Development of Intelligent Fault-Tolerant Control Systems with Machine Learning, Deep Learning, and Transfer Learning Algorithms: A Review
Intelligent Fault-Tolerant Control (IFTC) refers to the applications of machine learning algorithms for fault diagnosis and design of Fault-Tolerant Control (FTC). The overall goal of the FTC is to accommodate defects in the system components while they are in use and maintain stability with little...
Saved in:
| Published in | Expert systems with applications Vol. 238; p. 121956 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2023.121956 |
Cover
| Abstract | Intelligent Fault-Tolerant Control (IFTC) refers to the applications of machine learning algorithms for fault diagnosis and design of Fault-Tolerant Control (FTC). The overall goal of the FTC is to accommodate defects in the system components while they are in use and maintain stability with little to no performance reduction. These systems are crucial for mission-critical and safety-related applications where the safety of people is at stake and service continuity is crucial. In this review paper, a systematic study has been done for the development of FTC with machine learning, deep learning, and transfer learning algorithms. The challenges and limitations faced with their possible solutions through machine learning theories for the IFTC model are lined up. This paper guides researchers on the different possible types of machine learning algorithms and their advanced forms like deep learning and transfer learning. The differences among these are highlighted by the challenges and limitations of each. The paper is significant such that most of the important literature references from the Scopus database particularly related to important electrical and mechanical industrial problems have been discussed to guide the researchers who want to apply IFTC for specific industrial problems, being the research gap. Finally, future research directions for the development of IFTC are highlighted. |
|---|---|
| AbstractList | Intelligent Fault-Tolerant Control (IFTC) refers to the applications of machine learning algorithms for fault diagnosis and design of Fault-Tolerant Control (FTC). The overall goal of the FTC is to accommodate defects in the system components while they are in use and maintain stability with little to no performance reduction. These systems are crucial for mission-critical and safety-related applications where the safety of people is at stake and service continuity is crucial. In this review paper, a systematic study has been done for the development of FTC with machine learning, deep learning, and transfer learning algorithms. The challenges and limitations faced with their possible solutions through machine learning theories for the IFTC model are lined up. This paper guides researchers on the different possible types of machine learning algorithms and their advanced forms like deep learning and transfer learning. The differences among these are highlighted by the challenges and limitations of each. The paper is significant such that most of the important literature references from the Scopus database particularly related to important electrical and mechanical industrial problems have been discussed to guide the researchers who want to apply IFTC for specific industrial problems, being the research gap. Finally, future research directions for the development of IFTC are highlighted. |
| ArticleNumber | 121956 |
| Author | Sajid Iqbal, Muhammad Amin, Arslan Ahmed Hamza Shahbaz, Muhammad |
| Author_xml | – sequence: 1 givenname: Arslan Ahmed surname: Amin fullname: Amin, Arslan Ahmed email: dr.arslanamin@gmail.com – sequence: 2 givenname: Muhammad surname: Sajid Iqbal fullname: Sajid Iqbal, Muhammad – sequence: 3 givenname: Muhammad surname: Hamza Shahbaz fullname: Hamza Shahbaz, Muhammad |
| BookMark | eNp9kM1KAzEUhYMoWH9ewFUewKlJ5idTcVOq1UJF0LoOaeamTUmTksQWX8GndoaKiIuuLufCd-B8Z-jYeQcIXVHSp4RWN6s-xJ3sM8LyPmV0UFZHqEdrnmcVH-THqEcGJc8KyotTdBbjihDKCeE99HUPW7B-swaXsNd44hJYaxZdHMsPm7KZtxBkG0fepeAtfvuMCdYR70xa4meplsYBnoIMzrjFNb4H2PyJ0jV41vJRQ_h946Fd-NDy63iLh_gVtgZ2F-hESxvh8ueeo_fxw2z0lE1fHiej4TRTOSEpU1rnUEtGaEmroqYFKXStSk3nTUHKRhIua86Aw4BVoJuCyrqppKYMqjkryiY_R2zfq4KPMYAWm2DWMnwKSkRnU6xEZ1N0NsXeZgvV_yBlkkymcyKNPYze7VFoR7VDg4jKgFPQmAAqicabQ_g3cE6Urg |
| CitedBy_id | crossref_primary_10_1016_j_jestch_2025_101948 crossref_primary_10_3390_pharmaceutics17030290 crossref_primary_10_1002_adc2_70002 crossref_primary_10_1109_TASE_2024_3395980 crossref_primary_10_1016_j_anucene_2024_110714 crossref_primary_10_1109_TTE_2024_3370298 crossref_primary_10_3390_math13050787 crossref_primary_10_1007_s40860_024_00221_3 crossref_primary_10_1016_j_jpdc_2024_105009 crossref_primary_10_1016_j_measurement_2025_116728 crossref_primary_10_1007_s42405_024_00770_0 crossref_primary_10_1002_cbdv_202401228 crossref_primary_10_1109_JSEN_2025_3528223 crossref_primary_10_3390_w16162272 crossref_primary_10_1007_s00170_025_15361_w crossref_primary_10_1007_s11227_024_06709_2 crossref_primary_10_1016_j_dche_2025_100227 crossref_primary_10_1088_1361_6501_ad8947 crossref_primary_10_3390_e27010010 crossref_primary_10_1016_j_ress_2024_110134 crossref_primary_10_1109_TASE_2024_3479294 crossref_primary_10_1177_16878132241286781 crossref_primary_10_3390_machines12100729 crossref_primary_10_1007_s11227_025_07109_w crossref_primary_10_3390_a17100436 crossref_primary_10_3390_app142210587 crossref_primary_10_1109_TASE_2024_3428408 crossref_primary_10_1109_TTE_2024_3363238 crossref_primary_10_1016_j_cnsns_2025_108709 crossref_primary_10_1016_j_flowmeasinst_2024_102730 crossref_primary_10_1177_00202940241231473 crossref_primary_10_1016_j_heliyon_2024_e37964 |
| Cites_doi | 10.1016/j.isatra.2017.03.017 10.1016/j.cja.2021.04.022 10.3390/e23111510 10.1016/j.neunet.2014.09.003 10.1016/j.neucom.2018.07.038 10.1098/rsta.2020.0371 10.1109/CCDC.2017.7978168 10.1016/j.measurement.2021.109196 10.1088/1361-6501/acd9df 10.1177/00368504221094723 10.3390/en10010131 10.1371/journal.pone.0279101 10.1016/j.ymssp.2019.106585 10.1177/1475921716652582 10.1109/TIE.2019.2898619 10.1016/j.ymssp.2018.12.051 10.3390/en15197010 10.1177/1077546312463747 10.3390/e20120932 10.1088/1361-6501/aae5b2 10.1016/j.mechmachtheory.2015.03.013 10.1016/j.triboint.2015.12.037 10.1177/1461348417744302 10.1016/j.neucom.2018.05.021 10.1016/j.ymssp.2017.06.022 10.1177/00202940221115233 10.1016/j.rser.2019.04.021 10.1007/s13369-022-07294-3 10.1016/j.aei.2017.02.005 10.1016/j.inffus.2013.10.002 10.1007/s12206-008-0603-6 10.1016/j.isatra.2019.11.003 10.1016/j.knosys.2018.12.019 10.1109/ACCESS.2018.2890566 10.1007/s42417-022-00687-6 10.1016/j.neucom.2013.04.033 10.1016/j.jbi.2018.07.014 10.1016/j.mechmachtheory.2015.11.010 10.1177/16878132231160729 10.1016/j.engappai.2020.103680 10.1093/jcde/qwac028 10.1016/j.measurement.2012.11.011 10.1177/1687814020970311 10.1109/TSG.2014.2386305 10.1038/nature14539 10.1016/j.measurement.2019.04.083 10.3390/s21227587 10.1016/j.isatra.2018.12.025 10.1109/SDPC.2018.8664814 10.1109/JSEN.2017.2726011 10.1016/j.measurement.2012.06.013 10.1109/TIA.2019.2895797 10.1109/TNN.2010.2091281 10.1109/ISFA.2016.7790140 10.1049/iet-smt.2014.0375 10.1049/pel2.12515 10.1109/JESTPE.2021.3115170 10.1177/0020294018823031 10.1016/j.ymssp.2017.01.043 10.1109/MSP.2017.2740460 10.3390/s21103463 10.1016/j.eswa.2020.114060 10.1109/ACCESS.2021.3068164 10.1162/089976600300014782 10.23919/WAC.2018.8430387 10.3126/jist.v26i1.37830 10.1109/TIE.2019.2903774 10.1016/j.sigpro.2016.07.028 10.1109/TIM.2014.2313035 10.1007/s10586-017-0748-0 10.1016/j.ymssp.2019.02.055 10.1155/2019/8716979 10.1049/iet-sen.2017.0053 10.1109/TII.2019.2899118 10.1109/TIE.2018.2877090 10.1016/j.isatra.2021.02.024 10.1016/j.neucom.2015.02.045 10.3390/app8091621 10.1109/TIM.2017.2674738 10.3390/app7050515 10.1561/9781680836394 10.1109/TIE.2018.2866050 10.1016/j.knosys.2018.07.017 10.1007/s12206-017-1205-y 10.1109/eSmarTA56775.2022.9935414 10.1155/2017/5067651 10.1186/s10033-019-0388-9 10.1109/ACCESS.2018.2837621 10.1109/TIE.2018.2844805 10.1109/TIM.2020.3003108 10.1177/0020294019842593 10.1177/0959651819866281 10.1109/ACCESS.2019.2962058 10.1007/s13042-012-0089-5 10.1016/j.ins.2021.08.032 10.3390/s22176448 10.1109/TII.2018.2793246 10.3390/app12157841 10.1109/TIM.2017.2737879 10.3389/fbinf.2022.927312 10.1016/j.ymssp.2018.02.028 10.1016/j.renene.2013.06.025 10.1109/TFUZZ.2019.2893863 10.1016/j.compind.2019.01.008 10.1016/j.jsv.2018.04.036 10.1109/TKDE.2009.191 10.1109/ACCESS.2019.2894796 10.1016/j.cja.2021.09.010 10.1080/17517571003763380 10.1109/TII.2018.2864759 10.1109/ACCESS.2021.3050243 10.1016/j.ymssp.2017.11.024 10.1016/j.jmsy.2018.04.005 10.1007/s40430-015-0455-9 10.1016/j.measurement.2020.108696 10.1016/j.knosys.2022.109773 10.1007/s12206-019-0103-x 10.1109/TIM.2015.2498978 10.1007/s00170-017-1474-8 10.1109/TFUZZ.2021.3053844 10.1016/j.ymssp.2017.03.034 10.1016/j.measurement.2018.05.098 10.1016/j.neucom.2017.07.032 10.1016/j.ymssp.2015.04.039 10.1007/s12206-018-1018-7 10.3390/app8122357 10.1109/LSP.2018.2878356 10.1016/j.eswa.2017.02.030 10.1016/j.ins.2013.09.003 10.1109/TIE.2017.2762639 10.1177/0142331215626247 10.1016/j.engappai.2022.105524 10.1016/j.ymssp.2018.12.032 10.1016/j.ymssp.2016.12.040 10.1016/j.ifacol.2018.09.380 10.3390/s17081729 10.1016/j.patcog.2017.10.013 10.1109/TIE.2020.2994868 10.3390/s18124460 10.1109/TIE.2018.2868023 10.1109/TSMC.2019.2933050 10.1080/17517575.2015.1080860 10.1016/j.ymssp.2012.11.002 10.1016/j.eswa.2018.04.025 10.1109/ACCESS.2021.3126854 10.1061/(ASCE)AS.1943-5525.0000386 10.1109/ACCESS.2017.2693379 10.1145/3065386 10.1109/JSEN.2020.3015868 10.3390/en15155666 10.1109/TSMC.2017.2754287 10.1007/s10916-018-1136-x 10.1016/j.ifacol.2018.09.318 10.1007/s42835-021-00965-5 10.1109/TTE.2021.3071725 10.3390/en9060379 10.1016/j.enconman.2019.111793 10.3390/app8101859 10.1784/insi.2017.59.12.669 10.1145/1273496.1273521 10.1016/j.ymssp.2016.08.005 10.1016/j.measurement.2018.09.013 10.3390/app7010041 10.1177/1687814017743113 10.1109/TGRS.2014.2377785 10.1016/j.apacoust.2016.10.012 10.1109/TIE.2016.2582729 10.1016/j.ymssp.2013.05.017 10.1109/TIE.2016.2627020 10.1016/j.ymssp.2018.05.050 10.1186/s40537-016-0043-6 10.1177/1475921717727700 10.21595/jve.2017.18380 10.1023/A:1008888219539 10.1016/j.knosys.2017.12.027 10.1016/j.ifacol.2022.07.213 10.17531/ein.2017.1.5 10.1016/j.eswa.2022.116794 10.1016/j.neucom.2018.08.046 10.1016/j.amc.2013.12.122 10.1109/ACCESS.2018.2877447 10.1016/j.rser.2022.112128 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.121956 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_121956 S0957417423024582 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c300t-cff3e8a201516481404f8c5f1bd405da07a872e7e926efd41a8d6af12e6b245d3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Sat Oct 25 05:47:40 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Fri Feb 23 02:34:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN AE Intelligent fault-tolerant control DNN Transfer learning JDA KNN IFTC DBM TDA Fault diagnosis Deep learning TCA Algorithms FTC GAN Machine learning RBM IC Engine |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-cff3e8a201516481404f8c5f1bd405da07a872e7e926efd41a8d6af12e6b245d3 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2023_121956 crossref_citationtrail_10_1016_j_eswa_2023_121956 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121956 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shao, Jiang, Zhao, Wang (b0765) 2017; 95 Amin, Mahmood-Ul-Hasan (b0065) 2019; 7 (B. Curless, W. T. Freeman, & L. V. Gool, Eds.). Boston Delft: Now. He, Wang, Kwong, Wang (b0365) 2014; 259 35. Li, Yang, Wang, Liu, Liang (b0535) 2018; 428 1–5. Stevenson, WA: IEEE. 10.23919/WAC.2018.8430387. 11. Xiong, Su, Jiang, Jiang (b0940) 2019; 43 Lu, Liang, Cheng, Meng, Yang, Zhang (b0575) 2017; 64 Cassottana, B., Roomi, M. M., Mashima, D., & Sansavini, G. (n.d.). Resilience analysis of cyber-physical systems: A review of models and methods. Amin, Mahmood-ul-Hasan (b0070) 2019; 52 Yang, Wang, Zhong (b0990) 2016; 9 Namigtle-Jiménez, Escobar-Jiménez, Gómez-Aguilar, García-Beltrán, Téllez-Anguiano (b0620) 2020; 100 Kim, Choi, Park, Leung, Nasridinov (b0460) 2021; 9 Peebles, P. Z. (2002). Probability. In Barakat, Lefebvre, Khalil, Druaux, Mustapha (b0120) 2013; 4 Ma, Chu, Han (b0590) 2019; 127 Shi, Zhang (b0780) 2021; 68 Oh, Lee, Lee, Joo, Lee (b0630) 2022; 9 Li, Yan, Tian, Yuan, Peng, Li (b0540) 2013; 46 Lu, Wang, Zhou (b0565) 2017; 32 Wang, Xie, Zhang, Duan (b0845) 2016; 2016 Matasci, Volpi, Kanevski, Bruzzone, Tuia (b0600) 2015; 53 , Mayer-Schönberger, Cukier (b0605) 2013 Tang, Song, Li, Deng (b0805) 2014; 62 Cai, Weng, Zhang (b0140) 2017; 20 Shao, McAleer, Yan, Baldi (b0770) 2019; 15 Zhai, Yu, Qian, Lee, Theera-Umpon (b1030) 2017; 10 . Li, Liu, Tang, Lu, Hu (b0505) 2017; 17 Saud, Shakya (b0730) 2021; 26 Yang, Lei, Jia, Xing (b0970) 2019; 122 Han, Tang, Deng (b0350) 2018; 127 Ahmad, Ahmad, Kim (b0010) 2022; 22 Xu, Zhang, Liu, Liu, Liu, Wang, Joe Qin (b0945) 2018; 51 Ma, Xu, Huang, Huang (b0580) 2017; 93 Choudhary, Mian, Fatima (b0200) 2021; 176 Heo, Lee (b0375) 2018; 51 Barakat, El Badaoui, Guillet (b0115) 2013; 37 Riaz, Amin, Tayyeb (b0710) 2022; 105 Dogan, Birant (b0235) 2021; 166 Gerdes, M., Galar, D., & Scholz, D. (2016). Decision trees and the effects of feature extraction parameters for robust sensor network design. An, Wang, Zhao, Qin, Yan, Chen (b0090) 2022; 71 193–200. Corvalis, Oregon: ACM Press. 10.1145/1273496.1273521. Naha, Samanta, Routray, Deb (b0615) 2017; 66 Choudhary, Goyal, Letha (b0195) 2021; 21 Long, M., Zhu, H., Wang, J., & Jordan, M. I. (2017). Deep transfer learning with joint adaptation networks. (5), 646–661. 10.1177/0959651819866281. Qiao, Lei, Li (b0680) 2019; 122 Bangalore, Tjernberg (b0110) 2015; 6 Zhang, Wang (b1045) 2016; 10 Abdelsalam, Diab, Tennakoon, Griffiths (b0005) 2016 Ince, Kiranyaz, Eren, Askar, Gabbouj (b0385) 2016; 63 Asr, Ettefagh, Hassannejad, Razavi (b0105) 2017; 85 James, Gandhi, Deshmukh (b0400) 2018; 9 Du, Li (b0255) 2023; 16 Dong, Luo, Zhong, Chen, Xu (b0245) 2017; 36 Weiser, Ossmann (b0900) 2022; 55 Yang, Pen, Wang, Chang (b0985) 2016; 65 Qu, He, Deutsch, He (b0685) 2017; 7 Jiang, Shi, Xuan (b0425) 2014; 20 Machine learning, explained. (n.d.). Retrieved December 20, 2022, from MIT Sloan website: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained. Dai, W., Yang, Q., Xue, G.-R., & Yu, Y. (2007). Boosting for transfer learning. Wen, Gao, Li (b0910) 2019; 49 Jiao, Zhao, Lin, Zhao (b0435) 2018; 160 Islam, Kim (b0395) 2019; 106 Wang, He, Li (b0870) 2019; 15 Zhao, Yan, Chen, Mao, Wang, Gao (b1080) 2019; 115 (4th Edition edition). TMH. Shahbaz, Amin (b0750) 2021; 9 Yu, Zhang, Jiang, Fu, Jin (b1025) 2022; 35 Zhao, Li, Zhang, Zhang (b1090) 2019; 109 Safizadeh, M. S., & Yari, B. (2017). Pump cavitation detection through fusion of support vector machine classifier data associated with vibration and motor current signature. 59(12), 5. Zhao, Kang, Tang, Pecht (b1075) 2019; 66 Jiang, Zhu, Li, Ren, Zhou, Chang (b0415) 2018; 8 Shahbaz, Amin (b0755) 2023; 15 Yoon, He (b1000) 2015; 9 Dong, L., Li, W., Wang, C.-H., & Lin, K.-P. (2020). Gyro motor fault classification model based on a coupled hidden Markov model with a minimum intra-class distance algorithm. Zhang, W. J., Yang, G., Lin, Y., Ji, C., & Gupta, M. M. (2018). On Definition of Deep Learning. Li, Qu, Hong, He (b0500) 2018 Goodfellow, Bengio, Courville (b0295) 2016 (8), 5932–5946. 10.21595/jve.2017.18380. H. Saltzer, J., & Kaashoek, M. F. (2021, August 1). 2.3: Measures of Reliability and Failure Tolerance. Retrieved August 23, 2023, from Engineering LibreTexts website: https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Principles_of_Computer_System_Design_(Saltzer_and_Kaashoek)/02%3A_Fault_Tolerance_-_Reliable_Systems_from_Unreliable_Components/2.03%3A_Measures_of_Reliability_and_Failure_Tolerance. Mihály, Luca, Cristea (b0610) 2023; Vol. 52 arXiv. Retrieved from http://arxiv.org/abs/2010.01048. Xie, Du, Shen, Chen, Chen, Zhu (b0925) 2018; 6 (1), 31–42. 10.17531/ein.2017.1.5. Wang, Wei, Wang, Huang, Peng, Song, Pérez-Jiménez (b0860) 2020; 92 Dong, Xu, Chen (b0250) 2016; 38 Li, Yang, Li, Xu, Huang (b0530) 2017; 91 Urbanowicz, Meeker, La Cava, Olson, Moore (b0820) 2018; 85 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Chen (b0300) 2018; 77 Wang, Zhang, Xiong, Xiao, Sun, He (b0890) 2017; 17 He, Zhang, Ren, Sun (b0360) 2016 Berredjem, Benidir (b0135) 2018; 108 Saufi, S. R., Ahmad, Z. A. bin, Leong, M. S., & Lim, M. H. (2018). Differential evolution optimization for resilient stacked sparse autoencoder and its applications on bearing fault diagnosis. Xie, Zhang, Duan, Wang (b0930) 2016; 2016 Zhao, Kang, Tang, Pecht (b1070) 2018; 65 Amin, Mahmood-ul-Hasan (b0080) 2021; 1–16 Xiao, Chen, Chen, Hu, Tang (b0920) 2023; 34 Gharavian, Almas Ganj, Ohadi, Heidari Bafroui (b0285) 2013; 121 Transfer Learning With Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions—IEEE Journals & Magazine. (n.d.). Retrieved February 18, 2021, from https://ieeexplore.ieee.org/abstract/document/7961149. Peña, Cerrada, Alvarez, Jadán, Lucero, Milton, Sánchez (b0670) 2018; 34 Cao, Tian, Ji, Qiu (b0150) 2021; 7 Diaz, Henriquez, Ferrer, Pirlo, Alonso, Carmona-Duarte, Impedovo (b0225) 2017; 79 Pan, Tsang, Kwok, Yang (b0645) 2011; 22 Wang, Zhou, Qin, Wang (b0880) 2008; 6 Xu, Sun, Liu, Zheng (b0955) 2019; 7 Kumar, Singh, Tripathi (b0470) 2018; 12 Lin, Tan, Ma, Mathew (b0545) 2015; 229 Pudjihartono, Fadason, Kempa-Liehr, O’Sullivan (b0675) 2022; 2 Khan, Yairi (b0450) 2018; 107 Belosludtsev, Borovik, Danilchenko, Sekisov (b0125) 2021; 21 Glowacz, Glowacz (b0290) 2017; 117 Pasqualotto, Zigliotto (b0660) 2022; 10 Sun, Wang, Ding, Xu, Lin (b0795) 2021; 578 (4), 936–945. 10.1177/1475921717727700. Guo, Lei, Xing, Yan, Li (b0315) 2019; 66 2208–2217. Sydney, NSW, Australia: JMLR.org. Araste, Sadighi, Jamimoghaddam (b0100) 2023; 11 Krizhevsky, Sutskever, Hinton (b0465) 2017; 60 Tang, Pang, Tian, Zhou (b0810) 2018; 8 Wong, P. K., Zhong, J.-H., Yang, Z.-X., & Vong, C. M. (n.d.). A new framework for intelligent simultaneous-fault diagnosis of rotating machinery using pairwise-coupled sparse Bayesian extreme learning committee machine. 16. Yang, Liu, Li, Li, Ma (b0980) 2015; 90 Iqbal, Amin (b0390) 2022; 55 Jin, Hou, Chen, Lu (b0440) 2022; 35 Savchynskyy, B. (2019). Chen, C., Li, Z., Yang, J., & Liang, B. (2017). A cross domain feature extraction method based on transfer component analysis for rolling bearing fault diagnosis. Zhang, Yang, Kong, Chen, Fu, Peng (b1035) 2021; 51 Duan, Wu, Guo, Shao, Malekian, Li (b0260) 2018; 96 Wang (b0865) 2020; 69 Schmidhuber (b0745) 2015; 61 Shao, Jiang, Wang, Wang (b0760) 2017; 69 Amarnath, Sugumaran, Kumar (b0055) 2013; 46 Li, Xu, Zhao, Huang (b0525) 2016; 98 Khazaee, Banakar, Ghobadian, Mirsalim, Minaei, Jafari, Sharghi (b0455) 2016; 15 Cao, Zhang, Tang (b0145) 2018; 6 Safizadeh, Latifi (b0720) 2014; 18 Dai, Tang, Huang, Wang (b0205) 2019; 32 Han, Liu, Yang, Jiang (b0345) 2019; 165 Hongyan dui (b0380) 2015; 12 Zhang, Lin (b1040) 2010; 4 Zheng, Wang, Yang, Li, Xu (b1095) 2020; 67 Long, Wang, Cao, Sun, Yu (b0550) 2016; 99 Jia, Xu, Wang (b0410) 2018; 18 Li, Chuan. (n.d.). Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Singh, Shaik (b0790) 2019; 131 1–6. Ibb, Yemen: IEEE. 10.1109/eSmarTA56775.2022.9935414. Alsuwian, Amin, Iqbal, Qadir, Almasabi, Jalalah (b0035) 2022; 17 Wang, Fan (b0885) 2015; 28 Amin, Mahmood-ul-Hasan (b0085) 2022; 17 Zhang, Li, Ding (b1060) 2019; 95 Ali, Shabbir, Liang, Zhang, Hu (b0025) 2019; 55 Xie, Zhang (b0935) 2018; 2018 Amin, Mahmood-ul-Hasan (b0075) 2019; 52 Nezamivand Chegini, Haghdoust Manjili, Ahmadi, Amirmostofian, Bagheri (b0625) 2021; 170 Yu, Ding, He (b1015) 2018; 32 Bernier, Ortega, Ros, Rojas, Prieto (b0130) 2000; 12 Hasan, Kim (b0355) 2018; 8 Pang, Tang, Zhou, Tian (b0650) 2018; 20 Chikkam, Singh (b0190) 2023; 48 Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings. (n.d.). Retrieved February 19, 2021, from https://www.hindawi.com/journals/sv/2017/5067651/. Li, G., Gu, Y., & Ding, J. (2020, October 2). Yu, Huang, Zhao (b1020) 2016; 230 Cervantes-Bobadilla, García-Morales, Saavedra-Benítez, Hernández-Pérez, Adam-Medina, Guerrero-Ramírez, Escobar-Jímenez (b0160) 2023; 117 (n/a). 10.1111/risa.14089. Wang, Xiang, Zhong, Zhou (b0855) 2018; 144 Hallajian, Motameni, Akbari (b0330) 2022; 200 Zhang, Li, Gao, Wang, Wen (b1065) 2018; 48 Yu, Wang, Li (b1005) 2018; 25 Yu, Bai, Wang, Shi (b1010) 2018; 32 Han, Zhao, Shi (b0335) 2017; 9 Rai, Upadhyay (b0690) 2016; 96 Ali, Y. H., H. Ahmed, F. Y., Abdelrhman, A. M., Ali, S. M., Borhana, A. A., & Ishak Raja Hamzah, R. (2022). Novel Spiking Neural Network Model for Gear Fault Diagnosis. Shen, Chen, Yan, Gao (b0270) 2015 Ma, Sun, Chen (b0585) 2018; 14 Wang, Chen, Guan (b0850) 2021; 118 Van, Kang (b0825) 2016; 230 LeCun, Bengio, Hinton (b0475) 2015; 521 Vanraj, Dhami, S., & Pabla, B. (2018). Hybrid data fusion approach for fault diagnosis of fixed-axis gearbox. Kafeel, Aziz, Awais, Khan, Afaq, Idris, Mostafa (b0445) 2021; 21 Wang, Xiang, Markert, Liang (b0875) 2016; 66–67 Guo, Shen, Chen (b0320) 2017; 7 Xu, Lei, Li (b0950) 2020; 67 Zhao, Jia (b1085) 2018; 315 Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN. (n.d.). Retrieved February 19, 2021, from https://www.hindawi.com/journals/complexity/2019/8716979/. Wang, Qian, Yan, Yuan, Zhang 10.1016/j.eswa.2023.121956_b0560 Oh (10.1016/j.eswa.2023.121956_b0630) 2022; 9 Pang (10.1016/j.eswa.2023.121956_b0650) 2018; 20 Urbanowicz (10.1016/j.eswa.2023.121956_b0820) 2018; 85 Wang (10.1016/j.eswa.2023.121956_b0850) 2021; 118 Gelgele (10.1016/j.eswa.2023.121956_b0275) 1998; 9 10.1016/j.eswa.2023.121956_b0325 Amin (10.1016/j.eswa.2023.121956_b0080) 2021; 1–16 Li (10.1016/j.eswa.2023.121956_b0520) 2018; 310 Belosludtsev (10.1016/j.eswa.2023.121956_b0125) 2021; 21 He (10.1016/j.eswa.2023.121956_b0360) 2016 Xiong (10.1016/j.eswa.2023.121956_b0940) 2019; 43 Ahmad (10.1016/j.eswa.2023.121956_b0015) 2022; 160 Yang (10.1016/j.eswa.2023.121956_b0990) 2016; 9 Jiang (10.1016/j.eswa.2023.121956_b0415) 2018; 8 10.1016/j.eswa.2023.121956_b0210 He (10.1016/j.eswa.2023.121956_b0365) 2014; 259 10.1016/j.eswa.2023.121956_b0695 Yu (10.1016/j.eswa.2023.121956_b1020) 2016; 230 Barakat (10.1016/j.eswa.2023.121956_b0120) 2013; 4 An (10.1016/j.eswa.2023.121956_b0090) 2022; 71 10.1016/j.eswa.2023.121956_b0215 Zhang (10.1016/j.eswa.2023.121956_b1055) 2018; 100 Han (10.1016/j.eswa.2023.121956_b0350) 2018; 127 Ince (10.1016/j.eswa.2023.121956_b0385) 2016; 63 Yu (10.1016/j.eswa.2023.121956_b1005) 2018; 25 Bangalore (10.1016/j.eswa.2023.121956_b0110) 2015; 6 Gharavian (10.1016/j.eswa.2023.121956_b0285) 2013; 121 Tang (10.1016/j.eswa.2023.121956_b0805) 2014; 62 Han (10.1016/j.eswa.2023.121956_b0340) 2020; 1–11 Matasci (10.1016/j.eswa.2023.121956_b0600) 2015; 53 James (10.1016/j.eswa.2023.121956_b0400) 2018; 9 Jiao (10.1016/j.eswa.2023.121956_b0435) 2018; 160 Li (10.1016/j.eswa.2023.121956_b0480) 2022; 255 Riaz (10.1016/j.eswa.2023.121956_b0710) 2022; 105 10.1016/j.eswa.2023.121956_b0220 Wang (10.1016/j.eswa.2023.121956_b0875) 2016; 66–67 Choudhary (10.1016/j.eswa.2023.121956_b0195) 2021; 21 Krizhevsky (10.1016/j.eswa.2023.121956_b0465) 2017; 60 Yadav (10.1016/j.eswa.2023.121956_b0960) 2021 Amin (10.1016/j.eswa.2023.121956_b0070) 2019; 52 Wang (10.1016/j.eswa.2023.121956_b0890) 2017; 17 Iqbal (10.1016/j.eswa.2023.121956_b0390) 2022; 55 Jiang (10.1016/j.eswa.2023.121956_b0430) 2013; 41 Dong (10.1016/j.eswa.2023.121956_b0245) 2017; 36 Dogan (10.1016/j.eswa.2023.121956_b0235) 2021; 166 Li (10.1016/j.eswa.2023.121956_b0535) 2018; 428 Li (10.1016/j.eswa.2023.121956_b0495) 2005 Goodfellow (10.1016/j.eswa.2023.121956_b0295) 2016 Wang (10.1016/j.eswa.2023.121956_b0880) 2008; 6 Hallajian (10.1016/j.eswa.2023.121956_b0330) 2022; 200 Zhang (10.1016/j.eswa.2023.121956_b1045) 2016; 10 Han (10.1016/j.eswa.2023.121956_b0345) 2019; 165 Li (10.1016/j.eswa.2023.121956_b0500) 2018 10.1016/j.eswa.2023.121956_b0595 Alsuwian (10.1016/j.eswa.2023.121956_b0045) 2022; 15 Shifat (10.1016/j.eswa.2023.121956_b0785) 2021; 9 10.1016/j.eswa.2023.121956_b0915 Yang (10.1016/j.eswa.2023.121956_b0975) 2008; 22 Nezamivand Chegini (10.1016/j.eswa.2023.121956_b0625) 2021; 170 Van (10.1016/j.eswa.2023.121956_b0825) 2016; 230 10.1016/j.eswa.2023.121956_b1050 Xie (10.1016/j.eswa.2023.121956_b0935) 2018; 2018 Qiao (10.1016/j.eswa.2023.121956_b0680) 2019; 122 Safizadeh (10.1016/j.eswa.2023.121956_b0720) 2014; 18 Rai (10.1016/j.eswa.2023.121956_b0690) 2016; 96 Lu (10.1016/j.eswa.2023.121956_b0570) 2017; 130 Qu (10.1016/j.eswa.2023.121956_b0685) 2017; 7 Dai (10.1016/j.eswa.2023.121956_b0205) 2019; 32 Wang (10.1016/j.eswa.2023.121956_b0860) 2020; 92 Ahmad (10.1016/j.eswa.2023.121956_b0010) 2022; 22 Li (10.1016/j.eswa.2023.121956_b0515) 2019; 66 Barakat (10.1016/j.eswa.2023.121956_b0115) 2013; 37 Shahbaz (10.1016/j.eswa.2023.121956_b0755) 2023; 15 10.1016/j.eswa.2023.121956_b0895 10.1016/j.eswa.2023.121956_b0775 Schmidhuber (10.1016/j.eswa.2023.121956_b0745) 2015; 61 Yu (10.1016/j.eswa.2023.121956_b1010) 2018; 32 Araste (10.1016/j.eswa.2023.121956_b0100) 2023; 11 LeCun (10.1016/j.eswa.2023.121956_b0475) 2015; 521 Ma (10.1016/j.eswa.2023.121956_b0580) 2017; 93 Pan (10.1016/j.eswa.2023.121956_b0640) 2010; 22 Zheng (10.1016/j.eswa.2023.121956_b1095) 2020; 67 Diaz (10.1016/j.eswa.2023.121956_b0225) 2017; 79 Zhao (10.1016/j.eswa.2023.121956_b1085) 2018; 315 Chen (10.1016/j.eswa.2023.121956_b0170) 2021; 379 Wang (10.1016/j.eswa.2023.121956_b0865) 2020; 69 Weiser (10.1016/j.eswa.2023.121956_b0900) 2022; 55 Yang (10.1016/j.eswa.2023.121956_b0980) 2015; 90 Yang (10.1016/j.eswa.2023.121956_b0970) 2019; 122 Mihály (10.1016/j.eswa.2023.121956_b0610) 2023; Vol. 52 Yu (10.1016/j.eswa.2023.121956_b1025) 2022; 35 10.1016/j.eswa.2023.121956_b0665 Choudhary (10.1016/j.eswa.2023.121956_b0200) 2021; 176 Zhang (10.1016/j.eswa.2023.121956_b1060) 2019; 95 Bernier (10.1016/j.eswa.2023.121956_b0130) 2000; 12 Zhao (10.1016/j.eswa.2023.121956_b1075) 2019; 66 Zhao (10.1016/j.eswa.2023.121956_b1090) 2019; 109 Wang (10.1016/j.eswa.2023.121956_b0840) 2020; 8 Park (10.1016/j.eswa.2023.121956_b0655) 2018; 108 Oroojlooy (10.1016/j.eswa.2023.121956_b0635) 2022; 1–46 Lin (10.1016/j.eswa.2023.121956_b0545) 2015; 229 Guo (10.1016/j.eswa.2023.121956_b0315) 2019; 66 Yu (10.1016/j.eswa.2023.121956_b1015) 2018; 32 Zhang (10.1016/j.eswa.2023.121956_b1040) 2010; 4 Jin (10.1016/j.eswa.2023.121956_b0440) 2022; 35 Rezvani (10.1016/j.eswa.2023.121956_b0705) 2019; 27 Wang (10.1016/j.eswa.2023.121956_b0845) 2016; 2016 Shao (10.1016/j.eswa.2023.121956_b0765) 2017; 95 Saud (10.1016/j.eswa.2023.121956_b0730) 2021; 26 Amin (10.1016/j.eswa.2023.121956_b0060) 2019; 143 Pan (10.1016/j.eswa.2023.121956_b0645) 2011; 22 Yoon (10.1016/j.eswa.2023.121956_b1000) 2015; 9 Xu (10.1016/j.eswa.2023.121956_b0945) 2018; 51 Zhang (10.1016/j.eswa.2023.121956_b1065) 2018; 48 Mayer-Schönberger (10.1016/j.eswa.2023.121956_b0605) 2013 10.1016/j.eswa.2023.121956_b0280 Xu (10.1016/j.eswa.2023.121956_b0950) 2020; 67 Lu (10.1016/j.eswa.2023.121956_b0565) 2017; 32 Jia (10.1016/j.eswa.2023.121956_b0410) 2018; 18 10.1016/j.eswa.2023.121956_b0165 Shahbaz (10.1016/j.eswa.2023.121956_b0750) 2021; 9 Amin (10.1016/j.eswa.2023.121956_b0085) 2022; 17 Ma (10.1016/j.eswa.2023.121956_b0590) 2019; 127 Ding (10.1016/j.eswa.2023.121956_b0230) 2017; 66 Jiang (10.1016/j.eswa.2023.121956_b0425) 2014; 20 Amin (10.1016/j.eswa.2023.121956_b0075) 2019; 52 10.1016/j.eswa.2023.121956_b0965 10.1016/j.eswa.2023.121956_b0725 Lu (10.1016/j.eswa.2023.121956_b0575) 2017; 64 Zhao (10.1016/j.eswa.2023.121956_b1070) 2018; 65 Han (10.1016/j.eswa.2023.121956_b0335) 2017; 9 Namigtle-Jiménez (10.1016/j.eswa.2023.121956_b0620) 2020; 100 Kafeel (10.1016/j.eswa.2023.121956_b0445) 2021; 21 Cai (10.1016/j.eswa.2023.121956_b0140) 2017; 20 Khan (10.1016/j.eswa.2023.121956_b0450) 2018; 107 Pasqualotto (10.1016/j.eswa.2023.121956_b0660) 2022; 10 Zhai (10.1016/j.eswa.2023.121956_b1030) 2017; 10 10.1016/j.eswa.2023.121956_b0175 Gu (10.1016/j.eswa.2023.121956_b0300) 2018; 77 Alsuwian (10.1016/j.eswa.2023.121956_b0040) 2022; 12 Guo (10.1016/j.eswa.2023.121956_b0310) 2018; 319 10.1016/j.eswa.2023.121956_b0735 Guo (10.1016/j.eswa.2023.121956_b0320) 2017; 7 Cervantes-Bobadilla (10.1016/j.eswa.2023.121956_b0160) 2023; 117 Gunerkar (10.1016/j.eswa.2023.121956_b0305) 2019; 33 Long (10.1016/j.eswa.2023.121956_b0555) 2013 Li (10.1016/j.eswa.2023.121956_b0510) 2014; 63 Du (10.1016/j.eswa.2023.121956_b0255) 2023; 16 Khazaee (10.1016/j.eswa.2023.121956_b0455) 2016; 15 Jia (10.1016/j.eswa.2023.121956_b0405) 2018; 272 10.1016/j.eswa.2023.121956_b0740 Xu (10.1016/j.eswa.2023.121956_b0955) 2019; 7 Ahmed (10.1016/j.eswa.2023.121956_b0020) 2020; 12 An (10.1016/j.eswa.2023.121956_b0095) 2017; 39 Dong (10.1016/j.eswa.2023.121956_b0250) 2016; 38 Wang (10.1016/j.eswa.2023.121956_b0870) 2019; 15 Pudjihartono (10.1016/j.eswa.2023.121956_b0675) 2022; 2 Zhang (10.1016/j.eswa.2023.121956_b1035) 2021; 51 Hendrickx (10.1016/j.eswa.2023.121956_b0370) 2020; 139 Hasan (10.1016/j.eswa.2023.121956_b0355) 2018; 8 Alsuwian (10.1016/j.eswa.2023.121956_b0050) 2022; 15 Kumar (10.1016/j.eswa.2023.121956_b0470) 2018; 12 Yao (10.1016/j.eswa.2023.121956_b0995) 2017; 5 Abdelsalam (10.1016/j.eswa.2023.121956_b0005) 2016 Chikkam (10.1016/j.eswa.2023.121956_b0190) 2023; 48 Shen (10.1016/j.eswa.2023.121956_b0270) 2015 Reyes (10.1016/j.eswa.2023.121956_b0700) 2015; 161 Li (10.1016/j.eswa.2023.121956_b0525) 2016; 98 Sun (10.1016/j.eswa.2023.121956_b0800) 2022; 30 Glowacz (10.1016/j.eswa.2023.121956_b0290) 2017; 117 Hongyan dui (10.1016/j.eswa.2023.121956_b0380) 2015; 12 Shao (10.1016/j.eswa.2023.121956_b0760) 2017; 69 Alsuwian (10.1016/j.eswa.2023.121956_b0035) 2022; 17 Xie (10.1016/j.eswa.2023.121956_b0925) 2018; 6 10.1016/j.eswa.2023.121956_b0240 10.1016/j.eswa.2023.121956_b0485 Asr (10.1016/j.eswa.2023.121956_b0105) 2017; 85 Peña (10.1016/j.eswa.2023.121956_b0670) 2018; 34 Berredjem (10.1016/j.eswa.2023.121956_b0135) 2018; 108 Amin (10.1016/j.eswa.2023.121956_b0065) 2019; 7 Jiang (10.1016/j.eswa.2023.121956_b0420) 2019; 66 Wang (10.1016/j.eswa.2023.121956_b0885) 2015; 28 Weiss (10.1016/j.eswa.2023.121956_b0905) 2016; 3 Singh (10.1016/j.eswa.2023.121956_b0790) 2019; 131 10.1016/j.eswa.2023.121956_b0490 Chen (10.1016/j.eswa.2023.121956_b0185) 2019; 198 Wen (10.1016/j.eswa.2023.121956_b0910) 2019; 49 Cao (10.1016/j.eswa.2023.121956_b0145) 2018; 6 Naha (10.1016/j.eswa.2023.121956_b0615) 2017; 66 Chen (10.1016/j.eswa.2023.121956_b0180) 2014; 230 Duan (10.1016/j.eswa.2023.121956_b0260) 2018; 96 10.1016/j.eswa.2023.121956_b0815 Zhao (10.1016/j.eswa.2023.121956_b1080) 2019; 115 Yang (10.1016/j.eswa.2023.121956_b0985) 2016; 65 Long (10.1016/j.eswa.2023.121956_b0550) 2016; 99 Tang (10.1016/j.eswa.2023.121956_b0810) 2018; 8 Xie (10.1016/j.eswa.2023.121956_b0930) 2016; 2016 Sun (10.1016/j.eswa.2023.121956_b0795) 2021; 578 Venkateswara (10.1016/j.eswa.2023.121956_b0835) 2017; 34 Wang (10.1016/j.eswa.2023.121956_b0855) 2018; 144 Li (10.1016/j.eswa.2023.121956_b0540) 2013; 46 Amarnath (10.1016/j.eswa.2023.121956_b0055) 2013; 46 Dubrova (10.1016/j.eswa.2023.121956_b0265) 2013 Ma (10.1016/j.eswa.2023.121956_b0585) 2018; 14 Cao (10.1016/j.eswa.2023.121956_b0150) 2021; 7 10.1016/j.eswa.2023.121956_b0030 Kim (10.1016/j.eswa.2023.121956_b0460) 2021; 9 Li (10.1016/j.eswa.2023.121956_b0530) 2017; 91 Shao (10.1016/j.eswa.2023.121956_b0770) 2019; 15 10.1016/j.eswa.2023.121956_b0155 Heo (10.1016/j.eswa.2023.121956_b0375) 2018; 51 10.1016/j.eswa.2023.121956_b0830 Shi (10.1016/j.eswa.2023. |
| References_xml | – volume: 17 start-page: e0279101 year: 2022 ident: b0035 article-title: Design of active Fault-Tolerant control system for Air-Fuel ratio control of internal combustion engine using nonlinear regression-based observer model publication-title: PLoS One1 – volume: 65 start-page: 11 year: 2016 ident: b0985 article-title: Feature knowledge based fault detection of induction motors through the analysis of stator current data publication-title: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT – volume: 63 start-page: 7067 year: 2016 end-page: 7075 ident: b0385 article-title: Real-Time motor fault detection by 1-D convolutional neural networks publication-title: IEEE Transactions on Industrial Electronics – volume: 67 start-page: 1293 year: 2020 end-page: 1304 ident: b1095 article-title: Intelligent fault identification based on multisource domain generalization towards actual diagnosis scenario publication-title: IEEE Transactions on Industrial Electronics – reference: , 1–6. Ibb, Yemen: IEEE. 10.1109/eSmarTA56775.2022.9935414. – volume: 36 start-page: 354 year: 2017 end-page: 365 ident: b0245 article-title: Fault diagnosis of bearing based on the Kernel principal component analysis and optimized publication-title: Journal of Low Frequency Noise, Vibration and Active Control – volume: 32 start-page: 5201 year: 2018 end-page: 5211 ident: b1015 article-title: Rolling bearing fault diagnosis based on mean multigranulation decision-theoretic rough set and non-naive bayesian classifier publication-title: Journal of Mechanical Science and Technology – volume: 379 start-page: 20200371 year: 2021 ident: b0170 article-title: Stochastic model predictive control framework for resilient cyber-physical systems: Review and perspectives publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – reference: Ali, Y. H., H. Ahmed, F. Y., Abdelrhman, A. M., Ali, S. M., Borhana, A. A., & Ishak Raja Hamzah, R. (2022). Novel Spiking Neural Network Model for Gear Fault Diagnosis. – volume: 16 start-page: 1969 year: 2023 end-page: 1983 ident: b0255 article-title: Passive fault-tolerant control for discrete parameter system publication-title: IET Power Electronics – volume: 200 year: 2022 ident: b0330 article-title: Ensemble feature selection using distance-based supervised and unsupervised methods in binary classification publication-title: Expert Systems with Applications – reference: Cassottana, B., Roomi, M. M., Mashima, D., & Sansavini, G. (n.d.). Resilience analysis of cyber-physical systems: A review of models and methods. – reference: Transfer Learning With Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions—IEEE Journals & Magazine. (n.d.). Retrieved February 18, 2021, from https://ieeexplore.ieee.org/abstract/document/7961149. – volume: 3 start-page: 9 year: 2016 ident: b0905 article-title: A survey of transfer learning publication-title: Journal of Big Data – volume: 121 start-page: 150 year: 2013 end-page: 159 ident: b0285 article-title: Comparison of FDA-based and PCA-based features in fault diagnosis of automobile gearboxes publication-title: Neurocomputing – volume: 315 start-page: 447 year: 2018 end-page: 464 ident: b1085 article-title: Fault diagnosis of rolling bearing based on feature reduction with global-local margin fisher analysis publication-title: Neurocomputing – volume: 6 start-page: 339 year: 2008 end-page: 350 ident: b0880 article-title: Active Fault-Tolerant control for a class of nonlinear systems with sensor faults publication-title: International Journal of control, Automation, and systems – reference: Wong, P. K., Zhong, J.-H., Yang, Z.-X., & Vong, C. M. (n.d.). A new framework for intelligent simultaneous-fault diagnosis of rotating machinery using pairwise-coupled sparse Bayesian extreme learning committee machine. 16. – reference: . arXiv. Retrieved from http://arxiv.org/abs/2010.01048. – volume: 160 start-page: 237 year: 2018 end-page: 250 ident: b0435 article-title: A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes publication-title: Knowledge-Based Systems – volume: 230 start-page: 542 year: 2014 end-page: 554 ident: b0180 article-title: Fault diagnosis based on comprehensive geometric characteristic and probability neural network publication-title: Applied Mathematics and Computation – volume: 9 start-page: 539 year: 1998 end-page: 545 ident: b0275 article-title: An expert system for engine fault diagnosis: Development and application publication-title: Journal of Intelligent Manufacturing – volume: 37 start-page: 276 year: 2013 end-page: 292 ident: b0115 article-title: Hard competitive growing neural network for the diagnosis of small bearing faults publication-title: Mechanical Systems and Signal Processing – volume: 34 year: 2023 ident: b0920 article-title: Intelligent fault diagnosis of gear crack based on side frequency feature under different working conditions publication-title: Measurement Science and Technology – reference: Peebles, P. Z. (2002). Probability. In – volume: 30 start-page: 1197 year: 2022 end-page: 1211 ident: b0800 article-title: Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy publication-title: IEEE Transactions on fuzzy Systems – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0745 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks – reference: (1st ed.). (2021). Wiley. 10.1002/9781119882350. – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: b0300 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognition – volume: 9 year: 2017 ident: b0335 article-title: A new fault diagnosis method based on deep belief network and support vector machine with Teager-Kaiser energy operator for bearings publication-title: Advances in Mechanical Engineering – volume: 17 start-page: 5581 year: 2017 end-page: 5588 ident: b0890 article-title: Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests publication-title: IEEE Sensors Journal – volume: 9 start-page: 46022 year: 2021 end-page: 46032 ident: b0750 article-title: Design of active fault tolerant control system for air fuel ratio control of internal combustion engines using artificial neural networks publication-title: IEEE Access – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: b1080 article-title: Deep learning and its applications to machine health monitoring publication-title: Mechanical Systems and Signal Processing – volume: 7 start-page: 515 year: 2017 ident: b0685 article-title: Detection of pitting in gears using a deep sparse autoencoder publication-title: Applied Sciences – reference: , 193–200. Corvalis, Oregon: ACM Press. 10.1145/1273496.1273521. – volume: 428 start-page: 72 year: 2018 end-page: 86 ident: b0535 article-title: Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine publication-title: Journal of Sound and Vibration – volume: 12 start-page: 297 year: 2015 end-page: 300 ident: b0380 article-title: Reliability optimization of automatic control systems based on importance measures: A framework publication-title: International Journal of Performability Engineering – volume: 66 start-page: 3249 year: 2017 end-page: 3259 ident: b0615 article-title: Low complexity motor current signature analysis using Sub-Nyquist strategy with reduced data length publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 46 start-page: 1250 year: 2013 end-page: 1256 ident: b0055 article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree publication-title: Measurement – volume: 8 start-page: 2357 year: 2018 ident: b0355 article-title: Bearing fault diagnosis under variable rotational speeds using stockwell Transform-Based vibration imaging and transfer learning publication-title: Applied Sciences – volume: 108 start-page: 262 year: 2018 end-page: 275 ident: b0655 article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition publication-title: Mechanical Systems and Signal Processing – volume: 15 start-page: 5666 year: 2022 ident: b0050 article-title: Design of a hybrid Fault-Tolerant control system for Air-Fuel ratio control of internal combustion engines using genetic algorithm and Higher-Order sliding mode control publication-title: Energies – volume: 55 start-page: 703 year: 2022 end-page: 716 ident: b0390 article-title: Genetic algorithm based active fault-tolerant control system for air fuel ratio control of internal combustion engines publication-title: Measurement and Control – volume: 160 year: 2022 ident: b0015 article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm publication-title: Renewable and Sustainable Energy Reviews – volume: 2016 start-page: 1 year: 2016 end-page: 6 ident: b0930 article-title: on cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis publication-title: IEEE International Conference on Prognostics and Health Management (ICPHM) – volume: 7 start-page: 2530 year: 2021 end-page: 2540 ident: b0150 article-title: Fault-Tolerant controller design for path following of the autonomous vehicle under the faults in braking actuators publication-title: IEEE Transactions on Transportation Electrification – volume: 52 start-page: 1179 year: 2019 end-page: 1194 ident: b0075 article-title: Robust active fault-tolerant control for internal combustion gas engine for air–fuel ratio control with statistical regression-based observer model publication-title: Measurement and Control – volume: 9 start-page: 9429 year: 2021 end-page: 9441 ident: b0785 article-title: ANN assisted multi sensor information fusion for BLDC motor fault diagnosis publication-title: IEEE Access – reference: Dai, W., Yang, Q., Xue, G.-R., & Yu, Y. (2007). Boosting for transfer learning. – volume: 62 start-page: 1 year: 2014 end-page: 9 ident: b0805 article-title: Fault diagnosis for a wind turbine transmission system based on manifold learning and shannon wavelet support vector machine publication-title: Renewable Energy – volume: 98 start-page: 114 year: 2016 end-page: 132 ident: b0525 article-title: Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis publication-title: Mechanism and Machine Theory – volume: 109 start-page: 85 year: 2019 end-page: 101 ident: b1090 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future publication-title: Renewable and Sustainable Energy Reviews – volume: 10 start-page: 2042 year: 2022 end-page: 2051 ident: b0660 article-title: increasing feasibility of neural Network-Based early fault detection in induction motor drives publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – volume: 64 start-page: 2296 year: 2017 end-page: 2305 ident: b0575 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Transactions on Industrial Electronics – volume: 176 year: 2021 ident: b0200 article-title: Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images publication-title: Measurement – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: b0570 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing – volume: 117 start-page: 20 year: 2017 end-page: 27 ident: b0290 article-title: Diagnosis of stator faults of the single-phase induction motor using acoustic signals publication-title: Applied Acoustics – volume: 22 start-page: 199 year: 2011 end-page: 210 ident: b0645 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Transactions on Neural Networks – volume: 32 start-page: 139 year: 2017 end-page: 151 ident: b0565 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Advanced Engineering Informatics – volume: 96 start-page: 289 year: 2016 end-page: 306 ident: b0690 article-title: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings publication-title: Tribology international – volume: 20 start-page: 932 year: 2018 ident: b0650 article-title: Rotor fault diagnosis based on characteristic frequency band energy entropy and support vector machine publication-title: Entropy – volume: 100 start-page: 439 year: 2018 end-page: 453 ident: b1055 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mechanical Systems and Signal Processing – volume: 117 year: 2023 ident: b0160 article-title: Multiple fault detection and isolation using artificial neural networks in sensors of an internal combustion engine publication-title: Engineering Applications of Artificial Intelligence – volume: 14 start-page: 1137 year: 2018 end-page: 1145 ident: b0585 article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data publication-title: IEEE Transactions on Industrial Informatics – volume: 21 start-page: 7587 year: 2021 ident: b0445 article-title: An expert system for rotating machine fault detection using vibration signal analysis publication-title: Sensors – volume: 41 start-page: 113 year: 2013 end-page: 126 ident: b0430 article-title: Feature extraction based on semi-supervised kernel marginal fisher analysis and its application in bearing fault diagnosis publication-title: Mechanical Systems and Signal Processing – reference: (1), 31–42. 10.17531/ein.2017.1.5. – volume: 5 start-page: 6027 year: 2017 end-page: 6035 ident: b0995 article-title: Rolling element bearing fault diagnosis using improved manifold learning publication-title: IEEE Access – reference: Li, Chuan. (n.d.). Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. – volume: 22 start-page: 1716 year: 2008 end-page: 1725 ident: b0975 article-title: Random forests classifier for machine fault diagnosis publication-title: Journal of Mechanical Science and Technology – volume: 1–46 year: 2022 ident: b0635 article-title: A review of cooperative multi-agent deep reinforcement learning publication-title: Applied Intelligence – volume: 17 start-page: 1947 year: 2022 end-page: 1959 ident: b0085 article-title: Unified Fault-Tolerant control for Air-Fuel ratio control of internal combustion engines with advanced analytical and hardware redundancies publication-title: Journal of Electrical Engineering & Technology – volume: 578 start-page: 887 year: 2021 end-page: 912 ident: b0795 article-title: Feature selection using fisher score and multilabel neighborhood rough sets for multilabel classification publication-title: Information Sciences – volume: 107 start-page: 241 year: 2018 end-page: 265 ident: b0450 article-title: A review on the application of deep learning in system health management publication-title: Mechanical Systems and Signal Processing – volume: 105 year: 2022 ident: b0710 article-title: Design of active fault-tolerant control system for air-fuel ratio control of internal combustion engines using fuzzy logic controller publication-title: Science Progress – reference: , 1–5. Stevenson, WA: IEEE. 10.23919/WAC.2018.8430387. – volume: 55 start-page: 2378 year: 2019 end-page: 2391 ident: b0025 article-title: Machine Learning-Based fault diagnosis for single- and Multi-Faults in induction motors using measured stator currents and vibration signals publication-title: IEEE Transactions on Industry Applications – volume: 67 start-page: 2326 year: 2020 end-page: 2336 ident: b0950 article-title: An incorrect data detection method for big data cleaning of machinery condition monitoring publication-title: IEEE Transactions on Industrial Electronics – reference: , 5622–5626. 10.1109/CCDC.2017.7978168. – volume: 17 start-page: 1729 year: 2017 ident: b0505 article-title: An ensemble deep convolutional neural network model with improved d-S evidence fusion for bearing fault diagnosis publication-title: Sensors – reference: Vanraj, Dhami, S., & Pabla, B. (2018). Hybrid data fusion approach for fault diagnosis of fixed-axis gearbox. – volume: 100 start-page: 358 year: 2020 end-page: 372 ident: b0620 article-title: Online aNN-based fault diagnosis implementation using an FPGA: Application in the EFI system of a vehicle publication-title: ISA Transactions – volume: 15 start-page: 2446 year: 2019 end-page: 2455 ident: b0770 article-title: Highly accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Transactions on Industrial Informatics – volume: 108 start-page: 134 year: 2018 end-page: 142 ident: b0135 article-title: Bearing faults diagnosis using fuzzy expert system relying on an improved range overlaps and similarity method publication-title: Expert Systems with Applications – volume: 20 start-page: 470 year: 2014 end-page: 480 ident: b0425 article-title: Fault diagnosis of rolling bearings based on marginal fisher analysis publication-title: Journal of Vibration and Control – volume: 161 start-page: 168 year: 2015 end-page: 182 ident: b0700 article-title: Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context publication-title: Neurocomputing – volume: 92 year: 2020 ident: b0860 article-title: A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies publication-title: Engineering Applications of Artificial Intelligence – reference: Dong, L., Li, W., Wang, C.-H., & Lin, K.-P. (2020). Gyro motor fault classification model based on a coupled hidden Markov model with a minimum intra-class distance algorithm. – volume: 21 start-page: 3463 year: 2021 ident: b0125 article-title: Wear diagnostics of the thrust bearing of NK-33 Turbo-Pump unit on the basis of Single-Coil eddy current sensors publication-title: Sensors – start-page: 2200 year: 2013 end-page: 2207 ident: b0555 article-title: Transfer feature learning with joint distribution adaptation publication-title: 2013 IEEE International Conference on Computer Vision – volume: 1–16 year: 2021 ident: b0080 article-title: Robust passive fault tolerant control for air fuel ratio control of internal combustion gasoline engine for sensor and actuator faults publication-title: IETE Journal of Research – volume: 46 start-page: 259 year: 2013 end-page: 271 ident: b0540 article-title: Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis publication-title: Measurement – volume: 9 start-page: 805 year: 2022 end-page: 825 ident: b0630 article-title: Feature selection algorithm based on density and distance for fault diagnosis applied to a roll-to-roll manufacturing system publication-title: Journal of Computational Design and Engineering – volume: 8 start-page: 1621 year: 2018 ident: b0415 article-title: A fusion feature extraction method using EEMD and correlation coefficient analysis for bearing fault diagnosis publication-title: Applied Sciences – volume: 26 start-page: 83 year: 2021 end-page: 88 ident: b0730 article-title: Analysis of L2 regularization hyper parameter for stock price prediction publication-title: Journal of Institute of Science and Technology – volume: 8 start-page: 1859 year: 2018 ident: b0810 article-title: Fault diagnosis of rolling bearings based on improved fast spectral correlation and optimized random forest publication-title: Applied Sciences – volume: 15 start-page: 5139 year: 2019 end-page: 5148 ident: b0870 article-title: A hierarchical deep domain adaptation approach for fault diagnosis of power plant thermal system publication-title: IEEE Transactions on Industrial Informatics – volume: 43 start-page: 18 year: 2019 ident: b0940 article-title: Prediction of hemodialysis timing based on LVW feature selection and ensemble learning publication-title: Journal of Medical Systems – volume: 79 start-page: 65 year: 2017 end-page: 75 ident: b0225 article-title: Stability-based system for bearing fault early detection publication-title: Expert Systems with Applications – reference: , 2208–2217. Sydney, NSW, Australia: JMLR.org. – volume: 68 start-page: 6248 year: 2021 end-page: 6256 ident: b0780 article-title: Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets publication-title: IEEE Transactions on Industrial Electronics – volume: 21 start-page: 1727 year: 2021 end-page: 1734 ident: b0195 article-title: Infrared Thermography-Based fault diagnosis of induction motor bearings using machine learning publication-title: IEEE Sensors Journal – volume: 23 start-page: 1510 year: 2021 ident: b0715 article-title: Bearing fault diagnosis using refined composite generalized multiscale dispersion Entropy-Based skewness and variance and multiclass FCM-ANFIS publication-title: Entropy – volume: 35 start-page: 1 year: 2022 end-page: 18 ident: b1025 article-title: A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles publication-title: Chinese Journal of Aeronautics – reference: . – volume: 12 year: 2020 ident: b0020 article-title: Reliable speed control of a permanent magnet DC motor using fault-tolerant h-bridge publication-title: Advances in Mechanical Engineering – volume: 131 start-page: 524 year: 2019 end-page: 533 ident: b0790 article-title: Faulty bearing detection, classification and location in a three-phase induction motor based on stockwell transform and support vector machine publication-title: Measurement – volume: 10 start-page: 131 year: 2017 ident: b1030 article-title: A soft Sensor-Based Fault-Tolerant control on the air fuel ratio of Spark-Ignition engines publication-title: Energies – volume: 319 start-page: 155 year: 2018 end-page: 163 ident: b0310 article-title: A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors publication-title: Neurocomputing – volume: 53 start-page: 3550 year: 2015 end-page: 3564 ident: b0600 article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification publication-title: IEEE Transactions on Geoscience and remote sensing – volume: 272 start-page: 619 year: 2018 end-page: 628 ident: b0405 article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines publication-title: Neurocomputing – volume: 69 start-page: 187 year: 2017 end-page: 201 ident: b0760 article-title: Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet publication-title: ISA Transactions – volume: 255 year: 2022 ident: b0480 article-title: Takagi-Sugeno fuzzy based power system fault section diagnosis models via genetic learning adaptive GSK algorithm publication-title: Knowledge-Based Systems – volume: 48 start-page: 34 year: 2018 end-page: 50 ident: b1065 article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning publication-title: Journal of Manufacturing Systems – volume: 71 start-page: 1 year: 2022 end-page: 11 ident: b0090 article-title: Interpretable neural network via algorithm unrolling for mechanical fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 7 start-page: 17634 year: 2019 end-page: 17643 ident: b0065 article-title: Advanced fault tolerant Air-Fuel ratio control of internal combustion gas engine for sensor and actuator faults publication-title: IEEE Access – volume: 122 start-page: 692 year: 2019 end-page: 706 ident: b0970 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mechanical Systems and Signal Processing – volume: 144 start-page: 65 year: 2018 end-page: 76 ident: b0855 article-title: Convolutional neural network-based hidden markov models for rolling element bearing fault identification publication-title: Knowledge-Based Systems – volume: 1–11 year: 2020 ident: b0340 article-title: active Fault-Tolerant control for discrete vehicle active suspension via Reduced-Order observer publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – reference: Warde-Farley, D., & Xu, B. (2014). Generative adversarial nets. – volume: 9 start-page: 936 year: 2015 end-page: 944 ident: b1000 article-title: Planetary gearbox fault diagnostic method using acoustic emission sensors publication-title: IET Science, Measurement & Technology – volume: 2 year: 2022 ident: b0675 article-title: A review of feature selection methods for machine Learning-Based disease risk prediction publication-title: Frontiers in Bioinformatics – volume: 48 start-page: 6237 year: 2023 end-page: 6252 ident: b0190 article-title: Condition monitoring and fault diagnosis of induction motor using DWT and ANN publication-title: Arabian Journal for Science and Engineering – volume: 66 start-page: 7316 year: 2019 end-page: 7325 ident: b0315 article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Transactions on Industrial Electronics – volume: 259 start-page: 252 year: 2014 end-page: 268 ident: b0365 article-title: Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis publication-title: Information Sciences – volume: 143 start-page: 58 year: 2019 end-page: 68 ident: b0060 article-title: A review of fault tolerant control systems: Advancements and applications publication-title: Measurement – volume: 55 start-page: 724 year: 2022 end-page: 729 ident: b0900 article-title: Fault-Tolerant control for a high altitude long endurance aircraft publication-title: IFAC-PapersOnLine – start-page: 770 year: 2016 end-page: 778 ident: b0360 publication-title: Deep Residual Learning for Image Recognition – year: 2018 ident: b0500 article-title: PSO optimized ANN diagnosis of early gear pitting publication-title: , 1043–1048 – start-page: 19 year: 2013 end-page: 42 ident: b0265 article-title: Dependability evaluation techniques publication-title: Fault-Tolerant Design – volume: 34 start-page: 117 year: 2017 end-page: 129 ident: b0835 article-title: Deep-Learning systems for domain adaptation in computer vision: Learning transferable feature representations publication-title: IEEE Signal Processing Magazine – volume: 8 start-page: 2885 year: 2020 end-page: 2892 ident: b0840 article-title: A novel resilient robot: Kinematic analysis and experimentation publication-title: IEEE Access – reference: Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN. (n.d.). Retrieved February 19, 2021, from https://www.hindawi.com/journals/complexity/2019/8716979/. – volume: 2016 start-page: 81 year: 2016 end-page: 86 ident: b0845 article-title: A factor analysis based transfer learning method for gearbox diagnosis under various operating conditions publication-title: International Symposium on Flexible Automation (ISFA) – reference: Shi, P., Liang, K., Han, D., & Zhang, Y. (2017). A novel intelligent fault diagnosis method of rotating machinery based on deep learning and PSO-SVM. – reference: (4), 936–945. 10.1177/1475921717727700. – volume: 12 start-page: 7841 year: 2022 ident: b0040 article-title: A comparative study of design of active Fault-Tolerant control system for Air-Fuel ratio control of internal combustion engine using particle swarm optimization, genetic algorithm, and nonlinear Regression-Based observer model publication-title: Applied Sciences – reference: , 35. – volume: 20 start-page: 1691 year: 2017 end-page: 1702 ident: b0140 article-title: A novel approach for marine diesel engine fault diagnosis publication-title: Cluster Computing – volume: 22 start-page: 6448 year: 2022 ident: b0010 article-title: A centrifugal pump fault diagnosis framework based on supervised contrastive learning publication-title: Sensors – reference: , – volume: 118 start-page: 159 year: 2021 end-page: 173 ident: b0850 article-title: A bayesian inference-based approach for performance prognostics towards uncertainty quantification and its applications on the marine diesel engine publication-title: ISA Transactions – volume: 35 start-page: 242 year: 2022 end-page: 254 ident: b0440 article-title: An effective crack position diagnosis method for the hollow shaft rotor system based on the convolutional neural network and deep metric learning publication-title: Chinese Journal of Aeronautics – volume: 10 start-page: 245 year: 2016 end-page: 248 ident: b1045 article-title: Design theory and methodology for enterprise systems publication-title: Enterprise Information Systems – volume: 106 start-page: 142 year: 2019 end-page: 153 ident: b0395 article-title: Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network publication-title: Computers in Industry – reference: , 35–40. 10.1109/SDPC.2018.8664814. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0475 article-title: Deep learning publication-title: Nature – volume: 49 start-page: 136 year: 2019 end-page: 144 ident: b0910 article-title: A new deep transfer learning based on sparse Auto-Encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – reference: Safizadeh, M. S., & Yari, B. (2017). Pump cavitation detection through fusion of support vector machine classifier data associated with vibration and motor current signature. 59(12), 5. – reference: Gerdes, M., Galar, D., & Scholz, D. (2016). Decision trees and the effects of feature extraction parameters for robust sensor network design. – volume: 51 start-page: 309 year: 2018 end-page: 314 ident: b0945 article-title: A platform for fault diagnosis of High-Speed train based on big data publication-title: IFAC-PapersOnLine – volume: 139 year: 2020 ident: b0370 article-title: A general anomaly detection framework for fleet-based condition monitoring of machines publication-title: Mechanical Systems and Signal Processing – volume: 39 start-page: 1000 year: 2017 end-page: 1006 ident: b0095 article-title: Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine publication-title: Transactions of the Institute of Measurement and Control – volume: 166 year: 2021 ident: b0235 article-title: Machine learning and data mining in manufacturing publication-title: Expert Systems with Applications – volume: 32 start-page: 75 year: 2019 ident: b0205 article-title: Signal-Based intelligent hydraulic fault diagnosis methods: Review and prospects publication-title: Chinese Journal of Mechanical Engineering – volume: 32 start-page: 37 year: 2018 end-page: 47 ident: b1010 article-title: Fault diagnosis of planetary gearbox with incomplete information using assignment reduction and flexible naive bayesian classifier publication-title: Journal of Mechanical Science and Technology – volume: 4 start-page: 99 year: 2010 end-page: 110 ident: b1040 article-title: On the principle of design of resilient systems – application to enterprise information systems publication-title: Enterprise Information Systems – start-page: 2397 year: 2005 end-page: 2402 ident: b0495 article-title: Reliability modeling of fault tolerant control systems publication-title: Proceedings of the 44th IEEE Conference on Decision and control – volume: 9 start-page: 152616 year: 2021 end-page: 152627 ident: b0460 article-title: KNN-SC: Novel spectral clustering algorithm using k-Nearest neighbors publication-title: IEEE Access – reference: (12), 125002. 10.1088/1361-6501/aae5b2. – volume: 34 start-page: 3451 year: 2018 end-page: 3462 ident: b0670 article-title: Feature engineering based on ANOVA, cluster validity assessment and KNN for fault diagnosis in bearings publication-title: Journal of Intelligent & Fuzzy Systems – start-page: 179 year: 2021 end-page: 200 ident: b0960 article-title: Machine learning in expert systems for disease diagnostics in human healthcare publication-title: Machine Learning, Big Data, and IoT for Medical Informatics – volume: 15 start-page: 7010 year: 2022 ident: b0045 article-title: Hybrid Fault-Tolerant control for Air-Fuel ratio control system of internal combustion engine using fuzzy logic and Super-Twisting sliding mode control techniques publication-title: Energies – volume: 33 start-page: 505 year: 2019 end-page: 511 ident: b0305 article-title: Fault diagnosis of rolling element bearing based on artificial neural network publication-title: Journal of Mechanical Science and Technology – volume: 11 start-page: 2057 year: 2023 end-page: 2067 ident: b0100 article-title: Fault diagnosis of a centrifugal pump using electrical signature analysis and support vector machine publication-title: Journal of Vibration Engineering & Technologies – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b0640 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 18 start-page: 1 year: 2014 end-page: 8 ident: b0720 article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell publication-title: Information Fusion – volume: 165 start-page: 474 year: 2019 end-page: 487 ident: b0345 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowledge-Based Systems – volume: 69 start-page: 9485 year: 2020 end-page: 9495 ident: b0865 article-title: Active fault tolerant control for unmanned underwater vehicle with sensor faults publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 93 start-page: 175 year: 2017 end-page: 203 ident: b0580 article-title: GNAR-GARCH model and its application in feature extraction for rolling bearing fault diagnosis publication-title: Mechanical Systems and Signal Processing – volume: 7 start-page: 19990 year: 2019 end-page: 19999 ident: b0955 article-title: A Digital-Twin-Assisted fault diagnosis using deep transfer learning publication-title: IEEE Access – volume: 27 start-page: 2140 year: 2019 end-page: 2151 ident: b0705 article-title: Intuitionistic fuzzy twin support vector machines publication-title: IEEE Transactions on fuzzy Systems – volume: 99 start-page: 14 year: 2016 ident: b0550 article-title: Deep learning of transferable representation for scalable domain adaptation publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 230 start-page: 303 year: 2016 end-page: 313 ident: b1020 article-title: Combined flow graphs and normal naive bayesian classifier for fault diagnosis of gear box publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 38 start-page: 2255 year: 2016 end-page: 2263 ident: b0250 article-title: Application of fuzzy c-means method and classification model of optimized k-nearest neighbor for fault diagnosis of bearing publication-title: Journal of the Brazilian Society of Mechanical Sciences and Engineering – volume: 18 start-page: 4460 year: 2018 ident: b0410 article-title: Symbolic important point perceptually and hidden markov model based hydraulic pump fault diagnosis method publication-title: Sensors – volume: 95 start-page: 295 year: 2019 end-page: 305 ident: b1060 article-title: Deep residual learning-based fault diagnosis method for rotating machinery publication-title: ISA Transactions – reference: Savchynskyy, B. (2019). – reference: , 11. – volume: 66 start-page: 1926 year: 2017 end-page: 1935 ident: b0230 article-title: Energy-Fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 91 start-page: 295 year: 2017 end-page: 312 ident: b0530 article-title: A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection publication-title: Mechanical Systems and Signal Processing – year: 2016 ident: b0295 article-title: Deep learning – volume: 51 start-page: 470 year: 2018 end-page: 475 ident: b0375 article-title: Fault detection and classification using artificial neural networks publication-title: IFAC-PapersOnLine – reference: Chen, C., Li, Z., Yang, J., & Liang, B. (2017). A cross domain feature extraction method based on transfer component analysis for rolling bearing fault diagnosis. – volume: 96 start-page: 803 year: 2018 end-page: 819 ident: b0260 article-title: Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A review publication-title: The International Journal of Advanced Manufacturing Technology – volume: 66–67 start-page: 679 year: 2016 end-page: 698 ident: b0875 article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications publication-title: Mechanical Systems and Signal Processing – volume: 15 start-page: 583 year: 2016 end-page: 598 ident: b0455 article-title: Fault detection of engine timing belt based on vibration signals using data-mining techniques and a novel data fusion procedure publication-title: Structural Health Monitoring – reference: (8), 5932–5946. 10.21595/jve.2017.18380. – reference: (n/a). 10.1111/risa.14089. – year: 2013 ident: b0605 article-title: Big data: A revolution that will transform how we live, work, and think – volume: 12 start-page: 2941 year: 2000 end-page: 2964 ident: b0130 article-title: A quantitative study of fault tolerance, noise immunity, and generalization ability of MLPs publication-title: Neural Computation – volume: 25 start-page: 1880 year: 2018 end-page: 1884 ident: b1005 article-title: Multiscale representations fusion with joint multiple reconstructions autoencoder for intelligent fault diagnosis publication-title: IEEE Signal Processing Letters – reference: (B. Curless, W. T. Freeman, & L. V. Gool, Eds.). Boston Delft: Now. – reference: Saufi, S. R., Ahmad, Z. A. bin, Leong, M. S., & Lim, M. H. (2018). Differential evolution optimization for resilient stacked sparse autoencoder and its applications on bearing fault diagnosis. – volume: 6 start-page: 63584 year: 2018 end-page: 63596 ident: b0925 article-title: An End-to-End model based on improved adaptive deep belief network and its application to bearing fault diagnosis publication-title: IEEE Access – volume: 52 start-page: 473 year: 2019 end-page: 492 ident: b0070 article-title: Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using kalman filters with advanced redundancy publication-title: Measurement and Control – volume: 6 start-page: 980 year: 2015 end-page: 987 ident: b0110 article-title: An artificial neural network approach for early fault detection of gearbox bearings publication-title: IEEE Transactions on Smart Grid – volume: 63 start-page: 2651 year: 2014 end-page: 2665 ident: b0510 article-title: Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 28 start-page: 04014065 year: 2015 ident: b0885 article-title: Fault early recognition and health monitoring on aeroengine rotor system publication-title: Journal of Aerospace Engineering – volume: 6 start-page: 26241 year: 2018 end-page: 26253 ident: b0145 article-title: Preprocessing-Free gear fault diagnosis using small datasets with deep convolutional neural Network-Based transfer learning publication-title: IEEE Access – volume: 127 start-page: 246 year: 2018 end-page: 255 ident: b0350 article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis publication-title: Measurement – volume: 12 start-page: 1 year: 2018 end-page: 18 ident: b0470 article-title: Reliability analysis of safety-critical and control systems: A state-of-the-art review publication-title: IET Software – volume: 85 start-page: 189 year: 2018 end-page: 203 ident: b0820 article-title: Relief-based feature selection: Introduction and review publication-title: Journal of Biomedical Informatics – volume: 127 start-page: 190 year: 2019 end-page: 201 ident: b0590 article-title: Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions publication-title: Mechanical Systems and Signal Processing – volume: 230 start-page: 291 year: 2016 end-page: 302 ident: b0825 article-title: Two-stage feature selection for bearing fault diagnosis based on dual-tree complex wavelet transform and empirical mode decomposition publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – reference: Chen, Jinglong. (n.d.). Wavelet transform based on inner product in fault diagnosis of rotating machinery_A review. – reference: Yang, B., Lei, Y., Jia, F., & Xing, S. (2018). A Transfer Learning Method for Intelligent Fault Diagnosis from Laboratory Machines to Real-Case Machines. – volume: 310 start-page: 77 year: 2018 end-page: 95 ident: b0520 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing – volume: 65 start-page: 4290 year: 2018 end-page: 4300 ident: b1070 article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes publication-title: IEEE Transactions on Industrial Electronics – volume: 15 year: 2023 ident: b0755 article-title: Design of hybrid fault-tolerant control system for air-fuel ratio control of internal combustion engines using artificial neural network and sliding mode control against sensor faults publication-title: Advances in Mechanical Engineering – volume: 85 start-page: 56 year: 2017 end-page: 70 ident: b0105 article-title: Diagnosis of combined faults in rotary machinery by Non-Naive bayesian approach publication-title: Mechanical Systems and Signal Processing – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b0465 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM – volume: Vol. 52 start-page: 1879 year: 2023 end-page: 1884 ident: b0610 article-title: Artificial neural networks-based identification of the WWTP DO sensor types of faults publication-title: Computer Aided Chemical Engineering – volume: 2018 start-page: 1309 year: 2018 end-page: 1313 ident: b0935 article-title: A transfer learning strategy for rotation machinery fault diagnosis based on Cycle-Consistent generative adversarial networks publication-title: Chinese Automation Congress (CAC) – reference: H. Saltzer, J., & Kaashoek, M. F. (2021, August 1). 2.3: Measures of Reliability and Failure Tolerance. Retrieved August 23, 2023, from Engineering LibreTexts website: https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_and_Computation_Fundamentals/Principles_of_Computer_System_Design_(Saltzer_and_Kaashoek)/02%3A_Fault_Tolerance_-_Reliable_Systems_from_Unreliable_Components/2.03%3A_Measures_of_Reliability_and_Failure_Tolerance. – volume: 9 start-page: 494 year: 2018 end-page: 508 ident: b0400 article-title: fault diagnosis of automobile systems using fault tree based on digraph modeling publication-title: International Journal of System Assurance Engineering and Management – reference: Long, M., Zhu, H., Wang, J., & Jordan, M. I. (2017). Deep transfer learning with joint adaptation networks. – volume: 4 start-page: 217 year: 2013 end-page: 233 ident: b0120 article-title: Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues publication-title: International Journal of Machine Learning and Cybernetics – start-page: 1 year: 2016 end-page: 5 ident: b0005 article-title: Reliability enhancement of modular multilevel converter by applying fault tolerant control publication-title: 2016 51st International Universities Power Engineering Conference (UPEC) – volume: 198 year: 2019 ident: b0185 article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions publication-title: Energy Conversion and Management – start-page: 1 year: 2015 end-page: 6 ident: b0270 publication-title: Bearing fault diagnosis based on SVD feature extraction and transfer learning classification – reference: Machine learning, explained. (n.d.). Retrieved December 20, 2022, from MIT Sloan website: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained. – volume: 90 start-page: 219 year: 2015 end-page: 229 ident: b0980 article-title: Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm publication-title: Mechanism and Machine Theory – reference: Zhang, W. J., Yang, G., Lin, Y., Ji, C., & Gupta, M. M. (2018). On Definition of Deep Learning. – volume: 66 start-page: 3196 year: 2019 end-page: 3207 ident: b0420 article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox publication-title: IEEE Transactions on Industrial Electronics – reference: (4th Edition edition). TMH. – volume: 95 start-page: 187 year: 2017 end-page: 204 ident: b0765 article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis publication-title: Mechanical Systems and Signal Processing – volume: 9 start-page: 379 year: 2016 ident: b0990 article-title: Representational learning for fault diagnosis of wind turbine equipment: A Multi-Layered extreme learning machines approach publication-title: Energies – volume: 229 start-page: 304 year: 2015 end-page: 315 ident: b0545 article-title: Condition monitoring and fault diagnosis of diesel engines using instantaneous angular speed analysis publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – reference: Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings. (n.d.). Retrieved February 19, 2021, from https://www.hindawi.com/journals/sv/2017/5067651/. – volume: 66 start-page: 5525 year: 2019 end-page: 5534 ident: b0515 article-title: Cross-Domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Transactions on Industrial Electronics – volume: 170 year: 2021 ident: b0625 article-title: New bearing slight degradation detection approach based on the periodicity intensity factor and signal processing methods publication-title: Measurement – volume: 7 start-page: 41 year: 2017 ident: b0320 article-title: Deep fault recognizer: an integrated model to denoise and extract features for fault diagnosis in rotating machinery publication-title: Applied Sciences – volume: 66 start-page: 4696 year: 2019 end-page: 4706 ident: b1075 article-title: Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis publication-title: IEEE Transactions on Industrial Electronics – reference: Li, G., Gu, Y., & Ding, J. (2020, October 2). – reference: (5), 646–661. 10.1177/0959651819866281. – volume: 122 start-page: 502 year: 2019 end-page: 536 ident: b0680 article-title: Applications of stochastic resonance to machinery fault detection: A review and tutorial publication-title: Mechanical Systems and Signal Processing – volume: 51 start-page: 4091 year: 2021 end-page: 4101 ident: b1035 article-title: Neural Networks-Based fault tolerant control of a robot via fast terminal sliding mode publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 69 start-page: 187 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0760 article-title: Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet publication-title: ISA Transactions doi: 10.1016/j.isatra.2017.03.017 – year: 2018 ident: 10.1016/j.eswa.2023.121956_b0500 article-title: PSO optimized ANN diagnosis of early gear pitting – volume: 99 start-page: 14 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0550 article-title: Deep learning of transferable representation for scalable domain adaptation publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 35 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.eswa.2023.121956_b1025 article-title: A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2021.04.022 – volume: 23 start-page: 1510 issue: 11 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0715 article-title: Bearing fault diagnosis using refined composite generalized multiscale dispersion Entropy-Based skewness and variance and multiclass FCM-ANFIS publication-title: Entropy doi: 10.3390/e23111510 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0745 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 315 start-page: 447 year: 2018 ident: 10.1016/j.eswa.2023.121956_b1085 article-title: Fault diagnosis of rolling bearing based on feature reduction with global-local margin fisher analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.038 – volume: 1–46 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0635 article-title: A review of cooperative multi-agent deep reinforcement learning publication-title: Applied Intelligence – volume: 379 start-page: 20200371 issue: 2207 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0170 article-title: Stochastic model predictive control framework for resilient cyber-physical systems: Review and perspectives publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2020.0371 – ident: 10.1016/j.eswa.2023.121956_b0165 doi: 10.1109/CCDC.2017.7978168 – volume: 176 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0200 article-title: Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images publication-title: Measurement doi: 10.1016/j.measurement.2021.109196 – volume: 34 issue: 9 year: 2023 ident: 10.1016/j.eswa.2023.121956_b0920 article-title: Intelligent fault diagnosis of gear crack based on side frequency feature under different working conditions publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/acd9df – volume: 105 issue: 2 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0710 article-title: Design of active fault-tolerant control system for air-fuel ratio control of internal combustion engines using fuzzy logic controller publication-title: Science Progress doi: 10.1177/00368504221094723 – volume: 10 start-page: 131 issue: 1 year: 2017 ident: 10.1016/j.eswa.2023.121956_b1030 article-title: A soft Sensor-Based Fault-Tolerant control on the air fuel ratio of Spark-Ignition engines publication-title: Energies doi: 10.3390/en10010131 – volume: 17 start-page: e0279101 issue: 12 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0035 article-title: Design of active Fault-Tolerant control system for Air-Fuel ratio control of internal combustion engine using nonlinear regression-based observer model publication-title: PLoS One1 doi: 10.1371/journal.pone.0279101 – volume: 139 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0370 article-title: A general anomaly detection framework for fleet-based condition monitoring of machines publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.106585 – volume: 15 start-page: 583 issue: 5 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0455 article-title: Fault detection of engine timing belt based on vibration signals using data-mining techniques and a novel data fusion procedure publication-title: Structural Health Monitoring doi: 10.1177/1475921716652582 – volume: 67 start-page: 1293 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.121956_b1095 article-title: Intelligent fault identification based on multisource domain generalization towards actual diagnosis scenario publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2898619 – volume: 122 start-page: 692 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0970 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.12.051 – volume: 15 start-page: 7010 issue: 19 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0045 article-title: Hybrid Fault-Tolerant control for Air-Fuel ratio control system of internal combustion engine using fuzzy logic and Super-Twisting sliding mode control techniques publication-title: Energies doi: 10.3390/en15197010 – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0090 article-title: Interpretable neural network via algorithm unrolling for mechanical fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement – ident: 10.1016/j.eswa.2023.121956_b0895 – volume: 20 start-page: 470 issue: 3 year: 2014 ident: 10.1016/j.eswa.2023.121956_b0425 article-title: Fault diagnosis of rolling bearings based on marginal fisher analysis publication-title: Journal of Vibration and Control doi: 10.1177/1077546312463747 – volume: 20 start-page: 932 issue: 12 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0650 article-title: Rotor fault diagnosis based on characteristic frequency band energy entropy and support vector machine publication-title: Entropy doi: 10.3390/e20120932 – ident: 10.1016/j.eswa.2023.121956_b0735 doi: 10.1088/1361-6501/aae5b2 – volume: 90 start-page: 219 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0980 article-title: Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm publication-title: Mechanism and Machine Theory doi: 10.1016/j.mechmachtheory.2015.03.013 – volume: 96 start-page: 289 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0690 article-title: A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings publication-title: Tribology international doi: 10.1016/j.triboint.2015.12.037 – volume: 36 start-page: 354 issue: 4 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0245 article-title: Fault diagnosis of bearing based on the Kernel principal component analysis and optimized k -nearest neighbour model publication-title: Journal of Low Frequency Noise, Vibration and Active Control doi: 10.1177/1461348417744302 – volume: 310 start-page: 77 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0520 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.021 – volume: 100 start-page: 439 year: 2018 ident: 10.1016/j.eswa.2023.121956_b1055 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.06.022 – volume: 55 start-page: 703 issue: 7–8 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0390 article-title: Genetic algorithm based active fault-tolerant control system for air fuel ratio control of internal combustion engines publication-title: Measurement and Control doi: 10.1177/00202940221115233 – volume: 109 start-page: 85 year: 2019 ident: 10.1016/j.eswa.2023.121956_b1090 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2019.04.021 – volume: 48 start-page: 6237 issue: 5 year: 2023 ident: 10.1016/j.eswa.2023.121956_b0190 article-title: Condition monitoring and fault diagnosis of induction motor using DWT and ANN publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-022-07294-3 – volume: 32 start-page: 139 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0565 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2017.02.005 – volume: 18 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2023.121956_b0720 article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell publication-title: Information Fusion doi: 10.1016/j.inffus.2013.10.002 – volume: 22 start-page: 1716 issue: 9 year: 2008 ident: 10.1016/j.eswa.2023.121956_b0975 article-title: Random forests classifier for machine fault diagnosis publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-008-0603-6 – volume: 100 start-page: 358 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0620 article-title: Online aNN-based fault diagnosis implementation using an FPGA: Application in the EFI system of a vehicle publication-title: ISA Transactions doi: 10.1016/j.isatra.2019.11.003 – volume: 165 start-page: 474 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0345 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.12.019 – volume: 7 start-page: 19990 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0955 article-title: A Digital-Twin-Assisted fault diagnosis using deep transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890566 – ident: 10.1016/j.eswa.2023.121956_b0665 – volume: 11 start-page: 2057 issue: 5 year: 2023 ident: 10.1016/j.eswa.2023.121956_b0100 article-title: Fault diagnosis of a centrifugal pump using electrical signature analysis and support vector machine publication-title: Journal of Vibration Engineering & Technologies doi: 10.1007/s42417-022-00687-6 – volume: 121 start-page: 150 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0285 article-title: Comparison of FDA-based and PCA-based features in fault diagnosis of automobile gearboxes publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.033 – volume: 85 start-page: 189 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0820 article-title: Relief-based feature selection: Introduction and review publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2018.07.014 – volume: 98 start-page: 114 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0525 article-title: Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis publication-title: Mechanism and Machine Theory doi: 10.1016/j.mechmachtheory.2015.11.010 – volume: 1–11 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0340 article-title: active Fault-Tolerant control for discrete vehicle active suspension via Reduced-Order observer publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – year: 2013 ident: 10.1016/j.eswa.2023.121956_b0605 – volume: 15 issue: 3 year: 2023 ident: 10.1016/j.eswa.2023.121956_b0755 article-title: Design of hybrid fault-tolerant control system for air-fuel ratio control of internal combustion engines using artificial neural network and sliding mode control against sensor faults publication-title: Advances in Mechanical Engineering doi: 10.1177/16878132231160729 – volume: 92 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0860 article-title: A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103680 – volume: 9 start-page: 805 issue: 2 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0630 article-title: Feature selection algorithm based on density and distance for fault diagnosis applied to a roll-to-roll manufacturing system publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwac028 – volume: 46 start-page: 1250 issue: 3 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0055 article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree publication-title: Measurement doi: 10.1016/j.measurement.2012.11.011 – volume: 12 issue: 10 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0020 article-title: Reliable speed control of a permanent magnet DC motor using fault-tolerant h-bridge publication-title: Advances in Mechanical Engineering doi: 10.1177/1687814020970311 – volume: 6 start-page: 980 issue: 2 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0110 article-title: An artificial neural network approach for early fault detection of gearbox bearings publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2014.2386305 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0475 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 143 start-page: 58 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0060 article-title: A review of fault tolerant control systems: Advancements and applications publication-title: Measurement doi: 10.1016/j.measurement.2019.04.083 – volume: 21 start-page: 7587 issue: 22 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0445 article-title: An expert system for rotating machine fault detection using vibration signal analysis publication-title: Sensors doi: 10.3390/s21227587 – volume: 95 start-page: 295 year: 2019 ident: 10.1016/j.eswa.2023.121956_b1060 article-title: Deep residual learning-based fault diagnosis method for rotating machinery publication-title: ISA Transactions doi: 10.1016/j.isatra.2018.12.025 – ident: 10.1016/j.eswa.2023.121956_b0965 doi: 10.1109/SDPC.2018.8664814 – ident: 10.1016/j.eswa.2023.121956_b0490 – volume: 17 start-page: 5581 issue: 17 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0890 article-title: Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2017.2726011 – volume: 46 start-page: 259 issue: 1 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0540 article-title: Blind vibration component separation and nonlinear feature extraction applied to the nonstationary vibration signals for the gearbox multi-fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2012.06.013 – volume: 55 start-page: 2378 issue: 3 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0025 article-title: Machine Learning-Based fault diagnosis for single- and Multi-Faults in induction motors using measured stator currents and vibration signals publication-title: IEEE Transactions on Industry Applications doi: 10.1109/TIA.2019.2895797 – volume: 22 start-page: 199 issue: 2 year: 2011 ident: 10.1016/j.eswa.2023.121956_b0645 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2091281 – volume: 2016 start-page: 81 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0845 article-title: A factor analysis based transfer learning method for gearbox diagnosis under various operating conditions publication-title: International Symposium on Flexible Automation (ISFA) doi: 10.1109/ISFA.2016.7790140 – volume: 9 start-page: 936 issue: 8 year: 2015 ident: 10.1016/j.eswa.2023.121956_b1000 article-title: Planetary gearbox fault diagnostic method using acoustic emission sensors publication-title: IET Science, Measurement & Technology doi: 10.1049/iet-smt.2014.0375 – volume: 16 start-page: 1969 issue: 12 year: 2023 ident: 10.1016/j.eswa.2023.121956_b0255 article-title: Passive fault-tolerant control for discrete parameter system publication-title: IET Power Electronics doi: 10.1049/pel2.12515 – volume: 10 start-page: 2042 issue: 2 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0660 article-title: increasing feasibility of neural Network-Based early fault detection in induction motor drives publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics doi: 10.1109/JESTPE.2021.3115170 – volume: 52 start-page: 1179 issue: 9–10 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0075 article-title: Robust active fault-tolerant control for internal combustion gas engine for air–fuel ratio control with statistical regression-based observer model publication-title: Measurement and Control doi: 10.1177/0020294018823031 – volume: 93 start-page: 175 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0580 article-title: GNAR-GARCH model and its application in feature extraction for rolling bearing fault diagnosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.01.043 – volume: 34 start-page: 117 issue: 6 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0835 article-title: Deep-Learning systems for domain adaptation in computer vision: Learning transferable feature representations publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2017.2740460 – volume: 21 start-page: 3463 issue: 10 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0125 article-title: Wear diagnostics of the thrust bearing of NK-33 Turbo-Pump unit on the basis of Single-Coil eddy current sensors publication-title: Sensors doi: 10.3390/s21103463 – volume: 166 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0235 article-title: Machine learning and data mining in manufacturing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114060 – volume: 9 start-page: 46022 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0750 article-title: Design of active fault tolerant control system for air fuel ratio control of internal combustion engines using artificial neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068164 – volume: 12 start-page: 2941 issue: 12 year: 2000 ident: 10.1016/j.eswa.2023.121956_b0130 article-title: A quantitative study of fault tolerance, noise immunity, and generalization ability of MLPs publication-title: Neural Computation doi: 10.1162/089976600300014782 – ident: 10.1016/j.eswa.2023.121956_b1050 doi: 10.23919/WAC.2018.8430387 – volume: 26 start-page: 83 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0730 article-title: Analysis of L2 regularization hyper parameter for stock price prediction publication-title: Journal of Institute of Science and Technology doi: 10.3126/jist.v26i1.37830 – volume: 67 start-page: 2326 issue: 3 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0950 article-title: An incorrect data detection method for big data cleaning of machinery condition monitoring publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2903774 – ident: 10.1016/j.eswa.2023.121956_b0155 – volume: 130 start-page: 377 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0570 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.07.028 – volume: 63 start-page: 2651 issue: 11 year: 2014 ident: 10.1016/j.eswa.2023.121956_b0510 article-title: Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2014.2313035 – volume: 20 start-page: 1691 issue: 2 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0140 article-title: A novel approach for marine diesel engine fault diagnosis publication-title: Cluster Computing doi: 10.1007/s10586-017-0748-0 – start-page: 1 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0270 – volume: 127 start-page: 190 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0590 article-title: Deep residual learning with demodulated time-frequency features for fault diagnosis of planetary gearbox under nonstationary running conditions publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.02.055 – ident: 10.1016/j.eswa.2023.121956_b0695 doi: 10.1155/2019/8716979 – volume: 12 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0470 article-title: Reliability analysis of safety-critical and control systems: A state-of-the-art review publication-title: IET Software doi: 10.1049/iet-sen.2017.0053 – volume: 15 start-page: 5139 issue: 9 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0870 article-title: A hierarchical deep domain adaptation approach for fault diagnosis of power plant thermal system publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2899118 – ident: 10.1016/j.eswa.2023.121956_b0815 – start-page: 2397 year: 2005 ident: 10.1016/j.eswa.2023.121956_b0495 article-title: Reliability modeling of fault tolerant control systems – ident: 10.1016/j.eswa.2023.121956_b0485 – volume: 66 start-page: 7316 issue: 9 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0315 article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2877090 – volume: 118 start-page: 159 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0850 article-title: A bayesian inference-based approach for performance prognostics towards uncertainty quantification and its applications on the marine diesel engine publication-title: ISA Transactions doi: 10.1016/j.isatra.2021.02.024 – volume: 161 start-page: 168 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0700 article-title: Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.045 – volume: 8 start-page: 1621 issue: 9 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0415 article-title: A fusion feature extraction method using EEMD and correlation coefficient analysis for bearing fault diagnosis publication-title: Applied Sciences doi: 10.3390/app8091621 – volume: 66 start-page: 1926 issue: 8 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0230 article-title: Energy-Fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2017.2674738 – volume: 7 start-page: 515 issue: 5 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0685 article-title: Detection of pitting in gears using a deep sparse autoencoder publication-title: Applied Sciences doi: 10.3390/app7050515 – ident: 10.1016/j.eswa.2023.121956_b0740 doi: 10.1561/9781680836394 – volume: 66 start-page: 4696 issue: 6 year: 2019 ident: 10.1016/j.eswa.2023.121956_b1075 article-title: Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2866050 – volume: 160 start-page: 237 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0435 article-title: A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.07.017 – start-page: 179 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0960 article-title: Machine learning in expert systems for disease diagnostics in human healthcare – ident: 10.1016/j.eswa.2023.121956_b0220 – volume: 32 start-page: 37 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.121956_b1010 article-title: Fault diagnosis of planetary gearbox with incomplete information using assignment reduction and flexible naive bayesian classifier publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-017-1205-y – ident: 10.1016/j.eswa.2023.121956_b0030 doi: 10.1109/eSmarTA56775.2022.9935414 – ident: 10.1016/j.eswa.2023.121956_b0215 doi: 10.1155/2017/5067651 – volume: 32 start-page: 75 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0205 article-title: Signal-Based intelligent hydraulic fault diagnosis methods: Review and prospects publication-title: Chinese Journal of Mechanical Engineering doi: 10.1186/s10033-019-0388-9 – volume: 6 start-page: 26241 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0145 article-title: Preprocessing-Free gear fault diagnosis using small datasets with deep convolutional neural Network-Based transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2837621 – volume: 66 start-page: 3196 issue: 4 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0420 article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2844805 – volume: 69 start-page: 9485 issue: 12 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0865 article-title: Active fault tolerant control for unmanned underwater vehicle with sensor faults publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2020.3003108 – volume: 52 start-page: 473 issue: 5–6 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0070 article-title: Hybrid fault tolerant control for air–fuel ratio control of internal combustion gasoline engine using kalman filters with advanced redundancy publication-title: Measurement and Control doi: 10.1177/0020294019842593 – ident: 10.1016/j.eswa.2023.121956_b0240 doi: 10.1177/0959651819866281 – volume: 8 start-page: 2885 year: 2020 ident: 10.1016/j.eswa.2023.121956_b0840 article-title: A novel resilient robot: Kinematic analysis and experimentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962058 – volume: 4 start-page: 217 issue: 3 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0120 article-title: Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-012-0089-5 – start-page: 770 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0360 – volume: 578 start-page: 887 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0795 article-title: Feature selection using fisher score and multilabel neighborhood rough sets for multilabel classification publication-title: Information Sciences doi: 10.1016/j.ins.2021.08.032 – volume: 22 start-page: 6448 issue: 17 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0010 article-title: A centrifugal pump fault diagnosis framework based on supervised contrastive learning publication-title: Sensors doi: 10.3390/s22176448 – volume: 14 start-page: 1137 issue: 3 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0585 article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2793246 – volume: 12 start-page: 7841 issue: 15 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0040 article-title: A comparative study of design of active Fault-Tolerant control system for Air-Fuel ratio control of internal combustion engine using particle swarm optimization, genetic algorithm, and nonlinear Regression-Based observer model publication-title: Applied Sciences doi: 10.3390/app12157841 – volume: 66 start-page: 3249 issue: 12 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0615 article-title: Low complexity motor current signature analysis using Sub-Nyquist strategy with reduced data length publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2017.2737879 – volume: 2 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0675 article-title: A review of feature selection methods for machine Learning-Based disease risk prediction publication-title: Frontiers in Bioinformatics doi: 10.3389/fbinf.2022.927312 – volume: 108 start-page: 262 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0655 article-title: Gear fault diagnosis using transmission error and ensemble empirical mode decomposition publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.02.028 – volume: 6 start-page: 339 issue: 3 year: 2008 ident: 10.1016/j.eswa.2023.121956_b0880 article-title: Active Fault-Tolerant control for a class of nonlinear systems with sensor faults publication-title: International Journal of control, Automation, and systems – volume: 62 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2023.121956_b0805 article-title: Fault diagnosis for a wind turbine transmission system based on manifold learning and shannon wavelet support vector machine publication-title: Renewable Energy doi: 10.1016/j.renene.2013.06.025 – volume: 27 start-page: 2140 issue: 11 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0705 article-title: Intuitionistic fuzzy twin support vector machines publication-title: IEEE Transactions on fuzzy Systems doi: 10.1109/TFUZZ.2019.2893863 – volume: 106 start-page: 142 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0395 article-title: Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network publication-title: Computers in Industry doi: 10.1016/j.compind.2019.01.008 – volume: 428 start-page: 72 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0535 article-title: Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2018.04.036 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.eswa.2023.121956_b0640 article-title: A survey on transfer learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 7 start-page: 17634 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0065 article-title: Advanced fault tolerant Air-Fuel ratio control of internal combustion gas engine for sensor and actuator faults publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894796 – volume: 35 start-page: 242 issue: 9 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0440 article-title: An effective crack position diagnosis method for the hollow shaft rotor system based on the convolutional neural network and deep metric learning publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2021.09.010 – volume: 34 start-page: 3451 issue: 6 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0670 article-title: Feature engineering based on ANOVA, cluster validity assessment and KNN for fault diagnosis in bearings publication-title: Journal of Intelligent & Fuzzy Systems – volume: 4 start-page: 99 issue: 2 year: 2010 ident: 10.1016/j.eswa.2023.121956_b1040 article-title: On the principle of design of resilient systems – application to enterprise information systems publication-title: Enterprise Information Systems doi: 10.1080/17517571003763380 – ident: 10.1016/j.eswa.2023.121956_b0325 – volume: 15 start-page: 2446 issue: 4 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0770 article-title: Highly accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2864759 – volume: 9 start-page: 9429 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0785 article-title: ANN assisted multi sensor information fusion for BLDC motor fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050243 – ident: 10.1016/j.eswa.2023.121956_b0560 – volume: 1–16 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0080 article-title: Robust passive fault tolerant control for air fuel ratio control of internal combustion gasoline engine for sensor and actuator faults publication-title: IETE Journal of Research – ident: 10.1016/j.eswa.2023.121956_b0595 – volume: 107 start-page: 241 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0450 article-title: A review on the application of deep learning in system health management publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.11.024 – volume: 229 start-page: 304 issue: 2 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0545 article-title: Condition monitoring and fault diagnosis of diesel engines using instantaneous angular speed analysis publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 48 start-page: 34 year: 2018 ident: 10.1016/j.eswa.2023.121956_b1065 article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2018.04.005 – volume: 38 start-page: 2255 issue: 8 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0250 article-title: Application of fuzzy c-means method and classification model of optimized k-nearest neighbor for fault diagnosis of bearing publication-title: Journal of the Brazilian Society of Mechanical Sciences and Engineering doi: 10.1007/s40430-015-0455-9 – volume: 170 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0625 article-title: New bearing slight degradation detection approach based on the periodicity intensity factor and signal processing methods publication-title: Measurement doi: 10.1016/j.measurement.2020.108696 – volume: Vol. 52 start-page: 1879 year: 2023 ident: 10.1016/j.eswa.2023.121956_b0610 article-title: Artificial neural networks-based identification of the WWTP DO sensor types of faults – start-page: 2200 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0555 article-title: Transfer feature learning with joint distribution adaptation – volume: 255 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0480 article-title: Takagi-Sugeno fuzzy based power system fault section diagnosis models via genetic learning adaptive GSK algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109773 – volume: 33 start-page: 505 issue: 2 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0305 article-title: Fault diagnosis of rolling element bearing based on artificial neural network publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-019-0103-x – volume: 65 start-page: 11 issue: 3 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0985 article-title: Feature knowledge based fault detection of induction motors through the analysis of stator current data publication-title: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT doi: 10.1109/TIM.2015.2498978 – volume: 96 start-page: 803 issue: 1–4 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0260 article-title: Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: A review publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-017-1474-8 – volume: 30 start-page: 1197 issue: 5 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0800 article-title: Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy publication-title: IEEE Transactions on fuzzy Systems doi: 10.1109/TFUZZ.2021.3053844 – year: 2016 ident: 10.1016/j.eswa.2023.121956_b0295 – volume: 95 start-page: 187 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0765 article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.03.034 – volume: 2018 start-page: 1309 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0935 article-title: A transfer learning strategy for rotation machinery fault diagnosis based on Cycle-Consistent generative adversarial networks publication-title: Chinese Automation Congress (CAC) – volume: 127 start-page: 246 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0350 article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2018.05.098 – volume: 272 start-page: 619 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0405 article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.032 – volume: 66–67 start-page: 679 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0875 article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2015.04.039 – volume: 32 start-page: 5201 issue: 11 year: 2018 ident: 10.1016/j.eswa.2023.121956_b1015 article-title: Rolling bearing fault diagnosis based on mean multigranulation decision-theoretic rough set and non-naive bayesian classifier publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-018-1018-7 – volume: 8 start-page: 2357 issue: 12 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0355 article-title: Bearing fault diagnosis under variable rotational speeds using stockwell Transform-Based vibration imaging and transfer learning publication-title: Applied Sciences doi: 10.3390/app8122357 – volume: 25 start-page: 1880 issue: 12 year: 2018 ident: 10.1016/j.eswa.2023.121956_b1005 article-title: Multiscale representations fusion with joint multiple reconstructions autoencoder for intelligent fault diagnosis publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2018.2878356 – volume: 79 start-page: 65 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0225 article-title: Stability-based system for bearing fault early detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.02.030 – volume: 259 start-page: 252 year: 2014 ident: 10.1016/j.eswa.2023.121956_b0365 article-title: Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis publication-title: Information Sciences doi: 10.1016/j.ins.2013.09.003 – volume: 65 start-page: 4290 issue: 5 year: 2018 ident: 10.1016/j.eswa.2023.121956_b1070 article-title: Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2017.2762639 – volume: 39 start-page: 1000 issue: 7 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0095 article-title: Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine publication-title: Transactions of the Institute of Measurement and Control doi: 10.1177/0142331215626247 – volume: 117 year: 2023 ident: 10.1016/j.eswa.2023.121956_b0160 article-title: Multiple fault detection and isolation using artificial neural networks in sensors of an internal combustion engine publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105524 – volume: 122 start-page: 502 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0680 article-title: Applications of stochastic resonance to machinery fault detection: A review and tutorial publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.12.032 – volume: 91 start-page: 295 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0530 article-title: A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.12.040 – volume: 51 start-page: 470 issue: 18 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0375 article-title: Fault detection and classification using artificial neural networks publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.380 – volume: 17 start-page: 1729 issue: 8 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0505 article-title: An ensemble deep convolutional neural network model with improved d-S evidence fusion for bearing fault diagnosis publication-title: Sensors doi: 10.3390/s17081729 – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0300 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.10.013 – volume: 230 start-page: 291 issue: 2 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0825 article-title: Two-stage feature selection for bearing fault diagnosis based on dual-tree complex wavelet transform and empirical mode decomposition publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 68 start-page: 6248 issue: 7 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0780 article-title: Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2020.2994868 – volume: 18 start-page: 4460 issue: 12 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0410 article-title: Symbolic important point perceptually and hidden markov model based hydraulic pump fault diagnosis method publication-title: Sensors doi: 10.3390/s18124460 – volume: 66 start-page: 5525 issue: 7 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0515 article-title: Cross-Domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2868023 – ident: 10.1016/j.eswa.2023.121956_b0915 – volume: 51 start-page: 4091 issue: 7 year: 2021 ident: 10.1016/j.eswa.2023.121956_b1035 article-title: Neural Networks-Based fault tolerant control of a robot via fast terminal sliding mode publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2019.2933050 – volume: 10 start-page: 245 issue: 3 year: 2016 ident: 10.1016/j.eswa.2023.121956_b1045 article-title: Design theory and methodology for enterprise systems publication-title: Enterprise Information Systems doi: 10.1080/17517575.2015.1080860 – volume: 37 start-page: 276 issue: 1–2 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0115 article-title: Hard competitive growing neural network for the diagnosis of small bearing faults publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2012.11.002 – volume: 108 start-page: 134 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0135 article-title: Bearing faults diagnosis using fuzzy expert system relying on an improved range overlaps and similarity method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.04.025 – volume: 9 start-page: 152616 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0460 article-title: KNN-SC: Novel spectral clustering algorithm using k-Nearest neighbors publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3126854 – volume: 28 start-page: 04014065 issue: 2 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0885 article-title: Fault early recognition and health monitoring on aeroengine rotor system publication-title: Journal of Aerospace Engineering doi: 10.1061/(ASCE)AS.1943-5525.0000386 – volume: 5 start-page: 6027 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0995 article-title: Rolling element bearing fault diagnosis using improved manifold learning publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2693379 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0465 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM doi: 10.1145/3065386 – volume: 21 start-page: 1727 issue: 2 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0195 article-title: Infrared Thermography-Based fault diagnosis of induction motor bearings using machine learning publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.3015868 – volume: 15 start-page: 5666 issue: 15 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0050 article-title: Design of a hybrid Fault-Tolerant control system for Air-Fuel ratio control of internal combustion engines using genetic algorithm and Higher-Order sliding mode control publication-title: Energies doi: 10.3390/en15155666 – volume: 49 start-page: 136 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0910 article-title: A new deep transfer learning based on sparse Auto-Encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2017.2754287 – volume: 43 start-page: 18 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0940 article-title: Prediction of hemodialysis timing based on LVW feature selection and ensemble learning publication-title: Journal of Medical Systems doi: 10.1007/s10916-018-1136-x – volume: 51 start-page: 309 issue: 18 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0945 article-title: A platform for fault diagnosis of High-Speed train based on big data publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.318 – volume: 17 start-page: 1947 issue: 3 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0085 article-title: Unified Fault-Tolerant control for Air-Fuel ratio control of internal combustion engines with advanced analytical and hardware redundancies publication-title: Journal of Electrical Engineering & Technology doi: 10.1007/s42835-021-00965-5 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0930 article-title: on cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis publication-title: IEEE International Conference on Prognostics and Health Management (ICPHM) – volume: 7 start-page: 2530 issue: 4 year: 2021 ident: 10.1016/j.eswa.2023.121956_b0150 article-title: Fault-Tolerant controller design for path following of the autonomous vehicle under the faults in braking actuators publication-title: IEEE Transactions on Transportation Electrification doi: 10.1109/TTE.2021.3071725 – volume: 9 start-page: 379 issue: 6 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0990 article-title: Representational learning for fault diagnosis of wind turbine equipment: A Multi-Layered extreme learning machines approach publication-title: Energies doi: 10.3390/en9060379 – volume: 198 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0185 article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.111793 – volume: 8 start-page: 1859 issue: 10 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0810 article-title: Fault diagnosis of rolling bearings based on improved fast spectral correlation and optimized random forest publication-title: Applied Sciences doi: 10.3390/app8101859 – ident: 10.1016/j.eswa.2023.121956_b0725 doi: 10.1784/insi.2017.59.12.669 – ident: 10.1016/j.eswa.2023.121956_b0210 doi: 10.1145/1273496.1273521 – volume: 85 start-page: 56 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0105 article-title: Diagnosis of combined faults in rotary machinery by Non-Naive bayesian approach publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.08.005 – start-page: 19 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0265 article-title: Dependability evaluation techniques – volume: 131 start-page: 524 year: 2019 ident: 10.1016/j.eswa.2023.121956_b0790 article-title: Faulty bearing detection, classification and location in a three-phase induction motor based on stockwell transform and support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2018.09.013 – volume: 7 start-page: 41 issue: 1 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0320 article-title: Deep fault recognizer: an integrated model to denoise and extract features for fault diagnosis in rotating machinery publication-title: Applied Sciences doi: 10.3390/app7010041 – volume: 9 issue: 12 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0335 article-title: A new fault diagnosis method based on deep belief network and support vector machine with Teager-Kaiser energy operator for bearings publication-title: Advances in Mechanical Engineering doi: 10.1177/1687814017743113 – ident: 10.1016/j.eswa.2023.121956_b0175 – volume: 53 start-page: 3550 issue: 7 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0600 article-title: Semisupervised transfer component analysis for domain adaptation in remote sensing image classification publication-title: IEEE Transactions on Geoscience and remote sensing doi: 10.1109/TGRS.2014.2377785 – volume: 117 start-page: 20 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0290 article-title: Diagnosis of stator faults of the single-phase induction motor using acoustic signals publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2016.10.012 – volume: 63 start-page: 7067 issue: 11 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0385 article-title: Real-Time motor fault detection by 1-D convolutional neural networks publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2582729 – volume: 41 start-page: 113 issue: 1–2 year: 2013 ident: 10.1016/j.eswa.2023.121956_b0430 article-title: Feature extraction based on semi-supervised kernel marginal fisher analysis and its application in bearing fault diagnosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2013.05.017 – volume: 64 start-page: 2296 issue: 3 year: 2017 ident: 10.1016/j.eswa.2023.121956_b0575 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2627020 – volume: 9 start-page: 494 issue: 2 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0400 article-title: fault diagnosis of automobile systems using fault tree based on digraph modeling publication-title: International Journal of System Assurance Engineering and Management – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.eswa.2023.121956_b1080 article-title: Deep learning and its applications to machine health monitoring publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.05.050 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0905 article-title: A survey of transfer learning publication-title: Journal of Big Data doi: 10.1186/s40537-016-0043-6 – ident: 10.1016/j.eswa.2023.121956_b0830 doi: 10.1177/1475921717727700 – ident: 10.1016/j.eswa.2023.121956_b0775 doi: 10.21595/jve.2017.18380 – volume: 9 start-page: 539 issue: 6 year: 1998 ident: 10.1016/j.eswa.2023.121956_b0275 article-title: An expert system for engine fault diagnosis: Development and application publication-title: Journal of Intelligent Manufacturing doi: 10.1023/A:1008888219539 – volume: 144 start-page: 65 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0855 article-title: Convolutional neural network-based hidden markov models for rolling element bearing fault identification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.12.027 – volume: 55 start-page: 724 issue: 6 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0900 article-title: Fault-Tolerant control for a high altitude long endurance aircraft publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.07.213 – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2023.121956_b0005 article-title: Reliability enhancement of modular multilevel converter by applying fault tolerant control – ident: 10.1016/j.eswa.2023.121956_b0280 doi: 10.17531/ein.2017.1.5 – volume: 200 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0330 article-title: Ensemble feature selection using distance-based supervised and unsupervised methods in binary classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116794 – volume: 12 start-page: 297 issue: 3 year: 2015 ident: 10.1016/j.eswa.2023.121956_b0380 article-title: Reliability optimization of automatic control systems based on importance measures: A framework publication-title: International Journal of Performability Engineering – volume: 230 start-page: 303 issue: 2 year: 2016 ident: 10.1016/j.eswa.2023.121956_b1020 article-title: Combined flow graphs and normal naive bayesian classifier for fault diagnosis of gear box publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 319 start-page: 155 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0310 article-title: A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.046 – volume: 230 start-page: 542 year: 2014 ident: 10.1016/j.eswa.2023.121956_b0180 article-title: Fault diagnosis based on comprehensive geometric characteristic and probability neural network publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2013.12.122 – volume: 6 start-page: 63584 year: 2018 ident: 10.1016/j.eswa.2023.121956_b0925 article-title: An End-to-End model based on improved adaptive deep belief network and its application to bearing fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877447 – volume: 160 year: 2022 ident: 10.1016/j.eswa.2023.121956_b0015 article-title: Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2022.112128 |
| SSID | ssj0017007 |
| Score | 2.6132708 |
| SecondaryResourceType | review_article |
| Snippet | Intelligent Fault-Tolerant Control (IFTC) refers to the applications of machine learning algorithms for fault diagnosis and design of Fault-Tolerant Control... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 121956 |
| SubjectTerms | Algorithms Deep learning Fault diagnosis Intelligent fault-tolerant control Machine learning Transfer learning |
| Title | Development of Intelligent Fault-Tolerant Control Systems with Machine Learning, Deep Learning, and Transfer Learning Algorithms: A Review |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.121956 |
| Volume | 238 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWFj4RnxWHtjAtEntJGWLClULKgtU6hY59bkqKm0Fqdj4Afxq7hKnKhLqwGjLp0Q-5945fn7H2GVgZKhTaYQBawXplwjdlFKg-4OmZxHwU7oo3HsKOn35MFCDCmuVd2GIVulifxHT82jtempuNmvz8bj2jMkBwiGdNNLxYURxWMqQqhjcfC1pHiQ_FxZ6e6Gg0e7iTMHxgo9P0h7yGySy0KQi1n-B0wrgtHfZtssUeVy8zB6rwHSf7ZRVGLj7KA_Y9wrvh88s7y5FNjPe1otJJl5mE0BIynir4KVzJ1PO6Scs7-V0SuBOaXV0ze8A5itNPTU8hzSLjy27eTwZzd7R_u3jlse8OGI4ZP32_UurI1yFBTFs1OuZGFrbgEhjEqBw20TiV9JGQ2W91GAiZ3Q91FHoQwhNPwBrpKcjE2jr-RCkOOemccQ2prMpHDOOKCeVryHUykoFON8Gd0KpgsD61k_rJ8wrpzYZOvlxqoIxSUqe2WtC7kjIHUnhjhN2tbSZF-Iba0er0mPJryWUIDqssTv9p90Z28KWJEKap87ZRva-gAvMULK0mi_BKtuMu4-dpx-ybuZd |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG6IHvTi2_i2B29aYZd2d_FGUIIPuAgJt02XTokGgcASb_4Af7UzbJdgYjh43G4nu5npzjfdfv3K2FVgZKgTaYQBawXplwhdkVJg-IOKZxHwE9oo3GwFjY586qpugdXyvTBEq3S5P8vp82ztWorOm8Xx21vxFYsDhENaaaTlwwjz8LpUfkgzsNuvBc-D9OfCTHAvFNTd7ZzJSF4w_STxIb9MKgsVOsX6L3RaQpz6DttypSKvZm-zywow3GPb-TEM3H2V--x7ifjDR5Y_LlQ2U17Xs0Eq2qMBICalvJYR07nTKef0F5Y353xK4E5qtX_D7wHGS5d6aPgc0yw-Nm_m1UF_NEH7j-kdr_JsjeGAdeoP7VpDuCMWRK9cKqWiZ20ZIo1VgMJ5E6lfSRv1lPUSg5Wc0aVQR6EPIVT8AKyRno5MoK3nQ5Cg0035kK0NR0M4YhxhDt2vIdTKSgXob4NToURBYH3rJ6Vj5uWujXtOf5yOwRjEOdHsPaZwxBSOOAvHMbte2Iwz9Y2VvVUesfjXGIoRHlbYnfzT7pJtNNrNl_jlsfV8yjbxjiR2mqfO2Fo6mcE5litpcjEfjj8Y6efy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Intelligent+Fault-Tolerant+Control+Systems+with+Machine+Learning%2C+Deep+Learning%2C+and+Transfer+Learning+Algorithms%3A+A+Review&rft.jtitle=Expert+systems+with+applications&rft.au=Amin%2C+Arslan+Ahmed&rft.au=Sajid+Iqbal%2C+Muhammad&rft.au=Hamza+Shahbaz%2C+Muhammad&rft.date=2024-03-15&rft.issn=0957-4174&rft.volume=238&rft.spage=121956&rft_id=info:doi/10.1016%2Fj.eswa.2023.121956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_121956 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |