Locating a γ-ray source using cuboid scintillators and the KNN algorithm
In using radiation detectors to locate γ-ray sources, one needs to consider not only the detection efficiency, but also the portability of the detector and the detectable energy range. In this paper, we put forward a novel proposal which combines the advantages of cuboid scintillators and array dete...
Saved in:
| Published in | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 993; p. 165069 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
21.03.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-9002 1872-9576 |
| DOI | 10.1016/j.nima.2021.165069 |
Cover
| Abstract | In using radiation detectors to locate γ-ray sources, one needs to consider not only the detection efficiency, but also the portability of the detector and the detectable energy range. In this paper, we put forward a novel proposal which combines the advantages of cuboid scintillators and array detectors, in order to achieve portability and efficiency. To this aim, we first developed a mathematical angular response model of cuboid scintillators, and then verified the model experimentally. Then, we designed a simple structured detector array and used the Monte Carlo simulations to verify its angular resolution. Monte Carlo results show that the angular resolution of the detector array may achieve one degree. Finally, in order to further improve the detector performance, we implemented the KNN algorithm, achieving an angular resolution of the order of one tenth of a degree. |
|---|---|
| AbstractList | In using radiation detectors to locate γ-ray sources, one needs to consider not only the detection efficiency, but also the portability of the detector and the detectable energy range. In this paper, we put forward a novel proposal which combines the advantages of cuboid scintillators and array detectors, in order to achieve portability and efficiency. To this aim, we first developed a mathematical angular response model of cuboid scintillators, and then verified the model experimentally. Then, we designed a simple structured detector array and used the Monte Carlo simulations to verify its angular resolution. Monte Carlo results show that the angular resolution of the detector array may achieve one degree. Finally, in order to further improve the detector performance, we implemented the KNN algorithm, achieving an angular resolution of the order of one tenth of a degree. |
| ArticleNumber | 165069 |
| Author | Du, Te Tian, Lichao Zhao, Zijia Zhu, Qingjun |
| Author_xml | – sequence: 1 givenname: Te orcidid: 0000-0002-6946-4239 surname: Du fullname: Du, Te organization: College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China – sequence: 2 givenname: Zijia surname: Zhao fullname: Zhao, Zijia email: sszdzl1@mail.ustc.edu.cn organization: College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China – sequence: 3 givenname: Qingjun surname: Zhu fullname: Zhu, Qingjun organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China – sequence: 4 givenname: Lichao surname: Tian fullname: Tian, Lichao organization: College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China |
| BookMark | eNp9kE1qwzAQRkVJoUnaC3SlC9iVpViSoZsS-hNq0k27FvJYThQcqUhKIefqPXqm2qSrLjKbgeF7A9-boYnzziB0W5C8IAW_2-XO7nVOCS3ygpeEVxdoWkhBs6oUfIKmQ0hmFSH0Cs1i3JFhKiGnaFV70Mm6Ddb45zsL-oijPwQw-BDHKxwab1scwbpk-14nHyLWrsVpa_Dreo11v_HBpu3-Gl12uo_m5m_P0cfT4_vyJavfnlfLhzoDRkjK2tKAbDgIIJIbKiRjC7GQrNNENqyineZENwvOoYSOCta1whDaNKwlnYGqYnNET38h-BiD6dRnGLqHoyqIGmWonRplqFGGOskYIPkPApuG3t6loG1_Hr0_oWYo9WVNUIMM48C0NhhIqvX2HP4Loyh9tg |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2022_112373 |
| Cites_doi | 10.3938/jkps.75.196 10.1088/1757-899X/452/4/042103 10.1118/1.3488904 10.1016/j.phpro.2015.09.196 10.22323/1.301.0789 10.1007/s41365-019-0658-3 10.1016/j.ijleo.2018.01.119 10.1016/j.nima.2014.08.033 10.1109/TNS.2011.2150762 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.nima.2021.165069 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1872-9576 |
| ExternalDocumentID | 10_1016_j_nima_2021_165069 S016890022100053X |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HME IHE J1W KOM LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SHN SPC SPCBC SPD SSQ T5K TN5 ~02 ~G- 29N 3O- 53G 5VS 6TJ 8WZ A6W AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGHFR AGQPQ AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HX~ HZ~ H~9 R2- SEW SSZ VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c300t-d5ec8b6c7c086e2783347483fa08b392fa60ab466c5cf273fd7e02bb3d0fec993 |
| IEDL.DBID | .~1 |
| ISSN | 0168-9002 |
| IngestDate | Thu Oct 02 04:29:53 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Fri Feb 23 02:45:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Source location Scintillator Detector array KNN algorithm γ-ray |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-d5ec8b6c7c086e2783347483fa08b392fa60ab466c5cf273fd7e02bb3d0fec993 |
| ORCID | 0000-0002-6946-4239 |
| ParticipantIDs | crossref_primary_10_1016_j_nima_2021_165069 crossref_citationtrail_10_1016_j_nima_2021_165069 elsevier_sciencedirect_doi_10_1016_j_nima_2021_165069 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-21 |
| PublicationDateYYYYMMDD | 2021-03-21 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Duan, Liu (b7) 2018; 452 J. Christiansen, Characterization of a maximum likelihood gamma-ray reconstruction algorithm for VERITAS, in: 35th International Cosmic Ray Conference, 2017. Wang, Klein (b8) 2010; 37 (Accessed 24th 2020). Wang, Su, Yang (b12) 2016; 27 Kheymits, Arkhangelskaja, Arkhangelskiy (b2) 2015; 74 Wang, Deng, Yang (b1) 2019; 75 Su, Li, Sheng (b3) 2018; 161 Chen, Zhang (b10) 2011 National Institute of Standards and Technology Massaro, Gasparrini, Cutini (b6) 2007 Khan, He, Zhang (b16) 2019; 30 Xia (b11) 2010 L.W. Liao, L.Q. Wang, J. Zheng, et al. Effect of CsI(Tl) scintillator shape on dose measurement of dosimeter, in: 2019 Chinese Nuclear Society Academic Conference, 2019. van DAM, Seifert, Vinke (b13) 2011; 58 Willis, Skutnik (b15) 2014; 767 Zhang, Jia, Shi (b4) 2005 Kheymits (10.1016/j.nima.2021.165069_b2) 2015; 74 Willis (10.1016/j.nima.2021.165069_b15) 2014; 767 10.1016/j.nima.2021.165069_b14 Zhang (10.1016/j.nima.2021.165069_b4) 2005 Wang (10.1016/j.nima.2021.165069_b1) 2019; 75 Su (10.1016/j.nima.2021.165069_b3) 2018; 161 10.1016/j.nima.2021.165069_b9 Khan (10.1016/j.nima.2021.165069_b16) 2019; 30 10.1016/j.nima.2021.165069_b5 Massaro (10.1016/j.nima.2021.165069_b6) 2007 Xia (10.1016/j.nima.2021.165069_b11) 2010 van DAM (10.1016/j.nima.2021.165069_b13) 2011; 58 Wang (10.1016/j.nima.2021.165069_b12) 2016; 27 Zhang (10.1016/j.nima.2021.165069_b7) 2018; 452 Wang (10.1016/j.nima.2021.165069_b8) 2010; 37 Chen (10.1016/j.nima.2021.165069_b10) 2011 |
| References_xml | – volume: 27 year: 2016 ident: b12 article-title: Soft X-ray energy corresponding of CsI(TI) scintillator publication-title: High Power Laser Part. Beams – reference: National Institute of Standards and Technology, – year: 2007 ident: b6 article-title: A MST algorithm for source detection in – year: 2011 ident: b10 article-title: Nuclear Radiation Physics and Detection – volume: 75 start-page: 196 year: 2019 end-page: 201 ident: b1 article-title: Gamma-ray source positioning using array NaI(Tl) detectors in the radiation portal monitors publication-title: J. Korean Phys. Soc. – volume: 161 start-page: 8 year: 2018 end-page: 11 ident: b3 article-title: Angular position measurement of pulsars based on X-ray intensity correlation publication-title: Optik – volume: 767 start-page: 445 year: 2014 end-page: 452 ident: b15 article-title: Detection and positioning of radioactive sources using a four-detector response algorithm publication-title: Nucl. Instrum. Methods Phys. Res. A – volume: 74 start-page: 368 year: 2015 end-page: 371 ident: b2 article-title: Method of incident low-energy gamma-ray direction reconstruction in GAMMA-400 gamma-ray space telescope publication-title: Physics Procedia – reference: L.W. Liao, L.Q. Wang, J. Zheng, et al. Effect of CsI(Tl) scintillator shape on dose measurement of dosimeter, in: 2019 Chinese Nuclear Society Academic Conference, 2019. – reference: (Accessed 24th 2020). – reference: J. Christiansen, Characterization of a maximum likelihood gamma-ray reconstruction algorithm for VERITAS, in: 35th International Cosmic Ray Conference, 2017. – volume: 37 start-page: 5279 year: 2010 end-page: 5286 ident: b8 article-title: Monte Carlo Study of the energy and angular dependence of the response of plastic scintillation detectors in photon beams publication-title: Med. Phys. – volume: 58 start-page: 2139 year: 2011 end-page: 2147 ident: b13 article-title: Improved nearest neighbor methods for gamma photon interaction position determination in monolithic scintillator PET detectors publication-title: IEEE Trans. Nucl. Sci. – volume: 452 start-page: 42103 year: 2018 ident: b7 article-title: Influence of particle incidence angle on the detection efficiency of plastic scintillator detector publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – start-page: 171 year: 2005 end-page: 172 ident: b4 article-title: Text categorization with KNN algorithm publication-title: Comput. Eng. – volume: 30 year: 2019 ident: b16 article-title: Design of CsI(TI) detector system to search for lost radioactive source publication-title: Nucl. Sci. Tech. – year: 2010 ident: b11 article-title: Advanced Ionizing Radiation Protection Tutorial – volume: 75 start-page: 196 issue: 3 year: 2019 ident: 10.1016/j.nima.2021.165069_b1 article-title: Gamma-ray source positioning using array NaI(Tl) detectors in the radiation portal monitors publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.75.196 – ident: 10.1016/j.nima.2021.165069_b14 – year: 2007 ident: 10.1016/j.nima.2021.165069_b6 – volume: 452 start-page: 42103 year: 2018 ident: 10.1016/j.nima.2021.165069_b7 article-title: Influence of particle incidence angle on the detection efficiency of plastic scintillator detector publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/452/4/042103 – volume: 37 start-page: 5279 issue: 10 year: 2010 ident: 10.1016/j.nima.2021.165069_b8 article-title: Monte Carlo Study of the energy and angular dependence of the response of plastic scintillation detectors in photon beams publication-title: Med. Phys. doi: 10.1118/1.3488904 – volume: 27 issue: 12 year: 2016 ident: 10.1016/j.nima.2021.165069_b12 article-title: Soft X-ray energy corresponding of CsI(TI) scintillator publication-title: High Power Laser Part. Beams – volume: 74 start-page: 368 year: 2015 ident: 10.1016/j.nima.2021.165069_b2 article-title: Method of incident low-energy gamma-ray direction reconstruction in GAMMA-400 gamma-ray space telescope publication-title: Physics Procedia doi: 10.1016/j.phpro.2015.09.196 – ident: 10.1016/j.nima.2021.165069_b5 doi: 10.22323/1.301.0789 – volume: 30 issue: 9 year: 2019 ident: 10.1016/j.nima.2021.165069_b16 article-title: Design of CsI(TI) detector system to search for lost radioactive source publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-019-0658-3 – volume: 161 start-page: 8 year: 2018 ident: 10.1016/j.nima.2021.165069_b3 article-title: Angular position measurement of pulsars based on X-ray intensity correlation publication-title: Optik doi: 10.1016/j.ijleo.2018.01.119 – volume: 767 start-page: 445 year: 2014 ident: 10.1016/j.nima.2021.165069_b15 article-title: Detection and positioning of radioactive sources using a four-detector response algorithm publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2014.08.033 – start-page: 171 issue: 08 year: 2005 ident: 10.1016/j.nima.2021.165069_b4 article-title: Text categorization with KNN algorithm publication-title: Comput. Eng. – year: 2011 ident: 10.1016/j.nima.2021.165069_b10 – ident: 10.1016/j.nima.2021.165069_b9 – volume: 58 start-page: 2139 issue: 5 year: 2011 ident: 10.1016/j.nima.2021.165069_b13 article-title: Improved nearest neighbor methods for gamma photon interaction position determination in monolithic scintillator PET detectors publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2011.2150762 – year: 2010 ident: 10.1016/j.nima.2021.165069_b11 |
| SSID | ssj0000978 |
| Score | 2.3447294 |
| Snippet | In using radiation detectors to locate γ-ray sources, one needs to consider not only the detection efficiency, but also the portability of the detector and the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 165069 |
| SubjectTerms | [formula omitted]-ray Detector array KNN algorithm Scintillator Source location |
| Title | Locating a γ-ray source using cuboid scintillators and the KNN algorithm |
| URI | https://dx.doi.org/10.1016/j.nima.2021.165069 |
| Volume | 993 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9576 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9576 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: ACRLP dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9576 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: AIKHN dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9576 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0QjIkb4zOCSmbhzhSm9MF0SYgERLtREnbNzJ0Wa7AlWBZu_Cn_w29ybh-iiWHhsk1v0p5p75yZnnsPIVeRBGGCCUYU2tKwLQ6GUJ5lmBxEF6TLPIULxXvfHU3t25kzq5FBVQuDssoy9xc5Pc_W5ZlOiWZnGcedB01WuIdzkJlXlM6wgt3uoYtB-30j88A6haK_t_6wGap5mhuNVxLnvYe6ZtvUTAVFz39NTj8mnOEB2S-ZIu0XN3NIamFyRHZzxSa8HpPxXYq7bcmcCvr5YazEGy024ilK2ecU1jKNFdXPlGToLISuOlQkimrGRye-T8Vinq7i7OnlhEyHN4-DkVH6IhhgMZYZygmBSxd6oNcjIVplWHbP5lYkGJea70TCZULargsORJqeRKoXsq6UlmJRCJqQnJJ6kibhGaEcpORSeC4WtHLh6JFR-O_WBqE4E16DmBUgAZRNw9G7YhFU6rDnAEEMEMSgALFBrr9jlkXLjK1XOxXOwa-BD3RO3xLX_GfcOdnDI5SRdc0LUs9W6_BS84pMtvIXp0V2-uPJyP8CeQbNHg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gxujF-Izgaw_eTGH7ZHs0RALyuAgJt2Z3tsUaLATLwYt_yv_hb3KnLaKJ4eC17STtt-3MN9tvZgi5iSQIE0wwotCRhmNzMITybcPkICyQHvMVJor9gdceOQ9jd1wizVUtDMoqC9-f-_TMWxdH6gWa9Xkc1x81WeE-xiAzqygdb5Ftx7UamIHV3tc6DyxUyBt86y-boZynuhZ5JXHWfMgya6amKqh6_is6_Yg4rQOyX1BFepffzSEphckR2ckkm_B6TDq9GW63JRMq6OeHsRBvNN-Jp6hln1BYylmsqH6oJMXRQjhWh4pEUU35aHcwoGI6mS3i9OnlhIxa98Nm2ygGIxhgM5Yayg2BSw8aoBOSEGdl2E7D4XYkGJea8ETCY0I6ngcuRJqfRKoRMktKW7EoBM1ITkk5mSXhGaEcpORS-B5WtHLh6qVR-PPWAaE4E36FmCtAAii6huPwimmwkoc9BwhigCAGOYgVcvttM897Zmy82l3hHPxa-UA79Q121X_aXZPd9rDfC3qdQfec7OEZ1JRZ5gUpp4tleKlJRiqvspfoC2srzrM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locating+a+%CE%B3-ray+source+using+cuboid+scintillators+and+the+KNN+algorithm&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Du%2C+Te&rft.au=Zhao%2C+Zijia&rft.au=Zhu%2C+Qingjun&rft.au=Tian%2C+Lichao&rft.date=2021-03-21&rft.pub=Elsevier+B.V&rft.issn=0168-9002&rft.eissn=1872-9576&rft.volume=993&rft_id=info:doi/10.1016%2Fj.nima.2021.165069&rft.externalDocID=S016890022100053X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon |