Recognition of rice seedling counts in UAV remote sensing images via the YOLO algorithm

Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a no...

Full description

Saved in:
Bibliographic Details
Published inSmart agricultural technology Vol. 12; p. 101107
Main Authors Chen, Shengxi, Li, Wenli, Chen, Du, Xie, Zhao, Zhang, Song, Cen, Fulang, Huang, Xiaoyun, Tu, Lei, Gao, Zhenran
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2025
Subjects
Online AccessGet full text
ISSN2772-3755
2772-3755
DOI10.1016/j.atech.2025.101107

Cover

Abstract Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a novel approach for identifying rice seedlings using advanced computational techniques. This study employed drone-captured images of rice seedlings taken at heights of 12 m and 15 m from two locations—Anshun City and Qianxinan Prefecture in Guizhou Province—to construct datasets containing 100, 150, and 200 images, and compared the performance of YOLOv8n, YOLOv9t, and YOLOv10n in recognizing rice seedling numbers. The results show that at a flight height of 12 m and using a dataset of 200 images, model performance was optimal, achieving mAP@50 values of 0.964, 0.936, and 0.944 for YOLOv8n, YOLOv9t, and YOLOv10n, respectively. Among these, YOLOv8n demonstrated the highest prediction accuracy for rice seedlings, with an R2 value of 0.889, RMSE of 3.225, and rRMSE of 0.032. This research demonstrates that the combination of drone imagery and deep learning models enables effective large-scale counting of rice seedlings, presenting an innovative approach to rice phenotypic analysis.
AbstractList Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a novel approach for identifying rice seedlings using advanced computational techniques. This study employed drone-captured images of rice seedlings taken at heights of 12 m and 15 m from two locations—Anshun City and Qianxinan Prefecture in Guizhou Province—to construct datasets containing 100, 150, and 200 images, and compared the performance of YOLOv8n, YOLOv9t, and YOLOv10n in recognizing rice seedling numbers. The results show that at a flight height of 12 m and using a dataset of 200 images, model performance was optimal, achieving mAP@50 values of 0.964, 0.936, and 0.944 for YOLOv8n, YOLOv9t, and YOLOv10n, respectively. Among these, YOLOv8n demonstrated the highest prediction accuracy for rice seedlings, with an R2 value of 0.889, RMSE of 3.225, and rRMSE of 0.032. This research demonstrates that the combination of drone imagery and deep learning models enables effective large-scale counting of rice seedlings, presenting an innovative approach to rice phenotypic analysis.
ArticleNumber 101107
Author Cen, Fulang
Chen, Du
Tu, Lei
Gao, Zhenran
Zhang, Song
Huang, Xiaoyun
Xie, Zhao
Chen, Shengxi
Li, Wenli
Author_xml – sequence: 1
  givenname: Shengxi
  orcidid: 0009-0005-4945-5094
  surname: Chen
  fullname: Chen, Shengxi
  organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China
– sequence: 2
  givenname: Wenli
  surname: Li
  fullname: Li, Wenli
  organization: Bureau of Agriculture and Rural Affairs of Pingba District, Anshun 561000, PR China
– sequence: 3
  givenname: Du
  surname: Chen
  fullname: Chen, Du
  organization: Bureau of Agriculture and Rural Affairs of Pingba District, Anshun 561000, PR China
– sequence: 4
  givenname: Zhao
  surname: Xie
  fullname: Xie, Zhao
  organization: Guizhou Provincial Soil and Fertilizer Station, Guiyang 550025, PR China
– sequence: 5
  givenname: Song
  surname: Zhang
  fullname: Zhang, Song
  organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China
– sequence: 6
  givenname: Fulang
  surname: Cen
  fullname: Cen, Fulang
  organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China
– sequence: 7
  givenname: Xiaoyun
  surname: Huang
  fullname: Huang, Xiaoyun
  organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China
– sequence: 8
  givenname: Lei
  surname: Tu
  fullname: Tu, Lei
  organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China
– sequence: 9
  givenname: Zhenran
  surname: Gao
  fullname: Gao, Zhenran
  email: zrgao@gzu.edu.cn
  organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China
BookMark eNqNkMFKAzEQhoNUsNY-gZe8wNYku9nNHjyUolYoFMQqnkKand2mbJOSpJW-vV3XgyfxNMP8fMPMd40G1llA6JaSCSU0v9tOVAS9mTDCeDehpLhAQ1YULEkLzge_-is0DmFLCGGC56IUQ_T-Ato11kTjLHY19kYDDgBVa2yDtTvYGLCxeDV9wx52LnapDV1odqqBgI9G4bgB_LFcLLFqG-dN3Oxu0GWt2gDjnzpCq8eH19k8WSyfnmfTRaJTQmKiaZaSdc7qLCN1WYmcZbngqU61EEqvCSiWVyJjUFJOeCkoqwpeK5ppKgrNWTpCWb_3YPfq9KnaVu79-TJ_kpTIzo_cym8_svMjez9nLO0x7V0IHup_Uvc9BeePjga8DNqA1VAZDzrKypk_-S8GHYCF
Cites_doi 10.3390/rs11060691
10.1109/TPAMI.2021.3134684
10.1016/j.cmpb.2021.106504
10.1016/j.compag.2022.106780
10.3390/agriculture12101659
10.34133/2021/9874650
10.3390/s22218459
10.1016/j.compag.2022.107008
10.1016/j.compag.2018.02.016
10.1007/s11042-022-13644-y
10.3390/rs15133454
10.1109/ACCESS.2024.3439346
10.1186/s13007-025-01338-z
10.3390/rs13091619
10.1016/j.compag.2018.08.013
10.1007/s12284-008-9001-z
10.34133/plantphenomics.0123
10.1016/j.compag.2021.106493
10.34133/2022/9803570
10.1007/s12524-024-01932-z
10.3390/app121910167
10.34133/plantphenomics.0128
10.3390/rs12162650
10.1007/s11119-024-10135-y
10.3390/rs15061637
10.1016/j.rse.2014.06.006
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.atech.2025.101107
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2772-3755
ExternalDocumentID 10.1016/j.atech.2025.101107
10_1016_j_atech_2025_101107
S2772375525003405
GroupedDBID 6I.
AAFTH
AAHBH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c300t-c1430b62f440f9d86246853c3c88acb0ea26d842e915059812d75fa14c187c523
IEDL.DBID UNPAY
ISSN 2772-3755
IngestDate Tue Aug 19 23:27:42 EDT 2025
Wed Oct 29 21:11:16 EDT 2025
Sat Jul 19 17:10:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords YOLO
Deep learning
UAV
Seedling recognition
Remote sensing
Rice
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-c1430b62f440f9d86246853c3c88acb0ea26d842e915059812d75fa14c187c523
ORCID 0009-0005-4945-5094
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.atech.2025.101107
ParticipantIDs unpaywall_primary_10_1016_j_atech_2025_101107
crossref_primary_10_1016_j_atech_2025_101107
elsevier_sciencedirect_doi_10_1016_j_atech_2025_101107
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Smart agricultural technology
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Qi, Liu, Liu, Xu, Guo, Tian, Li, Bao, Li (bib0013) 2022; 194
Yan, Fan, Lei, Liu, Yang (bib0027) 2021; 13
Li, Yan, Zhou, Huang, Xiao, Huang (bib0040) 2024; 52
Zhao, Zheng, Chapman, Laws, George-Jaeggli, Hammer, Jordan, Potgieter (bib0010) 2021; 2021
Yang, Ni, Li, Luo, Qin (bib0029) 2022; 22
Gao, Liao, Nuyttens, Lootens, Vangeyte, Pižurica, He, Pieters (bib0008) 2018; 67
A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, G. Ding, YOLOv10: real-time end-to-end object detection, arXiv Preprint arXiv:240514458., (2024).
Verger, Vigneau, Chéron, Gilliot, Comar, Baret (bib0007) 2014; 152
Diwan, Anirudh, Tembhurne (bib0037) 2023; 82
Zhu, Rezaei, Nouri, Sun, Li, Yu, Siebert (bib0039) 2023; 16
Lv, Ni, Wang, Yang, Xu (bib0012) 2019; 256
Wu, Liu, Xu, Bian, Gu, Cheng (bib0016) 2022; 44
Zhou, Lee, Ampatzidis, Chen, Peres, Fraisse (bib0024) 2021; 1
Bomantara, Mustafa, Bartholomeus, Kooistra (bib0031) 2023; 15
Xiaomao, Wei, Tian, Yaozong, Shixing, Wencheng (bib0003) 2024; 40
Parambil, Ali, Swavaf, Bouktif, Gochoo, Aljassmi, Alnajjar (bib0023) 2024; 12
Barreto, Lottes, Ispizua Yamati, Baumgarten, Wolf, Stachniss, Mahlein, Paulus (bib0018) 2021; 191
Zhang, Sun, Zhang, Yang, Wang (bib0014) 2023; 5
Ahmad, Yang, Yue, Ye, Hassan, Cheng, Wu, Zhang (bib0025) 2022; 12
Barbedo (bib0038) 2018; 153
Zeigler, Barclay (bib0001) 2008; 1
Ajayi, Ashi, Guda (bib0026) 2023; 5
Yu, Yin, Xu, Espinosa, Schmidhalter, Nie, Bai, Sankaran, Ming, Cui, Wu, Jin (bib0030) 2024; 25
Chen, Chen, Huang, Zhang, Chen, Cen, He, Zhao, Gao (bib0015) 2024; 15
Wu, Yang, Yang, Xu, Han, Zhu (bib0002) 2019; 11
Vong, Conway, Feng, Zhou, Kitchen, Sudduth (bib0021) 2022; 198
Varghese, M (bib0034) 2024
Kamilaris, Prenafeta-Boldú (bib0017) 2018; 147
Zhai, Li, Cheng, Ding, Chen (bib0005) 2023; 15
Zhang, Yang, Tu, Fu, Chen, Cen, Yang, Zhao, Gao, He (bib0032) 2025; 21
Wang, Yeh, Liao (bib0035) 2024
Ding, Shen, Dai, Jackson, Liu, Ali, Sun, Wen, Xiao, Deakin, Jiang, Wang, Zhou (bib0011) 2023; 5
R. J., You only look once: unified, real-time object detection, (2016).
Qiao, Gao, Zhang, Li, Sun, Ma (bib0006) 2020; 12
Jiang, Xie, Yan, Wen, Li, Jiang, Jiang, Feng, Duan, Wang (bib0028) 2022; 12
Fan, Lu, Gong, Xie, Goodman (bib0019) 2018; 11
Xie, Dash, Huete, Jiang, Yin, Ding, Peng, Hall, Brown, Shi, Ye, Dong, Huang (bib0004) 2019; 80
Serouart, Madec, David, Velumani, Lozano, Weiss, Baret (bib0009) 2022; 2022
Bailly, Blanc, Francis, Guillotin, Jamal, Wakim, Roy (bib0033) 2022; 213
Ariza-Sentís, Valente, Kooistra, Kramer, Mücher (bib0020) 2023; 3
Wu (10.1016/j.atech.2025.101107_bib0002) 2019; 11
Serouart (10.1016/j.atech.2025.101107_bib0009) 2022; 2022
Ahmad (10.1016/j.atech.2025.101107_bib0025) 2022; 12
Xie (10.1016/j.atech.2025.101107_bib0004) 2019; 80
Verger (10.1016/j.atech.2025.101107_bib0007) 2014; 152
Qi (10.1016/j.atech.2025.101107_bib0013) 2022; 194
Ajayi (10.1016/j.atech.2025.101107_bib0026) 2023; 5
Ariza-Sentís (10.1016/j.atech.2025.101107_bib0020) 2023; 3
Bailly (10.1016/j.atech.2025.101107_bib0033) 2022; 213
Wang (10.1016/j.atech.2025.101107_bib0035) 2024
Kamilaris (10.1016/j.atech.2025.101107_bib0017) 2018; 147
Lv (10.1016/j.atech.2025.101107_bib0012) 2019; 256
Yu (10.1016/j.atech.2025.101107_bib0030) 2024; 25
Fan (10.1016/j.atech.2025.101107_bib0019) 2018; 11
Jiang (10.1016/j.atech.2025.101107_bib0028) 2022; 12
Chen (10.1016/j.atech.2025.101107_bib0015) 2024; 15
Vong (10.1016/j.atech.2025.101107_bib0021) 2022; 198
10.1016/j.atech.2025.101107_bib0036
Ding (10.1016/j.atech.2025.101107_bib0011) 2023; 5
Zhu (10.1016/j.atech.2025.101107_bib0039) 2023; 16
Wu (10.1016/j.atech.2025.101107_bib0016) 2022; 44
Qiao (10.1016/j.atech.2025.101107_bib0006) 2020; 12
Barreto (10.1016/j.atech.2025.101107_bib0018) 2021; 191
Xiaomao (10.1016/j.atech.2025.101107_bib0003) 2024; 40
Varghese (10.1016/j.atech.2025.101107_bib0034) 2024
Zhai (10.1016/j.atech.2025.101107_bib0005) 2023; 15
Diwan (10.1016/j.atech.2025.101107_bib0037) 2023; 82
Zeigler (10.1016/j.atech.2025.101107_bib0001) 2008; 1
Barbedo (10.1016/j.atech.2025.101107_bib0038) 2018; 153
Yang (10.1016/j.atech.2025.101107_bib0029) 2022; 22
Zhou (10.1016/j.atech.2025.101107_bib0024) 2021; 1
Yan (10.1016/j.atech.2025.101107_bib0027) 2021; 13
Gao (10.1016/j.atech.2025.101107_bib0008) 2018; 67
Zhang (10.1016/j.atech.2025.101107_bib0014) 2023; 5
10.1016/j.atech.2025.101107_bib0022
Parambil (10.1016/j.atech.2025.101107_bib0023) 2024; 12
Bomantara (10.1016/j.atech.2025.101107_bib0031) 2023; 15
Zhao (10.1016/j.atech.2025.101107_bib0010) 2021; 2021
Zhang (10.1016/j.atech.2025.101107_bib0032) 2025; 21
Li (10.1016/j.atech.2025.101107_bib0040) 2024; 52
References_xml – volume: 44
  start-page: 10261
  year: 2022
  end-page: 10269
  ident: bib0016
  article-title: MobileSal: extremely efficient RGB-D salient object detection
  publication-title: IEEE T Pattern. Anal
– volume: 198
  year: 2022
  ident: bib0021
  article-title: Corn emergence uniformity estimation and mapping using UAV imagery and deep learning
  publication-title: Comput. Electron. Agr
– volume: 5
  year: 2023
  ident: bib0026
  article-title: Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images
  publication-title: Smart Agric. Technol.
– volume: 12
  start-page: 2650
  year: 2020
  ident: bib0006
  article-title: Dynamic influence elimination and chlorophyll content diagnosis of maize using UAV spectral imagery
  publication-title: Remote Sens.-Basel
– volume: 1
  year: 2021
  ident: bib0024
  article-title: Strawberry maturity classification from UAV and Near-ground imaging using deep learning
  publication-title: Smart Agric. Technol.
– volume: 25
  start-page: 1800
  year: 2024
  end-page: 1838
  ident: bib0030
  article-title: Maize tassel number and tasseling stage monitoring based on near-ground and UAV RGB images by improved YoloV8
  publication-title: Precis. Agric.
– volume: 21
  year: 2025
  ident: bib0032
  article-title: Comparison of YOLO-based sorghum spike identification detection models and monitoring at the flowering stage
  publication-title: Plant Methods
– volume: 194
  year: 2022
  ident: bib0013
  article-title: An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease
  publication-title: Comput. Electron. Agr.
– volume: 82
  start-page: 9243
  year: 2023
  end-page: 9275
  ident: bib0037
  article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications
  publication-title: Multimed. Tools. Appl.
– volume: 256
  year: 2019
  ident: bib0012
  article-title: A segmentation method of red apple image
  publication-title: Sci. Hortic.-Amst.
– volume: 15
  start-page: 3454
  year: 2023
  ident: bib0005
  article-title: Exploring multisource feature fusion and stacking ensemble learning for accurate estimation of Maize Chlorophyll content using unmanned aerial vehicle remote sensing
  publication-title: Remote Sens.-Basel
– volume: 213
  year: 2022
  ident: bib0033
  article-title: Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models
  publication-title: Comput. Meth. Prog. Bio.
– volume: 2021
  year: 2021
  ident: bib0010
  article-title: Detecting Sorghum plant and head features from Multispectral UAV Imagery
  publication-title: Plant Phenomics.
– volume: 22
  start-page: 8459
  year: 2022
  ident: bib0029
  article-title: Three-stage pavement crack localization and segmentation algorithm based on digital image processing and deep learning techniques
  publication-title: Sens.-Basel
– volume: 152
  start-page: 654
  year: 2014
  end-page: 664
  ident: bib0007
  article-title: Green area index from an unmanned aerial system over wheat and rapeseed crops
  publication-title: Remote Sens. Env.
– volume: 2022
  year: 2022
  ident: bib0009
  article-title: SegVeg: segmenting RGB images into green and senescent vegetation by combining deep and shallow methods
  publication-title: Plant Phenomics.
– volume: 15
  year: 2024
  ident: bib0015
  article-title: Estimation of sorghum seedling number from drone image based on support vector machine and YOLO algorithms
  publication-title: Front. Plant Sci.
– volume: 15
  start-page: 1637
  year: 2023
  ident: bib0031
  article-title: Detection of artificial seed-like objects from UAV imagery
  publication-title: Remote Sens-Basel
– volume: 16
  start-page: 7471
  year: 2023
  end-page: 7485
  ident: bib0039
  article-title: UAV flight height impacts on wheat biomass estimation via machine and Deep learning
  publication-title: IEEE J.-Stars
– start-page: 1
  year: 2024
  end-page: 6
  ident: bib0034
  article-title: YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness
– start-page: 1
  year: 2024
  end-page: 21
  ident: bib0035
  article-title: YOLOv9: learning what you want to learn using programmable gradient information
  publication-title: European Conference on Computer Vision
– volume: 40
  start-page: 147
  year: 2024
  end-page: 156
  ident: bib0003
  article-title: Rapeseed seedling detection and counting based on UAV videos
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 80
  start-page: 187
  year: 2019
  end-page: 195
  ident: bib0004
  article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery
  publication-title: INT. J. Appl. Earth Obs.
– volume: 5
  start-page: 0123
  year: 2023
  ident: bib0014
  article-title: Lightweight deep learning models for high-precision rice seedling segmentation from UAV-based multispectral images
  publication-title: Plant Phenomics.
– volume: 12
  start-page: 109427
  year: 2024
  end-page: 109442
  ident: bib0023
  article-title: Navigating the YOLO landscape: a comparative study of object detection models for emotion recognition
  publication-title: IEEe Access.
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: bib0017
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agr.
– volume: 3
  year: 2023
  ident: bib0020
  article-title: Estimation of spinach (Spinacia oleracea) seed yield with 2D UAV data and deep learning
  publication-title: Smart Agric. Technol.
– volume: 153
  start-page: 46
  year: 2018
  end-page: 53
  ident: bib0038
  article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification
  publication-title: Comput. Electron. Agr.
– volume: 52
  start-page: 2099
  year: 2024
  end-page: 2114
  ident: bib0040
  article-title: Study on tobacco plant cross-level recognition in complex habitats in karst mountainous areas based on the U-net model
  publication-title: J. Ind. Soc. Rem.
– volume: 1
  start-page: 3
  year: 2008
  end-page: 10
  ident: bib0001
  article-title: The relevance of rice
  publication-title: Rice
– reference: A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, G. Ding, YOLOv10: real-time end-to-end object detection, arXiv Preprint arXiv:240514458., (2024).
– volume: 5
  start-page: 0128
  year: 2023
  ident: bib0011
  article-title: The dissection of nitrogen response traits using drone phenotyping and dynamic phenotypic analysis to explore N responsiveness and associated genetic loci in wheat
  publication-title: Plant Phenomics.
– volume: 11
  start-page: 691
  year: 2019
  ident: bib0002
  article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network
  publication-title: Remote. Sens.-Basel.
– volume: 191
  year: 2021
  ident: bib0018
  article-title: Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry
  publication-title: Comput. Electron. Agr.
– reference: R. J., You only look once: unified, real-time object detection, (2016).
– volume: 12
  year: 2022
  ident: bib0025
  article-title: Deep learning based detector YOLOv5 for identifying insect pests
  publication-title: Appl. Sci.
– volume: 11
  start-page: 876
  year: 2018
  end-page: 887
  ident: bib0019
  article-title: Automatic tobacco plant detection in UAV images via deep neural networks
  publication-title: IEEE J-Stars
– volume: 13
  start-page: 1619
  year: 2021
  ident: bib0027
  article-title: A real-time apple targets detection method for picking robot based on improved YOLOv5
  publication-title: Rem. Sens-Basel
– volume: 67
  start-page: 43
  year: 2018
  end-page: 53
  ident: bib0008
  article-title: Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery
  publication-title: Int. J. Appl. Earth Obs.
– volume: 12
  start-page: 1659
  year: 2022
  ident: bib0028
  article-title: An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation
  publication-title: Agriculture
– volume: 80
  start-page: 187
  year: 2019
  ident: 10.1016/j.atech.2025.101107_bib0004
  article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery
  publication-title: INT. J. Appl. Earth Obs.
– volume: 256
  year: 2019
  ident: 10.1016/j.atech.2025.101107_bib0012
  article-title: A segmentation method of red apple image
  publication-title: Sci. Hortic.-Amst.
– volume: 11
  start-page: 691
  year: 2019
  ident: 10.1016/j.atech.2025.101107_bib0002
  article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network
  publication-title: Remote. Sens.-Basel.
  doi: 10.3390/rs11060691
– volume: 44
  start-page: 10261
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0016
  article-title: MobileSal: extremely efficient RGB-D salient object detection
  publication-title: IEEE T Pattern. Anal
  doi: 10.1109/TPAMI.2021.3134684
– start-page: 1
  year: 2024
  ident: 10.1016/j.atech.2025.101107_bib0035
  article-title: YOLOv9: learning what you want to learn using programmable gradient information
– volume: 5
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0026
  article-title: Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images
  publication-title: Smart Agric. Technol.
– volume: 213
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0033
  article-title: Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models
  publication-title: Comput. Meth. Prog. Bio.
  doi: 10.1016/j.cmpb.2021.106504
– volume: 194
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0013
  article-title: An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2022.106780
– volume: 12
  start-page: 1659
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0028
  article-title: An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation
  publication-title: Agriculture
  doi: 10.3390/agriculture12101659
– volume: 2021
  year: 2021
  ident: 10.1016/j.atech.2025.101107_bib0010
  article-title: Detecting Sorghum plant and head features from Multispectral UAV Imagery
  publication-title: Plant Phenomics.
  doi: 10.34133/2021/9874650
– volume: 22
  start-page: 8459
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0029
  article-title: Three-stage pavement crack localization and segmentation algorithm based on digital image processing and deep learning techniques
  publication-title: Sens.-Basel
  doi: 10.3390/s22218459
– volume: 15
  year: 2024
  ident: 10.1016/j.atech.2025.101107_bib0015
  article-title: Estimation of sorghum seedling number from drone image based on support vector machine and YOLO algorithms
  publication-title: Front. Plant Sci.
– volume: 198
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0021
  article-title: Corn emergence uniformity estimation and mapping using UAV imagery and deep learning
  publication-title: Comput. Electron. Agr
  doi: 10.1016/j.compag.2022.107008
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.atech.2025.101107_bib0017
  article-title: Deep learning in agriculture: a survey
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2018.02.016
– ident: 10.1016/j.atech.2025.101107_bib0036
– volume: 82
  start-page: 9243
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0037
  article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications
  publication-title: Multimed. Tools. Appl.
  doi: 10.1007/s11042-022-13644-y
– volume: 15
  start-page: 3454
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0005
  article-title: Exploring multisource feature fusion and stacking ensemble learning for accurate estimation of Maize Chlorophyll content using unmanned aerial vehicle remote sensing
  publication-title: Remote Sens.-Basel
  doi: 10.3390/rs15133454
– volume: 12
  start-page: 109427
  year: 2024
  ident: 10.1016/j.atech.2025.101107_bib0023
  article-title: Navigating the YOLO landscape: a comparative study of object detection models for emotion recognition
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2024.3439346
– volume: 21
  year: 2025
  ident: 10.1016/j.atech.2025.101107_bib0032
  article-title: Comparison of YOLO-based sorghum spike identification detection models and monitoring at the flowering stage
  publication-title: Plant Methods
  doi: 10.1186/s13007-025-01338-z
– volume: 13
  start-page: 1619
  year: 2021
  ident: 10.1016/j.atech.2025.101107_bib0027
  article-title: A real-time apple targets detection method for picking robot based on improved YOLOv5
  publication-title: Rem. Sens-Basel
  doi: 10.3390/rs13091619
– volume: 16
  start-page: 7471
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0039
  article-title: UAV flight height impacts on wheat biomass estimation via machine and Deep learning
  publication-title: IEEE J.-Stars
– volume: 153
  start-page: 46
  year: 2018
  ident: 10.1016/j.atech.2025.101107_bib0038
  article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2018.08.013
– volume: 1
  start-page: 3
  year: 2008
  ident: 10.1016/j.atech.2025.101107_bib0001
  article-title: The relevance of rice
  publication-title: Rice
  doi: 10.1007/s12284-008-9001-z
– volume: 5
  start-page: 0123
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0014
  article-title: Lightweight deep learning models for high-precision rice seedling segmentation from UAV-based multispectral images
  publication-title: Plant Phenomics.
  doi: 10.34133/plantphenomics.0123
– volume: 191
  year: 2021
  ident: 10.1016/j.atech.2025.101107_bib0018
  article-title: Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2021.106493
– volume: 2022
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0009
  article-title: SegVeg: segmenting RGB images into green and senescent vegetation by combining deep and shallow methods
  publication-title: Plant Phenomics.
  doi: 10.34133/2022/9803570
– volume: 52
  start-page: 2099
  year: 2024
  ident: 10.1016/j.atech.2025.101107_bib0040
  article-title: Study on tobacco plant cross-level recognition in complex habitats in karst mountainous areas based on the U-net model
  publication-title: J. Ind. Soc. Rem.
  doi: 10.1007/s12524-024-01932-z
– volume: 12
  year: 2022
  ident: 10.1016/j.atech.2025.101107_bib0025
  article-title: Deep learning based detector YOLOv5 for identifying insect pests
  publication-title: Appl. Sci.
  doi: 10.3390/app121910167
– ident: 10.1016/j.atech.2025.101107_bib0022
– volume: 5
  start-page: 0128
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0011
  article-title: The dissection of nitrogen response traits using drone phenotyping and dynamic phenotypic analysis to explore N responsiveness and associated genetic loci in wheat
  publication-title: Plant Phenomics.
  doi: 10.34133/plantphenomics.0128
– start-page: 1
  year: 2024
  ident: 10.1016/j.atech.2025.101107_bib0034
– volume: 12
  start-page: 2650
  year: 2020
  ident: 10.1016/j.atech.2025.101107_bib0006
  article-title: Dynamic influence elimination and chlorophyll content diagnosis of maize using UAV spectral imagery
  publication-title: Remote Sens.-Basel
  doi: 10.3390/rs12162650
– volume: 11
  start-page: 876
  year: 2018
  ident: 10.1016/j.atech.2025.101107_bib0019
  article-title: Automatic tobacco plant detection in UAV images via deep neural networks
  publication-title: IEEE J-Stars
– volume: 3
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0020
  article-title: Estimation of spinach (Spinacia oleracea) seed yield with 2D UAV data and deep learning
  publication-title: Smart Agric. Technol.
– volume: 40
  start-page: 147
  year: 2024
  ident: 10.1016/j.atech.2025.101107_bib0003
  article-title: Rapeseed seedling detection and counting based on UAV videos
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 1
  year: 2021
  ident: 10.1016/j.atech.2025.101107_bib0024
  article-title: Strawberry maturity classification from UAV and Near-ground imaging using deep learning
  publication-title: Smart Agric. Technol.
– volume: 25
  start-page: 1800
  year: 2024
  ident: 10.1016/j.atech.2025.101107_bib0030
  article-title: Maize tassel number and tasseling stage monitoring based on near-ground and UAV RGB images by improved YoloV8
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-024-10135-y
– volume: 15
  start-page: 1637
  year: 2023
  ident: 10.1016/j.atech.2025.101107_bib0031
  article-title: Detection of artificial seed-like objects from UAV imagery
  publication-title: Remote Sens-Basel
  doi: 10.3390/rs15061637
– volume: 152
  start-page: 654
  year: 2014
  ident: 10.1016/j.atech.2025.101107_bib0007
  article-title: Green area index from an unmanned aerial system over wheat and rapeseed crops
  publication-title: Remote Sens. Env.
  doi: 10.1016/j.rse.2014.06.006
– volume: 67
  start-page: 43
  year: 2018
  ident: 10.1016/j.atech.2025.101107_bib0008
  article-title: Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery
  publication-title: Int. J. Appl. Earth Obs.
SSID ssj0002856898
Score 2.3263023
Snippet Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 101107
SubjectTerms Deep learning
Remote sensing
Rice
Seedling recognition
UAV
YOLO
Title Recognition of rice seedling counts in UAV remote sensing images via the YOLO algorithm
URI https://dx.doi.org/10.1016/j.atech.2025.101107
https://doi.org/10.1016/j.atech.2025.101107
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2772-3755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856898
  issn: 2772-3755
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2772-3755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856898
  issn: 2772-3755
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2772-3755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002856898
  issn: 2772-3755
  databaseCode: AKRWK
  dateStart: 20211201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN2Y9uDJj6ixRps9eJSGj2ULx8a0aYytxoi2J7K77Gq1haZQjR787c7yYdSoqRcOwAYys_DewLy3CB37igMLVxIyQIhBbKIM7jjC8CzGBXMd6uRdlYMh7QfkbOSOSp9trYX58v8-78Ni2swUCjnb1XssrRyvUxeIdw3Vg-FlZ6yXjwOOCI-K61a-Qj-P_A171pfxnL08s-n0E7b0NgvRdppbEuqWksfWMuMt8frNsHHF295CGyXHxJ1iUmyjNRnvoNurqlUoiXGisDYTwilgl9aj43zJiBRPYhx0bvBCQgL10Vh_ScCTGbx0Uvw0YRjoIh5fnF9gNr1LFpPsfraLgl73-rRvlKsqGMIxzcwQwJBMTm1FiKn8SAtEKGC2cITnMcFNyWwaecSWPnBF1wcCELVdxSwiLK8toG7dQ7U4ieU-wsxkUJ5IKbUkignqCdqOhO0I4Zs2V7KBTqp4h_PCPCOsusoewjxCoY5QWESogWiVk7DE_wLXQwjv3wONjwyucqGDf55_iGrZYimPgH5kvJmX7bAdvHWb5RR8BwbU2DE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2yPfjkBypOVPLgo5V-JFn7OMQxRDcRq9tTSdJEp1s71k7RX-9NP0RFZb62DS33pj3nNvecIHQUaAEsXCvIACEWcYm2hOdJy3e4kJx6zCu6Ki_7rBeS8yEdVj7bRgvzZf2-6MPixswUCjmXmiOOUY43GQXi3UDNsH_VGZnt44AjwqtCae0r9PPI37BndZHM-OsLn0w-YUt3vRRtZ4UloWkpeTpZ5OJEvn0zbFzysTfQWsUxcaecFJtoRSVb6O66bhVKE5xqbMyEcAbYZfTouNgyIsPjBIedWzxXkEBzNjF_EvB4Ch-dDD-POQa6iEeDiwHmk_t0Ps4fptso7J7dnPasalcFS3q2nVsSGJItmKsJsXUQG4EIA8yWnvR9LoWtuMtin7gqAK5IAyAAcZtq7hDp-G0JdesOaiRponYR5jaH8kQpZSRRXDJfsnYsXU_KwHaFVi10XMc7mpXmGVHdVfYYFRGKTISiMkItxOqcRBX-l7geQXj_Hmh9ZHCZG-398_p91MjnC3UA9CMXh9W0ewf1qtYL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+rice+seedling+counts+in+UAV+remote+sensing+images+via+the+YOLO+algorithm&rft.jtitle=Smart+agricultural+technology&rft.au=Chen%2C+Shengxi&rft.au=Li%2C+Wenli&rft.au=Chen%2C+Du&rft.au=Xie%2C+Zhao&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2772-3755&rft.eissn=2772-3755&rft.volume=12&rft_id=info:doi/10.1016%2Fj.atech.2025.101107&rft.externalDocID=S2772375525003405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-3755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-3755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-3755&client=summon