rft.spage=101686&rft_id=info:doi/10.1016%2Fj.bspc.2019.101686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2019_101686 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |