Multi-point shortest path planning based on an Improved Discrete Bat Algorithm
Multi-point shortest path planning problem is a typical problems in discrete optimization. The bat algorithm is a nature-inspired metaheuristic optimization algorithm that is used in a wide range of fields. However, there is one problem with the BA, which is easy to premature. To solve multi-point s...
Saved in:
| Published in | Applied soft computing Vol. 95; p. 106498 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 |
| DOI | 10.1016/j.asoc.2020.106498 |
Cover
| Abstract | Multi-point shortest path planning problem is a typical problems in discrete optimization. The bat algorithm is a nature-inspired metaheuristic optimization algorithm that is used in a wide range of fields. However, there is one problem with the BA, which is easy to premature. To solve multi-point shortest path planning problem, an improved discrete bat algorithm (IDBA) is proposed in this paper. In this algorithm, the Floyd–Warshall algorithm is first used to transform an incomplete connected graph into a complete graph whose vertex set consists of a start point and necessary points. Then the algorithm simulates the bats’ foraging and obstacle avoidance process to find the shortest path in the complete graph to satisfy the constraints. Finally, the path is transferred to the original incomplete graph to get the solution. In order to overcome the premature phenomenon of a discrete bat algorithm, the modified neighborhood operator is proposed. To prove the effectiveness of our method, we compared its performance in 26 instances with the results obtained by three different algorithms: DBA, IBA and GSA-ACS-PSOT. We also performed a sensitivity analysis on the parameters. The results indicate that the improved bat algorithm outperforms all the other alternatives in most cases.
•Multi-point shortest path planning problem is solved by using an improved discrete bat algorithm (IDBA).•An incomplete connected graph is first converted into a complete graph.•The bats’ foraging and obstacle avoidance process are then simulated to find the shortest path in the complete graph.•The path is finally transferred to the original incomplete graph to get the solution. |
|---|---|
| AbstractList | Multi-point shortest path planning problem is a typical problems in discrete optimization. The bat algorithm is a nature-inspired metaheuristic optimization algorithm that is used in a wide range of fields. However, there is one problem with the BA, which is easy to premature. To solve multi-point shortest path planning problem, an improved discrete bat algorithm (IDBA) is proposed in this paper. In this algorithm, the Floyd–Warshall algorithm is first used to transform an incomplete connected graph into a complete graph whose vertex set consists of a start point and necessary points. Then the algorithm simulates the bats’ foraging and obstacle avoidance process to find the shortest path in the complete graph to satisfy the constraints. Finally, the path is transferred to the original incomplete graph to get the solution. In order to overcome the premature phenomenon of a discrete bat algorithm, the modified neighborhood operator is proposed. To prove the effectiveness of our method, we compared its performance in 26 instances with the results obtained by three different algorithms: DBA, IBA and GSA-ACS-PSOT. We also performed a sensitivity analysis on the parameters. The results indicate that the improved bat algorithm outperforms all the other alternatives in most cases.
•Multi-point shortest path planning problem is solved by using an improved discrete bat algorithm (IDBA).•An incomplete connected graph is first converted into a complete graph.•The bats’ foraging and obstacle avoidance process are then simulated to find the shortest path in the complete graph.•The path is finally transferred to the original incomplete graph to get the solution. |
| ArticleNumber | 106498 |
| Author | Guo, Fan Tan, Shiyang Liu, Lijue Luo, Shuning |
| Author_xml | – sequence: 1 givenname: Lijue surname: Liu fullname: Liu, Lijue – sequence: 2 givenname: Shuning surname: Luo fullname: Luo, Shuning – sequence: 3 givenname: Fan orcidid: 0000-0002-4515-6282 surname: Guo fullname: Guo, Fan email: guofancsu@163.com – sequence: 4 givenname: Shiyang surname: Tan fullname: Tan, Shiyang |
| BookMark | eNp9kMtOwzAQRb0oEm3hB1j5B1IcO40diU0pT6nABtaWH5PWVWpHtqnE35OorFh0NZrRnCvdM0MTHzwgdFOSRUnK-na_UCmYBSV0PNRVIyZoWi5rUVRNVV-iWUp7Mjw2VEzR-9t3l13RB-czTrsQM6SMe5V3uO-U985vsVYJLA4eK49fD30Mx2F9cMlEyIDvVcarbhuiy7vDFbpoVZfg-m_O0dfT4-f6pdh8PL-uV5vCMEJyYShoTq1tdc1aLlqhFINK07algtdac1jSpjSEN421leJ6aSljFePAuWCsZHMkTrkmhpQitNK4rLILPkflOlkSObqQezm6kKMLeXIxoPQf2kd3UPHnPHR3gmAodXQQZTIOvAHrIpgsbXDn8F_zs30k |
| CitedBy_id | crossref_primary_10_3390_math11081800 crossref_primary_10_1177_0954406220963148 crossref_primary_10_1016_j_jclepro_2021_129721 crossref_primary_10_1007_s00500_022_06909_z crossref_primary_10_1016_j_epsr_2024_111080 crossref_primary_10_1080_23249935_2023_2253477 crossref_primary_10_3390_buildings12060718 crossref_primary_10_3390_jmse10040460 crossref_primary_10_1007_s10586_024_04271_3 crossref_primary_10_1016_j_eswa_2023_120667 crossref_primary_10_1016_j_energy_2021_121014 crossref_primary_10_1063_5_0059296 crossref_primary_10_1007_s00366_021_01345_3 crossref_primary_10_1109_JIOT_2023_3324963 crossref_primary_10_2478_ecce_2021_0007 crossref_primary_10_3390_drones7060394 crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_3390_s23020782 crossref_primary_10_3390_a17110472 crossref_primary_10_1038_s41598_024_59064_w crossref_primary_10_1016_j_cogsys_2023_01_005 crossref_primary_10_36548_jscp_2020_4_001 crossref_primary_10_1007_s00521_022_07662_y crossref_primary_10_1007_s12652_021_03378_4 crossref_primary_10_1016_j_egyr_2024_07_042 crossref_primary_10_1080_01969722_2022_2129376 crossref_primary_10_1016_j_asoc_2021_107346 crossref_primary_10_1155_2021_6697942 |
| Cites_doi | 10.1016/j.engappai.2015.10.006 10.1016/j.neucom.2016.05.057 10.1016/j.eswa.2011.04.163 10.1016/j.ejor.2016.05.008 10.1145/367766.368168 10.1109/4235.585892 10.1016/j.neucom.2012.07.060 10.1016/S0377-2217(97)00289-0 10.1007/s00521-013-1402-2 10.1023/A:1006529012972 10.4028/www.scientific.net/AMM.203.88 10.1016/j.ipl.2007.03.010 10.1016/j.ejor.2013.10.042 10.1016/j.asoc.2015.01.067 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2020.106498 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2020_106498 S1568494620304373 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c300t-c2eb72ddfb63f78f8aa3e4b2ff2876bb7e5291c0799dd4a7b5d233437e7783313 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 29 21:21:03 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Sun Apr 06 06:53:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Floyd–Warshall algorithm Bat algorithm Incomplete connected graph Multi-point path planning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-c2eb72ddfb63f78f8aa3e4b2ff2876bb7e5291c0799dd4a7b5d233437e7783313 |
| ORCID | 0000-0002-4515-6282 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106498 crossref_primary_10_1016_j_asoc_2020_106498 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106498 |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 2020-10-00 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Shia, Lianga, Leeb (b27) 2007; 103 Battarra, Pessoa, Subramanian (b2) 2014; 235 Dorigo, Gambardella (b6) 1997; 1 Mo, Xu (b9) 2015; 148 Neyoy, Castillo, Soria (b14) 2013; 451 Pan, Dao, Nguyen (b22) 2015 Xu, Ma, Qian (b13) 2016 Khan, Sahai (b18) 2012; 4 Floyd (b24) 1962; 5 Yang (b16) 2010; 284 Osaba, Yang, Diaz (b21) 2016; 48 Karaboga, Akay (b10) 2009; 214 Gendreau, Laporte, Semet (b5) 1998; 106 Alhamdy, Noudehi, Majdara (b15) 2012 Aarts, Korst (b4) 1989 Chen, Chien (b26) 2011; 38 Zhiyong, Liang, Huizhen (b17) 2014 de Andrade (b1) 2016; 254 Das, Behera, Das (b12) 2016; 207 Larrañaga, Kuijpers, Murga (b7) 1999; 13 Saji, Riffi (b20) 2015; 27 Contreras-Cruz, Ayala-Ramirez, Hernandez-Belmonte (b11) 2015; 30 Ruizvanoye, Díazparra, Cocón (b23) 2012; 3 Ouaarab, Ahiod, Yang (b25) 2014; 24 Zhang, Wang (b19) 2012; 203 Shi, Eberhart (b8) 2002 Archer, Bateni, Hajiaghayi (b3) 2010 Mo (10.1016/j.asoc.2020.106498_b9) 2015; 148 Floyd (10.1016/j.asoc.2020.106498_b24) 1962; 5 de Andrade (10.1016/j.asoc.2020.106498_b1) 2016; 254 Shia (10.1016/j.asoc.2020.106498_b27) 2007; 103 Dorigo (10.1016/j.asoc.2020.106498_b6) 1997; 1 Zhang (10.1016/j.asoc.2020.106498_b19) 2012; 203 Das (10.1016/j.asoc.2020.106498_b12) 2016; 207 Aarts (10.1016/j.asoc.2020.106498_b4) 1989 Larrañaga (10.1016/j.asoc.2020.106498_b7) 1999; 13 Osaba (10.1016/j.asoc.2020.106498_b21) 2016; 48 Karaboga (10.1016/j.asoc.2020.106498_b10) 2009; 214 Archer (10.1016/j.asoc.2020.106498_b3) 2010 Neyoy (10.1016/j.asoc.2020.106498_b14) 2013; 451 Yang (10.1016/j.asoc.2020.106498_b16) 2010; 284 Contreras-Cruz (10.1016/j.asoc.2020.106498_b11) 2015; 30 Xu (10.1016/j.asoc.2020.106498_b13) 2016 Chen (10.1016/j.asoc.2020.106498_b26) 2011; 38 Alhamdy (10.1016/j.asoc.2020.106498_b15) 2012 Khan (10.1016/j.asoc.2020.106498_b18) 2012; 4 Zhiyong (10.1016/j.asoc.2020.106498_b17) 2014 Ouaarab (10.1016/j.asoc.2020.106498_b25) 2014; 24 Ruizvanoye (10.1016/j.asoc.2020.106498_b23) 2012; 3 Saji (10.1016/j.asoc.2020.106498_b20) 2015; 27 Gendreau (10.1016/j.asoc.2020.106498_b5) 1998; 106 Battarra (10.1016/j.asoc.2020.106498_b2) 2014; 235 Shi (10.1016/j.asoc.2020.106498_b8) 2002 Pan (10.1016/j.asoc.2020.106498_b22) 2015 |
| References_xml | – volume: 284 start-page: 65 year: 2010 end-page: 74 ident: b16 article-title: A new metaheuristic bat-inspired algorithm publication-title: Comput. Knowl. Technol. – volume: 27 start-page: 1 year: 2015 end-page: 14 ident: b20 article-title: A novel discrete bat algorithm for solving the travelling salesman problem publication-title: Neural Comput. Appl. – volume: 103 start-page: 169 year: 2007 end-page: 176 ident: b27 article-title: Particle swarm optimization-based algorithms for TSP and generalized TSP publication-title: Inform. Process. Lett. – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: b10 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – volume: 13 start-page: 129 year: 1999 end-page: 170 ident: b7 article-title: Genetic algorithms for the travelling salesman problem: A review of representations and operators publication-title: Artif. Intell. Rev. – volume: 106 start-page: 539 year: 1998 end-page: 545 ident: b5 article-title: A Tabu search heuristic for the undirected selective travelling salesman problem publication-title: European J. Oper. Res. – year: 2014 ident: b17 article-title: Genetic mutation bat algorithm for 0-1 knapsack problem publication-title: Comput. Meas. Control – volume: 38 start-page: 14439 year: 2011 end-page: 14450 ident: b26 article-title: Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques publication-title: Expert Syst. Appl. – year: 2015 ident: b22 article-title: Hybrid Particle Swarm Optimization with Bat Algorithm – volume: 254 start-page: 755 year: 2016 end-page: 768 ident: b1 article-title: New formulations for the elementary shortest-path problem visiting a given set of nodes publication-title: European J. Oper. Res. – volume: 1 start-page: 53 year: 1997 end-page: 66 ident: b6 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans. Evol. Comput. – volume: 5 start-page: 345 year: 1962 ident: b24 article-title: Algorithm 97: shortest path publication-title: Commun. ACM – volume: 148 start-page: 91 year: 2015 end-page: 99 ident: b9 article-title: Research of biogeography particle swarm optimization for robot path planning publication-title: Neurocomputing – volume: 4 start-page: 23 year: 2012 end-page: 29 ident: b18 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Int. J. Intell. Syst. Appl. – start-page: 427 year: 2010 end-page: 436 ident: b3 publication-title: Improved Approximation Algorithms for PRIZE-COLLECTING STEINER TREE and TSP – volume: 207 start-page: 735 year: 2016 end-page: 753 ident: b12 article-title: A hybrid improved PSO-DV algorithm for multi-robot path planning in a clutter environment publication-title: Neurocomputing – year: 1989 ident: b4 article-title: Simulated annealing and Boltzmann machines publication-title: Handbook of Brain Theory & Neural Networks – volume: 24 start-page: 1659 year: 2014 end-page: 1669 ident: b25 article-title: Discrete cuckoo search algorithm for the travelling salesman problem publication-title: Neural Comput. Appl. – year: 2016 ident: b13 article-title: Genetic-simulated annealing-based ant colony algorithm for traveling salesman problem publication-title: Comput. Meas. Control – volume: 235 start-page: 115 year: 2014 end-page: 128 ident: b2 article-title: Exact algorithms for the traveling salesman problem with draft limits publication-title: European J. Oper. Res. – start-page: 434 year: 2012 end-page: 440 ident: b15 article-title: Solving traveling salesman problem (TSP) using ants colony (ACO) algorithm and comparing with Tabu search, simulated annealing and genetic algorithm publication-title: J. Appli. Sci. Res. – volume: 3 start-page: 104 year: 2012 end-page: 123 ident: b23 article-title: Meta-heuristics algorithms based on the grouping of animals by social behavior for the traveling salesman problem publication-title: Int. J. Comb. Optim. Probl. Inform. – start-page: 320 year: 2002 end-page: 324 ident: b8 article-title: Empirical study of particle swarm optimization publication-title: Evol. Comput. – volume: 30 start-page: 319 year: 2015 end-page: 328 ident: b11 article-title: Mobile robot path planning using artificial bee colony and evolutionary programming publication-title: Appl. Soft Comput. J. – volume: 48 start-page: 59 year: 2016 end-page: 71 ident: b21 article-title: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems publication-title: Eng. Appl. Artif. Intell. – volume: 451 start-page: 259 year: 2013 end-page: 271 ident: b14 article-title: Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems publication-title: Stud. Comput. Intell. – volume: 203 start-page: 88 year: 2012 end-page: 93 ident: b19 article-title: Image matching using a bat algorithm with mutation publication-title: Appl. Mech. Mater. – volume: 48 start-page: 59 issue: C year: 2016 ident: 10.1016/j.asoc.2020.106498_b21 article-title: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.10.006 – volume: 207 start-page: 735 issue: C year: 2016 ident: 10.1016/j.asoc.2020.106498_b12 article-title: A hybrid improved PSO-DV algorithm for multi-robot path planning in a clutter environment publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.057 – volume: 38 start-page: 14439 issue: 12 year: 2011 ident: 10.1016/j.asoc.2020.106498_b26 article-title: Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.163 – volume: 254 start-page: 755 issue: 3 year: 2016 ident: 10.1016/j.asoc.2020.106498_b1 article-title: New formulations for the elementary shortest-path problem visiting a given set of nodes publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2016.05.008 – start-page: 434 issue: 1 year: 2012 ident: 10.1016/j.asoc.2020.106498_b15 article-title: Solving traveling salesman problem (TSP) using ants colony (ACO) algorithm and comparing with Tabu search, simulated annealing and genetic algorithm publication-title: J. Appli. Sci. Res. – volume: 451 start-page: 259 issue: 1 year: 2013 ident: 10.1016/j.asoc.2020.106498_b14 article-title: Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems publication-title: Stud. Comput. Intell. – year: 2015 ident: 10.1016/j.asoc.2020.106498_b22 – volume: 5 start-page: 345 issue: 06 year: 1962 ident: 10.1016/j.asoc.2020.106498_b24 article-title: Algorithm 97: shortest path publication-title: Commun. ACM doi: 10.1145/367766.368168 – volume: 284 start-page: 65 year: 2010 ident: 10.1016/j.asoc.2020.106498_b16 article-title: A new metaheuristic bat-inspired algorithm publication-title: Comput. Knowl. Technol. – start-page: 427 year: 2010 ident: 10.1016/j.asoc.2020.106498_b3 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.asoc.2020.106498_b10 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – volume: 4 start-page: 23 issue: 7 year: 2012 ident: 10.1016/j.asoc.2020.106498_b18 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Int. J. Intell. Syst. Appl. – year: 2016 ident: 10.1016/j.asoc.2020.106498_b13 article-title: Genetic-simulated annealing-based ant colony algorithm for traveling salesman problem publication-title: Comput. Meas. Control – volume: 1 start-page: 53 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.106498_b6 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585892 – volume: 148 start-page: 91 issue: 148 year: 2015 ident: 10.1016/j.asoc.2020.106498_b9 article-title: Research of biogeography particle swarm optimization for robot path planning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.060 – volume: 106 start-page: 539 issue: 2–3 year: 1998 ident: 10.1016/j.asoc.2020.106498_b5 article-title: A Tabu search heuristic for the undirected selective travelling salesman problem publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(97)00289-0 – volume: 24 start-page: 1659 issue: 7–8 year: 2014 ident: 10.1016/j.asoc.2020.106498_b25 article-title: Discrete cuckoo search algorithm for the travelling salesman problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1402-2 – volume: 27 start-page: 1 issue: 7 year: 2015 ident: 10.1016/j.asoc.2020.106498_b20 article-title: A novel discrete bat algorithm for solving the travelling salesman problem publication-title: Neural Comput. Appl. – volume: 13 start-page: 129 issue: 2 year: 1999 ident: 10.1016/j.asoc.2020.106498_b7 article-title: Genetic algorithms for the travelling salesman problem: A review of representations and operators publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006529012972 – year: 2014 ident: 10.1016/j.asoc.2020.106498_b17 article-title: Genetic mutation bat algorithm for 0-1 knapsack problem publication-title: Comput. Meas. Control – volume: 203 start-page: 88 year: 2012 ident: 10.1016/j.asoc.2020.106498_b19 article-title: Image matching using a bat algorithm with mutation publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.203.88 – volume: 3 start-page: 104 issue: 3 year: 2012 ident: 10.1016/j.asoc.2020.106498_b23 article-title: Meta-heuristics algorithms based on the grouping of animals by social behavior for the traveling salesman problem publication-title: Int. J. Comb. Optim. Probl. Inform. – volume: 103 start-page: 169 issue: 5 year: 2007 ident: 10.1016/j.asoc.2020.106498_b27 article-title: Particle swarm optimization-based algorithms for TSP and generalized TSP publication-title: Inform. Process. Lett. doi: 10.1016/j.ipl.2007.03.010 – volume: 235 start-page: 115 issue: 1 year: 2014 ident: 10.1016/j.asoc.2020.106498_b2 article-title: Exact algorithms for the traveling salesman problem with draft limits publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2013.10.042 – year: 1989 ident: 10.1016/j.asoc.2020.106498_b4 article-title: Simulated annealing and Boltzmann machines – start-page: 320 issue: 1 year: 2002 ident: 10.1016/j.asoc.2020.106498_b8 article-title: Empirical study of particle swarm optimization publication-title: Evol. Comput. – volume: 30 start-page: 319 year: 2015 ident: 10.1016/j.asoc.2020.106498_b11 article-title: Mobile robot path planning using artificial bee colony and evolutionary programming publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.01.067 |
| SSID | ssj0016928 |
| Score | 2.4532688 |
| Snippet | Multi-point shortest path planning problem is a typical problems in discrete optimization. The bat algorithm is a nature-inspired metaheuristic optimization... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106498 |
| SubjectTerms | Bat algorithm Floyd–Warshall algorithm Incomplete connected graph Multi-point path planning |
| Title | Multi-point shortest path planning based on an Improved Discrete Bat Algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2020.106498 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4MwGG6WefHit3F-LD14MzighcJxTpf5tRh1yW6kpcVhJpANr_52-0JZNDE7eCJt3ibkobwf8Lx9EDonMlFMAlWKKWJRXVRYnIvYglzfTewgcSrVksexP5rQu6k3baFB0wsDtErj-2ufXnlrM9MzaPaKNO296MojoCH1Xfi7Rxic-EkpAxWDy68VzcPxw0pfFYwtsDaNMzXHi2sEdI3owoRPw-Dv4PQj4Ax30JbJFHG_vpld1FLZHtpuVBiweSn30bjqobWKPM1KvJwBeXZZYlAaxoVRJMIQqyTOM8wzXH9G0MPrVLsMnTPjK17i_vwtX6Tl7OMATYY3r4ORZVQSrJjYdmnFrhLMlTIRPklYkAScE0WFmyS6GPKFYMpzQye2WRhKSTkTnnQJ0YApxgJCHHKI2lmeqSOEla8fmMPtUPGACl1reFIGHmfUFszjDu8gp4Enis0R4qBkMY8arth7BJBGAGlUQ9pBF6s1RX2Axlprr0E9-rUNIu3h16w7_ue6E7QJo5qdd4ra5eJTneksoxTdaht10UZ_8PzwBNfb-9H4Gwvz0hg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbAh08R24mQshapA24VW6hbZsUODSlK1YeW3YydOBRJiYIxzJ0UvzvkufucHwDWRiWLSUKWYIojqogJxLmJkcn2cOEHilqolw5Hfn9CnqTdtgG7dC2NolTb2VzG9jNZ2pG3RbC_StP2iK4-AhtTHZnePMLIBNqmHmanAbj_XPA_XD0uBVWONjLntnKlIXlxDoItEbAZ8Gga_r07fVpzeHtixqSLsVE-zDxoqOwC7tQwDtF_lIRiVTbRokadZAVczw55dFdBIDcOFlSSCZrGSMM8gz2D1H0Ff3qc6ZuikGd7xAnbmr_kyLWbvR2DSexh3-8jKJKCYOE6BYqwEw1ImwicJC5KAc6KowEmiqyFfCKY8HLqxw8JQSsqZ8CQmRCOmGAsIcckxaGZ5pk4AVL5-Yy53QsUDKnSx4UkZeJxRRzCPu7wF3BqeKLZniBspi3lUk8XeIgNpZCCNKkhb4Gbts6hO0PjT2qtRj37Mg0iH-D_8Tv_pdwW2-uPhIBo8jp7PwLa5U1H1zkGzWH6oC51yFOKynFJfg-DSGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-point+shortest+path+planning+based+on+an+Improved+Discrete+Bat+Algorithm&rft.jtitle=Applied+soft+computing&rft.au=Liu%2C+Lijue&rft.au=Luo%2C+Shuning&rft.au=Guo%2C+Fan&rft.au=Tan%2C+Shiyang&rft.date=2020-10-01&rft.issn=1568-4946&rft.volume=95&rft.spage=106498&rft_id=info:doi/10.1016%2Fj.asoc.2020.106498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |