Recognition of rice seedling counts in UAV remote sensing images via the YOLO algorithm
Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a no...
Saved in:
| Published in | Smart agricultural technology Vol. 12; p. 101107 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2772-3755 2772-3755 |
| DOI | 10.1016/j.atech.2025.101107 |
Cover
| Abstract | Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a novel approach for identifying rice seedlings using advanced computational techniques. This study employed drone-captured images of rice seedlings taken at heights of 12 m and 15 m from two locations—Anshun City and Qianxinan Prefecture in Guizhou Province—to construct datasets containing 100, 150, and 200 images, and compared the performance of YOLOv8n, YOLOv9t, and YOLOv10n in recognizing rice seedling numbers. The results show that at a flight height of 12 m and using a dataset of 200 images, model performance was optimal, achieving mAP@50 values of 0.964, 0.936, and 0.944 for YOLOv8n, YOLOv9t, and YOLOv10n, respectively. Among these, YOLOv8n demonstrated the highest prediction accuracy for rice seedlings, with an R2 value of 0.889, RMSE of 3.225, and rRMSE of 0.032. This research demonstrates that the combination of drone imagery and deep learning models enables effective large-scale counting of rice seedlings, presenting an innovative approach to rice phenotypic analysis. |
|---|---|
| AbstractList | Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are inefficient and prone to error. The integration of high-resolution drone imagery with the feature extraction capabilities of deep learning offers a novel approach for identifying rice seedlings using advanced computational techniques. This study employed drone-captured images of rice seedlings taken at heights of 12 m and 15 m from two locations—Anshun City and Qianxinan Prefecture in Guizhou Province—to construct datasets containing 100, 150, and 200 images, and compared the performance of YOLOv8n, YOLOv9t, and YOLOv10n in recognizing rice seedling numbers. The results show that at a flight height of 12 m and using a dataset of 200 images, model performance was optimal, achieving mAP@50 values of 0.964, 0.936, and 0.944 for YOLOv8n, YOLOv9t, and YOLOv10n, respectively. Among these, YOLOv8n demonstrated the highest prediction accuracy for rice seedlings, with an R2 value of 0.889, RMSE of 3.225, and rRMSE of 0.032. This research demonstrates that the combination of drone imagery and deep learning models enables effective large-scale counting of rice seedlings, presenting an innovative approach to rice phenotypic analysis. |
| ArticleNumber | 101107 |
| Author | Cen, Fulang Chen, Du Tu, Lei Gao, Zhenran Zhang, Song Huang, Xiaoyun Xie, Zhao Chen, Shengxi Li, Wenli |
| Author_xml | – sequence: 1 givenname: Shengxi orcidid: 0009-0005-4945-5094 surname: Chen fullname: Chen, Shengxi organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China – sequence: 2 givenname: Wenli surname: Li fullname: Li, Wenli organization: Bureau of Agriculture and Rural Affairs of Pingba District, Anshun 561000, PR China – sequence: 3 givenname: Du surname: Chen fullname: Chen, Du organization: Bureau of Agriculture and Rural Affairs of Pingba District, Anshun 561000, PR China – sequence: 4 givenname: Zhao surname: Xie fullname: Xie, Zhao organization: Guizhou Provincial Soil and Fertilizer Station, Guiyang 550025, PR China – sequence: 5 givenname: Song surname: Zhang fullname: Zhang, Song organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China – sequence: 6 givenname: Fulang surname: Cen fullname: Cen, Fulang organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China – sequence: 7 givenname: Xiaoyun surname: Huang fullname: Huang, Xiaoyun organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China – sequence: 8 givenname: Lei surname: Tu fullname: Tu, Lei organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China – sequence: 9 givenname: Zhenran surname: Gao fullname: Gao, Zhenran email: zrgao@gzu.edu.cn organization: College of Agriculture, Guizhou University, Guiyang 550025, , PR China |
| BookMark | eNqNkMFKAzEQhoNUsNY-gZe8wNYku9nNHjyUolYoFMQqnkKand2mbJOSpJW-vV3XgyfxNMP8fMPMd40G1llA6JaSCSU0v9tOVAS9mTDCeDehpLhAQ1YULEkLzge_-is0DmFLCGGC56IUQ_T-Ato11kTjLHY19kYDDgBVa2yDtTvYGLCxeDV9wx52LnapDV1odqqBgI9G4bgB_LFcLLFqG-dN3Oxu0GWt2gDjnzpCq8eH19k8WSyfnmfTRaJTQmKiaZaSdc7qLCN1WYmcZbngqU61EEqvCSiWVyJjUFJOeCkoqwpeK5ppKgrNWTpCWb_3YPfq9KnaVu79-TJ_kpTIzo_cym8_svMjez9nLO0x7V0IHup_Uvc9BeePjga8DNqA1VAZDzrKypk_-S8GHYCF |
| Cites_doi | 10.3390/rs11060691 10.1109/TPAMI.2021.3134684 10.1016/j.cmpb.2021.106504 10.1016/j.compag.2022.106780 10.3390/agriculture12101659 10.34133/2021/9874650 10.3390/s22218459 10.1016/j.compag.2022.107008 10.1016/j.compag.2018.02.016 10.1007/s11042-022-13644-y 10.3390/rs15133454 10.1109/ACCESS.2024.3439346 10.1186/s13007-025-01338-z 10.3390/rs13091619 10.1016/j.compag.2018.08.013 10.1007/s12284-008-9001-z 10.34133/plantphenomics.0123 10.1016/j.compag.2021.106493 10.34133/2022/9803570 10.1007/s12524-024-01932-z 10.3390/app121910167 10.34133/plantphenomics.0128 10.3390/rs12162650 10.1007/s11119-024-10135-y 10.3390/rs15061637 10.1016/j.rse.2014.06.006 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.atech.2025.101107 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2772-3755 |
| ExternalDocumentID | 10.1016/j.atech.2025.101107 10_1016_j_atech_2025_101107 S2772375525003405 |
| GroupedDBID | 6I. AAFTH AAHBH AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c300t-c1430b62f440f9d86246853c3c88acb0ea26d842e915059812d75fa14c187c523 |
| IEDL.DBID | UNPAY |
| ISSN | 2772-3755 |
| IngestDate | Tue Aug 19 23:27:42 EDT 2025 Wed Oct 29 21:11:16 EDT 2025 Sat Jul 19 17:10:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | YOLO Deep learning UAV Seedling recognition Remote sensing Rice |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-c1430b62f440f9d86246853c3c88acb0ea26d842e915059812d75fa14c187c523 |
| ORCID | 0009-0005-4945-5094 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.atech.2025.101107 |
| ParticipantIDs | unpaywall_primary_10_1016_j_atech_2025_101107 crossref_primary_10_1016_j_atech_2025_101107 elsevier_sciencedirect_doi_10_1016_j_atech_2025_101107 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Smart agricultural technology |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Qi, Liu, Liu, Xu, Guo, Tian, Li, Bao, Li (bib0013) 2022; 194 Yan, Fan, Lei, Liu, Yang (bib0027) 2021; 13 Li, Yan, Zhou, Huang, Xiao, Huang (bib0040) 2024; 52 Zhao, Zheng, Chapman, Laws, George-Jaeggli, Hammer, Jordan, Potgieter (bib0010) 2021; 2021 Yang, Ni, Li, Luo, Qin (bib0029) 2022; 22 Gao, Liao, Nuyttens, Lootens, Vangeyte, Pižurica, He, Pieters (bib0008) 2018; 67 A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, G. Ding, YOLOv10: real-time end-to-end object detection, arXiv Preprint arXiv:240514458., (2024). Verger, Vigneau, Chéron, Gilliot, Comar, Baret (bib0007) 2014; 152 Diwan, Anirudh, Tembhurne (bib0037) 2023; 82 Zhu, Rezaei, Nouri, Sun, Li, Yu, Siebert (bib0039) 2023; 16 Lv, Ni, Wang, Yang, Xu (bib0012) 2019; 256 Wu, Liu, Xu, Bian, Gu, Cheng (bib0016) 2022; 44 Zhou, Lee, Ampatzidis, Chen, Peres, Fraisse (bib0024) 2021; 1 Bomantara, Mustafa, Bartholomeus, Kooistra (bib0031) 2023; 15 Xiaomao, Wei, Tian, Yaozong, Shixing, Wencheng (bib0003) 2024; 40 Parambil, Ali, Swavaf, Bouktif, Gochoo, Aljassmi, Alnajjar (bib0023) 2024; 12 Barreto, Lottes, Ispizua Yamati, Baumgarten, Wolf, Stachniss, Mahlein, Paulus (bib0018) 2021; 191 Zhang, Sun, Zhang, Yang, Wang (bib0014) 2023; 5 Ahmad, Yang, Yue, Ye, Hassan, Cheng, Wu, Zhang (bib0025) 2022; 12 Barbedo (bib0038) 2018; 153 Zeigler, Barclay (bib0001) 2008; 1 Ajayi, Ashi, Guda (bib0026) 2023; 5 Yu, Yin, Xu, Espinosa, Schmidhalter, Nie, Bai, Sankaran, Ming, Cui, Wu, Jin (bib0030) 2024; 25 Chen, Chen, Huang, Zhang, Chen, Cen, He, Zhao, Gao (bib0015) 2024; 15 Wu, Yang, Yang, Xu, Han, Zhu (bib0002) 2019; 11 Vong, Conway, Feng, Zhou, Kitchen, Sudduth (bib0021) 2022; 198 Varghese, M (bib0034) 2024 Kamilaris, Prenafeta-Boldú (bib0017) 2018; 147 Zhai, Li, Cheng, Ding, Chen (bib0005) 2023; 15 Zhang, Yang, Tu, Fu, Chen, Cen, Yang, Zhao, Gao, He (bib0032) 2025; 21 Wang, Yeh, Liao (bib0035) 2024 Ding, Shen, Dai, Jackson, Liu, Ali, Sun, Wen, Xiao, Deakin, Jiang, Wang, Zhou (bib0011) 2023; 5 R. J., You only look once: unified, real-time object detection, (2016). Qiao, Gao, Zhang, Li, Sun, Ma (bib0006) 2020; 12 Jiang, Xie, Yan, Wen, Li, Jiang, Jiang, Feng, Duan, Wang (bib0028) 2022; 12 Fan, Lu, Gong, Xie, Goodman (bib0019) 2018; 11 Xie, Dash, Huete, Jiang, Yin, Ding, Peng, Hall, Brown, Shi, Ye, Dong, Huang (bib0004) 2019; 80 Serouart, Madec, David, Velumani, Lozano, Weiss, Baret (bib0009) 2022; 2022 Bailly, Blanc, Francis, Guillotin, Jamal, Wakim, Roy (bib0033) 2022; 213 Ariza-Sentís, Valente, Kooistra, Kramer, Mücher (bib0020) 2023; 3 Wu (10.1016/j.atech.2025.101107_bib0002) 2019; 11 Serouart (10.1016/j.atech.2025.101107_bib0009) 2022; 2022 Ahmad (10.1016/j.atech.2025.101107_bib0025) 2022; 12 Xie (10.1016/j.atech.2025.101107_bib0004) 2019; 80 Verger (10.1016/j.atech.2025.101107_bib0007) 2014; 152 Qi (10.1016/j.atech.2025.101107_bib0013) 2022; 194 Ajayi (10.1016/j.atech.2025.101107_bib0026) 2023; 5 Ariza-Sentís (10.1016/j.atech.2025.101107_bib0020) 2023; 3 Bailly (10.1016/j.atech.2025.101107_bib0033) 2022; 213 Wang (10.1016/j.atech.2025.101107_bib0035) 2024 Kamilaris (10.1016/j.atech.2025.101107_bib0017) 2018; 147 Lv (10.1016/j.atech.2025.101107_bib0012) 2019; 256 Yu (10.1016/j.atech.2025.101107_bib0030) 2024; 25 Fan (10.1016/j.atech.2025.101107_bib0019) 2018; 11 Jiang (10.1016/j.atech.2025.101107_bib0028) 2022; 12 Chen (10.1016/j.atech.2025.101107_bib0015) 2024; 15 Vong (10.1016/j.atech.2025.101107_bib0021) 2022; 198 10.1016/j.atech.2025.101107_bib0036 Ding (10.1016/j.atech.2025.101107_bib0011) 2023; 5 Zhu (10.1016/j.atech.2025.101107_bib0039) 2023; 16 Wu (10.1016/j.atech.2025.101107_bib0016) 2022; 44 Qiao (10.1016/j.atech.2025.101107_bib0006) 2020; 12 Barreto (10.1016/j.atech.2025.101107_bib0018) 2021; 191 Xiaomao (10.1016/j.atech.2025.101107_bib0003) 2024; 40 Varghese (10.1016/j.atech.2025.101107_bib0034) 2024 Zhai (10.1016/j.atech.2025.101107_bib0005) 2023; 15 Diwan (10.1016/j.atech.2025.101107_bib0037) 2023; 82 Zeigler (10.1016/j.atech.2025.101107_bib0001) 2008; 1 Barbedo (10.1016/j.atech.2025.101107_bib0038) 2018; 153 Yang (10.1016/j.atech.2025.101107_bib0029) 2022; 22 Zhou (10.1016/j.atech.2025.101107_bib0024) 2021; 1 Yan (10.1016/j.atech.2025.101107_bib0027) 2021; 13 Gao (10.1016/j.atech.2025.101107_bib0008) 2018; 67 Zhang (10.1016/j.atech.2025.101107_bib0014) 2023; 5 10.1016/j.atech.2025.101107_bib0022 Parambil (10.1016/j.atech.2025.101107_bib0023) 2024; 12 Bomantara (10.1016/j.atech.2025.101107_bib0031) 2023; 15 Zhao (10.1016/j.atech.2025.101107_bib0010) 2021; 2021 Zhang (10.1016/j.atech.2025.101107_bib0032) 2025; 21 Li (10.1016/j.atech.2025.101107_bib0040) 2024; 52 |
| References_xml | – volume: 44 start-page: 10261 year: 2022 end-page: 10269 ident: bib0016 article-title: MobileSal: extremely efficient RGB-D salient object detection publication-title: IEEE T Pattern. Anal – volume: 198 year: 2022 ident: bib0021 article-title: Corn emergence uniformity estimation and mapping using UAV imagery and deep learning publication-title: Comput. Electron. Agr – volume: 5 year: 2023 ident: bib0026 article-title: Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images publication-title: Smart Agric. Technol. – volume: 12 start-page: 2650 year: 2020 ident: bib0006 article-title: Dynamic influence elimination and chlorophyll content diagnosis of maize using UAV spectral imagery publication-title: Remote Sens.-Basel – volume: 1 year: 2021 ident: bib0024 article-title: Strawberry maturity classification from UAV and Near-ground imaging using deep learning publication-title: Smart Agric. Technol. – volume: 25 start-page: 1800 year: 2024 end-page: 1838 ident: bib0030 article-title: Maize tassel number and tasseling stage monitoring based on near-ground and UAV RGB images by improved YoloV8 publication-title: Precis. Agric. – volume: 21 year: 2025 ident: bib0032 article-title: Comparison of YOLO-based sorghum spike identification detection models and monitoring at the flowering stage publication-title: Plant Methods – volume: 194 year: 2022 ident: bib0013 article-title: An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease publication-title: Comput. Electron. Agr. – volume: 82 start-page: 9243 year: 2023 end-page: 9275 ident: bib0037 article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications publication-title: Multimed. Tools. Appl. – volume: 256 year: 2019 ident: bib0012 article-title: A segmentation method of red apple image publication-title: Sci. Hortic.-Amst. – volume: 15 start-page: 3454 year: 2023 ident: bib0005 article-title: Exploring multisource feature fusion and stacking ensemble learning for accurate estimation of Maize Chlorophyll content using unmanned aerial vehicle remote sensing publication-title: Remote Sens.-Basel – volume: 213 year: 2022 ident: bib0033 article-title: Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models publication-title: Comput. Meth. Prog. Bio. – volume: 2021 year: 2021 ident: bib0010 article-title: Detecting Sorghum plant and head features from Multispectral UAV Imagery publication-title: Plant Phenomics. – volume: 22 start-page: 8459 year: 2022 ident: bib0029 article-title: Three-stage pavement crack localization and segmentation algorithm based on digital image processing and deep learning techniques publication-title: Sens.-Basel – volume: 152 start-page: 654 year: 2014 end-page: 664 ident: bib0007 article-title: Green area index from an unmanned aerial system over wheat and rapeseed crops publication-title: Remote Sens. Env. – volume: 2022 year: 2022 ident: bib0009 article-title: SegVeg: segmenting RGB images into green and senescent vegetation by combining deep and shallow methods publication-title: Plant Phenomics. – volume: 15 year: 2024 ident: bib0015 article-title: Estimation of sorghum seedling number from drone image based on support vector machine and YOLO algorithms publication-title: Front. Plant Sci. – volume: 15 start-page: 1637 year: 2023 ident: bib0031 article-title: Detection of artificial seed-like objects from UAV imagery publication-title: Remote Sens-Basel – volume: 16 start-page: 7471 year: 2023 end-page: 7485 ident: bib0039 article-title: UAV flight height impacts on wheat biomass estimation via machine and Deep learning publication-title: IEEE J.-Stars – start-page: 1 year: 2024 end-page: 6 ident: bib0034 article-title: YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness – start-page: 1 year: 2024 end-page: 21 ident: bib0035 article-title: YOLOv9: learning what you want to learn using programmable gradient information publication-title: European Conference on Computer Vision – volume: 40 start-page: 147 year: 2024 end-page: 156 ident: bib0003 article-title: Rapeseed seedling detection and counting based on UAV videos publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 80 start-page: 187 year: 2019 end-page: 195 ident: bib0004 article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery publication-title: INT. J. Appl. Earth Obs. – volume: 5 start-page: 0123 year: 2023 ident: bib0014 article-title: Lightweight deep learning models for high-precision rice seedling segmentation from UAV-based multispectral images publication-title: Plant Phenomics. – volume: 12 start-page: 109427 year: 2024 end-page: 109442 ident: bib0023 article-title: Navigating the YOLO landscape: a comparative study of object detection models for emotion recognition publication-title: IEEe Access. – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: bib0017 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agr. – volume: 3 year: 2023 ident: bib0020 article-title: Estimation of spinach (Spinacia oleracea) seed yield with 2D UAV data and deep learning publication-title: Smart Agric. Technol. – volume: 153 start-page: 46 year: 2018 end-page: 53 ident: bib0038 article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification publication-title: Comput. Electron. Agr. – volume: 52 start-page: 2099 year: 2024 end-page: 2114 ident: bib0040 article-title: Study on tobacco plant cross-level recognition in complex habitats in karst mountainous areas based on the U-net model publication-title: J. Ind. Soc. Rem. – volume: 1 start-page: 3 year: 2008 end-page: 10 ident: bib0001 article-title: The relevance of rice publication-title: Rice – reference: A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, G. Ding, YOLOv10: real-time end-to-end object detection, arXiv Preprint arXiv:240514458., (2024). – volume: 5 start-page: 0128 year: 2023 ident: bib0011 article-title: The dissection of nitrogen response traits using drone phenotyping and dynamic phenotypic analysis to explore N responsiveness and associated genetic loci in wheat publication-title: Plant Phenomics. – volume: 11 start-page: 691 year: 2019 ident: bib0002 article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network publication-title: Remote. Sens.-Basel. – volume: 191 year: 2021 ident: bib0018 article-title: Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry publication-title: Comput. Electron. Agr. – reference: R. J., You only look once: unified, real-time object detection, (2016). – volume: 12 year: 2022 ident: bib0025 article-title: Deep learning based detector YOLOv5 for identifying insect pests publication-title: Appl. Sci. – volume: 11 start-page: 876 year: 2018 end-page: 887 ident: bib0019 article-title: Automatic tobacco plant detection in UAV images via deep neural networks publication-title: IEEE J-Stars – volume: 13 start-page: 1619 year: 2021 ident: bib0027 article-title: A real-time apple targets detection method for picking robot based on improved YOLOv5 publication-title: Rem. Sens-Basel – volume: 67 start-page: 43 year: 2018 end-page: 53 ident: bib0008 article-title: Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery publication-title: Int. J. Appl. Earth Obs. – volume: 12 start-page: 1659 year: 2022 ident: bib0028 article-title: An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation publication-title: Agriculture – volume: 80 start-page: 187 year: 2019 ident: 10.1016/j.atech.2025.101107_bib0004 article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery publication-title: INT. J. Appl. Earth Obs. – volume: 256 year: 2019 ident: 10.1016/j.atech.2025.101107_bib0012 article-title: A segmentation method of red apple image publication-title: Sci. Hortic.-Amst. – volume: 11 start-page: 691 year: 2019 ident: 10.1016/j.atech.2025.101107_bib0002 article-title: Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network publication-title: Remote. Sens.-Basel. doi: 10.3390/rs11060691 – volume: 44 start-page: 10261 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0016 article-title: MobileSal: extremely efficient RGB-D salient object detection publication-title: IEEE T Pattern. Anal doi: 10.1109/TPAMI.2021.3134684 – start-page: 1 year: 2024 ident: 10.1016/j.atech.2025.101107_bib0035 article-title: YOLOv9: learning what you want to learn using programmable gradient information – volume: 5 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0026 article-title: Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images publication-title: Smart Agric. Technol. – volume: 213 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0033 article-title: Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models publication-title: Comput. Meth. Prog. Bio. doi: 10.1016/j.cmpb.2021.106504 – volume: 194 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0013 article-title: An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2022.106780 – volume: 12 start-page: 1659 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0028 article-title: An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation publication-title: Agriculture doi: 10.3390/agriculture12101659 – volume: 2021 year: 2021 ident: 10.1016/j.atech.2025.101107_bib0010 article-title: Detecting Sorghum plant and head features from Multispectral UAV Imagery publication-title: Plant Phenomics. doi: 10.34133/2021/9874650 – volume: 22 start-page: 8459 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0029 article-title: Three-stage pavement crack localization and segmentation algorithm based on digital image processing and deep learning techniques publication-title: Sens.-Basel doi: 10.3390/s22218459 – volume: 15 year: 2024 ident: 10.1016/j.atech.2025.101107_bib0015 article-title: Estimation of sorghum seedling number from drone image based on support vector machine and YOLO algorithms publication-title: Front. Plant Sci. – volume: 198 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0021 article-title: Corn emergence uniformity estimation and mapping using UAV imagery and deep learning publication-title: Comput. Electron. Agr doi: 10.1016/j.compag.2022.107008 – volume: 147 start-page: 70 year: 2018 ident: 10.1016/j.atech.2025.101107_bib0017 article-title: Deep learning in agriculture: a survey publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2018.02.016 – ident: 10.1016/j.atech.2025.101107_bib0036 – volume: 82 start-page: 9243 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0037 article-title: Object detection using YOLO: challenges, architectural successors, datasets and applications publication-title: Multimed. Tools. Appl. doi: 10.1007/s11042-022-13644-y – volume: 15 start-page: 3454 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0005 article-title: Exploring multisource feature fusion and stacking ensemble learning for accurate estimation of Maize Chlorophyll content using unmanned aerial vehicle remote sensing publication-title: Remote Sens.-Basel doi: 10.3390/rs15133454 – volume: 12 start-page: 109427 year: 2024 ident: 10.1016/j.atech.2025.101107_bib0023 article-title: Navigating the YOLO landscape: a comparative study of object detection models for emotion recognition publication-title: IEEe Access. doi: 10.1109/ACCESS.2024.3439346 – volume: 21 year: 2025 ident: 10.1016/j.atech.2025.101107_bib0032 article-title: Comparison of YOLO-based sorghum spike identification detection models and monitoring at the flowering stage publication-title: Plant Methods doi: 10.1186/s13007-025-01338-z – volume: 13 start-page: 1619 year: 2021 ident: 10.1016/j.atech.2025.101107_bib0027 article-title: A real-time apple targets detection method for picking robot based on improved YOLOv5 publication-title: Rem. Sens-Basel doi: 10.3390/rs13091619 – volume: 16 start-page: 7471 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0039 article-title: UAV flight height impacts on wheat biomass estimation via machine and Deep learning publication-title: IEEE J.-Stars – volume: 153 start-page: 46 year: 2018 ident: 10.1016/j.atech.2025.101107_bib0038 article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2018.08.013 – volume: 1 start-page: 3 year: 2008 ident: 10.1016/j.atech.2025.101107_bib0001 article-title: The relevance of rice publication-title: Rice doi: 10.1007/s12284-008-9001-z – volume: 5 start-page: 0123 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0014 article-title: Lightweight deep learning models for high-precision rice seedling segmentation from UAV-based multispectral images publication-title: Plant Phenomics. doi: 10.34133/plantphenomics.0123 – volume: 191 year: 2021 ident: 10.1016/j.atech.2025.101107_bib0018 article-title: Automatic UAV-based counting of seedlings in sugar-beet field and extension to maize and strawberry publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2021.106493 – volume: 2022 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0009 article-title: SegVeg: segmenting RGB images into green and senescent vegetation by combining deep and shallow methods publication-title: Plant Phenomics. doi: 10.34133/2022/9803570 – volume: 52 start-page: 2099 year: 2024 ident: 10.1016/j.atech.2025.101107_bib0040 article-title: Study on tobacco plant cross-level recognition in complex habitats in karst mountainous areas based on the U-net model publication-title: J. Ind. Soc. Rem. doi: 10.1007/s12524-024-01932-z – volume: 12 year: 2022 ident: 10.1016/j.atech.2025.101107_bib0025 article-title: Deep learning based detector YOLOv5 for identifying insect pests publication-title: Appl. Sci. doi: 10.3390/app121910167 – ident: 10.1016/j.atech.2025.101107_bib0022 – volume: 5 start-page: 0128 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0011 article-title: The dissection of nitrogen response traits using drone phenotyping and dynamic phenotypic analysis to explore N responsiveness and associated genetic loci in wheat publication-title: Plant Phenomics. doi: 10.34133/plantphenomics.0128 – start-page: 1 year: 2024 ident: 10.1016/j.atech.2025.101107_bib0034 – volume: 12 start-page: 2650 year: 2020 ident: 10.1016/j.atech.2025.101107_bib0006 article-title: Dynamic influence elimination and chlorophyll content diagnosis of maize using UAV spectral imagery publication-title: Remote Sens.-Basel doi: 10.3390/rs12162650 – volume: 11 start-page: 876 year: 2018 ident: 10.1016/j.atech.2025.101107_bib0019 article-title: Automatic tobacco plant detection in UAV images via deep neural networks publication-title: IEEE J-Stars – volume: 3 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0020 article-title: Estimation of spinach (Spinacia oleracea) seed yield with 2D UAV data and deep learning publication-title: Smart Agric. Technol. – volume: 40 start-page: 147 year: 2024 ident: 10.1016/j.atech.2025.101107_bib0003 article-title: Rapeseed seedling detection and counting based on UAV videos publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 1 year: 2021 ident: 10.1016/j.atech.2025.101107_bib0024 article-title: Strawberry maturity classification from UAV and Near-ground imaging using deep learning publication-title: Smart Agric. Technol. – volume: 25 start-page: 1800 year: 2024 ident: 10.1016/j.atech.2025.101107_bib0030 article-title: Maize tassel number and tasseling stage monitoring based on near-ground and UAV RGB images by improved YoloV8 publication-title: Precis. Agric. doi: 10.1007/s11119-024-10135-y – volume: 15 start-page: 1637 year: 2023 ident: 10.1016/j.atech.2025.101107_bib0031 article-title: Detection of artificial seed-like objects from UAV imagery publication-title: Remote Sens-Basel doi: 10.3390/rs15061637 – volume: 152 start-page: 654 year: 2014 ident: 10.1016/j.atech.2025.101107_bib0007 article-title: Green area index from an unmanned aerial system over wheat and rapeseed crops publication-title: Remote Sens. Env. doi: 10.1016/j.rse.2014.06.006 – volume: 67 start-page: 43 year: 2018 ident: 10.1016/j.atech.2025.101107_bib0008 article-title: Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery publication-title: Int. J. Appl. Earth Obs. |
| SSID | ssj0002856898 |
| Score | 2.3263023 |
| Snippet | Accurate identification of rice seedling numbers is essential for breeding, replanting, and yield prediction. Traditional manual counting methods are... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 101107 |
| SubjectTerms | Deep learning Remote sensing Rice Seedling recognition UAV YOLO |
| Title | Recognition of rice seedling counts in UAV remote sensing images via the YOLO algorithm |
| URI | https://dx.doi.org/10.1016/j.atech.2025.101107 https://doi.org/10.1016/j.atech.2025.101107 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2772-3755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856898 issn: 2772-3755 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2772-3755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856898 issn: 2772-3755 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2772-3755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002856898 issn: 2772-3755 databaseCode: AKRWK dateStart: 20211201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN2Y9uDJj6ixRps9eJSGj2ULx8a0aYytxoi2J7K77Gq1haZQjR787c7yYdSoqRcOwAYys_DewLy3CB37igMLVxIyQIhBbKIM7jjC8CzGBXMd6uRdlYMh7QfkbOSOSp9trYX58v8-78Ni2swUCjnb1XssrRyvUxeIdw3Vg-FlZ6yXjwOOCI-K61a-Qj-P_A171pfxnL08s-n0E7b0NgvRdppbEuqWksfWMuMt8frNsHHF295CGyXHxJ1iUmyjNRnvoNurqlUoiXGisDYTwilgl9aj43zJiBRPYhx0bvBCQgL10Vh_ScCTGbx0Uvw0YRjoIh5fnF9gNr1LFpPsfraLgl73-rRvlKsqGMIxzcwQwJBMTm1FiKn8SAtEKGC2cITnMcFNyWwaecSWPnBF1wcCELVdxSwiLK8toG7dQ7U4ieU-wsxkUJ5IKbUkignqCdqOhO0I4Zs2V7KBTqp4h_PCPCOsusoewjxCoY5QWESogWiVk7DE_wLXQwjv3wONjwyucqGDf55_iGrZYimPgH5kvJmX7bAdvHWb5RR8BwbU2DE |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2yPfjkBypOVPLgo5V-JFn7OMQxRDcRq9tTSdJEp1s71k7RX-9NP0RFZb62DS33pj3nNvecIHQUaAEsXCvIACEWcYm2hOdJy3e4kJx6zCu6Ki_7rBeS8yEdVj7bRgvzZf2-6MPixswUCjmXmiOOUY43GQXi3UDNsH_VGZnt44AjwqtCae0r9PPI37BndZHM-OsLn0w-YUt3vRRtZ4UloWkpeTpZ5OJEvn0zbFzysTfQWsUxcaecFJtoRSVb6O66bhVKE5xqbMyEcAbYZfTouNgyIsPjBIedWzxXkEBzNjF_EvB4Ch-dDD-POQa6iEeDiwHmk_t0Ps4fptso7J7dnPasalcFS3q2nVsSGJItmKsJsXUQG4EIA8yWnvR9LoWtuMtin7gqAK5IAyAAcZtq7hDp-G0JdesOaiRponYR5jaH8kQpZSRRXDJfsnYsXU_KwHaFVi10XMc7mpXmGVHdVfYYFRGKTISiMkItxOqcRBX-l7geQXj_Hmh9ZHCZG-398_p91MjnC3UA9CMXh9W0ewf1qtYL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+rice+seedling+counts+in+UAV+remote+sensing+images+via+the+YOLO+algorithm&rft.jtitle=Smart+agricultural+technology&rft.au=Chen%2C+Shengxi&rft.au=Li%2C+Wenli&rft.au=Chen%2C+Du&rft.au=Xie%2C+Zhao&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2772-3755&rft.eissn=2772-3755&rft.volume=12&rft_id=info:doi/10.1016%2Fj.atech.2025.101107&rft.externalDocID=S2772375525003405 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-3755&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-3755&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-3755&client=summon |