Fatigue life prediction of pile-supported sea-crossing bridges subject to random ice forces

As a natural disaster in cold sea regions, ice forces can cause strong vibration of offshore structures, and even threaten the safety of structures. The elevated steel pile caps are the most commonly used substructure foundation type of sea-crossing bridges and the large-scale caps are generally use...

Full description

Saved in:
Bibliographic Details
Published inJournal of constructional steel research Vol. 190; p. 107156
Main Authors Wu, Tianyu, Qiu, Wenliang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text
ISSN0143-974X
1873-5983
DOI10.1016/j.jcsr.2022.107156

Cover

Abstract As a natural disaster in cold sea regions, ice forces can cause strong vibration of offshore structures, and even threaten the safety of structures. The elevated steel pile caps are the most commonly used substructure foundation type of sea-crossing bridges and the large-scale caps are generally used to resist ice forces. The fatigue damage of sea-crossing bridges with steel piles under ice forces is directly related to the fluctuating stresses. Therefore, this paper carried out the fatigue damage analysis and fatigue life prediction of sea-crossing bridges subjected to random ice forces in Bohai Sea. In order to considering long-range condition of sea ice, the statistical characters of sea ice properties such as, ice velocity, ice thickness and ice strength are carried out. The ice forces processes are simulated utilizing the random ice force spectrum model for vertical and conical structures. Fatigue damage of sea-crossing bridges with vertical and conical caps is analyzed using the rainflow cycle counting technique and Palmgren-Miner's rule. The fatigue life is estimated based on the cumulative fatigue damage and the real period of drift ice in Bohai Sea. Results show that the fatigue damage increases obviously as a result of increases in the stress caused by increased sea ice parameters. The sea-crossing bridges with conical caps can prolong the fatigue life by more than 45% in comparison with sea-crossing bridges with vertical caps. The cone ice-resistant cap has a good effect on mitigating fatigue damage of sea-crossing bridges in drift ice covered water regions. The graphical abstract is preparation of the simulation process for fatigue life prediction of sea-crossing bridges under random ice forces. As a natural disaster in cold sea regions, ice forces can cause strong vibration of offshore structures, and even threaten the safety of structures. The elevated steel pile caps are the most commonly used substructure foundation type of sea-crossing bridges and the large-scale caps are generally used to resist ice forces. The fatigue damage of sea-crossing bridges with steel piles under ice forces is directly related to the fluctuating stresses. Therefore, this paper carried out the fatigue damage analysis and fatigue life prediction of offshore bridges subjected to random ice forces. In order to considering long-range condition of sea ice in Bohai Sea, the statistical characters of sea ice properties such as, ice velocity, ice thickness and ice strength are carried out. The ice forces processes are simulated utilizing the random ice force spectrum model for vertical and conical structures in Bohai Sea. Fatigue damage of offshore bridges with vertical and conical caps in Bohai Sea is analyzed using the rainflow cycle counting technique and Palmgren-Miner's rule. The fatigue life is estimated based on the cumulative fatigue damage and the real period of drift ice in Bohai Sea. The method proposed in this paper can be used to predict the fatigue life of sea-crossing bridges in cold regions under ice induced vibration. [Display omitted] •A simulation method of random ice force process based on random ice force spectrum model was proposed.•Sub-structure interactions include water–structure interaction, and soil–structure interaction.•The random ice forces were treated as external loads input to the bridge-soil interaction model.•A fatigue damage assessment method for sea-crossing piles-supported bridges under ice forces was proposed.•The performance of bridges with vertical and conical caps in mitigating fatigue damage was evaluated.
AbstractList As a natural disaster in cold sea regions, ice forces can cause strong vibration of offshore structures, and even threaten the safety of structures. The elevated steel pile caps are the most commonly used substructure foundation type of sea-crossing bridges and the large-scale caps are generally used to resist ice forces. The fatigue damage of sea-crossing bridges with steel piles under ice forces is directly related to the fluctuating stresses. Therefore, this paper carried out the fatigue damage analysis and fatigue life prediction of sea-crossing bridges subjected to random ice forces in Bohai Sea. In order to considering long-range condition of sea ice, the statistical characters of sea ice properties such as, ice velocity, ice thickness and ice strength are carried out. The ice forces processes are simulated utilizing the random ice force spectrum model for vertical and conical structures. Fatigue damage of sea-crossing bridges with vertical and conical caps is analyzed using the rainflow cycle counting technique and Palmgren-Miner's rule. The fatigue life is estimated based on the cumulative fatigue damage and the real period of drift ice in Bohai Sea. Results show that the fatigue damage increases obviously as a result of increases in the stress caused by increased sea ice parameters. The sea-crossing bridges with conical caps can prolong the fatigue life by more than 45% in comparison with sea-crossing bridges with vertical caps. The cone ice-resistant cap has a good effect on mitigating fatigue damage of sea-crossing bridges in drift ice covered water regions. The graphical abstract is preparation of the simulation process for fatigue life prediction of sea-crossing bridges under random ice forces. As a natural disaster in cold sea regions, ice forces can cause strong vibration of offshore structures, and even threaten the safety of structures. The elevated steel pile caps are the most commonly used substructure foundation type of sea-crossing bridges and the large-scale caps are generally used to resist ice forces. The fatigue damage of sea-crossing bridges with steel piles under ice forces is directly related to the fluctuating stresses. Therefore, this paper carried out the fatigue damage analysis and fatigue life prediction of offshore bridges subjected to random ice forces. In order to considering long-range condition of sea ice in Bohai Sea, the statistical characters of sea ice properties such as, ice velocity, ice thickness and ice strength are carried out. The ice forces processes are simulated utilizing the random ice force spectrum model for vertical and conical structures in Bohai Sea. Fatigue damage of offshore bridges with vertical and conical caps in Bohai Sea is analyzed using the rainflow cycle counting technique and Palmgren-Miner's rule. The fatigue life is estimated based on the cumulative fatigue damage and the real period of drift ice in Bohai Sea. The method proposed in this paper can be used to predict the fatigue life of sea-crossing bridges in cold regions under ice induced vibration. [Display omitted] •A simulation method of random ice force process based on random ice force spectrum model was proposed.•Sub-structure interactions include water–structure interaction, and soil–structure interaction.•The random ice forces were treated as external loads input to the bridge-soil interaction model.•A fatigue damage assessment method for sea-crossing piles-supported bridges under ice forces was proposed.•The performance of bridges with vertical and conical caps in mitigating fatigue damage was evaluated.
ArticleNumber 107156
Author Qiu, Wenliang
Wu, Tianyu
Author_xml – sequence: 1
  givenname: Tianyu
  surname: Wu
  fullname: Wu, Tianyu
  email: wu_tianyu@foxmail.com
– sequence: 2
  givenname: Wenliang
  surname: Qiu
  fullname: Qiu, Wenliang
BookMark eNp9kEFLwzAYhoNMcJv-AU_5A61J06YJeJHhVBh4URA8hDT9MlK6piSZ4L-3dZ487PTCC8_H9z4rtBj8AAjdUpJTQvldl3cmhrwgRTEVNa34BVpSUbOskoIt0JLQkmWyLj-u0CrGjhAiJBNL9LnVye2PgHtnAY8BWmeS8wP2Fo-uhywex9GHBC2OoDMTfIxu2OMmuHYPEcdj04FJOHkc9ND6A3YGsPXBQLxGl1b3EW7-co3et49vm-ds9_r0snnYZYYRkjJjDSuZ5KUpjNCCS000MFFbSUlJjW6KUkAlZSkY51qQqqEWuOa8qaDVLbA1Eqe7v98FsMq4pOcVKWjXK0rULEl1apakZknqJGlCi3_oGNxBh-_z0P0JgmnUl4OgonEwmMldmFyo1rtz-A9in4R6
CitedBy_id crossref_primary_10_1016_j_jcsr_2024_109000
crossref_primary_10_1038_s41598_024_59531_4
crossref_primary_10_3390_polym15193939
crossref_primary_10_3390_jmse11081570
Cites_doi 10.1016/j.renene.2021.01.093
10.1016/j.coldregions.2008.11.008
10.1016/j.renene.2018.02.086
10.1016/j.istruc.2021.05.041
10.1142/S179343111350019X
10.1061/(ASCE)0733-9399(1989)115:7(1393)
10.1016/j.ijfatigue.2008.03.031
10.1016/j.engstruct.2020.110212
10.1016/j.soildyn.2019.105879
10.1098/rspa.2000.0719
10.1016/j.ijfatigue.2016.01.007
10.1016/j.apor.2011.02.003
10.1016/j.engstruct.2018.10.053
10.1016/j.oceaneng.2015.02.004
10.1016/j.compstruc.2008.01.012
10.1016/j.coldregions.2007.02.002
10.1016/j.marstruc.2014.10.009
10.1016/j.marstruc.2016.05.003
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jcsr.2022.107156
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5983
ExternalDocumentID 10_1016_j_jcsr_2022_107156
S0143974X22000281
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-cfc343964c2c8a869a0ae387f91041cab248e59948366a805b1fe6a66b5edade3
IEDL.DBID .~1
ISSN 0143-974X
IngestDate Thu Apr 24 22:54:25 EDT 2025
Tue Jul 01 03:38:22 EDT 2025
Fri Feb 23 02:40:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sea-crossing bridges
Elevated steel pile
Random ice forces
Fatigue life prediction
Fatigue damage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-cfc343964c2c8a869a0ae387f91041cab248e59948366a805b1fe6a66b5edade3
ParticipantIDs crossref_citationtrail_10_1016_j_jcsr_2022_107156
crossref_primary_10_1016_j_jcsr_2022_107156
elsevier_sciencedirect_doi_10_1016_j_jcsr_2022_107156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Journal of constructional steel research
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mohammadi, Galgoul, Starossek (bb0060) 2016; 49
Kärnä, Qu, Bi (bb0020) 2007; 129
Rezaei, Fromme, Duffour (bb0120) 2018; 123
Ji, Yue (bb0165) 2003; 25
Hao, Bi, Chouw, Ren (bb0100) 2013; 7
Etube (bb0070) 1998
Etube, Brennan, Dover (bb0080) 2001; 457
Wu, Qiu (bb0025) 2018; 115
Van (bb0085) 2006
Kvittem, Moan (bb0135) 2015; 40
Michalopoulos (bb0055) 2015
Casciati, Cimellaro, Domaneschi (bb0105) 2008; 86
American Petroleum Institute (API) (bb0155) 2011
Yue, Qu, Bi (bb0030) 2007; 49
Schwarz, Jochmann (bb0170) 2001
Yeter, Garbatov, Guedes (bb0065) 2016; 87
Mirzaeefard, Mirtaheri, Hariri-Ardebili (bb0095) 2021
Duan, Fang, Chen (bb0010) 1994; 23
Fang, Duan, Xu (bb0005) 2000; 14
Halfpenny, Frequency (bb0075) 1999
Low (bb0050) 2011; 33
American Bureau of Shipping (ABS) (bb0040) 2014
Salkhordeh, Govahi, Mirtaheri (bb0090) 2021; 33
Wu, Qiu (bb0150) 2020; 128
Sun, Jahangiri (bb0110) 2019; 178
DNV-OS-J101 (bb0145) 2014; 101
Goyal, Chopra (bb0140) 1989; 115
Qu (bb0175) 2006
Qu, Yue, Bi (bb0035) 2006; 45
Han, Liu, Ma, QinP, & Zou T. (bb0115) 2021; 169
Yue, Guo, Kärnä (bb0015) 2009; 56
Jiang, Wu, Cai (bb0130) 2020; 207
Ji, Yue, Bi (bb0160) 2002; 20
Xu, Liu, Zhang (bb0125) 2009; 31
Du, Li, Zhang, Wang (bb0045) 2015; 98
Han (10.1016/j.jcsr.2022.107156_bb0115) 2021; 169
Yue (10.1016/j.jcsr.2022.107156_bb0015) 2009; 56
Etube (10.1016/j.jcsr.2022.107156_bb0080) 2001; 457
Hao (10.1016/j.jcsr.2022.107156_bb0100) 2013; 7
Du (10.1016/j.jcsr.2022.107156_bb0045) 2015; 98
DNV-OS-J101 (10.1016/j.jcsr.2022.107156_bb0145) 2014; 101
Kärnä (10.1016/j.jcsr.2022.107156_bb0020) 2007; 129
Ji (10.1016/j.jcsr.2022.107156_bb0165) 2003; 25
Fang (10.1016/j.jcsr.2022.107156_bb0005) 2000; 14
Yue (10.1016/j.jcsr.2022.107156_bb0030) 2007; 49
Xu (10.1016/j.jcsr.2022.107156_bb0125) 2009; 31
American Petroleum Institute (API) (10.1016/j.jcsr.2022.107156_bb0155) 2011
Mirzaeefard (10.1016/j.jcsr.2022.107156_bb0095) 2021
Rezaei (10.1016/j.jcsr.2022.107156_bb0120) 2018; 123
Yeter (10.1016/j.jcsr.2022.107156_bb0065) 2016; 87
Van (10.1016/j.jcsr.2022.107156_bb0085) 2006
Wu (10.1016/j.jcsr.2022.107156_bb0025) 2018; 115
Goyal (10.1016/j.jcsr.2022.107156_bb0140) 1989; 115
American Bureau of Shipping (ABS) (10.1016/j.jcsr.2022.107156_bb0040) 2014
Sun (10.1016/j.jcsr.2022.107156_bb0110) 2019; 178
Jiang (10.1016/j.jcsr.2022.107156_bb0130) 2020; 207
Michalopoulos (10.1016/j.jcsr.2022.107156_bb0055) 2015
Schwarz (10.1016/j.jcsr.2022.107156_bb0170) 2001
Duan (10.1016/j.jcsr.2022.107156_bb0010) 1994; 23
Qu (10.1016/j.jcsr.2022.107156_bb0035) 2006; 45
Low (10.1016/j.jcsr.2022.107156_bb0050) 2011; 33
Ji (10.1016/j.jcsr.2022.107156_bb0160) 2002; 20
Qu (10.1016/j.jcsr.2022.107156_bb0175) 2006
Mohammadi (10.1016/j.jcsr.2022.107156_bb0060) 2016; 49
Halfpenny (10.1016/j.jcsr.2022.107156_bb0075) 1999
Salkhordeh (10.1016/j.jcsr.2022.107156_bb0090) 2021; 33
Kvittem (10.1016/j.jcsr.2022.107156_bb0135) 2015; 40
Etube (10.1016/j.jcsr.2022.107156_bb0070) 1998
Casciati (10.1016/j.jcsr.2022.107156_bb0105) 2008; 86
Wu (10.1016/j.jcsr.2022.107156_bb0150) 2020; 128
References_xml – volume: 169
  start-page: 1252
  year: 2021
  end-page: 1264
  ident: bb0115
  article-title: Multiaxial fatigue assessment of jacket-supported offshore wind turbines considering multiple random correlated loads
  publication-title: Renew. Energy
– volume: 40
  start-page: 38
  year: 2015
  end-page: 59
  ident: bb0135
  article-title: Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine
  publication-title: Mar. Struct.
– volume: 56
  start-page: 77
  year: 2009
  end-page: 83
  ident: bb0015
  article-title: Dynamic ice forces of slender vertical structures due to ice crushing
  publication-title: Cold Reg. Sci. Technol.
– year: 2001
  ident: bb0170
  article-title: Ice force measurements within the LOLEIF-project
  publication-title: Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions
– year: 1998
  ident: bb0070
  article-title: Variable Amplitude Corrosion Fatigue and Fracture Mechanics of Weldable High Strength Jack-up Steels
– volume: 129
  start-page: 138
  year: 2007
  end-page: 145
  ident: bb0020
  article-title: A spectral model for forces due to ice crushing
  publication-title: J. Sea-crossing Mech. Arctic Eng.
– volume: 49
  start-page: 161
  year: 2007
  end-page: 169
  ident: bb0030
  article-title: Ice force spectrum on narrow conical structures
  publication-title: Cold Reg. Sci. Technol.
– year: 2015
  ident: bb0055
  article-title: Simplified Fatigue Assessment of Offshore Wind Support Structures Accounting for Variations in a Farm
– year: 2006
  ident: bb0175
  article-title: Random ice load analysis on offshore structures based on field tests. Doctor’s degree thesis of Dalian University of Technology
– volume: 31
  start-page: 575
  year: 2009
  end-page: 586
  ident: bb0125
  article-title: Buffeting-induced fatigue damage assessment of a long suspension bridge
  publication-title: Int. J. Fatigue
– volume: 33
  start-page: 1892
  year: 2021
  end-page: 1905
  ident: bb0090
  article-title: Seismic fragility evaluation of various mitigation strategies proposed for bridge piers
  publication-title: Structures
– volume: 207
  year: 2020
  ident: bb0130
  article-title: Fatigue analysis of stay cables on the long-span bridges under combined action of traffic and wind
  publication-title: Eng. Struct.
– year: 1999
  ident: bb0075
  article-title: Domain approach for fatigue life estimation from finite element analysis
  publication-title: Int. Conf. Damage Assess. Struct, DAMAS 99, Dublin
– volume: 178
  start-page: 472
  year: 2019
  end-page: 483
  ident: bb0110
  article-title: Fatigue damage mitigation of sea-crossing wind turbines under real wind and wave conditions
  publication-title: Eng. Struct.
– year: 2011
  ident: bb0155
  article-title: Petroleum and Natural Gas Industries-Specific Requirements for Sea-Crossing Structures. Part 4-Geotechnical and Foundation Design Considerations
– year: 2014
  ident: bb0040
  article-title: Guide for the Fatigue Assessment of Offshore Structures
– volume: 123
  start-page: 450
  year: 2018
  end-page: 459
  ident: bb0120
  article-title: Fatigue life sensitivity of monopile-supported offshore wind turbines to damping
  publication-title: Renew. Energy
– volume: 128
  year: 2020
  ident: bb0150
  article-title: Dynamic analyses of pile-supported bridges including soil-structure interaction under stochastic ice loads
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 25
  start-page: 114
  year: 2003
  end-page: 119
  ident: bb0165
  article-title: Monte-Carlo simulation of fatigue ice load for offshore platform with ice-broken gone in the Liaodong gulf
  publication-title: Acta Oceanol. Sin.
– volume: 14
  start-page: 15
  year: 2000
  end-page: 24
  ident: bb0005
  article-title: Reliability analysis of ice-induced fatigue and damage in offshore engineering structures
  publication-title: China Ocean Eng.
– volume: 87
  start-page: 71
  year: 2016
  end-page: 80
  ident: bb0065
  article-title: Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures
  publication-title: Int. J. Fatigue
– volume: 98
  start-page: 57
  year: 2015
  end-page: 65
  ident: bb0045
  article-title: A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures
  publication-title: Ocean Eng.
– volume: 7
  start-page: 1350019
  year: 2013
  ident: bb0100
  article-title: State-of-the-art review on seismic induced pounding response of bridge structures
  publication-title: J. Earthquake Tsunami
– start-page: 1
  year: 2021
  end-page: 21
  ident: bb0095
  article-title: Life-cycle cost analysis of pile-supported wharves under multi-hazard condition: aging and shaking
  publication-title: Struct. Infrastruct. Eng.
– volume: 101
  start-page: 167
  year: 2014
  end-page: 176
  ident: bb0145
  article-title: Design of offshore wind turbine structures
  publication-title: Det Norske Veritas
– volume: 49
  start-page: 97
  year: 2016
  end-page: 115
  ident: bb0060
  article-title: An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure
  publication-title: Mar. Struct.
– volume: 86
  start-page: 1769
  year: 2008
  end-page: 1781
  ident: bb0105
  article-title: Seismic reliability of a cable-stayed bridge retrofitted with hysteretic devices
  publication-title: Comput. Struct.
– volume: 115
  start-page: 1393
  year: 1989
  end-page: 1412
  ident: bb0140
  article-title: Simplified evaluation of added hydrodynamic mass for intake towers
  publication-title: J. Eng. Mech.
– volume: 457
  year: 2001
  ident: bb0080
  article-title: Stochastic service load simulation for engineering structures
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 20
  start-page: 39
  year: 2002
  end-page: 43
  ident: bb0160
  article-title: Probability distribution of sea ice fatigue parameters in JZ20-2 sea area of the Liaodong Bay
  publication-title: Ocean Eng.
– volume: 115
  start-page: 47
  year: 2018
  end-page: 66
  ident: bb0025
  article-title: Simulation of stochastic ice force process of vertical offshore structure based on spectral model
  publication-title: Comput. Model. Eng. Sci.
– volume: 33
  start-page: 79
  year: 2011
  end-page: 87
  ident: bb0050
  article-title: Extending a time/frequency domain hybrid method for riser fatigue analysis
  publication-title: Appl. Ocean Res.
– year: 2006
  ident: bb0085
  article-title: Design of Support Structure for Offshore Wind Turbines
– volume: 23
  start-page: 1
  year: 1994
  end-page: 4
  ident: bb0010
  article-title: The investigation conclusion of Bohai Lao-2 platform being pushed down by ice
  publication-title: Oil Field Equip.
– volume: 45
  start-page: 148
  year: 2006
  end-page: 157
  ident: bb0035
  article-title: A random ice force model for narrow conical structures
  publication-title: Cold Reg. Sci. Technol.
– volume: 101
  start-page: 167
  issue: 10
  year: 2014
  ident: 10.1016/j.jcsr.2022.107156_bb0145
  article-title: Design of offshore wind turbine structures
  publication-title: Det Norske Veritas
– year: 2001
  ident: 10.1016/j.jcsr.2022.107156_bb0170
  article-title: Ice force measurements within the LOLEIF-project
– year: 1998
  ident: 10.1016/j.jcsr.2022.107156_bb0070
– volume: 169
  start-page: 1252
  year: 2021
  ident: 10.1016/j.jcsr.2022.107156_bb0115
  article-title: Multiaxial fatigue assessment of jacket-supported offshore wind turbines considering multiple random correlated loads
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.093
– year: 1999
  ident: 10.1016/j.jcsr.2022.107156_bb0075
  article-title: Domain approach for fatigue life estimation from finite element analysis
– volume: 56
  start-page: 77
  issue: 2–3
  year: 2009
  ident: 10.1016/j.jcsr.2022.107156_bb0015
  article-title: Dynamic ice forces of slender vertical structures due to ice crushing
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2008.11.008
– volume: 123
  start-page: 450
  year: 2018
  ident: 10.1016/j.jcsr.2022.107156_bb0120
  article-title: Fatigue life sensitivity of monopile-supported offshore wind turbines to damping
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.086
– volume: 45
  start-page: 148
  issue: 2
  year: 2006
  ident: 10.1016/j.jcsr.2022.107156_bb0035
  article-title: A random ice force model for narrow conical structures
  publication-title: Cold Reg. Sci. Technol.
– volume: 129
  start-page: 138
  issue: 1
  year: 2007
  ident: 10.1016/j.jcsr.2022.107156_bb0020
  article-title: A spectral model for forces due to ice crushing
  publication-title: J. Sea-crossing Mech. Arctic Eng.
– year: 2015
  ident: 10.1016/j.jcsr.2022.107156_bb0055
– volume: 33
  start-page: 1892
  issue: 7
  year: 2021
  ident: 10.1016/j.jcsr.2022.107156_bb0090
  article-title: Seismic fragility evaluation of various mitigation strategies proposed for bridge piers
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.05.041
– volume: 7
  start-page: 1350019
  issue: 03
  year: 2013
  ident: 10.1016/j.jcsr.2022.107156_bb0100
  article-title: State-of-the-art review on seismic induced pounding response of bridge structures
  publication-title: J. Earthquake Tsunami
  doi: 10.1142/S179343111350019X
– volume: 115
  start-page: 1393
  issue: 7
  year: 1989
  ident: 10.1016/j.jcsr.2022.107156_bb0140
  article-title: Simplified evaluation of added hydrodynamic mass for intake towers
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1989)115:7(1393)
– volume: 115
  start-page: 47
  issue: 1
  year: 2018
  ident: 10.1016/j.jcsr.2022.107156_bb0025
  article-title: Simulation of stochastic ice force process of vertical offshore structure based on spectral model
  publication-title: Comput. Model. Eng. Sci.
– volume: 14
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.jcsr.2022.107156_bb0005
  article-title: Reliability analysis of ice-induced fatigue and damage in offshore engineering structures
  publication-title: China Ocean Eng.
– volume: 31
  start-page: 575
  issue: 3
  year: 2009
  ident: 10.1016/j.jcsr.2022.107156_bb0125
  article-title: Buffeting-induced fatigue damage assessment of a long suspension bridge
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2008.03.031
– year: 2006
  ident: 10.1016/j.jcsr.2022.107156_bb0175
– volume: 23
  start-page: 1
  issue: 2
  year: 1994
  ident: 10.1016/j.jcsr.2022.107156_bb0010
  article-title: The investigation conclusion of Bohai Lao-2 platform being pushed down by ice
  publication-title: Oil Field Equip.
– year: 2006
  ident: 10.1016/j.jcsr.2022.107156_bb0085
– volume: 207
  year: 2020
  ident: 10.1016/j.jcsr.2022.107156_bb0130
  article-title: Fatigue analysis of stay cables on the long-span bridges under combined action of traffic and wind
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110212
– volume: 128
  year: 2020
  ident: 10.1016/j.jcsr.2022.107156_bb0150
  article-title: Dynamic analyses of pile-supported bridges including soil-structure interaction under stochastic ice loads
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2019.105879
– year: 2011
  ident: 10.1016/j.jcsr.2022.107156_bb0155
– volume: 457
  year: 2001
  ident: 10.1016/j.jcsr.2022.107156_bb0080
  article-title: Stochastic service load simulation for engineering structures
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2000.0719
– volume: 25
  start-page: 114
  issue: 2
  year: 2003
  ident: 10.1016/j.jcsr.2022.107156_bb0165
  article-title: Monte-Carlo simulation of fatigue ice load for offshore platform with ice-broken gone in the Liaodong gulf
  publication-title: Acta Oceanol. Sin.
– volume: 87
  start-page: 71
  year: 2016
  ident: 10.1016/j.jcsr.2022.107156_bb0065
  article-title: Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2016.01.007
– volume: 33
  start-page: 79
  year: 2011
  ident: 10.1016/j.jcsr.2022.107156_bb0050
  article-title: Extending a time/frequency domain hybrid method for riser fatigue analysis
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2011.02.003
– volume: 178
  start-page: 472
  year: 2019
  ident: 10.1016/j.jcsr.2022.107156_bb0110
  article-title: Fatigue damage mitigation of sea-crossing wind turbines under real wind and wave conditions
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.10.053
– year: 2014
  ident: 10.1016/j.jcsr.2022.107156_bb0040
– volume: 98
  start-page: 57
  year: 2015
  ident: 10.1016/j.jcsr.2022.107156_bb0045
  article-title: A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.02.004
– volume: 86
  start-page: 1769
  issue: 17–18
  year: 2008
  ident: 10.1016/j.jcsr.2022.107156_bb0105
  article-title: Seismic reliability of a cable-stayed bridge retrofitted with hysteretic devices
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2008.01.012
– volume: 49
  start-page: 161
  issue: 2
  year: 2007
  ident: 10.1016/j.jcsr.2022.107156_bb0030
  article-title: Ice force spectrum on narrow conical structures
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2007.02.002
– volume: 20
  start-page: 39
  issue: 3
  year: 2002
  ident: 10.1016/j.jcsr.2022.107156_bb0160
  article-title: Probability distribution of sea ice fatigue parameters in JZ20-2 sea area of the Liaodong Bay
  publication-title: Ocean Eng.
– start-page: 1
  year: 2021
  ident: 10.1016/j.jcsr.2022.107156_bb0095
  article-title: Life-cycle cost analysis of pile-supported wharves under multi-hazard condition: aging and shaking
  publication-title: Struct. Infrastruct. Eng.
– volume: 40
  start-page: 38
  issue: 1
  year: 2015
  ident: 10.1016/j.jcsr.2022.107156_bb0135
  article-title: Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2014.10.009
– volume: 49
  start-page: 97
  year: 2016
  ident: 10.1016/j.jcsr.2022.107156_bb0060
  article-title: An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2016.05.003
SSID ssj0008938
Score 2.3490634
Snippet As a natural disaster in cold sea regions, ice forces can cause strong vibration of offshore structures, and even threaten the safety of structures. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107156
SubjectTerms Elevated steel pile
Fatigue damage
Fatigue life prediction
Random ice forces
Sea-crossing bridges
Title Fatigue life prediction of pile-supported sea-crossing bridges subject to random ice forces
URI https://dx.doi.org/10.1016/j.jcsr.2022.107156
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdPEcRxnrCqqAqITlSoxRLZjo1alidpm5bdzzgOKhDowxvIp0ZfL3cn57juEbq1SmsVaEc0kJczwmMQ05URRaRW4gDW-60Z-GfPRhD1Nw2kLDZpeGEerrGN_FdPLaF2v9Go0e_ls1nO0JEimbEppeUZUdrCzyPn6_ecPzQPysahojAFxu-vGmYrjNddrpwlKKSxEvhti_Vdy2ko4wyN0WFeKuF89zDFqmeUJOtjSDzxFb0PA9b0weDGzBucr99PFAY0zi3P43Mm6yEvh8hSDR5PypmCIa20HvC6UO4bBmwxDykqzDwxhA0MZC8HjDE2GD6-DEamnJRAdeN6GaKsDAIQzTbWQgsfSkyYQkYWCgPlaKsqECeOYiYBzKbxQwYvgknMVmlSmJjhH7WW2NBcIc8_KwEBxKI3PrApE6kU0tDSU2tecRh3kNzAlupYSdxMtFknDGZsnDtrEQZtU0HbQ3bdNXglp7NwdNugnv9whgUi_w-7yn3ZXaN9dVeSya9TerApzA9XGRnVLd-qivf7j82j8BVUv1WA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMbMk0cx0lGVFEVaDu1UiWGyHZs1Kq0UZus_HbOeUCRUAdWx6dEXy7fXezPdwjdGSkVi5QkiglKmOYRiWjCiaTCSHABo117Gnkw5L0xe5n4kwbq1GdhrKyy4v6S0wu2rkbaFZrtdDptW1kSBFM2obRYI4JfoB1m2xyAUz98_ug8ICCHpY7RI3Z6dXKmFHnN1NoWBaUUBgLXdrH-KzptRJzuITqoUkX8WD7NEWroxTHa3yggeILeugDse67xfGo0Tld218UijZcGp_C9k3WeFpXLEwwuTYqbgiGuijvgdS7tOgzOlhhiVrL8wMAbGPJYYI9TNO4-jTo9UrVLIMpznIwoozxAhDNFVShCHglHaC8MDGQEzFVCUhZqP4pY6HEuQseX8Ca44Fz6OhGJ9s5Qc7Fc6HOEuWOEpyE7FNplRnph4gTUN9QXylWcBi3k1jDFqqolbltazONaNDaLLbSxhTYuoW2h-2-btKyksXW2X6Mf__KHGKh-i93FP-1u0W5vNOjH_efh6yXas1dKpdkVamarXF9D6pHJm8K1vgBQvNbp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+life+prediction+of+pile-supported+sea-crossing+bridges+subject+to+random+ice+forces&rft.jtitle=Journal+of+constructional+steel+research&rft.au=Wu%2C+Tianyu&rft.au=Qiu%2C+Wenliang&rft.date=2022-03-01&rft.issn=0143-974X&rft.volume=190&rft.spage=107156&rft_id=info:doi/10.1016%2Fj.jcsr.2022.107156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcsr_2022_107156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-974X&client=summon